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[1] Seasonal forecasting of streamflow provides many benefits to society, by improving
our ability to plan and adapt to changing water supplies. A common approach to
developing these forecasts is to use statistical methods that link a set of predictors
representing climate state as it relates to historical streamflow, and then using this model to
project streamflow one or more seasons in advance based on current or a projected climate
state. We present an approach for forecasting multivariate time series using independent
component analysis (ICA) to transform the multivariate data to a set of univariate time
series that are mutually independent, thereby allowing for the much broader class of
univariate models to provide seasonal forecasts for each transformed series. Uncertainty is
incorporated by bootstrapping the error component of each univariate model so that the
probability distribution of the errors is maintained. Although all analyses are performed
on univariate time series, the spatial dependence of the streamflow is captured by
applying the inverse ICA transform to the predicted univariate series. We demonstrate the
technique on a multivariate streamflow data set in Colombia, South America, by
comparing the results to a range of other commonly used forecasting methods. The results
show that the ICA-based technique is significantly better at representing spatial
dependence, while not resulting in any loss of ability in capturing temporal dependence.

As such, the ICA-based technique would be expected to yield considerable advantages
when used in a probabilistic setting to manage large reservoir systems with multiple

inflows or data collection points.

Citation: Westra, S., A. Sharma, C. Brown, and U. Lall (2008), Multivariate streamflow forecasting using independent component
analysis, Water Resour. Res., 44, W02437, doi:10.1029/2007WR006104.

1. Introduction

[2] Providing seasonal forecasts of rainfall and/or stream-
flow is an important challenge in hydrology, with potential
benefits in reservoir management, operation of irrigation
networks, and flood control, among others. These forecasts
can be particularly pertinent for regions that experience
significant inter-annual variability that result from the
El Nifio Southern Oscillation (ENSO) phenomenon [Chiew
and McMahon, 2002; Sharma, 2000a], as it is often possible
to use knowledge of ENSO and related oceanic patterns to
provide estimates of future rainfall and/or streamflow that
outperform the climatological means. Although societal
benefits of these forecasts can be difficult to quantify,
several studies have been published recently showing sig-
nificant economic gains through the application of such
forecasts to hydropower generation [e.g., Hamlet et al.,
2002; Yao and Georgakakos, 2001].

[3] These forecasts are commonly classified as either
statistical or dynamical, with an excellent review provided
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by Goddard et al. [2001]. The present paper concerns itself
with the field of statistical forecasts, which involves identi-
fying mathematical relationships between a set of predictors
such as global sea surface temperatures (SSTs), and the
variables one wishes to predict (predictands), which for water
resources applications typically includes rainfall and/or
streamflow at a catchment or regional scale. To be considered
successful, these forecasts generally are expected at mini-
mum to outperform the climatological mean, as well as
predictions obtained by adopting a simple persistence model
that assumes recent climate anomalies will continue into the
following season [Huang et al., 1996].

[4] A review of a large number of statistical forecast
models around the world [Goddard et al., 2001] suggests
that most of the predictability from these models is related
to variability in the tropical Pacific, and in particular in
relation to the ENSO phenomenon [for example, see
Barnston, 1994; Casey, 1998; Chiew and McMahon,
2002; Filho and Lall, 2003]. Thus it has become common
to use indices of ENSO as the basis of the statistical model.
Popular forms of such models include either parametric
[e.g., McBride and Nicholls, 1983; Singhrattna et al., 2005;
Woolddridge et al., 1999] or non-parametric [e.g., Sharma,
2000b; Singhrattna et al., 2005] regression models, condi-
tional probability models (by defining a given year as El Nifio,
La Nina or neutral, and estimating the conditional probability
density function of the predictand according to this classifi-
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cation; see Mason and Goddard, 2001; by defining a given
year as El Nifio, La Nifia or neutral, and estimating the
conditional probability density function of the predictand
according to this classification; see Ropelewski and Halpert,
1996), and models that incorporate both ENSO state as well as
a recent trend component [Stone et al., 1996].

[5] In numerous instances, one may wish to consider
climate features which are not adequately described by one
of the ENSO indices as potential predictors to a statistical
model [e.g., Verdon et al., 2004]. These additional features
may be described by other indices, such as the North
Atlantic Oscillation [NAO; Hurrell, 1995; Hurrell and
Van Loon, 1997] or the Indian Ocean Dipole [IOD; Ashok
et al., 2003; 10D; Saji et al., 1999; Saji and Yamagata,
2003], however these indices represent climatological phe-
nomena which are themselves often highly correlated with
ENSO. An alternative to the index-based approach makes
uses information contained in the large multivariate data
sets such as global sea surface temperatures (SSTs), which
has been shown to enhance the quality of forecasts in
numerous instances [e.g., Drosdowsky and Chambers,
2001; Nicholls, 1989].

