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ABSTRACT

Climate change impact studies for water resource applications, such as the development of projections

of reservoir yields or the assessment of likely frequency and amplitude of drought under a future climate,

require that the year-to-year persistence in a range of hydrological variables such as catchment average

rainfall be properly represented. This persistence is often attributable to low-frequency variability in the

global sea surface temperature (SST) field and other large-scale climate variables through a complex se-

quence of teleconnections. To evaluate the capacity of general circulation models (GCMs) to accurately

represent this low-frequency variability, a set of wavelet-based skill measures has been developed to compare

GCM performance in representing interannual variability with the observed global SST data, as well as to

assess the extent to which this variability is imparted in precipitation and surface pressure anomaly fields.

A validation of the derived skill measures is performed using GCM precipitation as an input in a reservoir

storage context, with the accuracy of reservoir storage estimates shown to be improved by using GCM outputs

that correctly represent the observed low-frequency variability.

Significant differences in the performance of different GCMs is demonstrated, suggesting that judicious

selection of models is required if the climate impact assessment is sensitive to low-frequency variability. The

two GCMs that were found to exhibit the most appropriate representation of global low-frequency variability

for individual variables assessed were the Istituto Nazionale di Geofisica e Vulcanologia (INGV) ECHAM4

and L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4); when considering all three

variables, the Max Planck Institute (MPI) ECHAM5 performed well. Importantly, models that represented

interannual variability well for SST also performed well for the other two variables, while models that per-

formed poorly for SST also had consistently low skill across the remaining variables.

1. Introduction

Climate model evaluation studies are becoming in-

creasingly common and a range of metrics have been

developed to identify models exhibiting strong perfor-

mance (Giorgi and Mearns 2002; Murphy et al. 2004;

Tebaldi et al. 2004; Dessai et al. 2005; Gleckler et al. 2008).

The proliferation of metrics is in part due to the increasing

diversity of studies that rely on general circulation model

(GCM) outputs and the recognition that the identification

of which models perform well is usually conditional to the

question being asked (Knutti 2008). For water resources

impact assessments, precipitation is often the key vari-

able on which such assessments are based.

Biases in the mean state of precipitation fields from

GCM simulations have been identified for some time

(Xu 1999; Fowler et al. 2007), and some studies have

used daily precipitation (Sun et al. 2006; Perkins et al.

2007) or annual mean precipitation (Murphy et al. 2004)

to assess GCM performance. However, evaluation of

precipitation projections over multiple time scales

(Gleckler et al. 2008) is of particular importance for

the management of water resources systems, especially

in parts of the world influenced by large-scale modes

of low-frequency climate variability with interannual

or longer periods. If future climate projections do not

correctly model interannual variability, then estimates

* Additional affiliation: Climate and Water Division, Bureau of

Meteorology, Sydney, New South Wales, Australia.

Corresponding author address: Ashish Sharma, School of Civil

and Environmental Engineering, University of New South Wales,

Kensington, NSW, 2052 Australia.

E-mail: a.sharma@unsw.edu.au

15 JULY 2011 J O H N S O N E T A L . 3609

DOI: 10.1175/2011JCLI3732.1

� 2011 American Meteorological Society



of the security of water resources systems with multiple-

year storage capacity will be biased.

We would therefore like to evaluate how well GCMs

model persistence at multiple time scales in precipita-

tion. It is well known that major drivers of interannual

and interdecadal variability in global precipitation are

large-scale climate modes such as the El Niño–Southern

Oscillation (ENSO) phenomenon, which is the domi-

nant coupled ocean–atmosphere mode of the tropical

Pacific (Cane 1992) as well as other teleconnections in-

cluding the Indian Ocean dipole (IOD) (Saji et al. 1999;

Ummenhofer et al. 2008) and the interdecadal Pacific

oscillation (IPO) (Power et al. 1999; Mantua and Hare

2002). These climate modes are generally defined through

sea surface temperature (SST) anomalies with corre-

sponding anomalous pressure and wind fields. Westra

and Sharma (2010) found that the overall predictability

of global precipitation is approximately 15% owing to

variability in SST anomalies. Other sources of vari-

ability in the climate system, and in particular precipita-

tion, include soil moisture availability (Lau 1992; Koster

et al. 2006), volcanoes, and solar variability (Peixoto and

Oort 1992; Collins 2007), which all can lead to variability

on multiple time scales.

Most GCM evaluation studies have concentrated on

specific drivers of variability and in some cases have con-

sidered teleconnections with regional rainfall anomalies

(Cai et al. 2009). There do not appear to be studies that

have simultaneously evaluated the modeling of large-

scale climate modes in GCMs over a range of time scales

at a global scale. We now propose a methodology that

allows this to be carried out. The aims of the paper are to

address the following questions. First, is skill in modeling

SST persistence associated with corresponding skill in

precipitation persistence? Second, what are the implica-

tions on water resources impact assessments of selecting

GCMs on the basis of skill in representing persistence?

We first present details of the wavelet methodology

used to assess persistence in GCM simulations of SST,

surface pressure, and precipitation. In section 3 we pres-

ent the results of the wavelet analysis and determine the

best-performing models. We then validate the wavelet

results by quantifying the impact of long-term persis-

tence in modeled rainfall using a reservoir storage anal-

ogy. Finally, we discuss the practical implications of

selecting GCMs based on the modeling of persistence in

the context of other available performance metrics.

