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Thesis Summary  
 
 
Islet transplantation is a developing therapy for type 1 diabetic patients (T1D), which has been 

limited by problems associated with hypoxia, poor revascularisation and allograft rejection. 

Immunosuppressive agents used to prevent rejection are associated with severe side effects 

including islet toxicity, increased susceptibility to the development of cancer, infections and 

cardio-vascular problems. In order for islet transplantation to be used widely as a potentially 

curative treatment for T1D there is a need to develop novel therapies to treat allograft rejection 

without the use of immunosuppressive agents. 

 

In chapter 3, the immunomodulatory effects of IFN-γ on human monocyte-derived DC were 

investigated, using a standard 7-day in vitro DC propagation protocol. IFN-γ was shown to 

exert its immunomodulatory function on monocytes early during DC differentiation (IFNγ-DCD0), 

resulting in an immature DC (iDC) phenotype with reduced expression of maturation markers 

CD83 and RelB. IFNγ-DCD0 induced a state of T-cell hyporesponsiveness in a MLR, whilst IFN-

γ treatment at day 5 (IFNγ-DCD5) did not modulate DC function. The ability of IFN-γ to promote 

the generation of maturation arrested DC, could potentially serve as a cellular therapy for 

transplant rejection. However DC propagation using the standard 7-10 day protocol is not 

clinically applicable in the islet transplant setting. 

 

In chapter 4, a „FAST-DC‟ protocol to promote the rapid generation of tolerogenic DC was 

investigated and used to generate IFNγ modulated DC in 48h. These IFNγ-DC featured an iDC 

phenotype similar to that seen in chapter 3.  Maturation arrested IFNγ-DC caused significant T-

cell hyporesponsiveness and promoted a higher frequency of CD4+CD25+ Foxp3HI T-regulatory 

cells. IFNγ-DC primed T-cells were shown to be functionally suppressive in an antigen specific 

manner. It was also confirmed that IFN-γ reduced the phosphorylation of IL-4 activated STAT-
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6, which in turn affected the downstream gene expression of Interferon regulatory factor 4 

(IRF4). IFNγ-DC were also investigated in vivo, where a humanised model of islet allo-

transplantation model was developed. Diabetic NOD-SCID mice were transplanted with human 

islets and challenged with donor-derived DC and allogeneic PBMNC. After 21 days post 

transplantation, there was no significant change to euglycaemic state, between the tested 

groups. 

 

Genetic modification of the allograft is an alternative therapy to protecting the graft from the 

recipient‟s immune system. In chapter 5, human islets were genetically modified with 

programmed cell death ligand 2 (PD-L2), an inhibitory molecule known inhibit T-cell immune 

responses. Two recombinant adenovirus constructs carrying the PD-L2 gene were generated. 

One construct encoded a soluble isoform, while the other expressed a full transmembrane PD-

L2 molecule. Adenoviral transduction did not affect the viability or insulin producing capacity of 

islets. Interestingly, soluble PD-L2 was more efficient at inducing signalling by 1000 fold, 

compared to the transmembrane isoform.               

 

In summary, this thesis demonstrated the timing of IFN-γ exposure is crucial in determining the 

function of DC and their maturational state, where IFN-γ exposure only during DC 

differentiation resulted in the inhibition of DC maturation. Secondly, the combination of IFN-γ 

and a FAST-DC protocol, enabled the generation of tolerogenic DC in 48h, making DC therapy 

more clinically applicable. Finally, the induced expression of soluble PD-L2 by human islets 

potently signals through human PD-1, which may provide the basis for the protection of islets 

from allo- and auto T-cell responses.  
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1.1 Introduction 

 

Type 1 diabetes (T1D) is a debilitating autoimmune disease, which is currently treated with 

exogenous insulin administration. This approach however is limited by its inability to achieve 

physiological blood glucose levels. Islet allograft transplantation is an emerging potentially 

curative therapy, which is limited by many factors including alloimmunity and reoccurrence of 

autoimmunity. Islet allograft recipients are required to use toxic immunosuppressive agents to 

prevent the destruction of the islet allograft. Unfortunately, immunosuppressant therapy is non-

specific and associated with severe side-effects, which in most cases outweighs the benefits of 

islet transplantation. Consequently, only patients with severe episodes of hypo-unawareness 

have access to allogeneic islet transplantation. In order for islet transplantation to become a 

standard therapy for T1D, there is a need to develop novel therapies that target auto- and allo- 

immune responses concurrently.  

 

This chapter aims to review the current literature and the background for the basis of this 

thesis. In particular it focuses on the function of dendritic cells to act either as an „immunogenic‟ 

or „tolerogenic‟ antigen presenting cell in allograft responses. The review then discusses the 

application of gene therapy of the graft as an approach to achieve transplant tolerance. Finally 

the negative regulatory pathway of Programmed death 1 and its ligands is extensively reviewed 

for its involvement in peripheral tolerance and its potential to target both allo- and auto immune 

responses.  
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1.2 Type 1 Diabetes  

 

Type 1 diabetes mellitus (T1D) is an autoimmune disease, where self reactive T-cells mediate 

the destruction of the insulin producing beta-cells of the pancreas [1-3]. The destruction of 

beta-cells affects the normal control of blood glucose levels, resulting in hyperglycaemia. This 

condition is commonly diagnosed in childhood, but can develop at any age including later in 

life. T1D affects over 120,000 people in Australia, with an expected 3% increase globally each 

year.  (International diabetes federation, Diabetes Atlas 3rd edition IDF 2007). Figure 1.2.1 

depicts the progression and development of the disease in association with beta-cell mass. 

Usually at the time of diagnosis more than 80% of islets have been destroyed [4], with minimal 

to no secretion of insulin. The current gold standard treatment for T1D is life-long use of 

exogenous insulin replacement therapy, which is limited by its inability to promote physiological 

glucose levels. Poor glucose control can result in ketoacidosis and hypoglycaemia, both of 

which are life threatening conditions. The Diabetes Control and Complications Trial (DCCT) 

and the Epidemiology of Diabetes Interventions and Complications studies have demonstrated 

that poor glucose control in T1D patients is associated with the onset and progression of micro-

vascular (retinopathy, nephropathy and neuropathy) and macrovascular (cardiovascular, 

cerebro-vascular and peripheral vascular disease) complications [5-10].  The development of 

T1D has been associated with genetic and environmental factors [2].  

 

 

 

 

 



 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.1 Developmental stages of Type 1 Diabetes. Most patients that develop 

Type 1 diabetes have a genetic disposition which is primarily associated with HLADR3, 

HLADR4 and HLADQ. An environmental trigger is believed to precipitate the initiation 

of autoimmune responses that results in beta mass loss. Initially the disease is 

asymptomatic with normal insulin release and glucose control. Over time with 

progressive loss of insulin, the disease manifests itself promoting hyperglycaemia with 

over 80% of the beta cell mass being destroyed. A modified adaptation from 

Eisenbarth GS, Jeffrey J. The natural history of type 1A diabetes. Arquivos Brasilerios 

de Endocrinologia Metabologia 2008; volume 52: page 146-155. 
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The major genetic determinants of T1D are the genes within the major histocompatibility 

complex (otherwise known as human leukocyte antigen in humans) class II. Most T1D patients 

express HLA-DR3 or HLA-DR4 class II alleles, while 30-40% are heterozygous and carry the 

high risk genotype of HLA-DR3/DR4 [11]. However the strongest association with disease 

susceptibility is HLA-DQ [12]. HLA-DQ a heterodimer (α and β chains), which controls immune 

recognition and antigen presentation to CD4+ T cells.  The HLA-DQ may therefore influence 

the development T1D by determining immune responses that lead to beta-cell destruction.  

