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ABSTRACT

A statistical estimation approach is presented and applied to multiple reservoir inflow series that form part

of Sydney’s water supply system. The approach involves first identifying sources of interannual and inter-

decadal climate variability using a combination of correlation- and wavelet-based methods, then using this

information to construct probabilistic, multivariate seasonal estimates using a method based on independent

component analysis (ICA). The attraction of the ICA-based approach is that, by transforming the multi-

variate dataset into a set of independent time series, it is possible to maintain the parsimony of univariate

statistical methods while ensuring that both the spatial and temporal dependencies are accurately captured.

Based on a correlation analysis of the reservoir inflows with the original sea surface temperature anomaly

data, the principal sources of variability in Sydney’s reservoir inflows appears to be a combination of the

El Niño–Southern Oscillation (ENSO) phenomenon and the Pacific decadal oscillation (PDO). A multi-

variate ICA-based estimation model was then used to capture this variability, and it was shown that this

approach performed well in maintaining the temporal dependence while also accurately maintaining the

spatial dependencies that exist in the 11-dimensional historical reservoir inflow dataset.

1. Introduction

Statistical forecasting of seasonal reservoir inflows

plays an important part in reservoir management and

operation, with applications including the regulation of

municipal water supplies, allocation of irrigation water

and environmental flows, and estimation of future hy-

droelectricity supplies (e.g., Lettenmaier and Wood

1993; Yao and Georgakakos 2001; Hamlet et al. 2002).

These forecasts are usually developed using either a

parametric or nonparametric regression or a probabi-

listic forecasting model (e.g., Sharma 2000a; Drosdowsky

and Chambers 2001; Goddard et al. 2001; Chiew and

McMahon 2002; Filho and Lall 2003), with predictors

generally including a persistence component (e.g., res-

ervoir inflows at the previous season; see Piechota et al.

2001), together with a set of exogenous predictors linked

to a ‘‘climate state.’’

In the case of forecasting Australian rainfall and

streamflow time series, the climate state is often rep-

resented by indices of the El Niño–Southern Oscilla-

tion (ENSO) phenomenon, which is regarded as the

dominant source of interannual variability in much of

Australia (Pittock 1975; Nicholls 1985; Ropelewski and

Halpert 1987; Cordery and Opoku-Ankomah 1994;

Nicholls et al. 1996; Chiew et al. 1998; Piechota et al. 1998;

Power et al. 1998; Cordery and McCall 2000; Sharma

et al. 2000; Sharma 2000b; Cai et al. 2001; Drosdowsky

and Chambers 2001; Piechota et al. 2001; Drosdowsky

2002; Chiew et al. 2003; White et al. 2004; Dutta et al.

2006; Barros and Bowden 2008). Correlations with ENSO

indices are usually higher for streamflow than for rain-

fall (Dutta et al. 2006), although the ENSO–streamflow

relationship is somewhat weaker on the eastern coastal

fringe, including in the Sydney catchment region consid-

ered in this paper, compared to other parts of Australia

(e.g., Chiew et al. 1998).

In addition to this interannual variability, Australian

rainfall and streamflow are subject to variability at de-

cadal or longer time scales, which is often attributed to

low-frequency variability in the Pacific Ocean repre-

sented by the Pacific decadal oscillation (PDO) (Mantua

et al. 1997; Zhang et al. 1997; Mantua and Hare 2002)

or a closely related index known as the interdecadal

Pacific oscillation (IPO) (Power et al. 1999a,b), with the
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modulating influence of this mode on Australian rain-

fall, streamflow, and flood risk, shown by Kiem et al.

(2003) and Verdon et al. (2004).

Furthermore, Australian rainfall is also influenced by

variability in the Indian Ocean, with correlations be-

tween the Indian Ocean dipole (IOD) (Saji et al. 1999;

Saji and Yamagata 2003) and rainfall time series found

largely in western and central Australia (Ashok et al.

2003; Drosdowsky 1993; Nicholls 1989), as well as in

southeastern parts of the country (Drosdowsky 2002;

Verdon and Franks 2005).

The disadvantage of the index approach for develop-

ing statistical forecasts of rainfall and/or streamflow has

been highlighted in Westra et al. (2008), who suggest that

indices provide only a one-dimensional representation of

climate variability and therefore may not capture all the

dominant sources of variability relevant for a given study

region. Furthermore, since dominant sources of vari-

ability in the Pacific, Atlantic, and Indian Oceans are of-

ten strongly related to each other, the indices themselves

may be highly mutually correlated, which complicates

the inclusion of multiple climatic indices in a statistical

model. For these reasons, in the present study we use the

full global sea surface temperature anomaly (SSTA)

data, with an a priori dimension reduction step to ensure

that the data is in a form suitable for developing a

probabilistic estimation model.

Here we present an application of a recently devel-

oped approach to developing seasonal forecasts of in-

flows at multiple locations (Westra et al. 2007, 2008) in

the context of a major water supply system near Sydney,

Australia. The nature of modeling such a large system

necessitates that both temporal and spatial dependen-

cies in the historical data are preserved and that the

estimates are presented within a probabilistic frame-

work so that estimation uncertainty can be ascertained.