2. Methodology

a. Wavelets

Wavelets allow time series to be decomposed into time

and frequency domains (Torrence and Compo 1998). They

have been used in many climate applications including

the analysis of rainfall variability over Australia (Westra

and Sharma 2006), changes in the time/frequency be-

havior of ENSO (Jain and Lall 2001), and analysis of

variability in a reanalysis sea level pressure field (Barbosa

et al. 2009). Wavelet decomposition has also been sug-

gested as a possible method to derive metrics of the

modeling of ENSO in GCMs (Guilyardi et al. 2009).

In this analysis, we apply a discrete wavelet transform

(DWT) to time series at each grid point for SSTs, surface

pressure, and precipitation using the Daubechies family

of orthogonal wavelets.

Daubechies wavelets allows the time series to be

decomposed into a set of mutually orthogonal details

and an approximation, with each detail capturing the

variability of the time series at a particular frequency

and the approximation representing the remaining low-

frequency residual. The orthogonality of this class of

wavelets ensures that it is possible to reconstruct the

original time series perfectly by adding together each of

the details and the approximation, and the sum of the

variance of the details and the approximation also adds

up to the variance of the original time series. This means

that the fraction of variability of a time series at, say,

interannual periods, can be calculated simply as the

variance of all the details with periods within this range

divided by the total variance of the original time series

(see Burrus et al. 1998 for an overview of discrete wave-

let transforms, or Daubechies 1992 for a more detailed

mathematical treatment). In addition, the wavelet de-

composition is attractive because it requires no assump-

tions on the form of variability that may be present at

different frequencies (Barbosa et al. 2009).

In this study, we take the observed or modeled time

series at each location and decompose it into eight de-

tails, with the remaining approximation covering long-

term trends and oscillations in the signal with a period

greater than about 32 yr. We split the details of the de-

composed time series into three groups. The first group

comprises the details with subannual frequencies (with

periods of 0.23, 0.47, and 0.94 yr). The second group

represents the interannual frequencies, which are de-

fined as periods greater than annual but less than

decadal, and for the Daubechies 4 wavelet this corre-

sponds to periods of 1.87, 3.73, and 7.47 yr. ENSO cy-

cles, with a typical period of 3–6 yr (Trenberth 1997),

will therefore be assessed in this group. Finally, the in-

terdecadal group is constructed from the long-term os-

cillations and/or any trend that is in the data (which may

be a true trend or an oscillation with period greater than

the data length). For each band of frequencies, the signal

is reconstructed and the variance calculated and re-

ported as a percentage of the total variance in the original
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time series. This process is illustrated in Fig. 1 for a time

series of observed SST anomalies over the Niño-3.4

region, where we show the form of the Daubechies 4

wavelet and the three frequency bands of the total SST

anomaly time series along with their contributions to

the total variance in the time series. The results in this

paper focus on the interannual variability as this is the

frequency band of most importance for the study of

droughts and yield assessments for large reservoirs with

multiyear carry-over storage, although some results are

also presented for the subannual and interdecadal time-

frames. This methodology is similar to that used by

Barbosa et al. (2009) in analyzing National Centers for

Environmental Prediction (NCEP)–National Center for

Atmospheric Research (NCAR) sea level pressure, al-

though we have considered a wider range of frequencies

and carry out the analysis to evaluate GCMs and rean-

alysis data compared to observations.

b. Data sources

We have used the outputs from 23 GCMs for the

twentieth century available from the World Climate Re-

search Programme (WCRP) Coupled Model Intercom-

parison Project phase 3 (CMIP3) multimodel dataset.

Since some of the GCMs have multiple runs available,

a total of 60 simulations were available for the analyses.

Where multiple runs are available from a single GCM,

results were averaged over all of the realizations. For

each GCM we extracted monthly precipitation rates, SST,

and surface pressures globally for the period 1936–99,

with the 64-yr analysis period chosen to ensure consis-

tency between the durations analyzed for the observa-

tions and models. All GCM data were interpolated to

a common 58 by 58 grid across the globe, with the time

series at each location converted to monthly anomalies

by subtracting the monthly climatological mean.

The disadvantage of using anomaly series is that any

biases in the mean state of the GCM simulations are

removed and a model that performs poorly in modeling

the mean seasonal cycle but captures other variability

correctly may be rated better than one that simulates

the mean climate state correctly and variability poorly.

Which of these two hypothetical GCMs is actually the

better model is contestable. However, the wavelet

decomposition is such that even if anomalies were not

removed from the time series, only the final wavelet

approximation (i.e., the trend component) will include

the means, as at all other time frequencies the wavelet

details are reported, which by definition are always cen-

tered at zero. In any case, biases in the mean state can

be easily removed from GCM precipitation simulations

FIG. 1. Illustration of wavelet analysis methodology for observed SST anomalies over the Niño-3.4 region. (a) The Daubechies 4 wavelet

is shown. (b) The contribution to the total variance from each of the frequency bands is shown. (c) The Niño-3.4 composite SST anomalies

are shown with the decomposition into three frequency bands as described in the text shown for (d) subannual, (e) interannual, and

(f) interdecadal frequencies, respectively.
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using commonly applied bias correction approaches

(Wood et al. 2004; Fowler and Kilsby 2007; Mehrotra

and Sharma 2010), so we believe assessing the GCMs

on variability alone is an acceptable approach.

Reconstructed SST anomalies are available from 1856

to 2009 (Kaplan et al. 1998) and sea level pressures from

1871 to 1998 [Hadley Centre Sea Level Pressure data-

set (HadSLP1); Met Office (2009)]. For both the SST

anomalies and sea level pressure we again use the final

64 yr of the historical record for the wavelet analysis.