[6] As these global data fields are usually quite large, and
contain significant spatial correlation, some form of dimen-
sion reduction is required prior to incorporation into a
statistical model. In simple cases, this might involve appli-
cation of principal components analysis (PCA) to the
multivariate predictor data set to extract individual ‘modes’
of variability that are mutually uncorrelated and successively
explain the maximum amount of remaining variance in the
data [Barnston and Ropelewski, 1992]. This is frequently
followed by applying a rotation to the PCA solution to
enhance interpretability of the climate ‘modes’, with Varimax
[Richman, 1986] and Independent Component Analysis
[ICA; Aires et al., 2000] being two popular choices. It is then
usually a straightforward exercise to find a parametric or
nonparametric statistical model to relate the predictors and
predictand as the basis for generating the forecasts.

[7] This situation is more complicated when the predic-
tand is also multivariate, such as when the aim is to forecast
rainfall or streamflow in a large reservoir system where
there are gauging stations at multiple sites. Arguably the
most commonly used statistical technique for these data sets
is canonical correlation analysis [CCA; Barnett and
Preisendorfer, 1987; Barnston, 1994; Barnston and
Ropelewski, 1992; Hwang et al., 2001; Nicholls, 1989;
Shabbar and Barnston, 1996; CCA; Storch and Zwiers,
2001]. The basic approach of CCA is to develop a linear
relationship between a multivariate predictor set and a mul-
tivariate predictand set such that the sum of squared errors is
minimized. This is achieved by performing an eigen-analysis
on the cross-correlation matrix constructed by computing
correlation coefficients between the predictor and predictand,
such that the correlation explained between these data sets is
maximized, while at the same time ensuring successive
canonical variates are mutually uncorrelated.

[8] CCA is a very powerful multivariate method that has
been used to develop numerous forecasts of considerable
skill. One limitation, however, is that the model linking the
predictor and predictand data sets is constrained to be linear,
which may not reflect accurately the true relationship
between these two data sets. Furthermore, by focusing on
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correlation statistics, CCA may ignore higher-order depen-
dencies, which may reduce the performance of the approach
in certain hydrological applications [see Westra et al., 2007].

[0] This paper extends the work of Westra et al. [2007] to
forecast multivariate streamflow time series in a catchment
located in Colombia, South America. The approach com-
mences by using ICA to transform the predictand data to a
set of univariate components which are as independent from
each other as possible. This allows the development of a
model that is univariate in the predictand and multivariate in
the predictors, where in this case the predictors are derived
by applying PCA to the SST data set for dimension
reduction followed by an ICA rotation. For simplicity we
then use a linear model to link the ICs of the predictor data
set to individual ICs of the predictand data set, although
non-linear or non-parametric extensions are also possible.
Finally, we apply the inverse ICA rotation to the estimated
predictand ICs, such that the spatial dependence structure is
maintained.

[10] This method is expected to yield a number of
advantages compared with other multivariate methods. For
example, although the selection of predictors does not rely
on information contained within the predictand data set, as
is the case with CCA, it can be argued that the additional
flexibility gained by allowing rotations of the SST data set
to enhance interpretability may increase the robustness of
the ensuing model, as well as potentially assisting in
understanding the drivers of climate within a particular
region. Furthermore, the proposed approach incorporates
greater flexibility both in terms of selecting the predictor
data set (e.g., using PCA, Varimax or ICA), as well as
defining the relationship between predictor and predictand,
which for the purposes of this research is represented by a
linear model but can be easily extended to a range of non-
linear or non-parametric models. Finally, considering inde-
pendence in the predictand data set should ensure that the
spatial dependence is better maintained compared to corre-
lation-based methods.

[11] The remainder of the paper is as follows. The
background to ICA is presented in section 2. This is
followed by an overview of the streamflow and sea surface
temperature data sets used in the analysis in section 3. The
forecasting methodology is then presented in section 4,
followed by the results in section 5. Finally, the conclusions
from this study are presented in section 6.

2. Independent Component Analysis

[12] Independent Component Analysis (ICA) is a recently
developed mathematical technique which is used to separate
mixtures of signals by maximizing the independence of the
extracted components [Comon, 1994; Herault and Jutten,
1986]. The primary motivation for ICA traditionally has
been the link between finding independent representations
of multivariate data and solving the blind source separation
(BSS) problem, in which one wishes to derive a set of
independent ‘source signals’ from a set of observations,
having no information about either the nature of these
signals, or the manner in which they have been mixed
[Hyvarinen, 1999; Hyvarinen et al., 2001; Lee, 1998; Oja,
2004]. This has been the main justification for applying ICA
to sea surface temperatures [SSTs; Aires et al., 1999; Aires
et al., 2000; Aires et al., 2002; Basak et al., 2004; Ilin et al.,
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2006] since it allows the extraction of dominant ‘modes’, or
‘features’, of the underlying system.

[13] An additional benefit to maximizing independence is
that it allows multivariate data to be decomposed into a set
of univariate series, with each series exhibiting minimal
dependence on the other series. In certain cases this can
simplify statistical models significantly, since each univar-
iate series can be considered in isolation rather than as part
of a complex multivariate model (refer to discussion by
Westra et al., 2007). Both the statistical and analytical
advantages of maximizing independence will be exploited
in this paper.