In line with these criteria, our approach involves (i) the

identification of sources of variability for a particular

region based on spectral properties of the historical

reservoir inflow time series and on the correlation be-

tween reservoir inflows and measures of global climate

and (ii) the development of a multivariate statistical

model which links streamflow data at multiple locations

(the response) to the global SSTA dataset (the predic-

tor), with results presented in a probabilistic setting such

that the full range of likely outcomes can be stochasti-

cally generated.

The remainder of this paper is structured as follows. In

the following section we provide an overview of the

predictor and response data used in this paper. In sec-

tion 3 we highlight the complementary nature of using

both correlation-based and spectral-based approaches

for analyzing variability within a particular region. This

information feeds into the analysis of section 4, where

we present a multivariate approach to generating prob-

abilistic seasonal streamflow estimates. Finally, a sum-

mary and conclusions are presented in section 5.

2. Data

a. Reservoir inflows

This study uses monthly inflows to the Sydney water

supply system from 1909 to 2003, which were selected

because they are minimally impacted by anthropogenic

activities. This system is owned and operated by the

Sydney Catchment Authority (available online at http://

www.sca.nsw.gov.au/) and consists of nine reservoirs

and two major demand zones, currently serving a pop-

ulation of approximately four million people. A sche-

matic of the Sydney water supply system is presented in

Fig. 1, and the 11 streamflow gauging stations used for

the present analysis, together with the mean annual

flows for each station, are presented in Table 1. The

reservoir series exhibit little seasonality, with similar

inflows across all seasons. In the analysis presented in

subsequent sections, the data were aggregated to sea-

sonal and annual inflows, with the seasons defined as

autumn [March–May (MAM)], winter [June–August

(JJA)], spring [September–November (SON)] and

summer [December–February (DJF)].

b. Climate

A global SST anomaly (SSTA) dataset was obtained

from a reconstruction of raw SST values using an opti-

mal smoother, as described in Kaplan et al. (1998). The

data is available on a 58 latitude by 58 longitude grid

across the global ocean field, representing 1207 spatial

locations. In the temporal dimension, the data comprises

monthly averages, which we aggregated to seasonal and

annual time series from 1909 to 2003 to correspond to

the reservoir inflow data described in section 2a.

In addition to the global SSTA data, we consider a

number of indices that describe aspects of global or re-

gional climate variability. In the case of the Pacific Ocean,

the ENSO phenomenon represents the dominant source

of interannual variability, with teleconnections that of-

ten extend globally (e.g., Ropelewski and Halpert 1987;

Trenberth 1997). Here we consider an index of the

oceanic component of ENSO known as the Niño-3.4

index, defined as the seasonally averaged SSTA over the

central Pacific Ocean (58S–58N, 1208–1708W; Trenberth

1997) and obtained from the International Research

Institute for Climate and Society (IRI) Web site (available

online at http://ingrid.ldgo.columbia.edu/SOURCES/

.Indices/.nino/.KAPLAN). We also consider the Pacific

1480 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 10



decadal oscillation, which is derived as the leading

principal component of monthly SSTAs in the North

Pacific Ocean, poleward of 208N. The monthly-mean

global average SSTAs are removed to separate this

pattern of variability from any global warming signal

that may be present in the data (Mantua et al. 1997;

Zhang et al. 1997; Mantua and Hare 2002). The data was

obtained from the Department of Atmospheric Sci-

ences’ University of Washington Web site (available

online at http://www.atmos.washington.edu/;mantua/

abst.PDO.html).

Finally, in the Indian Ocean, we consider the Indian

Ocean dipole (IOD), which is a coupled ocean atmosphere

phenomenon in the Indian Ocean characterized by

anomalous cooling in the southeastern equatorial Indian

Ocean and anomalous warming in the western equatorial

Indian Ocean. Here we use an index used by Saji et al.

(1999) that represents the anomalous SST gradient be-

tween the western equatorial Indian Ocean (108S–108N,

508–708E) and the southeastern equatorial Indian Ocean

(108S–08, 908–1108E; index available online at http://

www.jamstec.go.jp/frsgc/research/d1/iod/0).

3. Analyzing streamflow variability

Understanding sources of medium- to long-term cli-

mate variability is an important first step in generating

seasonal forecasts for hydrological variables, such as

FIG. 1. The Sydney water supply system (available online at http://www.sca.nsw.gov.au).
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rainfall and/or streamflow, since this information pro-

vides the basis for constructing and assessing the per-

formance of the statistical models described in section 4.

As discussed in the introduction, the dominant source of

interannual variability in Australian rainfall and stream-

flow time series has been identified as the ENSO phe-

nomenon, although recent evidence also suggests that

eastern Australia is influenced by Indian Ocean vari-

ability as represented by the IOD, together with inter-

decadal modulation of ENSO as a result of the PDO.