To test the sensitivity of the methodology to the chosen

observed datasets we also used the National Oceanic

and Atmospheric Administration (NOAA)/National Cli-

matic Data Center (NCDC) extended reconstructed SST

anomalies. For the precipitation data, the Global Pre-

cipitation Climatology Project (GPCP) data (Adler et al.

2003; Huffman et al. 2009) are the only observation

dataset with global land and sea coverage, and it covers

the period 1979–2007. The final dataset that has been

analyzed is the NCEP–NCAR reanalysis of SST, surface

pressure, and precipitation. For all datasets, the time se-

ries were extended to dyadic lengths where necessary

using periodic extension, which preserves the orthogo-

nality of the details and approximation. The impact of

using a shorter length time series for the GPCP data was

considered through a sensitivity analysis and is reported

in the following section. In general, it has been previously

noted that observational records and century-long GCM

runs are relatively short when compared to climate

modes that may have periodicities on the order of a de-

cade or more (AchutaRao and Sperber 2006; Wittenberg

2009). In this study, we address the issue of short ob-

servational and model-derived datasets in a number of

ways. First, where available we use multiple integrations

of each GCM for the twentieth-century runs. Each in-

tegration is based on different initial conditions, which

leads to different evolutions of the climate over the pe-

riod of analysis. Second, we use multiple observed data-

sets as a way to mitigate observational uncertainty

(Gleckler et al. 2008). Finally, we consider reanalysis

data as an additional observational representation given

its frequent use for testing and validating climate models

(Reichler and Kim 2008).

3. Results

a. Spatial patterns of variance

We first present results showing the decomposition of

the observed time series at each grid cell into subannual,

interannual, and interdecadal components. For each grid

cell we have shown the percentage variance of the origi-

nal time series accounted for by each frequency band

(i.e., subannual, interannual, and interdecadal). In Fig. 2,

we can see the proportion of variance is reasonably

FIG. 2. Percentage variance in each frequency band (subannual, interannual, and interdecadal) for (a)–(c) SST, (d)–(f) surface pressure,

and (g)–(i) precipitation derived from observations with a common color scale. (left) Subannual, (middle) interannual, and (right) in-

terdecadal variances are shown. Reds indicate areas where a larger proportion of the total variance is contributed from that frequency

band, while lighter yellows show locations with smaller contributions in that band.
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evenly split between the three frequency bands for SSTs

(Figs. 2a, 2b, and 2c), while for surface pressures and

precipitation greater than 70% of the variance occurs at

the subannual time scale (Figs. 2d and 2g, respectively).

A common color scale has been used for Figs. 2a to 2i to

allow an easy comparison of the proportion of variance

in each frequency band for the three different variables.

However, owing to the small variance proportion in the

interannual and interdecadal bands for the precipitation

and surface pressure (Figs. 2f, 2h, and 2i), these maps

have been repeated as Figs. 3a, 3b, and 3c with new color

scales to highlight the regional variations in interannual

and interdecadal variability, which are discussed below.

Regional variations in all three frequency bands show

well known patterns of climate variations, which gives

confidence in the applicability of the wavelet method-

ology. The highest interannual variance percentage for

all three variables is found in the tropical Pacific Ocean.

For SSTs the largest variance is in the ENSO regions and

in particular the eastern tropical Pacific, while for the

surface pressures, variance is highest adjacent to Central

America and Southeast Asia and appears to correspond

with the descending and ascending branches of the

Walker circulation over the equatorial Pacific Ocean

(Peixoto and Oort 1992). The band of high interannual

variance in precipitation is confined to a smaller-latitude

range compared to SSTs. It extends across the whole

Pacific Ocean and into Indonesia and appears to be lo-

cated along the intertropical convergence zone (ITCZ).

Because of the short length of the observed pre-

cipitation dataset and inherent inhomogeneity in rainfall

fields, the spatial patterns of variances in the inter-

decadal frequency band are less smooth than for sur-

face pressure or SST. Precipitation over oceans generally

shows less interdecadal variance than over land areas.

The highest proportions of interdecadal variance are

apparent for parts of the world where precipitation

anomalies have previously been shown to be influenced

by the ENSO phenomenon and the Pacific decadal os-

cillation (Mantua and Hare 2002), including southeast-

ern Africa and the western coasts of South and North

America. The relatively large precipitation interdecadal

variance in central North Africa may be related to sam-

pling issues with the short observed record and low

rainfalls in this region. SST interdecadal variability is

found in the Indian Ocean adjacent to Madagascar and

south of the Indian subcontinent. High percentages of

interdecadal variability are also evident in parts of the

North Atlantic Ocean and in the Southern Ocean; how-

ever, this is close to the southern boundary of the ob-

servational dataset where the estimated errors in the

reconstructed SSTs are highest (Kaplan et al. 1998) so

these results should be viewed with caution.

We compare how closely the GCMs match the ob-

servations through the use of Taylor diagrams, which

provide a summary of the match in the global patterns

of the observations to model simulations in terms of

correlation, root-mean-square (RMS) difference, and

variance ratio (Taylor 2001). Figure 4 shows the Taylor

diagrams for SST, surface pressure, and precipitation.

The field that is being analyzed in each case is the pro-

portion of variance in the interannual time period for

SST, surface pressure, or precipitation, respectively. The

observations are shown at the bottom of the figure as

a reference point, with the distance of this reference

point from the origin proportional to the overall stan-

dard deviation of the spatial pattern. Standard deviation

contours from the origin are shown in blue. Contours

showing the RMS difference between the model results

and the observation are shown in green. The model results

are then plotted based on the centered RMS distance and

FIG. 3. As in Figs. 2f, 2h, and 2i, but with individual color scales

chosen to better highlight regional variations.
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correlation with the observations, with the azimuthal

position (shown in black) representing the spatial cor-

relation of the model and observed fields.