[14] The simplest form of ICA occurs when an m by
[ observation matrix X is derived through the mixing of an n
by [ ‘source’ matrix S, which are commonly referred to as
the independent components [Comon, 1994]. These ICs are
assumed to be non-Gaussian (with the possible exception of
at most one IC, since by knowing all but one IC, the final IC
can be specified automatically), mutually statistically inde-
pendent and zero-mean. In addition, it is assumed that n < m.
Put into vector-matrix notation, and assuming that the mixing
is both linear and stationary, yields:

X = AS (1)

where A is known as the mixing matrix of dimension m X
n. The objective of ICA is to estimate the mixing matrix, A,
as well as the independent components, S, knowing only the
observations X. This can be achieved up to some scalar
multiple of S, since any constant multiplying an indepen-
dent component in equation (1) can be canceled by dividing
the corresponding column of the mixing matrix A by the
same constant.

[15] Central to the identification of the ICs from the data
X is the assumption that all except at most one IC will be
“maximally non-Gaussian™ [Hyvarinen et al., 2001]. This
follows from the logic outlined in the central limit theorem,
which is that if one mixes independent random variables
through a linear transformation, the result will be a set of
variables that tend to be Gaussian. If one reverses this logic,
it can be presumed that the original independent compo-
nents must have a distribution that has minimal similarity to
a Gaussian distribution. Consequently, the approach adop-
ted to extract ICs from data containing mixed signals
amounts to finding a transformation that results in variables
that exhibit maximal non-Gaussianity as defined through an
appropriately specified statistic.

[16] ICA is frequently compared with a related technique
known as principal component analysis (PCA), except that
ICA results in components that are statistically independent,
whereas PCA leads to components that, while being uncor-
related, may exhibit strong dependence on each other. The
independent components are extracted using higher-order
moment information, i.e., information other than that
contained in the covariance matrix of X [Oja, 2004]. PCA
is commonly used as a pre-processing step, however, both
as a means of dimension reduction, and as a starting point
for whitening (or sphering) the data such that X is linearly
transformed into another n-dimensional vector Z that has a
unit covariance matrix. For more detail on the statistical
differences between uncorrelatedness and independence,
refer to the analysis provided by Westra et al. [2007].
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[17] In this study the ICA logic is applied to develop
independent components of SSTs, which are used to for-
mulate predictive models of hydrological responses, which
in this case are the independent components derived from a
vector of streamflows at key locations in the selected study
area. More details on the study area and the data used are
presented next.

3. Data
3.1.

[18] The streamflow data set that is used in this study
consists of 20 stations located in the Magdalena-Cauca in
Colombia, and which drains to the Caribbean Sea. The
locations of these stations are shown in Figure 1, with each
station located at a reservoir inflow point representing
observed inflows to three hydroelectric generating reser-
voirs. Each station retains the name of the river on which it
is located, and measurements were initiated during the
design phase of each proposed reservoir/dam and continue
to the present. The data represents unimpaired monthly total
flows from 1963 to 2004, which in certain cases (e.g., the
Alto Anchicaya from 1963 —1975) has been calibrated using
regions with longer and more reliable records. These monthly
flows were aggregated into seasonal flows, defined as sum-
mer (DJF), autumn (MAM), winter (JJA), and spring (SON).

[19] The objective of this study is to outline the use of
independent component analysis to transform the multivar-
iate data into a set of univariate components, so that
univariate regression methods can be applied to generate
forecasts. Because of the relatively short duration of the data
(42 data points), it is not possible to apply ICA to the full 20
dimensional data set, and as such we consider two trivariate
subsets of this data for further analysis.

[20] The first subset is derived using a K-medoid clus-
tering algorithm [Hastie et al., 2001] with K = 3 to the
streamflow data to find the three ‘clusters’ which maximize
the pair-wise dissimilarity between those sites assigned to
the same cluster and those in different clusters. The sites
selected are those which are closest to the center of each
cluster. This approach was preferred over K-means cluster-
ing, since data from a ‘real’ streamflow station could be
used for subsequent analysis rather than the mathematical
centroid of each cluster which by averaging may no longer
have the characteristics of a true streamflow time series. The
cluster analysis was performed on the annual streamflow
data, rather than on seasonal data, to simplify ensuing
calculations by ensuring that the sites used for the analysis
were the same for each season. The selected sites were
Guavio, Guatape and Rio Grande.

[21] The second subset consists of the same streamflow
stations that were used to illustrate the difference between
uncorrelated and independent components in the context of
stochastic analysis provided by Westra et al. [2007], and
includes Rio Grande, Salvajina and Alto Anchicaya. The
data from these stations exhibit significantly more spatial
dependence than the data from the clustering analysis
described above, and therefore allows a more rigorous
comparison of the ability of a range of statistical techniques
in maintaining this spatial dependence in the context of
streamflow forecasting. The gauging stations used in the

Streamflow
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Figure 1. Streamflow stations used in the analysis.

analysis, including seasonal and annual mean streamflows
at each stations, are provided in Table 1.

3.2. Climate

[22] A global sea surface temperature anomaly (SSTA)
data set was obtained from a reconstruction of raw SST
values using an optimal smoother, as described in [Kaplan
et al., 1998]. On the basis of a simple correlation analysis
between individual streamflow time series and the global
data set (results not shown), it was found that statistically
significant correlations were found for certain stations and
certain seasons in all major oceans and for the full range of

latitudes. As a result, we decided not to reduce the global
data set to a smaller geographic range. The linear trend of
about 0.6 degrees Celsius was removed from each SSTA
time series before continuing with the analysis.