The majority of studies examining the relationship

between climatic phenomena and the hydrological var-

iables of interest focus on correlation analyses between

climate indices and time series of rainfall and/or stream-

flow. An alternative and complimentary approach con-

siders dominant modes of variability for Australia-wide

rainfall using the method of wavelets (Westra and

Sharma 2006). In this analysis, it was shown that rainfall

along the east coast of Australia, which had previously

been shown to exhibit lower correlations with indices of

ENSO compared to farther inland (Chiew et al. 1998), did

not exhibit statistically significant periodicity in the 2–8-yr

band typically associated with ENSO. Rather, a domi-

nant period of 13 yr was observed, and statistically sig-

nificant variability at this frequency was noted even after

removing the influence of ENSO from the rainfall time

series, indicating that this variability was largely inde-

pendent of ENSO.

The results of these studies therefore suggest that, for

the east Australian coastal region of interest for this

analysis, some questions remain regarding the sources of

variability, such as, how strong is the connection be-

tween Sydney’s water supply and the ENSO phenome-

non? Is the dominant 13-yr period identified in rainfall

time series also present in streamflow data within the

Sydney catchment area? and, if so, what is the source of

such decadal variability? These questions will be dis-

cussed in more detail in the following sections.

a. Wavelets analysis of streamflow

Wavelets are a popular mathematical tool for the

analysis of time series that have nonstationary power at

a range of frequencies and, as such, are well suited to

hydroclimatic time series such as rainfall and streamflow

(e.g., Jain and Lall 2001). The benefit of using wavelets is

that they allow a time series to be decomposed into both

time and frequency components so that it is possible to

capture not only the dominant frequency modes of a

given time series but also how these modes change over

time (Wang and Wang 1996).

Following the method described in Torrence and

Compo (1998), we consider the wavelet spectra of in-

dividual and aggregate reservoir inflows at both seasonal

and annual time scales. We used the Morlet wavelet as

our basis function because this function is well localized

in both time and frequency (Jevrejeva et al. 2003).

Furthermore, the resampling logic described in Westra

and Sharma (2006) was adopted for the generation of

confidence intervals since this did not require the data to

follow a Gaussian distribution.

The standardized aggregate annual inflows are pre-

sented in Fig. 2a. As can be observed from this time

series, the data is highly skewed and is dominated by

relatively low flows interspersed with a number of high-

flow events three or more standard deviations away

from the mean. This highlights the importance of gen-

erating confidence intervals using Monte Carlo methods

for this data since the analytical approach developed in

Torrence and Compo (1998) assumes a Gaussian dis-

tribution. The wavelet power is presented in Fig. 2b with

the integrated spectra in time (global wavelet spectra)

presented in Fig. 2c. The confidence intervals are at the

95% significance level, presented as a black contour in

Fig. 2b and as a dotted blue line in Fig. 2c.

The results of the global wavelet spectra in Fig. 2c

show a dominant period of approximately 13 yr, con-

sistent with the dominant 13-yr period for Australian

rainfall in this region found in Westra and Sharma

(2006). Examining Fig. 2b, it is evident that this mode of

variability is particularly pronounced from about 1950

onward, suggesting that since this time the high-flow

events have been occurring every 13 yr. Interestingly,

examination of the inflows for individual seasons and

individual reservoir inflows (not shown) provide com-

parable results when compared with the aggregate an-

nual statistics presented here.

We now compare the spectrum of the total annual

streamflow time series with the spectrum of the Niño-3.4

time series, which is known to vary with a frequency in

the 2–8-yr band. Although some research suggests the

ENSO phenomenon may also vary at longer periods,

TABLE 1. List of streamflow stations.

Station Name

Mean annual

inflow (106 L)

1 Cataract Dam 84 236

2 Cordeaux Dam 56 590

3 Avon Dam 69 980

4 Nepean Dam 109 315

5 Woronora Dam 46 164

6 Warragamba Dam 1 110 347

7 Wingecarribee Reservoir 14 344

8 Fitzroy Falls Reservoir 16 832

9 Tallowa Dam 767 629

10 Welcome Reef 517 577

11 Penrith 196 650
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such a 13.9-yr cycle identified by Jevrejeva et al. (2004),

it is not clear why the ENSO phenomenon should only

influence streamflow variability at lower frequencies but

not within the dominant 2–8-yr frequency band. Fur-

thermore, the earlier study of rainfall variability in this

region by Westra and Sharma (2006) showed that the

13-yr frequency was still present after removing the in-

fluence of ENSO from the rainfall time series, suggesting

that this variability is unlikely to be captured directly

using a single index of ENSO, such as the Niño-3.4 index.

Given the decadal nature of the total streamflow spec-

tra, we then compare the spectra with the (inter)decadal

mode of variability in the extratropical Pacific Ocean,

which is represented by the Pacific decadal oscillation

and provided in Fig. 3. Based on the global wavelet

spectrum of Fig. 3c, the PDO oscillates with a 24-yr

period, although it is difficult to provide a high level of

confidence owing to the relatively short duration of the

time series. Once again, this frequency does not corre-

spond directly to the 13-yr period found in the Sydney

reservoir inflow data.