In examining these figures, we first note that the SST

reanalysis provides the best match to the SST obser-

vations as would be expected. Conversely, the perfor-

mance of the reanalysis for pressure and precipitation

cannot be distinguished from that of the GCMs, with

many of the GCMs reproducing the overall variance in

the precipitation interannual variability as well as the

reanalysis. Global mean variance in each frequency band,

calculated by a weighted average of the variance at each

grid point (with the weights determined by the relative

surface area of each grid point, which varies by lati-

tude), show that the reanalysis has a strong trend com-

ponent in both the surface pressure and precipitation

fields, which is not seen in the observations. This leads

to a smaller proportion of variance being present in

the other time periods compared to the observations.

Simmons et al. (2004) note that the utility of rean-

alysis data ‘‘for helping to document and understand

climatic trends and low frequency variations is . . . a

matter of some debate.’’ In the case of the SSTs, the

GCMs show a large range for the proportion of vari-

ance attributed to the trend component, ranging from

5% to over 20% for the SSTs, while there is better

agreement between the GCMs on the proportion of

variance in the trend component for precipitation and

surface pressure.

Comparing the Taylor diagrams for the subannual and

interdecadal frequencies (not shown) to those in Fig. 4,

we find that the GCMs and reanalysis represent the in-

terannual variability variance percentage the best of all

three frequencies bands. The pattern correlations are

higher in all cases for the interannual frequencies than

for the other two frequency bands, and for the inter-

decadal band all the GCMs underestimate the standard

deviation of the global field for surface pressure and

precipitation, with the reanalysis providing much bet-

ter estimates.

The clustering of the multiple ensemble members

from individual GCMs, shown in Fig. 4, demonstrates

that there are not large differences in the interannual

variability component as a result of different initial

FIG. 4. Taylor diagrams showing the degree of agreement between observations, reanalysis, and GCM spatial patterns of interannual

variance percentages for (a) precipitation, (b) SST, and (c) surface pressure. Multiple integrations of each model are shown with the same

symbol and color.
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conditions. This was previously illustrated for a single

GCM forced by 15 yr of SST anomalies where the in-

terannual variations are quite similar despite differences

in the time evolution of month to month fluctuations

(Lau 1992). However, the results from our study show

that the variation between different integrations of

a single GCM is generally much smaller than the vari-

ations between first the entire multimodel ensemble and

second the variations between the GCMs as a group and

the observations for all three variables. It has been

shown previously that model internal variability is more

important at smaller spatial scales than globally (Hawkins

and Sutton 2009) so these results are not unexpected.

They suggest that the capacity to model interannual

variability is therefore a model structure issue rather

than an initial conditions issue. By implication we must

therefore look at what are the differences in model

structure if we are to understand why some models are

better than others in simulating interannual variability,

which is beyond the scope of this paper.

b. Interannual variability skill

We initially posed the question of whether the skill of

a GCM in representing persistence in SST fields is re-

lated to skill in representing other manifestations of

large-scale climate modes such as surface pressures and

precipitation. To answer this, we use the skill score de-

rived by Taylor (2001) as shown in (1):

S 5
4(1 1 R)4

(ŝf 1 1/ŝf )2(1 1 R0)4
, (1)

where R is the pattern correlation coefficient between

the observations and GCM under consideration, ŝf is

the ratio of the standard deviation of the model field

to the standard deviation of the observed field, and R0

is the maximum theoretical correlation and has been

taken to be 1.0. Both the correlations and standard de-

viations are calculated using a weighting based on grid

cell area. This skill score rewards models which have

good pattern correlations in preference to models which

match the magnitude of the variance of the overall pat-

tern (Taylor 2001). When there is a perfect match be-

tween the model and the observations, the score will be

one (when both R and ŝ
f

equal one) and for decreasing

model performance, S approaches zero.

After calculating the skill score for each model, we

have averaged the score over the multiple integrations

of the same GCM if available to determine an aggre-

gated score. The results for each variable for skill in

matching the interannual variability of the observations

are presented in Table 1, along with the rank of each

model according to the skill score (with 1 being the best

performing and 23 the worst performing GCM). The

best GCMs from this analysis are identified as L’Institut

Pierre-Simon Laplace Coupled Model, version 4 (IPSL

CM4) and the Istituto Nazionale di Geofisica e Vul-

canologia (INGV) ECHAM4 for individual variables;

when considering performance over all three variables,

the best performing models are Max Planck Institute

(MPI) ECHAM5, NCAR Community Climate System

Model, version 3.0 (CCSM3.0), and Centre National de

Recherches Météorologiques Coupled Global Climate

Model, version 3 (CNRM-CM3). Previous studies (van

Oldenborgh et al. 2005; Coelho and Goddard 2009)

have found that the best performing models for ENSO

variance and rainfall teleconnection strength are Geo-

physical Fluid Dynamics Laboratory Climate Model

version 2.0 (GFDL CM2.0), GFDL CM2.1, the third

climate configuration of the Met Office (UKMO) Uni-

fied Model (HadCM3), and ECHAM5, all of which

show good skill particularly for precipitation. As it is

generally considered preferable to use multiple GCMs

in impact assessments rather than selecting only the

best-performing models, the skill scores presented in

Table 1 could be used to weight model contributions to

multimodel ensemble estimates of future changes or

to select a subset of GCMs that represents interannual

variability well.