 

1.2.1 Islets of langerhans  

 

The pancreas consists of exocrine and endocrine tissue that play a crucial role in aiding 

digestion and regulating blood glucose levels. The exocrine tissue is involved in the secretion 

of digestive enzymes, whilst the endocrine tissue produces hormones like insulin to control 

blood glucose levels. The endocrine cells of the pancreas are structured into cell clusters 

known as islets of langerhans that are scattered throughout the exocrine tissue. Islets take up 

only 1-2% of the total pancreas mass [13]. The size of islets can vary in size from 20 to 250 µm 

in diameter. Islets of langerhans cell clusters consist of insulin producing β-cells and α-cells 

that produce glucagon that stimulates the release of glucose from the liver. δ-cells are also 

present and are involved in secreting somatostatin and pancreatic polypeptide [14]. To a lesser 

extent other cell types are also found in islet clusters, such as stromal cells, blood vessels, 

neurons and immune cells such as dendritic cells [15]. In order to produce insulin, β-cells 

consume large amounts oxygen to produce ATP, accordingly to maintain an adequate supply 

of oxygen islets are inherently highly vascularised, making them highly sensitive to hypoxic 

conditions [16]. Proinsulin is an insulin precursor that is made up by an A and B chain 
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connected by a connecting peptide (c-peptide). Subsequently, c-peptide is a diagnostic marker 

for insulin secretion [17].  

 

1.2.2 Islet transplantation – a potentially curative therapy for type 1 diabetes  

 

Whole pancreas transplantation is an attractive therapy for T1D patients, which re-establishes 

normal glucose metabolism and is associated with complete and sustained normalization of 

glycosylated HbA1c [18]. However pancreatic transplantation involves a large surgical 

procedure which is associated with a high degree of morbidity. Islet transplantation provides a 

less invasive alternative surgical procedure, which involves the infusion of isolated islets into 

the portal vein of the liver as demonstrated by figure 1.2.2. Islet transplantation is considered to 

be a relatively safe procedure in comparison to whole pancreas transplantation [19].  

 

The isolation of islets was developed over 30 years ago and since has provided the basis for 

developing islet transplantation as a potentially curative therapy for T1D patients [13]. In 1990 

the first islet transplanted patient reached insulin independence for 22 days prior to graft failure 

[20]. Despite improvements in protocols, less than 12% of patients were insulin independent 

one year post transplant, between the year 1990-2000 [21]. In 2000 Shapiro and colleagues 

reported the successful islet transplantation of 7 patients whom became insulin independent 

[22]. Their success was primarily due to the development of the Edmonton protocol, which now 

has been standardised worldwide [23]. The success of the Edmonton protocol was associated 

with an optimised immune therapy regime that consists of a combination of anti-Il2 antibody, 

Sirolimus and low dose tacrolimus. Despite these promising advances, only 10% of islet 

transplant recipients are insulin independent 5 years post-transplantation. However 80% of 

recipients remain C-peptide positive [22, 24]. Partial graft function has been shown to 
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remarkably improve the quality of life of T1D, by reducing the episodes and severity of 

hyperawareness[25].  

 

1.2.3 Immunosuppression – a barrier to the success of islet transplantation 

 

Cell and organ transplant recipients in a majority of cases require life-long use of 

immunosuppressive regimes in order to prevent acute allograft rejection. Immunosuppressive 

reagents are highly non-specific and are associated with a variety of side effects. In particular 

agents that target T-cell proliferation and cytokine production like, cyclosporine, azathioprine, 

mycophenolate mofetil and rapamycin, anti-CD3 and anti-IL-2 antibodies [26] increase the 

susceptibility of recipients to develop infections and malignancies [27]. The organo-toxicity of 

these drugs have also been associated with the development of cardiovascular complications 

giving rise to a high prevalence of hypertension, hyperlipidemia and to a lesser extent the onset 

of diabetes with long-term use [28]. Some immunosuppressive agents are significantly toxic 

and contribute to loss of islet cell mass post-transplantation [29-31]. The development of the 

Edmonton protocol, consisting of a corticosteroid free regime, with the use of sirolimus, low 

dose tacrolimus and induction therapy with anti-Interleukin 2 (IL-2) receptor antibody, has 

greatly improved the outcomes of islet transplantation. However, recipients are still susceptible 

to the non-specific side effects of long term immunosuppression. Subsequently islet 

transplantation is currently only available to adults that suffer from severe episodes of hypo-

unawareness. In order for islet transplantation to be widely used including in children, novel 

therapies that target both the allo and autoimmune reactions need to be developed, which 

promote tolerance without the use of immunosuppression. 
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Figure 1.2.2: Islet Transplantation. The donor pancreas is inflated with digestive enzymes 

prior to the transfer into a Ricordi chamber which mechanically breaks down the tissue with 

metal marble bearings. Islets are then purified by density gradient centrifugation. Purified 

isolated islets of high quality that are then infused into the portal vein of the recipient‟s liver.  
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1.3 Transplantation immunology  

 

1.3.1 Allogeneic T-cell Activation and priming  

 

Allograft rejection involves co-ordinated immune responses, which recognise the allograft as 

foreign and subsequently cause allograft failure. Antigen presenting cells (APC) and in 

particular dendritic cells (DC) play a key role in presenting donor antigens to T-cells, which 

initiates the allo-immune response. At the molecular level, T-cells require multiple signals of 

activation to initiate cellular-mediated allograft rejection, however there are three major signals 

that are essential for T-cell activation. As depicted in figure 1.3.1A signal one of activation is 

delivered by the T-cell Receptor (TCR) that binds to the DC Major Histocompatibility (MHC) or 

otherwise known as the Human Leukocyte Antigen (HLA) in human, peptide complex. This 

mediates the recognition of specific epitopes of the antigen presented in combination with the 

presented MHC molecule [32]. However, this signal alone is unable to initiate sustained T-cell 

proliferation, resulting in T-cell apoptosis, or T-cell anergy [33] (an unresponsive T-cell state - to 

be later discussed in section 1.2.3).  Full T-cell activation requires signalling from DC co-

stimulatory molecules that provide signal 2 of activation [34]. There are a growing number of 

characterised positive and negative co-stimulatory molecules [35], some of which have been 

summarised in figure 1.3.1B.  In addition to co-stimulation, T-cells require cytokine production 

(signal 3) to drive their clonal expansion, DC for example produce IL-12 and T-cells secrete IL-

2 to drive a Th1 immune response [36, 37].   
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Figure 1.3.1: T-cell Activation. The activation of T-cells requires multiple signals of activation. 

The binding of MHC-peptide complex presented by DC to the TCR, this interaction initiates 

signal 1. Signal 2 is produced by the association of co-stimulatory signals CD80/CD86 with 

CD28 expressed on T-cells. Signal 2 amplifies MHC and TCR interaction to produce, IL-12 and 

IL-2 (signal 3). 
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Figure 1.3.1B: This table illustrates the many positive and negative co-stimulatory pathways 

involved in T-cell activation. Those interactions highlighted in green promote positive signalling 

and T-cell proliferation. Those in interactions in red promote negative regulation of T-cell 

activation.  