Based on the analysis thus far, it is not possible to draw

definitive conclusions on the link between Sydney res-

ervoir inflow data and either the ENSO phenomenon or

the PDO. To shed more light on the nature of this var-

iability, we now consider correlation between reservoir

inflows (both annual and seasonal) and gridded global

SSTA data.

b. Comparison with oceans

The correlation plots between annual inflows and

concurrent global SSTAs are provided in Fig. 4. The

contours represent correlation coefficients, at intervals

of 0.1 units, with blue (red) representing negative (pos-

itive) correlations. In Fig. 4, it is evident that the annual

reservoir inflows are negatively correlated with tropical

Pacific SSTs centered at 58S, 1758W and positively cor-

related with extratropical Pacific SSTs focusing on the

North Pacific poleward of 308N and centered on 408N,

1808. The maximum correlation coefficients at the center

of these regions are of the order of 60.4. Examining the

remaining oceans, a relatively small negative correlation

can be observed in the Indian Ocean, with correlations

of the same sign over the whole ocean suggesting the

absence of a dipole moment. In the Atlantic, both pos-

itive and negative correlations can be observed, which,

given the geographic distance from Sydney, are most

likely to be due to teleconnections between Pacific and

Atlantic modes of variability.

The correlation maps for each season were also

computed individually (but not presented here) and

generally show very similar patterns to the annual maps.

In autumn, winter, and summer almost identical ocean

patterns can be observed, with correlation coefficients

between reservoir inflows and SSTA data of a very sim-

ilar magnitude to the annual data. The main difference

FIG. 2. Wavelet spectrum of total annual inflows comprising (a) time series of normalized streamflow from 1909 to

2003; (b) wavelet spectrum; and (c) the global wavelet spectrum defined as the integration of the wavelet spectrum

over time. The cone of influence is shown as a black curve in (b), with confidence intervals at the 95% significance

level shown as a black contour in (b) and dashed blue line in (c).
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can be observed for spring when the correlation coeffi-

cients are consistently lower than for the other seasons.

The qualitative patterns (negative correlations in the

tropical Pacific and the Atlantic Oceans and positive

correlations in the extratropical Pacific), however, are

the same.

These patterns are consistent with patterns related to

both the interannual and the (inter) decadal variability

FIG. 3. Wavelet analysis of annual values of the Pacific decadal oscillation (PDO) comprising (a) normalized PDO

series from 1909 to 2003; (b) wavelet spectrum; and (c) the global wavelet spectrum defined as the integration of the

wavelet spectrum over time. Cone of influence as in Fig. 2.

FIG. 4. Map of correlation coefficients between aggregate annual inflows and annual global SSTs. Correlations are

with concurrent annual and seasonal SSTs.
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in the Pacific Ocean [e.g., compare these maps to PC2 and

R-PC1 in Figs. 1 and 2 of Westra et al. (2009), which are

strongly correlated to both the ENSO phenomenon and

the PDO]. One important difference between Fig. 4 and

the typical representation of the ENSO phenomenon is

that, whereas ENSO is dominated by variability in the

central tropical Pacific Ocean, our results show approxi-

mately equal importance placed on the tropical and ex-

tratropical Pacific. This again provides qualified support

that the Sydney reservoir inflows are more influenced by

the lower-frequency variability of the extratropical Pacific

Ocean compared with the tropical ENSO phenomenon.

c. Comparison with indices

We now examine the correlations between Sydney res-

ervoir inflows and a number of climate indices, including

Niño-3.4, the PDO, and the IOD, with correlation coeffi-

cients presented in Table 2. Considering first the Niño-3.4

index, the correlation coefficients are generally relatively

low, with a value of 20.32 for the annual series. This

concurs with the preceding analysis, indicating correlation

coefficients between reservoir inflows and eastern equa-

torial Pacific were typically in the range of 20.3 to 20.4.

The PDO shows slightly higher correlation coefficients—

up to 20.43 for the annual data. These correlation coeffi-

cients should be contrasted with statistically significant

confidence bounds of 60.2 at the 5% significance level. In

both cases, the correlation coefficients are lowest for the

spring season, which reflects the results of section 3b that

show correlation coefficients between aggregate reservoir

inflows and global SSTAs are lowest in spring.

In contrast to results from the Pacific Ocean, corre-

lation coefficients between reservoir inflows and the

IOD are much lower, with an annual value of 20.02. The

only season that is statistically significant is summer,

with a correlation coefficient of 0.21.

4. Developing estimates of multivariate streamflow

a. Approach

The estimation approach used for the present study is

similar to the method presented in Westra et al. (2008),

which was developed for the generation of seasonal

forecasts in the multivariate setting. The focus of the re-

search is on the development of multivariate predictor–

response relationships that maintain the appropriate joint

dependencies in the response field and has been illus-

trated using concurrent relationships between reservoir

inflows and SSTAs. Development of a forecast model can

be achieved either by developing statistical or dynamical

forecasts of the future evolution of the SSTA field, or by

assuming lagged predictor–response relationships.