Using the skill scores, we can compare the spatial

patterns of the proportions of interannual variance for

the best- and worst-performing GCMs to the observa-

tions. In Fig. 5, the models with the highest and lowest

skills are shown for each climatic variable. The best-

performing models have good matches to the observa-

tions in the tropics. For SSTs the INGV ECHAM4

model also matches the observations well in the north-

ern Pacific, although it shows less variance adjacent to

the east coast of Australia than is present in the ob-

servations. Atlantic Ocean variances are also of a simi-

lar magnitude, while Indian Ocean variances are slightly

higher in the observations. On the other hand, the Ca-

nadian Centre for Climate Modelling and Analysis

(CCCma) model shows almost no variation in the

tropics with the highest proportion of interannual vari-

ance occurring in the Southern Ocean and northern

Atlantic. The CNRM-CM3 model matches the large

observed variance in precipitation in the ITCZ, while

the poorly performing Goddard Institute for Space

Studies Atmosphere–Ocean Model (GISS-AOM) model

has generally uniform spatial variations in precipitation

interannual variability. The best- and worst-performing

models for surface pressure are the same as for SST

anomalies. INGV ECHAM4 matches the magnitude

of variations well, although the maximum westerly
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variance is located farther west than seen in the ob-

servations.

Generally models that perform particularly well or

poorly in matching the observed patterns of interannual

variability for one variable have similar performance for

the other two variables. Figure 6 presents scatterplots

showing the relationships between pairs of climatic

variables. The correlations in the skill scores between

the three pairwise combinations of all skill scores range

between 0.75 and 0.85. This demonstrates that GCMs

that model the variations in SSTs for the twentieth

century correctly will match the interannual variability

in precipitation observations better, which is important

for water resources impact assessments. Santer et al.

(2009) caution that GCM errors are likely to be complex

and interlinked. The simple correlations of skill scores

presented above may not fully account for this complex

error structure. Expanding the analysis to more vari-

ables may shed further light on this issue.

c. Use of wavelet-based skill score for model
selection for reservoir storage estimates

What are the implications of using the best and worst

models identified in the previous section on climate

impacts that require interannual variability to be simu-

lated correctly? We demonstrate the impacts of incor-

rectly modeling interannual variability with a simple

synthetic study of reservoir storage. We use observed

rainfall for a point in southeastern Australia (37.58S,

147.58E) from the Australian Bureau of Meteorology

monthly 0.258 gridded dataset, which allows a 64-yr re-

cord to be analyzed. We analyze two time series, one

with the observed monthly rainfall totals and the second

with the interannual variability component removed

from the original observations. The interannual vari-

ability was removed by decomposing the time series

using the discrete wavelet transform previously described

and reconstructing the signal without the variance that

TABLE 1. Skill scores and ranks for model performance in matching observed interannual variance percentages. Highest skill scores are

shown in boldface.

Model

SST

skill

Precipitation

skill

Pressure

skill

SST

rank

Precipitation

rank

Pressure

rank

Avg

skill

Avg

rank

NCEP 0.61 0.49 0.51 — — — 0.54

BCCR BCM2.0 0.24 0.31 0.28 15 14 16 0.28 15

CCCma Coupled General Circulation Model,

version 3.1 (CGCM3.1)

0.04 0.11 0.1 23 21 23 0.08 23

CCCma CGCM3- t63 0.07 0.13 0.27 20 20 17 0.16 20

CNRM-CM3 0.37 0.54 0.37 3 2 8 0.43 3

Commonwealth Scientific and Industrial Research

Organisation Mark version 3.5 (CSIRO Mk3.5)

0.33 0.39 0.45 7 9 4 0.39 9

GFDL CM2.0 0.34 0.4 0.45 6 8 4 0.40 6

GFDL CM2.1 0.38 0.45 0.34 2 5 9 0.39 8

GISS-AOM 0.07 0.07 0.12 20 23 22 0.09 22

GISS MODEL E-H (GISS E-H) 0.22 0.17 0.26 17 18 18 0.22 18

GISS Model E-R (GISS-ER) 0.19 0.18 0.34 18 17 9 0.24 16

Institute of Atmospheric Physics (IAP) Flexible

Global Ocean–Atmosphere–Land System

Model gridpoint version 1.0 (FGOALS-g1.0)

0.31 0.42 0.33 10 7 12 0.35 10

INGV ECHAM4 0.39 0.33 0.54 1 12 1 0.42 4

Institute of Numerical Mathematics Coupled

Model, version 3.0 (INM-CM3.0)

0.3 0.36 0.2 11 11 20 0.29 14

IPSL CM4 0.35 0.55 0.33 4 1 12 0.41 5

MIROC3.2(hires) 0.06 0.1 0.22 22 22 19 0.13 21

MIROC3.2(medres) 0.24 0.15 0.15 15 19 21 0.18 19

MIUBECHOG 0.26 0.32 0.38 13 13 7 0.32 12

MPI ECHAM5 0.35 0.54 0.41 4 2 6 0.43 2

Meteorological Research Institute Coupled

General Circulation Model, version 2.3.2a

(MRI CGCM2.3.2a)

0.27 0.44 0.34 12 6 9 0.35 11

NCAR CCSM3.0 0.32 0.47 0.53 8 4 2 0.44 1

NCAR Parallel Climate Model version 1 (PCM1) 0.25 0.31 0.33 14 14 12 0.30 13

UKMO HADCM3 0.32 0.39 0.47 8 9 3 0.39 7

UKMO Hadley Centre Global Environmental

Model version 1 (HADGEM1)

0.14 0.26 0.31 19 16 15 0.24 16
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occurs with periods of approximately 2–8 yr. The second

time series is then shifted and scaled such that the

monthly mean and standard deviations match those of

the original time series of observations (63 and 41 mm,

respectively). The two time series are shown in Fig. 7a,

where visually they are almost indistinguishable from

each other.