[23] An index of the oceanic component of the ENSO
phenomenon, Nifio 3.4, was also used in this analysis, and
is defined as the seasonally averaged SSTA over the eastern
Pacific [5°S — 5°N, 120°W — 170°W; Trenberth, 1997].
Both the global SSTA data set and the Nifio 3.4 index were
obtained from the International Research Institute for Cli-
mate and Society (IRI) website (http://iri.columbia.edu). In
each case, the data was aggregated to form seasonal time

Table 1. List of Gauging Stations Used in the Analysis, Together With Seasonal and Annual Mean Streamflow

(m>/s)?

Station Record DJF MAM JJA SON Annual
Guavio 1963-2004 70.2 (22.9) 201.7 (53.77) 399.5 (75.6) 192.8 (32.5) 864 (121)
Guatape 1959-2004 74.4 (22.3) 97.9 (26.8) 88.9 (21.0) 130.9 (27.4) 392 (74)
Rio Grande 1942-2004 78.7 (22.9) 95.8 (27.6) 100.9 (26.7) 126.6 (30.0) 402 (85)
Salvajina 1947-2004 512.2 (194.6) 436.1 (126.7) 298.6 (51.1) 370.3 (115.3) 1617 (357)
Alto Anchicaya 1963-2004 130.5 (29.5) 139.8 (28.6) 105.6 (26.8) 160.9 (28.4) 537 (78)

Standard deviations are presented in parentheses.
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series. For the subsequent statistical model, concurrent data
was used throughout the analysis.

4. Methodology
4.1.

[24] The objective of this paper is to describe various
methods to forecast seasonal streamflow for a water supply
catchment in Colombia, and demonstrate certain benefits in
formulating the forecasting models by considering indepen-
dence in both predictor and predictand data sets. Each of the
forecasting approaches will be applied to both subsets of
three streamflow stations identified in section 3.

[25] Let the trivariate streamflow data be represented by
Xy = {Xg 16 Xg2 Xg344- The subscript, ¢, will be used
throughout this paper to indicate a streamflow variable,
whereas the subscript, s, will be used to refer to the SST
data set. All streamflow data has been normalized by
subtracting the seasonal mean and dividing by the standard
deviation, and as such represents seasonal anomaly data.
Note that each x,;, represents a time series for a particular
season, with the season denoted by 7. Arguably the most
simple forecast model is to consider the previous season
streamflow time series (#-1) in an autoregressive order-1
model, as described below:

Forecasting Overview

Xgit = Bar Xga-1 + 8,(~_ll> (2)

where [4r, represents the regression coefficient for that
season for the autoregressive model, and i€ {1, 2, 3} repre-
sents individual streamflow time series, such that a separate
model is developed for each streamflow station. The previous
season streamflow, represented by x,,; is taken as the
unweighted average streamflow from each of the three
stations, and therefore does not contain the subscript i. This
was preferred over using a separate predictor (i.e., streamflow
for the previous season at the same site) for each model, in the
interest of keeping the modeling structure as parsimonious as
possible, and also because of the spatial linkages the respec-
tive flows have with each other.

[26] The approach represented by equation 2 is equivalent
to the standard climatology plus persistence model, and as
discussed in the Introduction of this paper, any forecast
model should be tested against this basic model to determine
whether using exogenous variables relating to a climate state
will result in an increase in predictability. As a result, the
remainder of this paper will focus on improving this basic
model by focusing on minimizing the error component, &%),
Four such approaches will be considered, including:

[27] 1) Considering an index of the ENSO phenomenon,
Nifio 3.4, as the Predictor, and regressing this predictor
against the error 52 ) associated with each univariate stream-
flow time series individually;

[28] 2) Using ICA on the SSTA data to obtain a multivar-
iate SSTA predictor field, which will be regressed against
each univariate streamflow error time series si,lt) individually;

[29] 3) Applying CCA to model both multivariate pre-
dictor and multivariate predictand, by using eigen-decom-
position techniques to maintain second order dependencies
in the data; and

[30] 3) Applying ICA to both the multivariate predictor
and multivariate predictand, using an information-theoretic
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approach to maintain second- and higher-order dependen-
cies in the data.

[31] Note that both the Nifio 3.4 index and the SSTA data
used for the forecasts are concurrent, to simplify the
analysis. In reality, of course, the user will not have access
to concurrent information to develop future projections, and
as such, this method will need to be modified to incorporate
a forecasting model for SSTAs (using either statistical or
dynamical means), or alternatively using a lagged relation-
ship between predictor and predictand.