 

 

 

 

 

 

 

 

Signal Co-stimulatory molecule Ligand 
 

Positive CD28 CD80/86 (B7-1/2) 
 

Positive CD27 CD70 
 

Positive HVEM LIGHT, BTLA 
 

Positive ICOS ICOS-L 
 

Positive OX40 (CD134) OX40L 
 

Positive 4-1BB (CD137) 4-1BBL 
 

Positive  CD30 CD30L (CD153) 
 

Positive SLAM (CD150) SLAM 
 

Negative BTLA HVEM 
 

Negative CTLA-4 CD80/86 (B7-1/2) 
 

Negative PD-1 PD-L1 / PD-L2 
 

Negative Unknown B7-H4 
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1.3.2 Allorecognition  

 

The allorecognition of allograft MHC complex antigens by recipient T-cells is the primary event 

which promotes allograft rejection. The term allorecognition refers to the T-cell recognition of 

MHC glycoprotein genetic polymorphisms, which are highly variable between individuals [38]. 

There are two classes of MHC molecules, class I and II.  MHC class I molecules otherwise 

known as human leukocyte antigens (HLA) A, B and C is constitutively expressed on a variety 

of nucleated cells. MHC class II (HLA-DR, DP and DQ) on the other hand is restricted to bone 

marrow derived APC, such as DC, macrophage, B lymphocytes and thymic epithelial cells [39]. 

Crystal structures have demonstrated that MHC molecules carry peptides on a „Groove‟ which 

allows the peptides to bind and thus be presented to the TCR [40]. CD8+ T-cells are known to 

recognize peptides presented by MHC class I, which carry peptides that originate from 

intracellular proteins. CD4+ T-cells on the other hand recognise MHC class II peptide 

complexes, that present extracellular protein derived peptides [39]. Recipient DC capture and 

process donor antigens to elicit an immune response, known as the indirect pathway of 

allorecognition. Passenger leukocytes also promote an immune response by activating T-cells 

with their polymorphic MHC molecules named the direct pathway of allorecognition. Recipient 

DC can also take-up donor antigen and MHC, via a semi-direct pathway of allorecognition, 

through membrane lipid raft transfers. Each pathway is described below.  
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Direct allorecognition 

The direct pathway of allorecognition as shown in figure 1.3.2 involves donor derived 

passenger leukocytes resident in the transplanted tissue. These tissue resident immature DC 

subsequently mature and migrate in response to proinflammatory signals produced by tissue 

injury during surgery [41-43]. Maturing DC migrate to secondary lymphoid tissue to encounter 

and present foreign MHC to recipient T-cells [44, 45].  DC are predominantly responsible for 

the activation of recipient T-cells [46], where 1 - 7% of the recipient T-cell repertoire respond to 

foreign MHC via the direct pathway of allorecognition [47]. Donor-derived DC die within a few 

weeks after transplantation, resulting in the decrease of direct allorecognition and thus a 

decline of donor-antigen specific T-cells over time [48-50]. 

 

Indirect allorecognition 

The indirect pathway of allorecognition involves recipient DC that migrate to the site of 

transplantation. Recipient iDC capture and process donor antigens after shedding from the 

allograft. They mature and migrate to secondary lymphoid tissue, causing T-cell activation with 

allo-peptides derived from polymorphic sequences of allogeneic MHC molecules bound to self-

MHC molecules[46, 51, 52] [53].The indirect pathway plays an important role in the 

development of chronic allograft rejection. This is evidenced by the elevated frequencies of T-

cells with indirect anti-donor specificity seen in patients with chronic heart, kidney and lung 

transplant rejection [54-61]. Thus the indirect pathway is believed to take precedence, when the 

direct pathway becomes exhausted. However animal studies have demonstrated that the 

indirect pathway is able to promote acute rejection in the absence of the direct pathway of 

allorecognition [62]. 
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Semi-direct allorecognition 

The semi-direct pathway, involves the transfer of lipid rafts from the cell membrane of donor 

DC to recipient DC. Accordingly, intact surface molecules including allogeneic MHC molecules 

can be transferred from donor to recipient DC and vica-verse, by direct cell to cell contact [63, 

64]. The release and uptake of exosomes have also been proposed as a mechanism for DC in 

acquiring and sharing foreign cell molecules [65]. As a result recipient DC can acquire donor 

MHC molecules promoting T-cell activation via the direct pathway of allorecognition. Recipient 

DC can also take up other donor DC cell surface molecules in this manner, which are 

processed and then loaded onto self-MHC molecules, resulting in the presentation of allo-

antigens via the indirect pathway.  
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Figure 1.3.2: The direct pathway of allorecognition. Immature „passenger‟ DC migrate out of 

the islet graft in response to the proinflammatory environment. DC subsequently mature and 

migrated to secondary lymphoid tissue, where they activate recipient T-cells causing the clonal 

expansion of alloreactive T-cells, which leads to allograft tissue destruction. 

 



 30 

 

1.3.3 T-cell subtypes 

 

T-cell subtype differentiation is defined by their expression of cytokines and signalling pathways 

from which their differentiation was mediated. Currently there are three main sub-types that 

have been commonly described and characterised. These subsets include T helper type 1 

(Th1), Th2 and Th17, which are described below and summarised in figure 1.3.3. 

 

Th1 

Th1 subtype of effecter cells are characterised by their production of pro-inflammatory 

cytokines IL-2, IFN-γ and TNF-α. This cell type is known by its unique ability to express the 

transcription factor T-bet, which signals through STAT1 and STAT4 [66]. The binding of IFN-γ 

promotes the expression of T-bet, which upregulates the beta-2 chain of the IL-12R which in 

turn potentiates the expression of IFN-γ [67] [68] [69]. This forms a positive feed-back loop, 

where increased IFN-γ production reinforces Th1 differentiation, as DC secreted IL-12 binds to 

the IL12R and in combination with TCR signalling increases the transcription of IFN-γ and T-bet 

[68, 70].The development of this T-cell sub-type is associated with cellular immunity and 

allograft rejection. 

 

Th2 

The differentiation of T helper 2 subtype (Th2) T-cell sub-set is characterised by the production 

of IL-4, IL-15 and IL-13 and the expression of GATA-3 and STAT-6 [71], which is  primarily 

involved in humoral immunity, by providing B-cell help. Th2 T-cell responses are antagonistic to 

the development of the Th1 population [72] [73], thus historically Th2 responses were thought 

to protect foreign tissue. However this is no longer strictly considered to be the case, as Th2 T-
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cells have been shown to mediate the rejection of MHC-mismatched allografts [74] and is 

believed a primary role in chronic allograft rejection. 

 

Th17 

The Th17 subtype is defined by its ability to produce proinflammatory cytokine IL-17A [75, 76], 

which forms part of a IL-17 family of cytokines (A-F)[77-81].  IL17A predominately is secreted 

by activated CD4+ T-cells, however other studies have also demonstrated that IL17A is 

expressed by γδ T-cells, CD8+ memory T-cells, eosinophils, neutrophils and monocytes [82-

88]. This cytokine plays an important role in the activation and recruitment of neutrophils and 

monocytes to sites of inflammation [89-92], whilst also enhancing granulocyte-colony 

stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) 

promoting the growth and maturation of myeloid cells. Th17 cells have been implicated in 

pathogenesis of autoimmune diseases and allograft rejection. Elevated expression of IL17 

mRNA and protein have been found in graft infiltrating mononuclear cells in acute renal graft 

rejection both in rat models and in humans[93]. Other studies in lung and cardiac rejection have 

also supported the role of IL17 in acute rather than chronic allograft rejection [94-96]. Th17 

differentiation is characterized by its unique signalling pathways involving receptor-related 

orphan receptor (ROR C2 or RAR-alpha) and STAT3 (as summarised in figure 1.5) [97, 98]. In 

humans IL1-β is important in promoting Th17 differentiation alone and in combination with IL-