To show the impact of the incorrectly specified in-

terannual variability we use the time series to simulate

reservoir storage by calculating the cumulative sum of

each time series with a demand equal to the monthly

mean rainfall (Koutsoyiannis 2002; Wasko and Sharma

2009). This is equivalent to a model of a reservoir pro-

viding a constant outflow equal to the mean inflow to the

reservoir and operated such that there are no spills or

other losses. The resulting cumulative time series are

shown in Fig. 7b. These curves show the large impact

of interannual variability on storage estimates. The re-

quired storage in each case is calculated as the maxi-

mum cumulative sum minus the minimum cumulative

sum and as shown in Fig. 7, the required storage is

underestimated by approximately 10% if we use the

time series with incorrectly specified interannual vari-

ability. Substantially larger differences could be expected

were the evaluation conducted for streamflows resulting

from the rainfall, even for medium-sized water supply

catchments.

We now extend the analysis to consider the estimates

of storage from the full suite of GCMs used in the study

and compare these to the wavelet estimates of vari-

ability at different time frequencies. Since the skill scores

calculated in section 3 were based on the global results,

we do not necessarily expect them to reflect skill at all

individual locations. However, there will be GCMs that

for a particular region represent the observed distri-

bution of variance across a range of time frequencies

better than other GCMs. So although the results on

which GCM provides the best match to observations

will be different for any given reservoir case study, we

feel that the following example demonstrates a useful

application of a wavelet-based analysis of variance of

GCM performance.

We consider the time series from each GCM for the

analysis point in southeastern Australia, and with the

64 years of precipitation data used to calculate the var-

iance proportions for each GCM in section 3 to calculate

the required storage. We have applied a monthly bias

correction to each of the GCM time series such that the

monthly means and standard deviations match the ob-

servations over the annual cycle. The storage calculations

are presented in Fig. 8, plotted against the proportion

variance in each of three wavelet frequency bands that

we have considered in this paper. The observations are

shown as a black triangle in each plot. It is clear that

FIG. 5. Percentage variance in the interannual frequency band for (a)–(c) observations, (d)–(f) GCMs with highest skill, and (g)–(i)

GCMs with lowest skill. (left) SST variability, (middle) precipitation, and (right) surface pressure are shown. Note the scale bar has

a larger range for SST than for precipitation and surface pressure.
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storage calculations are most clearly affected by vari-

ance at long time scales with the strongest correlations

between the storage estimates and the variance pro-

portion for the interdecadal frequencies. This is not

surprising as it is well known that storage calculations

are strongly influenced by long-term dependence and

trends in a time series (Koutsoyiannis 2002). But also

evident is that those models that best match the pro-

portion of variance seen in the observations (approxi-

mately 2.5%), lead to the estimates of storage that are

closest to the observations (approximately 1800 mm).

Models that strongly overestimate interdecadal vari-

ability, overestimate storage as well. Because we have

defined variance at different frequencies as a proportion

of the total variance in the time series, an inverse re-

lationship between storage and variance is evident from

Figs. 8a and 8c. Models that underestimate the pro-

portion of variance at subannual frequencies must over-

estimate the proportion of variance at lower frequencies,

as the total proportion variance will always be 100%. As

shown above GCMs with too much low-frequency vari-

ance will have high estimates of storage, and thus a neg-

ative relationship between storage and proportion of

variance will be a result as seen in Fig. 8a.

Another interesting feature of Fig. 8 is the difference

that a small change in the variance proportion can have

on the storage estimates. For each 1% increase in the

FIG. 6. Scatterplots showing the relationship between model

interannual variability skill in (a) SST and precipitation, (b) SST

and surface pressure, and (c) surface pressure and precipitation.

Generally, models with good skill in reproducing the spatial pat-

tern and magnitude of the observed interannual variability will also

show good skill in the other variables. Refer to Fig. 4 for legend of

GCM symbols and colors.

FIG. 7. (a) Observed rainfall time series at a point in southeastern

Australia (37.58S, 147.58E) demonstrating the impact of incorrectly

specified interannual variability with observed time series shown as

a gray line and time series with interannual variability removed as

a black line. (b) Cumulative sums of rainfall minus demand are

shown with the same line types as in (a). Maximum required

storage is shown for both time series.

3618 J O U R N A L O F C L I M A T E VOLUME 24



interdecadal variance proportion the estimated storage

increases by 350 mm (based on the best-fit line through

the data). This estimate is influenced by the three Model

for Interdisciplinary Research on Climate 3.2, medium-

resolution version [MIROC3.2(medres)] storage values,

which each have an interannual variance of approxi-

mately 10% (due to a strongly decreasing trend in the

precipitation time series at this location). If these models

are excluded from the calculations, then a 1% increase

in variance proportion equates to a 300 mm increase in

storage. If, as shown in this simple example, our climate

change impact assessment was considering possible

changes to storage in a catchment, then we might want to

change the skill score to reflect the modeling of trends

and interdecadal variance rather than the interannual

variance skill scores derived previously. The wavelet

methodology provides sufficient information on the

GCMs for this to be quickly achieved. This also high-

lights the importance of model evaluation metrics being

designed to be appropriate for the particular impact

being considered.