4.2. Approach 1 - Regression of the Nifio 3.4
Index Against Univariate Streamflow Residuals

[32] We present first a simple regression model that uses
the Nifio 3.4 index as a measure of the oceanic component
of ENSO variability:

2
Xgir = BarXqi—1 + Bywossz: + 81{:) A3)

where z, represents the seasonal Nifio 3.4 index at season ¢,
and Onmoss represents the regression coefficient for this
predictor. This model is mathematically and computation-
ally simple, and is frequently also highly interpretable, since
a statistically significant model will demonstrate a direct
relationship between the hydrological variable of interest,
and a known measure of exogenous climate variability. Its
main disadvantages is that each streamflow time series is
modeled independently, and hence cannot be expected to
exhibit the spatial dependence one would observe in the
historical data. An additional disadvantage is the reliance on
ENSO as the only mode of variability, a strong assumption
given evidence of secondary effects that change streamflow
patterns around the world.

4.3. Approach 2 - Regression of Multivariate SSTAs
Against Univariate Streamflow Residuals

[33] Our second model includes sea surface temperature
anomalies as an additional factor in predicting flows,
consistent with the recommendations of [Paegle and Mo,
2002]. This is done by first applying PCA to reduce the
dimension of the global SSTA data set, followed by
application of ICA to the retained components to enhance
the interpretability of each component. We considered six
components in total, which is based on a compromise
between maximizing interpretability of individual ICs while
at the same time maximizing the variance explained in the
original data set. This allows two predictors on average for
each of the three predictands. The ensuing model is written
as follows:

3
Xqit = BarXqe-1 + Z B¥sji + 31(‘,:) 4)
J

where y; ;, represents estimates of the independent compo-
nents, S, obtained by applying equation (1) to the SSTA
data set for season . Here, je{l, 2, ..., 6} represents the
subset of predictors obtained from the set of independent
components from the SSTA data set, selected using a
forward stepwise selection procedure with the partial
t-statistic for testing whether a predictor should be included.
We use a 90 percentile cut-off ¢ value of 1.68 which
corresponds to a correlation coefficient of 0.255. It was
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found that a large number of predictors were excluded using
the slightly higher 95 percentile ¢ value, which we believe is
partly due to the difficultly in demonstrating statistical
significance for such short data sets, particularly when
looking beyond the first predictor, which is usually related
to the ENSO phenomenon. It should be noted that this
model would be expected to reflect variability due to a
broader set of causes than just ENSO, but would still be
constrained in its representation of spatial dependence
across the streamflow variables being modeled.

4.4. Approach 3 - Use of Canonical Correlation
Analysis to Relate the Multivariate SSTAs to
Multivariate Streamflow

[34] The disadvantage of the above two methods in the
present context is that a separate model is formulated for each
of the streamflow time series, without any provision to ensure
an accurate representation of the spatial dependence that
exists across the streamflow variable vector. A widely used
approach for incorporating spatial dependence is known as
canonical correlation analysis (CCA), which is a mathemat-
ical approach for identifying pairs of patterns in two multi-
variate data sets, and constructing sets of transformed
variables by projecting the original data onto these patterns
[Wilks, 2006]. For the purposes of this study, the predictors
and predictands are the global SST data set represented by
X1 and the trivariate reservoir inflow data set after account-
ing for persistence represented by E{", respectively.

[35] The following is a brief overview of CCA, based on
the discussion by Wilks [2006] but with notation adjusted to
be consistent with notation used elsewhere in this paper.

[36] The aim of CCA is to transform the original (cen-
tered) multivariate data sets X, and E" into a set of
canonical variates, V and W, defined by:

v =ATX,, (5)

W = B’E/" (6)

The vectors of weights, A and B, are the canonical vectors,
which are obtained through an eigen-decomposition of X
and E{", with further details provided by Wilks [2006]. This
results in the canonical variates having the properties

rc,-,i: n

Corr|V;, W, = {m (7)

where r¢; is obtained through an eigen decomposition of the
joint predictand-predictor covaiances matrices. Since the r¢;
allows each element of V to be related to a unique element
of W, estimation of W can be accomplished through the
following linear relationship:

W = [R¢]V (8)
where
rer 0 0
Re]=10 rex O 9)
0 0 re3
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Using W, it is possible to develop an estimate of E{" through
the inverse of equation (6), which completes the specification
of the CCA based forecasting procedure used in our study.

4.5. Approach 4 - Regression of Multivariate
SSTAs Against Multivariate Streamflow Residuals

[37] Finally, we present an alternative approach that
follows on from the multivariate resampling logic presented
by Westra et al. [2007], which is based on transforming the
multivariate predictor and predictand into a set of univariate
series which do not exhibit dependence on each other. The
ICA-based approach was compared with a PCA-based
approach by Westra et al. [2007], and it was found that
by focusing on statistical independence rather than correla-
tion, ICA better represented spatial dependence of the
multivariate data.

[38] A similar advantage is expected in this paper, where
CCA considers only the information contained in the
covariance matrix (second order statistics), whereas ICA
provides an additional rotation to maximize some measure
of statistical dependence. The forecasting approach adopted
in this paper is presented below, and further details on the
statistical properties of ICA are given by Hyvarinen et al.
[2001] and Westra et al. [2007].

[39] We start by transforming the error term in equation
(2) to yield:

1
Yyor = W B (10)

This equation is analogous to the inverse form of equation
(1), where Y,.) represents an estimate of a set of
independent components, E{" represents the original mixed
multidimensional error matrix from equation (2) and W
represents an estimate of the inverse of the mixing matrix,
A. Note we use bold to represent the full multivariate data,
and as such the subscript 7 is not included.