This approach uses a technique known as inde-

pendent component analysis (ICA) to transform an

n-dimensional multivariate dataset (X) of length l into

a set of n-dimensional independent univariate time

series (S) also of length l, which are related by

S 5 A�1X, (1)

where A is an n 3 n orthogonal matrix (throughout this

paper we use upper case bold san serif for matrices and

lower case bold regular for vectors). In cases where the

dimension of X is large, an intermediate dimension re-

duction step using principal component analysis (PCA)

is often incorporated into the algorithm such that a

higher m-dimensional data matrix X is transformed into

an n-dimensional subspace XPCA prior to the application

of the ICA model of Eq. (1). Further details related to

this dimension reduction step are provided in Westra

et al. (2008).

The benefit of finding the independent components S

for the present study lies in the property that the joint

density of the independent components can be factor-

ized into the product of their marginal densities:

f (s
1
, s

2
, . . . , s

n
) 5 f

1
(s

1
)f

2
(s

2
) . . . f

n
(s

n
), (2)

where fi(si), i 5 1, . . . , n represents the marginal prob-

ability density function of each si and f(s1, s2, . . . , sn)

represents the joint probability density function of all S.

In practical terms, after the ICA transformation is found,

it is possible to develop univariate statistical models for

each si without needing to consider joint dependencies of

the other independent components in S. The benefits of

this approach for statistical modeling are illustrated

through a synthetic example presented in Fig. 3 of Westra

et al. (2007).

The objective of ICA therefore is to find a matrix W,

which is an estimator of the inverse of the true mixing

matrix A21, through

Y 5 WX, (3)

where Y represents an estimator of the independent

components S. The estimated independent components

TABLE 2. Correlation coefficients between annual and seasonal

aggregate reservoir inflows for various climate indices.

Index

Niño-3.4 PDO IOD

Annual 20.32 20.43 20.02

Autumn 20.35 20.26 20.08

Winter 20.27 20.30 0.01

Spring 20.17 20.19 0.07

Summer 20.29 20.40 0.21
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Y can be found up to a scalar multiple by finding a W that

maximizes the non-Gaussianity of the yi, with further

discussion on the links between non-Gaussianity and

independence in Hyvärinen et al. 2001 and Westra et al.

2007. For the present study we use kurtosis as a measure

of non-Gaussianity so that we now simply need to find

the orthogonal rotation W that maximizes the kurtosis of

the yi.

The algorithm adopted for the present study can now

be presented as follows:

ALGORITHM: STATISTICAL ESTIMATION OF

MULTIVARIATE STREAMFLOW

Step 1: We start by developing a model of reservoir

inflow persistence at each location i as follows:

x
q,i,t

5 b
(1)
i x

q,t�1
1 e

(1)
i,t , (4)

for i 5 1, . . . , m, where the subscript q represents reservoir

inflows, t and t 2 1 represent the present and preceding

season, and ei,t
(1) represents the model residual. The above

model is developed to simulate Markovian dependence;

however, rather than a standard autoregressive process

that considers the previous time step of a given time series,

this model uses a common predictor of previous season

aggregate reservoir inflows across all locations. As such, a

subscript i is not included in xq,t21. Furthermore, whereas

a Markov process considers the previous time step in a

single time series, this model considers each season sepa-

rately, such that xq,i,t may represent, say, a time series of

summer inflows and xq,t21 would represent the time series

of aggregate spring inflows.

Step 2: We now rotate the residuals ei,t
(1) from step 1 to

obtain a set of independent components that can be

used to generate a statistical model linking these re-

siduals to climate state. The rotation is performed as

follows:

Y
q(«),t

5 W
q(«),t

E(1)
t , (5)

where Et
(1) represents the m-dimensional multivari-

ate error term from step 1 and Yq(«),t represents the

n-dimensional estimate of the independent components,

with the subscript q(«) indicating that calculations are

performed on the error term of Eq. (4). We use the

FastICA algorithm (available online at http://www.cis.

hut.fi/projects/ica/) to derive W, with details provided in

Hyvärinen et al. (2001). As discussed in relation to Eq. (1)

and in more detail in Westra et al. (2008), in certain

cases it is necessary to reduce the dimension of the

predictand [in this case Et
(1) from Eq. (4)] to ensure the

ICA algorithm is able to find a satisfactory solution. In

these cases, an additional error term Et
(2) of dimension m

is included and represents the variance of Et
(1) not ex-

plained by the reduced dimension subset Et,PCA
(1) . As

PCA searches for directions of maximum variance, the

residuals Et
(2) are expected to be largely random noise

and are unlikely to be coherent spatially. As such this

term can factorize into individual ei,t
(2) such that, when

generating probabilistic estimates of the residuals, it is

possible to treat error terms as univariate time series.