23, which enhances the conversion of human Tregs to Th17 T cells. PGE2, a key mediator of 

tissue inflammation, up regulates IL-23R and IL-1R, which also promotes Th17 differentiation 

and expansion in humans. Th17 are unique in their ability to block the generation of Tregs, 

through the production of IL-6, IL-1 and TGF-β, however high concentrations of IL-6 can also 

inhibit Th17 differentiation. In vitro studies have also shown that IFN-y can negatively regulate 

Th17 differentiation [99]. 
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Figure 1.3.3: Differentiation of naive T-cells. The differentiation of naive CD4+ T-cells is 

dependent on proinflammatory milieu. The early secretion of Il-4 promotes the differentiation of 

Th2 T-cell subset. However the production of IL-12 inhibits Th2 and promotes the differentiation 

of Th1 cells, whilst the production of TGF-β promotes the generation of Tregs. Reciprocally IL-6 

inhibits Treg generation, while helping promote Th17 differentiation with the help of IL-1β and 

IL-23.   
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1.3.4 Tolerance mechanisms 

 

Central and peripheral tolerance mechanisms exist as homeostatic measures to ensure that 

the immune system can adequately recognise self and prevent autoimmune responses. Central 

tolerance or otherwise known as recessive tolerance involves the negative selection of 

thymocytes with a high affinity for self-peptide/MHC complexes, which occurs in the thymus 

[100]. Negative selection can arise from various mechanisms including receptor editing, clonal 

diversion and clonal deletion, the later being the predominant form of negative selection [101]. 

Peripheral tolerance on the other hand controls immune responses in the periphery outside the 

thymus once T-cells have matured, which can involve different mechanisms as described 

below.   

 

T cell anergy 

T cell anergy is a tolerance mechanism defined by an unresponsive T-cell state as shown in 

figure 1.3.4A. Presentation of MHC to the TCR in the absence of co-stimulation, such as 

CD80/CD86, renders T-cells anergic. Subsequently, these T-cells become unresponsive to the 

presented allo-peptide, even upon re-counter with the same peptide presented by an equipped 

APC expressing co-stimulation [102]. Cytotoxic T lymphocyte associated antigen (CTLA-4) is a 

example of a inhibitory molecule, which blocks co-stimulation signalling between CD80/CD86 

expressed by APC and CD28 expressed by T-cells to induce T-cell anergy [103].  

 

Activation induced cell death 

Immune responses are also regulated by a mechanism known as activation-induced cell death 

(AICD) (Figure 1.3.4B), after repeated encounters with a specific antigen at a high 
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concentrations [104]. AICD is mediated by the surface expression of FAS (CD95) and its ligand 

(FASL or CD95L), The interaction of FAS/FASL between proliferating cells activates a cascade 

of caspase enzymes that induce apoptosis induced cell death [105]. Gene disruptions to FAS 

and FASL result in lymphoproliferative disease in mice and autoimmune lymphoproliferative 

syndrome in humans [106]. 

 

T regulatory cells 

 Immune regulation via suppression by T regulatory cells (Tregs), is a concept that was initially 

proposed in the late 1960s, but failed to be accurately defined. However over recent years their 

existence has been proven by numerous studies. In particular, the description of CD4+ CD25+ 

Foxp3+ Tregs have been of the greatest interest. Foxp3 or otherwise known as forkhead box 

P3 from the forkhead family of DNA binding factors, is the master gene associated with the 

differentiation of these Tregs [107]. The function of Foxp3 as a primary regulator of Treg 

function was displayed in the scurfy mouse, where mutations to Foxp3 resulted in a fatal 

autoimmune and inflammatory disorder [108]. A similar disorder is also known in humans, 

called IPEX (immune dysregulation, polyendocrinopathy, enteropathy and X-linked) syndrome, 

which is associated with poor T-cell activation and impaired suppressive function of 

CD4+CD25+ T-cells [109]. The Treg pathway reciprocally develops to the Th17 T-cell sub-set 

as explained in section 2.3. Foxp3 Tregs also require TGF-β to differentiate, while IFN-γ has 

been shown to be crucial in the generation of functional alloantigen reactive Tregs [110].  
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Figure 1.3.4: Tolerance Mechanisms. Tolerance induction can be mediated through three 

major cellular mechanisms. A) Priming of T-cell in the absence of co-stimulatory signals 

generates anergic T-cells, rendering reactive T-cells no longer responsive. B) Apoptosis of 

antigen primed T-cells can be mediated through the interaction of Fas and Fas L, thus causing 

its deletion. C) Tolerogenic signals can convert reactive T-cells to generate CD4+ CD25+ 

FOXP3+ T-regs, which have suppressive properties that can inhibit other effector T-cells. 
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1.3.5 Immune reactions to islet allograft 

 

Loss of islet cell mass post transplantation is the leading cause of islet graft failure in recipients. 

Only 10-20% of the original mass remains post transplantation, therefore recipients require 

multiple islet infusions before they become insulin independent. Graft survival is dependent on 

the number of transplanted islets, quality of islets post mechanical and enzymic digestion, re-

vascularisation post transplant and the toxicity of immunosuppressive drugs. Moreover, 

allogeneic islets are susceptible to the innate, adaptive and recurrent autoimmune response, 

which affects graft function and survival. 

 

Innate 

The innate immunity is responsible to the loss of islet cell mass immediately post 

transplantation. The infusion of islets into the portal vein of the liver, places islets into direct 

contact with blood. This initiates the „instant-blood mediated immune response‟ (IBMIR), and 

within minutes of transplantation there is a rapid  activation and binding of platelets trapping 

islets in clots, activation of the coagulation and complement systems, causing the rapid 

infiltration of leukocytes, [111, 112]. This reaction is primarily driven by the inflammatory factors 

that are endogenously produced by human islets such as tissue factor, Interleukin 1-β, 

Interleukin-8, MIP-2, MIF and Monocyte Chemotactic protein-1[113, 114]. Accordingly the 

presence of cytokines in the local environment of islets are known to cause islet cell death 

[115, 116]. 
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Adaptive 

Islet transplantation like any other allogeneic transplantation is susceptible to allorecognition as 

described in section 1.3.2. However the non-specific inflammation driven by the innate immune 

response and in particular the „cytokine storm‟ potently activates the adaptive immune 

response. Subsequently the release of cytokines such as Tumour Necrosis-alpha, Interleukin-1 

and Interferon gamma activates donor (resident in islets) and recipient APC promoting T cell 

activation as described in section 1.3.1. The adaptive immune response plays a crucial role in 

promoting the destruction of the islet cells as evidenced in many mouse models of islet allograft 

transplantation, which have shown that the blocking of co-stimulation prolongs allograft survival 

[117-121]. Moreover, in human islet transplant recipients that reach insulin independence is 

associated with a T-regulatory cytokine profile [122], thus demonstrating the key role of the 

adaptive immunity in regulating the success and survival of islet allografts. 

   

Recurrent autoimmunity 

The autoimmunity that initially destroys the islets of T1D patients creates the problem of 

recurrent autoimmunity to the newly transplanted islets.  Studies have shown that auto-reactive 

T-cells and auto-antibodies play an important role in the dysfunction and loss of islets, which 

prevents receipts reaching insulin independence [123]. The use of immunosuppressive drugs, 

therefore appears to be more effective in controlling allo-immune responses. Accordingly there 

is need to develop therapies that target both the allo-immune and auto-immune responses, to 

promote allograft tolerance.  
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1.4 Immune modulation towards tolerance induction 

 

The severe side-effects associated with the use of immunosuppressive drugs have prompted 

the explosion of research into the development of novel therapies to target allograft rejection. In 

particular, research has aimed to achieve the holy grail of „transplant tolerance‟, by promoting 

allograft acceptance without the use of systemic immunosuppression.  Islet transplantation has 

the added task of developing therapies that target both the allo- and auto- immune responses 

concurrently. The immunomodulation of cellular-mediated rejection with the use of „tolerogenic 

DC‟ (Tol-DC) and the genetic modification of allografts, are novel strategies that have great 

potential to promote tolerance induction as discussed below.  