[40] Since Y,.,, consists of a set of independent compo-
nents, it can be factorized into y,.) ;. with i€ {1, 2, 3},
without loss of information. This allows for individual
Yqe,i to be related to selected independent components
of the multivariate SSTA data as was done in the previous
approach. This gives us the following model:

4
yq(e).i,r = Z /G/ys,/ﬂ,t + sz(,t) (1 1)
J

with each variable defined as before. Because the y, ) ;.’s
are mutually independent, it is possible to generate the
forecasting model without distorting the spatial dependence
structure inherent in the original data. To achieve this,
however, a modification to the forward selection process
used in section 4.3 is necessary, to ensure that different
Yqe.i's do not end up with the same predictor. This is
achieved as follows:

[41] 1) Start by sorting the y,, ;s by variance explained,
with y, ) ; , representing the maximum variance, and y,.) 3,
representing the minimum variance;

[42] 2) For y,.) 1 find the SST independent component
Y5, that yields the maximum correlation coefficient. If this
is higher than the 90 percentile 7 statistic cut-off of 1.68,
retain this as a predictor of y, ), and remove from the
pool of available predictors;
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Table 2. Correlation Coefficients () From a Simple Persistence Model Together With Four Alternative Statistical Models That Use
Some Measure of Climate State (Either the Nifio 3.4 Index or a Dimension-Reduced Representation of Global Sea Surface Temperature
Anomalies) to Provide Estimates of Streamflow at Three Separate Locations in Colombia®

Persistence +

Persistence + Persistence +

Season Station Persistence Persistence + Nifio 3.4 SST ICs - Univariate SST (CCA) - Multivariate SST ICs - Multivariate
Subset 1- results for stations - (1) Guavio, (2) Guatape and (3) Rio Grande
DIJF 1 0.40 0.33 0.40 0.24 0.40
DIJF 2 0.38 0.39 0.50 0.50 0.46
DIJF 3 0.67 0.77 0.76 0.76 0.75
MAM 1 0.46 0.35 0.49 0.41 0.47
MAM 2 0.50 0.48 0.53 0.42 0.55
MAM 3 0.52 0.53 0.61 0.56 0.53
JIA 1 0.29 0.24 0.29 0.15 0.23
JIA 2 0.06 0.30 0.56 0.46 0.39
JIA 3 0.40 0.64 0.67 0.68 0.54
SON 1 0.06 0.14 0.29 0.11 0.26
SON 2 0.15 0.17 0.38 0.30 0.35
SON 3 0.23 0.66 0.66 0.70 0.62
Subset 2 - results for stations - (1) Rio Grande, (2) Salvajina and (3) Alto Anchicaya
DIJF 1 0.67 0.74 0.73 0.74 0.71
DIJF 2 0.67 0.73 0.69 0.71 0.70
DIJF 3 0.55 0.69 0.71 0.69 0.64
MAM 1 0.65 0.62 0.65 0.61 0.65
MAM 2 0.74 0.70 0.74 0.68 0.74
MAM 3 0.37 0.25 0.37 0.24 0.37
JJA 1 0.56 0.72 0.71 0.74 0.72
JJA 2 0.44 0.55 0.50 0.50 0.52
JIA 3 0.23 0.56 0.65 0.64 0.65
SON 1 0.58 0.66 0.62 0.68 0.68
SON 2 0.54 0.60 0.58 0.58 0.59
SON 3 0.41 0.46 0.53 0.45 0.48

?All results presented have been cross validated using leave-one-out cross validation.

[43] 3) Repeat step (2) for y,) >, and y,«) 3, so that each
Yqc=).i.r has at most one predictor;

[44] 4) Repeat steps (2) and (3) to add a second predictor
for each case where the ¢ statistic is higher than the cut-off
value of 1.68. Each time a predictor is added to the model, it
should be removed from the pool of available predictors so
that a given predictor can not be selected twice.

[45] We now have a model for each streamflow IC,
consisting of at most two predictors. Using this model, we
can estimate y,.;, for all i, followed by a rotation into
original space using the equation:

(1)

& =W, V0. (12)

Where W™ represents the inverse of W.
[46] The final estimates of streamflow can now be written
as:

Xgit = BurXgi—1 + é,(;lt) (13)

We now have four alternative forecasting approaches, as
well as a baseline persistence model, which we wish to
compare both in terms of forecast performance for
individual streamflow stations, and the ability to capture
the spatial dependence of the multivariate data. This
comparison is the subject of the following section.

5. Results

5.1. Spearman’s Correlation as a Measure of
Model Accuracy

[47] The objective of a forecast model is to make projec-
tions of a given predictand forward in time. The way our

models are formulated, we first model explicitly the persis-
tence of the streamflow variables on an aggregate stream-
flow at the previous time step. Hence an assessment of the
suitability of this model structure is necessary. Here we use
the correlation coefficient (r) between the expected stream-
flow and the true streamflow over the historical time period
as the measure of model accuracy. As this measure does not
consider spatial dependence, the univariate models would
be expected to perform similarly to multivariate models.