Step 3: Now that the independent components have

been found, it is possible to develop a regression model

that links the response to a set of predictors that repre-

sents climate state. Such a model may be linear, non-

linear, or nonparametric, although for the present case

we focus only on the linear model, which can be written as

y
q(«),i,t

5 �
j

b
(2)
j y

s,j,t
1 e

(3)
i,t , (6)

where the ys,j,t represents the set of j 5 1, . . . , p pre-

dictors, which for the present case are the independent

components of the global SSTA dataset as indicated by

the subscript s and were derived in a similar fashion to

the independent components of the streamflow residuals

of step 2. We use concurrent SSTA data for the present

case, and to develop forecasts it would be necessary to

modify this step by using either forecasts of the SSTA

field or, alternatively, to use SSTA data at previous time

steps to develop lagged relationships. One important

constraint to this model is that each predictor ys,j,t cannot

be used for more than one yq(«),i,t, since it is necessary

that the estimated ŷ
q(«),i,t

are mutually independent. The

approach used to ensure this is that predictor ICs are

selected with a best subset selection approach and re-

moved from the available set of predictors, such that a

given ys,j,t cannot be used for more than one ŷq(«),i,t. More

details on predictor selection can be found in Westra

et al. (2008).

Step 4: The ŷ
q(«),i,t

can now be rotated back to the

original space using W21
q(«)t to produce ê

(1)
i,t , and this can

be added onto the fitted persistence model [Eq. (4)] in

step 1 to yield the estimator of streamflow x̂q,i,t. To

generate results in a probabilistic setting such that con-

fidence limits can be estimated, one simple and intuitive

approach is to bootstrap (with replacement) the error

terms ei,t
(2) and ei,t

(3), which owing to the construction of the

model can be treated as univariate. Furthermore, the

time between samples in both the predictor and re-

sponse dataset is one year, approximately the same as

the decorrelation time for global sea surface tempera-

tures (Goddard et al. 2001), so the effects of autocor-

relation are not likely to be significant.
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In the application of Sydney’s reservoir inflows, m

represents the 11 inflow stations described in Table 1,

and the reduced dimension n was selected to be three

based on results of previous work (Westra et al. 2009),

where it was found that, for geophysical data of the

length used in the present study, a dimension of three

resulted in a sensible compromise between maximizing

the variance explained while generating components

that are physically meaningful. This additional dimen-

sion reduction step may represent a limitation of the

ICA technique for very high dimensional problems

where spatial correlation is not strong; however, in our

case the reduced dimension explained approximately

90% of the total streamflow variance and therefore is

not expected to significantly degrade performance. The

seasons were treated separately so that each time series

consisted of 95 data points (e.g., spring inflows from 1909

to 2003). The only other preprocessing step involved

standardizing each reservoir inflow time series.

b. Results

The performance of the model described in section 4a

should be measured by looking at both the capacity of the

model to provide forecasts of future inflows (the temporal

performance) as well as the capacity of the model to

maintain the historical dependence between sites (the

spatial performance). These are discussed in turn below.

1) TEMPORAL PERFORMANCE

The temporal performance is measured by examining

the correlation coefficients between historical inflows

and ‘‘hindcasts,’’ developed by applying the model in

section 4a to the historical data. Cross-validation was

not required owing to the parsimonious nature of the

model, which was fitted on 95 years of data and has as its

predictors the previous season’s aggregate inflows, and

between 0 and 2 predictors of climate state for each in-

dependent component. It is furthermore noted that for

the purposes of the present paper, we are using SSTA

data with concurrent reservoir inflows to develop the

model. The concurrent analysis is considered to be suffi-

cient to compare the performance of statistical approaches

in linking information contained in the predictor (SST)

dataset with the response (streamflow) dataset and to

assess the ability of the model to maintain the spatial

dependence in the multivariate response. In a true fore-

cast setting, it would be necessary to use either SSTA data,

which themselves have been forecast (e.g., Colman and

Davey 2003; Van den Dool et al. 2003), or alternatively to

use the longer decorrelation times of the SSTA dataset

(Goddard et al. 2001) to generate lagged relationships.

The correlation coefficients for the model applied to

the historical data are provided in Table 3 for (i) the

persistence or autoregressive order-one (AR1) model;

(ii) the ICA model using global SSTAs as measures of

climate state; and (iii) the full model that combines per-

sistence with the SSTA-based predictors. The results

should be compared with a statistically significant corre-

lation coefficient of 0.2 at the 5% significance level, as-

suming 95 data points and no more than three predictors.

Considering first the persistence-only model in Table 3a,

the greatest persistence is evident in winter with an av-

erage correlation coefficient across all sites of 0.44, fol-

lowed by spring (0.35), and then autumn (0.25). The

persistence from spring to summer is generally low, with

an average correlation coefficient of 0.12, which is not

statistically significant at the 5% level. Second, we con-

sider the ICA model with global SSTAs as predictors in

Table 3b. In contrast to the persistence-only model, the

best performance occurs for summer with a correlation

coefficient of 0.32, followed by spring (0.24), winter

(0.21), and finally autumn (0.12). Last, the results for the

full forecast are provided in Table 3c, and it can be seen

that the best performance is in winter with a mean cor-

relation coefficient of 0.49, followed by spring (0.41),

summer (0.35), and autumn (0.28).