  

1.4.1 DC cellular immunotherapy – a key to tolerance induction 

 

In 1973, Steinman and Cohn described a novel cell type with distinct morphological features 

which they termed dendritic cells (DC) [124]. Since their identification, DC have been shown to 

play a crucial role as sentinels of our immune system [125-128]. Despite taking up less than 

<0.1% of the total cell population, they play an important role as potent antigen presenting cells 

which can promote either „immunogenic‟ or „tolerogenic immune responses. It is this plasticity, 

which make them great candidates for tolerance induction.  

 

Dendritic cell origin and function - mature vs immature   

DC differentiate from precursor cells derived from haematopoietic CD34+ bone marrow 

progenitor cells. DC precursors migrate from the bone marrow to nonlymphoid / peripheral 

tissues, including commonly transplanted organs where they reside as immature DC (iDC)   

[126, 129].  These tissue resident iDC are specialised in antigen uptake and processing, where 

they use receptor dependent and independent endocytic mechanisms to do so. Immature DC 

have low surface expression of co-stimulatory and MHC molecules making them poor 
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stimulators of T-cell activation [130, 131].   Microbial products like bacterial lipopolysaccharide 

(LPS), unmethylated cytosine poly-guanine (CpG) motifs and double stranded RNA can 

stimulate the maturation of iDC.  Other danger signals such as pro-inflammatory cytokines GM-

CSF, IL-1β, TNF-α and IFN-α can also initiate the maturation of resident iDC [132-134], 

Necrotic death and ischemia/reperfusion injury during transplantation induce the release of a 

variety of factors including pro-inflammatory cytokines that promote DC maturation of 

passenger iDC transferred with the allograft[135, 136]. This cytokine and chemokine insult also 

recruits recipient DC-precursors and iDC to the site of injury. Donor and recipient iDC 

subsequently take up allo-antigens and mature to potent antigen presenting cells.  

 

Maturation of DC is defined by a variety of changes both phenotypic and functional.  Immature 

DC switch from an antigen capturing cell to antigen presenting cells by losing their endocytic 

activity [137].  Immature DC function by loading antigen-peptides to their MHC molecules 

forming MHC-peptide complexes, which translocate to the cell surface. As iDC mature they 

rapidly increase their expression of co-stimulatory molecules and migrate to draining lymphoid 

tissues, where they activate and prime T-cells causing clonal T-cell expansion [138, 139]. 

However resting iDC can prime T-cells in the absence of co-simulation to promoting antigen-

specific tolerogenic immune responses [140].  The terminal arrest of DC maturation may 

therefore provide a platform from which allograft tolerance can be induced.  
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DC maturational arrest  

A large amount of research has gone into the development of novel strategies to arrest DC 

maturation, as a potential way of inducing tolerance. In particular, pharmacological agents have 

been used to generate maturation arrested DC for the treatment of autoimmunity and allograft 

rejection. Glucocorticoids (GC) are potent immunosuppressive agents, initially described for 

their ability to inhibit T-cell responses. However GC also has a profound effect on the 

production of proinflammatory cytokines by monocytes and macrophages. Moreover GC have 

the distinct ability to modify DC function [141]. Dexamethasone (Dex) is the most widely 

investigated GC, which down regulates components of NF-κB signalling molecules involved in 

DC maturation including RelB [142]. Vitamin D3 [1,25(OH)2D3] has shown similar effects to 

induce the differentiation of phenotypically immature DC, which do not mature in response to 

maturation stimuli. These phenotypically tolerogenic DC also have a reduced capacity to 

stimulate T-cells [143, 144]. Rapamycin also has been extensively investigated in its ability to 

promote the generation of iDC. Unlike Dex and Vitamin D3, rapamycin inhibits the mammalian 

target of rapamycin (mTor), which acts as a serine/threonine protein kinase. It has a diverse 

role as a regulator of cell growth and proliferation, transcription, ribosomal biogenesis, vesicular 

trafficking, autophagy, cytoskeletal organization and cell size [145]. Studies using bone marrow 

derived DC have shown that rapamycin down regulates the IL-4 receptor complex, suppressing 

IL-4 dependent DC maturation. This in turn results in the inhibition of co-stimulatory molecule 

expression and the production of IL-4 induced IL-12 and TNF-α [146]. The effects of rapamycin 

on DC maturation have also been demonstrated in human studies, where monocyte-derived 

and CD34+progenitor-derived DC fail to mature [147, 148]. Cytokines also have a role in 

producing maturation arrested iDC, for example IL-10 treatment of DC-precursors during 

differentiation results in phenotypically immature DC. Similarly, these DC have an inhibited 

capacity to up regulate the expression of CD86 and CD83, which reduces their capacity to 
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stimulate CD4+ T-cells, resulting in the induction of antigen-specific T cell anergy [149]. Many 

other reagents and strategies have been used to generate tolerogenic iDC including siRNA KO 

of RelB, the use aspirin and curcumin to name a few, which have been proven to be tolerogenic in 

vitro and in vivo[150-152]. Moreover, in the NOD mice the use of maturation arrested DC generated by 

targeting CD40, CD80 and CD86 with anti-sense oligonucleotides, has been proven successful in 

delaying the onset of diabetes [153].  So successful in fact the University of Pittsburgh is running a 

phase I clinical safety study, the first of its kind to use maturation arrested autologous DC. The 

randomized trial proposes to evaluate the safety of using autologous tolerogenic monocyte-derived DC 

in type 1 diabetic patients (www.clinicaltrials.com – Identifier NTC00445913). The tolerogenic DC 

accordingly are generated from the recipient‟s monocytes and treated ex vivo with antisense 

phosphorothioate-modified oligonucleotide targeting CD40, CD80 and CD86 costimulatory molecules. 

Similarly the University of Queensland plans to run a Phase I trial using monocyte-derived DC for the 

treatment of rheumatoid arthritis (RA). Whist in England the University of Newcastle plan to undergo 

second phase I trial using Vitamin D3 maturation arrested DC for also the treatment of RA [154]. These 

translational studies will further define the applicability of using tolerogenic vaccines in humans as a 

therapy for autoimmune diseases and allograft rejection. 
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Donor vs Recipient Dendritic cells 

Tolerogenic DC research may ultimately be used in „negative vaccination‟ protocols. This 

concept is still in early development, however it may hold great promise in the field of 

transplantation as a way to promoting allograft tolerance [155]. The use of either donor-derived 

or recipient-derived DC and timing of DC treatment still remains debatable. Using donor-

derived DC is advantageous as it targets the direct pathway of allorecognition as described in 

section 1.3.2, thus playing a critical in preventing acute allograft rejection and promoting donor-

specific tolerance. However, many models describing the use of donor-derived Tol-DC, 

administer DC therapy 7 days prior to transplantation and current protocols for generating 

human monocyte-derived DC takes 7-10 days [155, 156]. This type of cellular therapy would 

only be available in cases of living donor transplantation. On the other hand modulated 

recipient-DC have been shown to be affective in promoting tolerance, even if administered at 

the day of transplantation. There is also evidence emerging that donor-derived DC therapy may 

provide a source of alloantigen in the draining lymph nodes promoting indirect allorecognition 

and the risk of sensitization [157, 158], this however still remains to be fully characterised 

especially in larger non-human primate models. Moreover there is a great body of evidence 

demonstrating that donor-derived Tol-DC can promote allograft tolerance in vivo rather than 

immunity.  