[48] The results for both subsets of three streamflow
stations are provided in Table 2. The results show that
much of the predictive power is actually derived from the
simple persistence model, with the majority of stations
showing correlations greater than the 95 percentile coeffi-
cient for statistical significance, which was calculated to be
0.3. The correlation coefficients are not consistent between
the individual stations and seasons, however, with a range
from 0.06 to 0.74. This large variation from one station to
the next suggests different response times for individual
watersheds, as well as seasonal differences. Note that,
although the station Rio Grande is common to both subsets,
the correlation coefficients for the persistence model differ
slightly. This is because the predictor for the persistence
model is the unweighted average streamflow of all three
sites at the previous season for a particular subset, and
therefore the predictor is not common to both subsets.

[49] When factoring in exogenous information on climate
state, whether through the Nifio 3.4 index, the CCA model
or through an ICA analysis of SSTAs, some improvement
generally can be seen over the persistence model. Interest-
ingly, however, this improvement does not significantly
dependent on the nature of the climate model used. These
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Figure 2. Time series of historical flows (blue line) and estimated flows based on multivariate ICA
regression model (red solid line), for Rio Grande (top), Salvajina (middle) and Alto Anchicaya (bottom).
Dotted red lines represent 5% and 95% significance levels.

results suggest that the streamflow time series analyzed here
are largely persistence + ENSO driven, with little additional
information derived from considering other regions of
oceanic variability. Finally, it is noted that the different
parameterizations of each modeling approach were
accounted for by using leave-one-out cross validation in
generating all the model results.

[s0] To provide a visual assessment of the performance of
the multivariate ICA model, the results of this model are
compared with actual recorded winter inflows for each of
the stations in Subset 2, and have been plotted in Figure 2.
The recorded inflows are plotted as a blue line, with the best
estimates from the multivariate ICA model presented as a
solid red line. The correlation coefficients between recorded
and estimated inflows for Rio Grande, Salvajina and Alto
Anchicaya are 0.72, 0.52, and 0.65, respectively. The 5%
and 95% confidence levels are plotted as dashed red lines,
and are generated through bootstrapping the error terms for
each approach and taking the 5th and 95th percentile for
each estimate.

[51] The main result from this analysis is therefore that no
significant improvement can be observed for the more
complex persistence + SSTA ICs models compared with
the more parsimonious persistence + Nifio 3.4 model, so

that from a univariate forecasting perspective there is a
strong case in favor of choosing the simpler model to
forecast streamflow. Similarly, however, there is no evi-
dence of any loss in predictive power using the multivariate
persistence + SSTA ICs model compared with the suite of
other approaches analyzed, since this model performs
equally well on a temporal basis compared to the univariate
models. As such, the key question is how ICA represents
the spatial dependence, and this is discussed further in the
section below.

5.2. Spatial Dependence

[52] The main benefit of the multivariate ICA approach is
its ability to capture the spatial dependence of the multi-
variate streamflow time series, and this can be explored only
using a multivariate dependence measure. One such mea-
sure is the mean integrated squared bias (MISB), which is
evaluated as follows [Scott, 1992]:

/ (f—f)ax,,

where F is the kernel density estimate [see Sharma, 2000b;
Westra et al., 2007, for details] of the original multivariate

(14)
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Table 3. Mean Integrated Squared Bias (MISB) Results Comparing the Multivariate (Three Dimensional) Kernel Density Estimates of
the Predicted Data Against the Three-Dimensional Kernel Density Estimates of the Original Data®

Persistence +

Persistence + Persistence +

Season Persistence Persistence + Niflo 3.4 SST ICs - Univariate SST (CCA) - Multivariate SST ICs - Multivariate
Subset 1: Results for stations - Guavio, Guatape and Rio Grande
DIJF 0.0068 0.0069 0.0069 0.0061 0.0059
MAM 0.0056 0.0059 0.0058 0.0048 0.0042
JJA 0.0031 0.0032 0.0030 0.0022 0.0018
SON 0.0063 0.0059 0.0066 0.0037 0.0029
Subset 2: Results for stations - Rio Grande, Salvajina and Alto Anchicaya
DIJF 0.0700 0.0723 0.0713 0.0371 0.0299
MAM 0.0140 0.0162 0.0141 0.0089 0.0058
JJA 0.0097 0.0096 0.0071 0.0062 0.0051
SON 0.0159 0.0178 0.0179 0.0113 0.0094

#The MISB has been calculated for each streamflow model for four seasons, after cross-validation.

data, X,,, which is taken to be the true density, and f
represents the kernel density estimate of the forecast data,
Xy, The MISB is calculated using trivariate kernel density
estimates to evaluate the joint dependence structure, and the
results for each season and for each of the four models are
provided in Table 3. .

[53] Note that, to generate X, in this case we bootstrap
the error terms in each approach to generate multiple
plausible realizations of the forecasts. This enables the
provision of forecasts in a probabilistic setting, so that the
range of likely outcomes can be taken into account.
The results in this section are based on 5000 such proba-
bilistic forecasts of the streamflow variables being modeled.