To benchmark the performance of our model, we

compare these correlation coefficients with the corre-

lation coefficients between the aggregate seasonal in-

flows and indices of climate presented in Table 2. With

the exception of the Niño-3.4 index in autumn and the

PDO in summer, our model appears to slightly outper-

form the index-based approach. Also, examining cor-

relation coefficients between aggregate seasonal inflows

and the SSTA dataset presented in Figs. 4b–e, it can be

seen that the highest correlation coefficients are ap-

proximately 0.4 in both the equatorial and extratropical

Pacific Ocean. As a result, we believe the performance

of the full ICA model to be comparable to other linear

regression-based models that do not take spatial de-

pendence into account.

The forecast performance for three time series—

Cordeaux Dam, Nepean Dam, and Warragamba Dam—

is shown in Fig. 5. Here the forecasted time series are

represented by the solid gray line, with 5% and 95%

confidence limits presented as dashed gray lines. The

historical time series from 1909 to 2003 is presented as a

solid black line. Although there is significant difference

between the historical and forecast data, as expected the

historical time series is within the 90% confidence inter-

val for the majority of the time. Furthermore, when con-

sidering the peaks in historical streamflow variability, it

can be seen that the forecast data is able to capture the

direction of change (e.g., above average or below average

inflows), although the forecasts generally underestimate

the magnitude of the extreme historical inflows.
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2) SPATIAL DEPENDENCE

We now examine the spatial performance of the model.

As discussed earlier, the primary application of the ICA-

based approach is that, by splitting the multivariate data

into a set of univariate series that do not exhibit depen-

dence on one another, it is possible to develop a model

that performs comparably with univariate methods in the

temporal dimension while simultaneously maintaining

the spatial dependence in the historical data.

To test for spatial performance we use our model to

create 100 random samples, each with 95 data points, by

bootstrapping both ei,t
(2) and ej,t

(3) in Eqs. (5) and (6), re-

spectively. This allows us to examine the full probabi-

listic set of multivariate model outcomes. We then

develop a kernel density estimate to examine the joint

density of the data, following the methods of Sharma

et al. (1998) and Sharma (2000b) and using a Gaussian

reference bandwidth. Before applying the kernel density

estimate, we applied a log transform to the synthetically

generated data followed by standardization.

Although the estimation model maintains spatial de-

pendence across all 11 dimensions, we considered only

bivariate kernel density estimates, both for ease of visu-

alization and also owing to the computational difficulty of

estimating kernel density estimates in 11 dimensions

(consider, e.g., that to develop probability density func-

tions that integrate to 1, we needed to use a grid size of 80

TABLE 3. Correlation coefficients between estimated reservoir inflows and historical reservoir inflows between 1909 and 2003.

Station Autumn Winter Spring Summer

(a) Estimated with the persistence (AR1)-only component in Eq. (4)

1 0.18 0.40 0.26 0.12

2 0.28 0.42 0.26 0.10

3 0.22 0.38 0.23 0.06

4 0.30 0.51 0.39 0.12

5 0.22 0.45 0.27 0.07

6 0.30 0.55 0.49 0.18

7 0.19 0.39 0.30 0.16

8 0.14 0.47 0.25 0.01

9 0.17 0.38 0.35 0.07

10 0.29 0.45 0.48 0.23

11 0.50 0.49 0.54 0.23

Mean 0.25 0.44 0.35 0.12

(b) Estimated with the residual component using ICA in Eq. (4)

1 0.12 0.16 0.19 0.31

2 0.12 0.18 0.24 0.33

3 0.08 0.17 0.23 0.29

4 0.11 0.15 0.17 0.36

5 0.03 0.18 0.20 0.33

6 0.09 0.24 0.36 0.33

7 0.14 0.42 0.25 0.31

8 0.16 0.08 0.17 0.30

9 0.19 0.29 0.31 0.37

10 0.11 0.21 0.32 0.40

11 0.15 0.18 0.15 0.19

Mean 0.12 0.21 0.24 0.32

(c) Estimated with both the persistence (AR1) and residuals components using ICA in Eq. (4)

1 0.22 0.43 0.32 0.33

2 0.31 0.45 0.34 0.35

3 0.23 0.42 0.32 0.30

4 0.31 0.52 0.41 0.38

5 0.21 0.48 0.33 0.34

6 0.31 0.58 0.56 0.37

7 0.23 0.53 0.43 0.35

8 0.21 0.47 0.29 0.30

9 0.25 0.46 0.45 0.37

10 0.30 0.49 0.55 0.46

11 0.51 0.52 0.55 0.30

Mean 0.28 0.49 0.41 0.35
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to estimate the pdf and extending that to 11 dimensions

would require a grid of 8011).

The results of one such bivariate plot are presented in

Fig. 6 for inflows to the Cordeaux Dam and the Nepean

Dam for the winter season. The gray dots in both plots

represent the historical inflows, and the contours in the left

plot represent the kernel density estimate based on this

historical data. The contours in the right plot represent the

kernel density estimate of the forecast results, which were

generated as described above. The results show a close

correspondence in the joint density estimates between the

historical data and the forecasts, even though all regres-

sion modeling was performed on univariate time series.