 

1.4.2 Immunomodulation of the graft – a gene therapy approach 

 

The introduction of genes into the allograft itself has been among the popular approaches to 

protect the allograft from rejection. Several inhibitory molecules have been investigated using 

this gene therapy approach. Cytotoxic T lymphocyte associated antigen-4 (CTLA4) for example 

is an immunomodulatory molecule involved in blocking the interaction of CD86/CD80 with 

CD28. Its induced expression as CTLA-4Ig (fused to Fc portion of human IgG1) in islets 
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improves allograft survival as shown by numerous in vivo models [159].  The successes of 

CTLA4Ig to prevent T-cell activation has permitted its use in the treatment of rheumatoid 

arthritis, while a second generation drug known as Belatacept is currently in phase III clinical 

trials for renal transplantation [160]. Th2 cytokine IL-10 viral vector mediated systemic 

production in an islet transplant model, is also successful in prolonging allograft survival by 

suppressing autoimmune responses [161]. In NOD mice, adeno-associated virus (AdV) 

mediated gene expression of IL-4 by islets, prevents the development of hyperglycaemia and 

reduces the severity of insulitis. Thus preventing the destruction of islets and inhibiting 

autoimmune processes, by regulating T-cell function [162].  

 

Programmed cell death 1 (PD-1) is also an inhibitory molecule known to regulate the onset of 

diabetes in the NOD mouse [163] and thus important in maintaining peripheral tolerance [164]. 

Stimulation of the PD-1 pathway in an islet allograft transplantation model, promoted allograft 

survival in presence of co-stimulation blockade [165]. So far there have been lack of human 

studies which have examined the effects of the over expression of PD-1 ligands in the survival 

of human islet allograft, which warrants investigation given the important role of PD-1 pathway 

in regulating auto-immune and allo-immune responses.   
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1.5 The Programmed Cell Death 1 (PD-1) Pathway 

 

1.5.1 Programmed Cell Death-1: a negative regulator of T-cell activation  

 

Programmed cell death 1 (PD-1) is a T-cell receptor known to negatively regulate T-cell 

proliferation. PD-1 binds to PD-1 ligands 1 and 2 (also commonly known as B7-H1 and B7-DC 

respectively). This emerging negative co-stimulatory pathway is of great interest and is being 

heavily investigated as a novel avenue for the development of therapies to target autoimmunity, 

cancer, opportunistic infection, and of interest to this study, alloimmunity.   

 

1.5.2 Programmed Cell Death-1 receptor 

 

PD-1 was initially described by Ishida and colleagues in 1992 when isolating the murine PD-1 

gene. Its expression was upregulated in a T-cell hybridoma that was undergoing cellular death, 

thus named programmed cell death 1.  PD-1 shares amino acid homology with other members 

of the CD28/CTLA4 immunoglobulin super family. Despite its given name, PD-1 it is not 

involved in classical programmed cell death [166]. Rather PD-1 was found to be responsible for 

arresting the cell-cycle of proliferating T-cells at the Go/ G1 phase [167].    

 

1.5.3 PD-1 protein and gene structure 

 

The murine PD-1 receptor is a 50 to 55 kDa type 1 monomeric transmembrane glycoprotein. 

Within its immunoglobulin (Ig) super family member it shares approximately 20% sequence 

homology with other members such as CD28, CTLA-4 and ICOS (inducible costimulatory), 

however unlike CTLA-4 and ICOS, PD-1 lacks the extra cellular cysteine which allows 

homodimerization [168].  Human PD-1 shares 70% nucleotide homology and 60% amino acid 

sequence homology with murine PD-1. The human 288 amino acid PD-1 protein consists of an 
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Ig variable type extracellular domain, a transmembrane domain and a cytoplasmic domain 

[169].  Stimulation through the TCR or BCR (B-cell receptor) induces the expression of PD-1 

and the translocation of compartmentalized PD-1 to the cell surface of T-cells and B-cells 

respectively [169, 170].  

 

1.5.4 Signalling through PD-1 mediates the inhibition of TCR activation 

 

Functional studies of PD-1 show that the cytoplasmic tail of this receptor has two signalling 

tyrosine residues. The tyrosine residue proximal to the membrane is located in an 

immunoreceptor tyrosine-based inhibitory motif (ITIM), while the distal tyrosine is found in an 

immunoreceptor tyrosine-based switch motif (ITSM). Mutation studies have demonstrated that 

the inhibitory action of PD-1 is mediated by the ITSM rather than the ITIM [171].  Engagement 

with PD-L1 or PD-L2, induces the ITSM to recruit Src homology region 2 domain-containing 

phosphotase -1 (SHP-1) and SHP-2 to the PD-1 cytoplasmic tail [167]. Subsequently T-cell 

effector molecules are phosphorylated by SHP-1 and SHP-2 to inhibit T-cell activation.  

Similarly in B-cells SHP-2 is recruited upon PD-1 engagement to inhibit B-cell receptor 

mediated activation [172].  Signalling through PD-1 receptor also inhibits Akt phosphorylation 

by preventing CD28-mediated activation of phosphatidylinositol 3-kinase (PI3K), which is 

dependent on the PD-1 ITSM [173]. Subsequently, causing a decrease T-cell proliferation, cell 

survival and cytokine and protein production, as demonstrated by figure 1.5.1.  
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Figure 1.5.1: Ligation of PD-1 Ligands expressed by APC promotes PD-1 signalling. Binding of 

the ITSM of the PD-1 cytoplasmic tail by SHP-1 /SHP-2 causes the dephosphorylation of 

proximal signalling molecules. This results in the reduction of PI3K activation subsequently 

affecting the AKT pathway. PD-1 signalling can therefore decrease T-cell proliferation, cell 

survival and cytokine and protein production.   
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1.5.5 PD-1 deficient mice develop auto-immune diseases 

 

Animal functional studies have demonstrated that PD-1 plays a vital in maintaining peripheral 

self tolerance. PD-1 deficient C57BL/6 (B6) mice develop autoimmune diseases, such as 

lupus-like proliferative arthritis and glomerulonephritis [174]. The disruption of PD-1 gene in 

BALB/c mice, similarly mediates the development of autoimmune dilated cardiomyopathy [175]. 

In the NOD mouse PD-1 pathway blocking studies have also demonstrated the inhibitory role of 

PD-1 in regulating the onset of diabetes. It was demonstrated that blocking of the PD-1 

pathway resulted in the rapid development of diabetes regardless of the mouse age. Moreover, 

blocking significantly increased the frequency of Interferon gamma producing GAD-reactive 

splenocytes [163].  Likewise in PD-1 ligand KO models, have demonstrated that the PD-1 

pathway specifically regulates CD4+ auto-reactive T-cell mediated tissue destruction and 

cytokine production in the development of diabetes [164]. These in vivo functional studies 

demonstrate that PD-1 is important in the establishment of self peripheral tolerance.  
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1.6 PD-1 Ligands 

 

1.6.1 PD-L1 

 Discovery 

In 2000 the first ligand for PD-1 was described, which was found to induce the inhibition of T-

cell receptor mediated T-cell proliferation [176]. The human and murine Programmed death 

ligand 1 (PD-L1) was identified through B7 homology-based searches of the NCBI database. 