[54] The results from Table 3 demonstrate that, in general,
the univariate models (i.e., the persistence-only, the persis-
tence + Nifio 3.4 and the univariate persistence + SST ICs
models) tend to perform similarly to each other, and have a
higher MISB (i.e., poorer representation of spatial depen-
dence) compared with the multivariate models. This differ-
ence is particularly notable for the second trivariate subset
containing the stations Rio Grande, Salvajina and Alto
Anchicaya, since the spatial correlation of the original data
is greater than for the first trivariate subset. In contrast, the
first subset, containing the stations Guavio, Guatape and
Rio Grande, does not exhibit a great amount of spatial
dependence, largely due to the clustering algorithm used to
obtain the stations since this algorithm seeks stations that
exhibit maximal within-cluster dependence while at the
same time minimizing between-cluster dependence.

[s5] Considering the multivariate models, it can be seen
that although the CCA-based approach results in a signif-
icant improvement in the MISB score over the univariate
approaches, the best results are reserved for the multivariate
ICA approach, since this approach explicitly considers the
full joint dependence in the data. The average percentage
improvement in MISB score using the ICA-based approach
for subsets 1 and 2 was 14% and 22%, respectively.

[s6] As discussed earlier, the logic for the difference in
results between the CCA- and ICA-based forecasting mod-
els is equivalent to the PCA- and ICA-based stochastic
generation models compared by Westra et al. [2007]; that is,
by considering the full dependence structure in a multivar-
iate data set rather than focus on covariance or correlation-
based statistics alone, it is possible to better simulate the
joint probability density of the data. In this earlier paper,
rather than consider two trivariate subsets, 992 trivariate

combinations from the Colombia reservoir inflow data set
were simulated, with the results showing an average im-
provement in the MISB score of 25% for the ICA-based
approach. Although computational considerations preclude
such a detailed analysis for the present study, the results for
the two subsets considered here are consistent with these
earlier results.

[57] Finally to illustrate the results from Table 3, we
consider the performance of winter streamflow for the
second subset, with joint dependence results presented in
Figure 3. Only the CCA and ICA results are considered,
since these are the only models that explicitly consider
spatial dependence. The point to note is the smoothening in
the multivariate results from both CCA and ICA in com-
parison to the raw data, which is to be expected because of
the use of the bootstrapping procedure. While differences in
the CCA and ICA results are not visually apparent, MISB
calculations for the two indicate an improved representation
of spatial dependence in the ICA model, as illustrated in
Table 3.

6. Conclusions

[s8] The objective of this paper is to demonstrate that
generation of probabilistic multivariate seasonal streamflow
forecasts using independent component analysis contains
significant advantages over a range of alternative models
that are commonly used. These alternative models include a
simple persistence-only model, a persistence + Nifio 3.4
model, a univariate persistence + SST ICs model and a
multivariate CCA model. The results were evaluated both in
terms of the ability to forecast seasonal streamflow, as well
as whether the models were able to maintain the spatial
variability that is present in the original data.

[59] When examining temporal dependence, with the
exception of the persistence-only model, all other models
perform comparably in terms of the correlation coefficient
between true streamflow and estimated streamflow, suggest-
ing that most of the variability in Colombia streamflow is a
result of ENSO-driven processes. In contrast, a dramatic
improvement can be seen between the multivariate ICA
model compared with all the univariate models in terms of
maintaining spatial dependence, and this improvement
becomes more pronounced as the spatial proximity or
climatological similarity between the stations is increased.
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Figure 3. Spatial dependence between the winter reservoir inflows at the three stations in Subset 2 (Rio
Grande, Salvajina and Alto Anchicaya) presented as bivariate plots. In each panel, the original (historical)
data is represented as blue dots. The contours represent kernel density estimates of the original data (left
panels), results from the CCA model (center panels) and the multivariate ICA model (right panels). The
mean integrated squared bias (MISB) represents the difference in trivariate kernel density estimates of the
original and modeled data, and was found to be 0.0062 for the CCA results, and 0.0051 for the ICA

results.

[60] The multivariate ICA-based results also out-perform
the CCA-based results in terms of spatial dependence,
although by a lesser degree than compared with the univar-
iate models. For the two subsets analyzed, the improvement
in MISB using the multivariate ICA model was found to be
14% and 22% respectively. It was observed that the logic
for this comparison is the same as the logic for comparing
ICA with PCA by Westra et al. [2007], in that PCA and
CCA both use second-order (correlation or covariance)
statistics to generate orthogonal representations of the
multivariate data. ICA also seeks an orthogonal representa-
tion of the data, but provides a further rotation to the data set
to maximize dependence, defined by some higher-order
variable such as skewness or kurtosis.

[61] A further advantage of the ICA-based method over
CCA is that the structure of the multivariate ICA forecasting
model is not fixed. In the present analysis we used a linear
regression method to link predictors (SST ICs) with the
predictands (streamflow ICs), however in certain cases it
may be fruitful to pursue non-linear or non-parametric
models instead for each IC response. Furthermore, although
we used ICA to obtain the predictor data set, this may be
changed to another rotational method such as Varimax PCA
without loss of model performance. These potential exten-
sions to the ICA approach provide considerable flexibility
over the CCA approach in terms of model formulation, and
will be reserved for future research.
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