These results were replicated in numerous other bivariate

plots (not shown) and reflect the conclusions of the more

rigorous analysis of joint density by Westra et al. (2007,

2008) in which the joint density estimates of the ICA-

based approach were compared using the mean integrated

squared error (MISE) criteria and found to outperform

both PCA and canonical correlation analysis (CCA)

in capturing spatial dependence, due to the emphasis

on higher-order dependencies not accounted for in

covariance- or correlation-based statistics.

Note that for the bivariate plot in Fig. 6 we did not

transform the logged data back to the original space.

Owing to the nature of the simplistic bootstrapping

procedure used, it is possible that there will be a small

minority of estimated flows that are negative and

therefore physically implausible. This is inevitable for

datasets that are highly skewed with generally low flows

interspersed with several very high flow events. During

implementation of such models, the treatment of nega-

tive flows is left to the discretion of the user and may

involve setting negative flows to zero or, alternatively,

discarding negative flows and drawing new values ran-

domly from the joint density estimates until all the re-

sults are positive.

5. Conclusions

The purpose of the research presented in this paper is

to provide an approach for identifying likely climatic

FIG. 5. Time series of historical flows (black line) and estimated flows based on multivariate ICA regression model

(gray solid line) for inflows to (top) Cordeaux Dam, (middle) Nepean Dam, and (bottom) Warragamba Dam. Dotted

gray lines represent 5% and 95% significance levels.
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impacts on reservoir inflows and then using this infor-

mation to generate probabilistic multivariate seasonal

forecasts for future reservoir inflows.

A review of the literature on sources of rainfall and

streamflow variability in the Sydney water supply system

demonstrates that the ENSO phenomenon strongly in-

fluences rainfall in much of the eastern third of the

Australian continent, although the same literature shows

a somewhat lower (but still statistically significant) cor-

relation on the eastern coastal fringe, east of the Great

Dividing Range, which is the region where Sydney

sources its water supply. The wavelets analysis used in

Westra and Sharma (2006) showed that rainfall in this

region varied with a period of 13 yr, and this result has

been reproduced for the reservoir inflow data analyzed

in the present paper. This period is longer than the pe-

riod of 2–8 yr commonly associated with the ENSO

phenomenon and shorter than the interdecadal vari-

ability associated with the Pacific decadal oscillation,

which was shown to vary with a period of 24 yr.

Examining the correlation between the aggregate

annual and seasonal reservoir inflows and the global

SSTA dataset, statistically significant correlations were

observed in both the equatorial Pacific and extratropical

Pacific of opposing sign, with an upper bound of ap-

proximately 60.4 depending on the season. The spatial

patterns were coherent across all seasons, although

correlations were generally lower for spring. The spatial

patterns contained similarities to the spatial patterns

associated with ENSO except that, whereas ENSO is

dominant in the central and eastern equatorial Pacific,

the correlations with aggregate reservoir inflows focus

more on the central and western equatorial Pacific as

well as the extratropical Pacific. As such, variability in

the Sydney reservoir inflow region shares some charac-

teristics with both ENSO and the PDO, with this con-

clusion being confirmed in the low but statistically

significant correlation coefficients between aggregate

inflows and indices of both these phenomena.

For this analysis it is evident that, to develop seasonal

statistical forecasts for the Sydney reservoir inflows, it is

necessary to use a method that captures as much of the

global SSTA variability as possible rather than restrict-

ing the predictors to indices of climate. Furthermore,

such a method also needs to capture the spatial depen-

dence between reservoir inflows at each of the 11 data

collection sites presented in Table 1. As such, we ex-

tended the statistical methods developed in Westra et al.

(2008, 2009), which use ICA to transform the multivar-

iate data into a set of independent components, such

that it becomes possible to use univariate statistical

methods (linear regression in this case) to develop

forecasts based on persistence and exogenous climate

predictors. The forecast performance was assessed to be

similar to the linear regression-based methods that did

not include a spatial component discussed in section 3.

When examining spatial dependence, however, it was

observed that the ICA-based method provides an ex-

cellent representation of spatial dependence from one

location to the next and for this reason is a significant

improvement to other methods that are currently

available that either do not take spatial dependence into

account or require the full model to be developed in the

multivariate setting rather than breaking the model

FIG. 6. Spatial dependence between historical streamflow and the multivariate streamflow forecasts using the

method described in algorithm 1 at the Cordeaux Dam and the Nepean Dam. The gray dots represent historical

winter streamflow, and the contours represent kernel density estimates based on the (left) historical data and (right)

forecast data using the multivariate ICA model presented in section 4a.
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down into univariate (independent) components. As

such, applications of this method are well suited to any

probabilistic reservoir study in which interactions be-

tween different reservoirs are important.

A logical extension of the present work is to further

develop the linear-regression-based models of Eqs. (4)

and (6) for incorporating persistence and ‘‘climate state,’’

respectively, to a nonlinear or nonparametric setting (e.g.,

Barros and Bowden 2008). Since these models need only

be developed in one dimension, such extensions are

relatively straight forward, although care needs to be

taken that such models are appropriately validated using

some form of cross-validation. This work will be future

research.
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