The identified PD-L1 of 290 residues however, was also described as B7-H1 by Dong and 

colleagues the previous year in 1999, where they conversely showed this molecule to have a 

positive stimulatory capacity [177]. However subsequent data indicate that PD-L1 has a 

dominant role as a negative regulator of T-cell activation. More recently it was discovered that 

PD-L1 also binds to positive co-stimulatory molecule CD80, otherwise known as B7-1, a 

phenomenon present in murine models and humans [178].  The interaction of CD80 and PD-L1 

appears to be at intermediate affinities compared to that of CD80 to CD28 and to CTLA-4. The 

area which PD-L1 binds with CD80 overlaps with the area used to bind PD-1. Vice-versa the 

area of CD80 binding to PD-L1 overlaps with the area used to bind CD28. Furthermore the 

interaction between PD-L1 and CD80 leads to the specific inhibition of T-cell activation [179], 

demonstrating the ability of PD-1 ligands to work independently to PD-1 to also inhibit T-cell 

proliferation. 

 

Gene and protein structure 

Analysis of PD-L1 sequences has shown that this B7-family member has a IgV and IgC domain 

in its extra cellular region with a hydrophobic transmembrane domain and a short charged 

intracellular region [176, 177]. Although PD-1 is structurally similar to CTLA-4, PD-L1 

specifically binds to PD-1 and not CTLA-4. Furthermore the human PD-L1 is also able to bind 

to the murine PD-1 orthologue [176], demonstrating high evolutionary conservation of PD-1 
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between species. Overall many studies have demonstrated that PD-L1 binding with PD-1 

mediates the inhibition of T-cell proliferation [176, 180]. 

1.6.2 Discovery of PD-L2 and protein structure 

 

Latchman and colleagues in 2001 were the first to identify the second ligand for PD-1 

Programmed Death Ligand 2 (PD-L2), which also inhibits T cell activation [167]. Similar to the 

discovery of PD-L1, PD-L2 was found though sequence homology searches on GenBank, 

which identified a mouse PD-L1 homologue. Likewise human cDNA was also identified, which 

shares a 70% amino acid identity with murine PD-L2. The B7 family members therefore share a 

21 to 27% amino acid homology and are structurally similar in their organization. Unlike PD-L1 

there is poor conservation of the PD-L2 cytoplasmic tail between the human and murine 

orthologue. Accordingly the human PD-L2 has a longer cytoplasmic tail, which may be 

responsible for some functional differences between the human and murine PD-L2. PD-L1 and 

PD-L2 are closely located to each other on the human chromosome 9p24.2 separated by 42kb.     

1.6.3 Tissue distribution of PD-1 Ligands 

 

Messenger RNA 

PD-1 Ligand mRNA in human and murine tissues have similar mRNA expression patterns. PD-

L1 appears to have high expression levels in placenta, heart, skeletal muscle and lung, 

however lower expression is also found in the thymus, spleen, kidney and liver [167, 177]. PD-

L1 mRNA however is not expressed in human monocytes unless stimulated with pro-

inflammatory cytokine IFN-γ, where it is quickly up-regulated [167]. PD-L1 mRNA is 

constitutively expressed on DC and macrophage [181]. The mRNA expression of PD-L2 is 

similar to that of PD-L1; however mRNA transcripts do not correlate with the protein expression 

of these ligands, as the protein expression of PD-L1 is broadly expressed compared to PD-L2 

as described below.  
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Protein expression 

PD-L1 protein is broadly expressed compared to PD-L2. PD-L1 is constitutively expressed on a 

wide variety of hematopoietic and non-hematopoietic cells including mononuclear small 

intestine cells, placental syncytiotrophoblasts, vascular endothelium, epithelia, pancreatic islet 

cells, astrocytes, neurons and lung macrophage [182, 183]. Dendritic cells also have high 

protein expression of PD-L1. PD-L2 protein expression however is restricted to macrophage 

and DC [181, 182, 184], and more recently B1 cells, B memory cells, bone marrow-derived 

mast cells were also found to express PD-L2 [183, 185].  PD-L2 is also strongly expressed on 

placental endothelial cells rather then syncytiotrophoblasts [184]. Thus the expression of PD-L1 

and PD-L2 in the placenta suggests that these ligands may play an active role in the 

establishment of fetal-maternal tolerance [186]. 

 

 

1.6.4 Regulation of PD-1 Ligand expression 

 

The expression of PD-L are largely dependent on the inflammatory environment, subsequently 

cytokines play an important role in the stimulation of their expression. Both type 1 and type 2 

interferons (IFN) and TNF-α induce the expression of PD-L1 on T-cells, B-cells, endothelial 

cells and epithelial cells [187]. Common γ chain cytokines such as Il-2, Il-7 and Il-15 have all 

been shown to upregulate PD-L1 expression on human T-cells, whereas Il-21 can induce its 

expression on PBMNC CD19+ B cells but not on T-cells[188]. IFN-γ also upregulates the 

expression of PD-L1 and PD-L2 in human monocytes, however it appears to have more 

profound effect on PD-L1 rather than PD-L2. [181, 184]. The up-regulation of PD-L2 protein 

expression in macrophage is highly dependent on IL-4, which suggests that PD-L1 and PD-L2 
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are differentially regulated by Th1 and Th2 immune responses respectively [181]. Thus PD-L1 

and PD-L2 may function differently in the setting of transplantation. The transcription of the PD-

L1 is thought to be regulated by IRF-1, which is involved in its constitutive and inducible 

expression [189]. Lack of STAT3 activity by siRNA has demonstrated that STAT3 is required 

for the expression of PD-L1 [190]. Little is known about the transcriptional regulation of PD-L2, 

however there is evidence that shows IFN-y induced expression of PD-L2 is partially 

dependent on the NF-κB-binding sites, situated upstream of the transcriptional  start site[182]. 

 

1.6.5 Evidence of second receptor for PD-1 Ligand 

 

In 1999 PD-L1 was identified by Dong et al and described as a third B7 family member that 

stimulates T-cell proliferation and IL-10, however they still showed the inhibition of IL-2 

production, thus concluding that PD-L1 molecule may also have negative regulatory properties. 

Also in 2001 Tseng and colleagues, claimed the discovery of B7-DC, which is identical to PD-

L2. In a murine model, PD-L2 was shown to have potent co-stimulatory properties causing the 

activation of T-cells [191]. In a separate study, PD-L2 had positive co-stimulatory properties, 

however they were independent to the engagement of PD-1, as PD-L2 was able to co-stimulate 

PD-1 deficient CD4+ T-cells, providing evidence of a possible second ligand for PD-L2 which 

mediates the stimulatory response rather than negative one [192]. However in other mouse 

models both PD-L1 and PD-L2 appear to mediate inhibitory signals. A study using C57BL/6 

mice showed that blocking of PD-L1 and PD-L2 expressed by iDC, significantly increased the 

stimulatory capacity of iDC [193]. A human study demonstrated similar results backing the 

concept that PD-L are vital inhibitory molecules.  More importantly this study described PD-L2 

as the more potent PD-1 ligand compared to PD-L1 [184]. The different reported functions of 

PD-L to either act as a stimulatory or inhibitory molecule are still currently under debate and 

may be a reflection of the background of the mice used in those studies. Never the less some 
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studies have demonstrated that PD-L1 can increase T-cell activation by inhibiting IFN-γ 

induced nitric oxide [194]. Further to that there is evidence which suggests that PD-L1 may be 

bi-directional in its signalling capacity [178]. However there is a general consensus in the 

literature that PD-L1 and PD-L2 play an important inhibitory role in immune regulation [183].  