A bias correction step was required to allow the

storage estimates from different GCMs to be compared.

This illustrates one of the limitations of our study, in that

we are only reporting the proportion of variability in

each frequency band, as a percentage of the total vari-

ability for that time series. Therefore, if a model were to

underestimate the overall variability but proportion it

into the different frequency bands in the same way as the

observations, it would have a higher skill score than

a model that simulated the magnitude of the total vari-

ability correctly but had different frequency propor-

tions. However, as noted before and applied for the

storage estimates, simple bias correction approaches

can correct the overall variability in a time series, and

although methods have been developed to correct in-

terannual variability (Johnson and Sharma 2011) in GCM

precipitation time series, it is better to select models that

inherently perform better in this regard.

d. Sensitivity of results to observational datasets

Our results and discussion in the previous sections

are based on the assumption that the observational re-

cord is sufficiently long to capture interannual and in-

terdecadal variability. We now examine this assumption

through two alternative sensitivity tests, aiming at un-

derstanding the implications of record length and al-

ternative data sources on our conclusions.

For both sensitivity tests, we have used SST anomalies

because first the available record is the longest of the

three observed datasets and second an alternative ob-

served dataset is available, namely the NOAA/NCDC

extended reconstructed SST (ERSST) anomalies (Smith

et al. 2008). Figure 9 shows the impact on the estimates

of global mean variance at each frequency using differ-

ent periods for the analysis. In addition, the impact of

using 32-yr record lengths instead of 64-yr lengths is

examined. For the 64-yr length records we take 10-yr

moving windows of 64 yr starting in 1901, 1911, 1921,

and 1931 and compare these to the 1936–99 period used

for the original analysis. We also use 9 moving windows

of 32 yr starting from 1901 with the last 32-yr period

starting in 1977.

The general pattern of variances for different fre-

quencies is the same for all the different periods and

two different record lengths. The subannual frequencies

show the least variation among the different periods.

Spatial plots of the global variation in percentage vari-

ance (not shown) show similar patterns for all periods,

with the tropical Pacific having the highest percentage

FIG. 8. Range vs proportion of variance in the (a) subannual frequency band, (b) interannual frequency band, and (c) interdecadal

frequency band. GCM range and variance estimates are shown as small black dots, with the range and variance from the observed rainfall

time series shown as the large filled triangle.
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variance in all cases for the interannual frequencies.

Subannual frequencies show some variations in the per-

centage variance in the Southern and Atlantic Oceans.

Figure 10 is a Taylor diagram showing the variation of

the different periods of the observations relative to the

original 64-yr period. The figure also shows the posi-

tions of the 60 GCMs, repeated from Fig. 4. The dif-

ferent analysis periods give variations compared to the

original period that are similar in magnitude to the re-

lationship between the reanalysis data and the original

observations. There is a strong divide between the ob-

servations and the GCMs. The 64-yr records that are

closest to the original data are those with the most

overlap in the years analyzed; the closest has a skill score

of 0.94 while the one with the least overlap has a skill

score of 0.89. Also shown in Fig. 10 is the ERSST data.

It falls within the range of the observations based on the

Kaplan SST anomalies, with a correlation coefficient

of approximately 0.9 and standard deviation of the spa-

tial field that is similar in magnitude to the Kaplan SST

anomalies. This gives us further confidence that the

analysis method is insensitive to the length of record of

the observations used to measure the skill of the GCMs.

4. Discussion

We have presented a skill score as a metric that can be

used to assess the performance of GCMs in reproduc-

ing the observed interannual variability in climate vari-

ables of interest for water resources assessments. We

now consider the utility of this metric of interannual

variability in the context of model evaluation in general

FIG. 9. Sensitivity of global mean variance to the use of different windows and 32-yr record

lengths. Variances from 64-yr record lengths are shown with a solid line, and 32-yr records

lengths with the dashed line.

FIG. 10. Taylor diagram showing the sensitivity of the estimates to time period and obser-

vational dataset used for the global patterns of interannual variance percentage of SST

anomalies.
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and also by considering the advantages of our approach

compared to previous studies that have evaluated the

modeling of precipitation and teleconnections in GCMs.

The use of metrics and diagnostics to assess climate

model outputs has been discussed by Gleckler et al.

(2008) and Guilyardi et al. (2009). Metrics provide a

measure of ‘‘distance’’ of a model output from an ob-

servation and are generally understood to refer to a

single value that summarizes the distance in some ap-

propriate space. Guilyardi et al. (2009) recommend that

metrics ‘‘should be concise, physically informative, soci-

etally relevant and easy to understand, compute and

compare.’’ Diagnostics, on the other hand, provide more

information on model errors and the processes that may

lead to these errors. They may take many forms in-

cluding maps, time series, distributions, or power spectra.

Whether a metric or diagnostic is more useful depends

on the question and the user. For a climate change im-

pact study, where we may only be able to use a subset

of the available models, a metric that clearly tells us

which are the best models to use for a specific applica-

tion is preferable to a range of maps. But for climate

modelers and process scientists, diagnostics help to im-

prove models by highlighting processes and errors, al-

though metrics can also be used to plot improvements

(or deterioration) of different generations of a model

(Gleckler et al. 2008).

There has been some historical reluctance in using

a single metric to evaluate climate models because of

the risk of reducing a complicated model of the climate

system to a single number (Gleckler et al. 2008). It is

clear that there is unlikely to be a single model that will

provide the best simulations over all regions and all

variables. For example, additional analysis of the results

of the wavelet analysis over the ENSO regions (not pre-

sented here) indicates that the best performing GCMs

will be different from those that were shown in section 3

to represent global interannual variability well. It is

also important to note that ‘‘good’’ model performance

in matching observed data does not provide a measure

of the future reliability of a model; although the con-

verse may be true, such that it is difficult to rely on the

future simulations of a model that performs poorly in

representing the twentieth-century climate. GCMs that

have been shown to have similar skill in representing

observations have been shown to have quite different

climate sensitivities (Knutti 2008). Their responses to

greenhouse gas emission scenarios will be therefore vary,

which would have effects on the findings of impact as-

sessments.

Despite these caveats, metrics can be prudently used

for selecting models that are appropriate for a specific

question. For water resources impact assessments, studies

such as Sun et al. (2006), while helping to improve

knowledge in general about flaws in climate models

with respect to precipitation, do not have clear conclu-

sions about what models perform the best, although a

specific question (in this case the question of modeling

daily rainfall intensity) is being considered. This may be

changing as more studies start to make recommenda-

tions such as Perkins et al. (2007), who chose to identify

individual models to help users of simulations ‘‘deter-

mine models with particular strengths or weaknesses’’

and second to allow modeling groups to improve their

models.

How does the method proposed in this paper com-

pare to previous studies evaluating GCM outputs? We

consider here studies that have provided recommen-

dations on the best-performing models for particular

regions and using different evaluation metrics, gener-

ally related either to the modeling of precipitation or

ENSO, all of which may aid in model selection for water

resources climate change impact assessments. Perkins

et al. (2007) limit their analysis to Australia but find that

for precipitation that the best-performing models are the

Bjerknes Center for Climate Research (BCCR) Bergen

Climate Model version 2.0 (BCM2.0), MPI ECHAM5,

and the Meteorological Institute of the University of

Bonn, ECHO-G Model (MIUBECHOG). The criterion

for evaluating the models in this study was the match

between the probability density function (PDF) of daily

rainfalls from the models and station-based observa-

tions. This methodology was motivated by the need to

extend the evaluation of climate models from using just

mean rainfall. However, by only examining one time

scale for the PDFs the methodology does not account

for biases in the GCMs at longer time scales, for exam-

ple, seasonal cycle or interannual variations. Gleckler

et al. (2008) and Murphy et al. (2004) use multiple var-

iables to each create a combined evaluation index, with

the rationale that ‘‘the complexity of the models and the

characteristics of the simulated fields cannot be ade-

quately captured by a single measure of performance.’’

However, given that it is clear that there is no ‘‘best’’

model and that different impact assessments require

model assessments regarding a range of variables, it is

hard to separate the information of interest from either

of these studies. In addition, the use of monthly data

(Gleckler et al. 2008) or seasonal data in the case of the

climate prediction index (Murphy et al. 2004), while

allowing the skill of the seasonal cycle simulation to be

assessed, means that variability at other time scales is

not considered. Gleckler et al. (2008) address this by

proposing a model variability index, which is based on

the ratio of the observed and modeled monthly variances,

relative to the monthly climatology. However, they only
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consider 20-yr windows, which may not properly in-

corporate the long time-scale variance and trends (30 yr

and longer) found in some of the GCMs in this study.

Other studies assessing the modeling of ENSO in

GCMs rely mainly on diagnostics to assess model per-

formance. If users wish to pick the most suitable models

for their purposes based on these diagnostics, the de-

cisions have to be made by visual inspection. Guilyardi

et al. (2009) use visual inspection to select the six GCMs

that are closest to observations based on the wavelet

spectra of Niño-3 SST anomalies derived by AchutaRao

and Sperber (2006). A similar process could be carried

out for other studies (AchutaRao and Sperber 2006; Cai

et al. 2006; Joseph and Nigam 2006; Lin 2007) where we

can compare, for example, maps or scatterplots to ob-

servation, but in all cases it requires a subjective decision

on the best match between the observations and GCMs.

The methodology presented here of the wavelet analysis

combined with Taylor’s (2001) proposed skill score has

the advantage of leading to diagnostic maps and also an

objective ranking of model performance that can be used

to select models for climate change impact studies. The

study could be further extended to include other vari-

ables known to influence precipitation (and its variabil-

ity) such as precipitable water or outgoing longwave

radiation as well as geopotential height and airflow fields

(Timbal 2004; Mehrotra and Sharma 2005).

5. Conclusions

Model evaluation metrics are needed to assess the

performance of GCMs over a range of variables and

statistics. One important aspect, particularly for water

resources applications, is how well persistence is simu-

lated over a range of time scales. The wavelet-based skill

score presented in this paper provides a useful measure

of this model feature. The advantages of the approach

include the ability to assess persistence on a range of

different time scales and that no assumptions are re-

quired regarding the nature of the persistence in the

data. We have chosen to report a skill score to summa-

rize the wavelet variance maps to allow impact assess-

ments to choose the best models for their purposes. The

methodology can also be easily applied to find the best

GCMs for smaller regions as demonstrated in the res-

ervoir storage example provided in section 4.

Based on the skill score that incorporates the pat-

tern correlation and overall variance in the global

pattern of interannual variability, it was found that

INGV ECHAM4 and IPSL-CM4 best match gridded

observations for individual climatic variables, while MPI

ECHAM5 has the best performance over the three var-

iables studied. It was also found that models that are able

to correctly represent variability in one climatic variable

will also show good performance in other climate fields.

This means we can use SSTs and surface pressure to better

understand model performance in representing persis-

tence in precipitation, which is of practical importance for

water resources climate change impact assessments.
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