 

1.6.6 Functional differences between PD-L1 and PD-L2 

 

Although many studies suggest that PD-L1 and PD-L2 have overlapping functions in mediating 

negative regulation of T-cells, other studies have also revealed distinct functional differences 

between the two ligands. Comparative molecular modelling and site directed mutagenesis was 

used to demonstrated that the A‟GFCC‟C” protein face, which interacts with PD-1 has poor 

residue conservation between the two ligands. Furthermore these ligands differentially bind to 

different locations on the PD-1 receptor. Accordingly through the use of flow cytometry and 

surface plasmon resonance it was established that PD-L1 and PD-L2 both have different 

affinities for the PD-1 receptor. PD-L2 has a 2-6 times higher affinity for the PD-1 receptor 

compared to PD-L1, indicative that these two ligands make a differential contribution to immune 

responses [195]  PD-L2 in humans appears to be a far more potent negative regulator of T-cell 

activation, as blocking of PD-L2 in a mixed lymphocyte reaction was able to significantly 

increase the proliferation of CD4+ T-cells, whilst the blocking of PD-L1 only had a modest 

effect almost comparable to its controls. Furthermore PD-L2 blockade was able to reverse the 

tolerogenic effects of IL-10 treated DC, even though its expression levels found in these cells 

are considerably low, thus clearly demonstrating its potent negative regulatory properties in 

humans [184].  
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1.7 The PD-1 pathway and immunological tolerance 

 

As highlighted previously, PD-L interaction with PD-1 mediates inhibitory signalling that results 

in T-cell hyporesponsiveness, which is vital in the induction of self tolerance. PD-L signalling 

through PD-1 results in the inhibition of the production of cytokines such as IFN-γ and IL-10, IL-

4 and also IL-2, which are required for the proliferation of T-cells [167, 176, 180]. 

 

1.7.1 PD-1 pathway and peripheral tolerance  

 

In vivo animal studies have further substantiated the role of the PD-1 and PD-L pathway as a 

negative regulator of T-cell mediated immune responses and its crucial role in immunological 

tolerance. Both PD-L1 and PD-L2 deficient mice have shown dramatic increases in the 

proliferation of CD4+ and CD8+ T cells both in vitro and in vivo [196, 197] via the increased 

ability of these cells to produce IL-2 and IFN-γ [164]. Furthermore in an experimental 

autoimmune encephalomyelitis resistant strain, PD-L1 deficiency causes this strain to become 

susceptible to autoimmune disease [196]. However the blocking of the PD-1 pathway does not 

appear to be as severe as the KO of CTLA-4. PD-L1 also appears to be important in the 

maintenance of semi-allogeneic pregnancy, as PD-L1 deficient mice have poor fetal survival 

due to the increased ability of these mice to reject allogeneic foetus [186].  PD-L2 is also vital in 

tolerance induction, as CD4+ T-cells of PD-L2 deficient mice show enhanced T-cell activation 

when co-cultured with antigen presenting cells (APC) compared to WT mice, which also feature 

increased production of IFN-γ and IL-4. Furthermore, the immunization of PD-L2 deficient mice 

with chicken ovalbumin, increases the activation of CD4+ and CD8+ T cells in vivo compared to 

their WT controls. Subsequently the lack of PD-L2 in these mice abrogated tolerance to oral 

antigens, thus further supporting the role of PD-L2 as a critical ligand in the regulation of T-cell 



 54 

tolerance [197]. Although there is significant evidence to suggest PD-Ls are important in the 

maintenance of tolerance, there is a clear lack of studies using models that are more clinically 

relevant to the human setting.  

 

1.7.2 PD-1 pathway and allograft transplantation  

 

The function of PD-1 to negatively regulate T-cell clonal expansion and tolerance has 

encouraged investigations in the field of transplantation. The modulation of alloimmune 

responses via the PD-1 and PD-1 ligand pathway may therefore serve as a therapeutic tool in 

the prevention of allograft rejection. 

 

Kinetics of PD-1 and its ligands in allograft transplantation 

PD-1 and its ligands are known to be upregulated during allograft rejection of fully MHC 

mismatched cardiac transplantation [198]. Interestingly PD-1 mRNA expression is observed 

late in the rejection response. PD-L1 on the other hand increases significantly the day after 

transplantation, whilst PD-L2 had a similar expression pattern to PD-1. The expression of these 

molecules continued to be expressed despite the treatment with immunosuppressive agents 

[198]. 

 

PD-1 Ligand 1 fusion proteins prolong allograft survival 

Systemic administration of PD-L1Ig fusion protein is able to prolong allograft survival in the 

absence of CD28 co-stimulation and in conjunction with the administration of 

immunosuppressive agents. PD-L1Ig therefore acts synergistically with co-stimulatory blockade 

to induce long-term islet allograft survival [165].  Furthermore, PD-L1 expressed in corneal 

endothelial cells induces the apoptosis of effector cells within the cornea to maintain long-term 

acceptance of corneal allografts [199].  PD-L1Ig transduced rat cardiac allografts also prolong 
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allograft survival compared to controls. The synergistic effects of a sub-therapeutic 

immunosuppressant regime were also observed in this study, as the combination of treatments 

was better than immunosuppressive treatment and gene transfer alone. PD-L1Ig genetic 

modification of the graft reduced CD4+ T-cells, monocyte and macrophage infiltration [200].  

 

 

PD-1 and ligands required for allograft acceptance 

MHC class II mismatched skin grafts in vivo, result in accelerated rejection with the blockade of 

PD-L1, which is similar to the rejection seen in CTLA-4 blocking studies [201]. In a separate 

study the targeting of PD-1 in fully MHC mismatched transplantation models also accelerates 

the rejection of allografts [202].  Furthermore interruption of the PD-1 and PD-L1 interaction is 

associated with the regulation of Graft Arterial disease in cardiac allografts [203]. These studies 

demonstrate that PD-1 and PD-L1 is associated with induction of allograft acceptance. 

However the literature in this area lacks the description of PD-L2 and its association with 

allograft tolerance. A recent study using human PD-L transduced pig B-cell line, demonstrated 

that both PD-L1 and PD-L2 over expression in pig antigen presenting cells was able to 

significantly inhibit the proliferation of human CD4+ T-cells, which was accompanied with the 

reduced production of IL-2, IFN-γ, TNF-α, Il-4 and IL-5. Moreover, the induced expression of 

PD-L promoted the generation of CD4+CD25HIFoxp3+ T-cells [204]. Thus, suggesting that 

human PD-1 ligands could also be potentially used in the prevention of xenogeneic immune 

responses.  
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8.1 Thesis study rationale  

 

The success of islet transplantation as a curative therapy for T1D relies on the development of 

novel strategies to preserve islet cell mass post transplantation. Targeting both the auto- and 

allo- immune responses concurrently may prolong the survival and function of allogeneic islets 

long-term. However the currently available immunosuppressive regimes are associated with 

severe side-effects. Moreover they cannot inhibit the reoccurrence of autoimmunity or chronic 

rejection. As reviewed in this chapter, maturation arrested DC have potential to promote 

tolerogenic responses. The use of „tolerogenic vaccines‟ in human clinical trials enforces the 

translational potential of developing DC based therapies for islet transplantation. Currently 

these clinical trials are focused on using autologous monocyte-derived DC. In order for 

„tolerogenic vaccines‟ to be used in allotransplantation, to target the direct pathway of 

allorecognition, it requires the use of allogeneic tolerogenic DC derived from the donor, which 

adds to the complexity of DC based therapies in transplantation. Nevertheless, they hold great 

potential in promoting allograft acceptance. To overcome this problem and in particular in the 

setting of deceased organ donor, the development of a novel propagation strategy is also 

required. Like many therapeutic regimes, a combination of therapeutic strategies may be 

required to promote long-term graft acceptance. The genetic modification of the graft with 

inhibitory molecules is novel approach to confer direct protection to the graft from allo- and 

auto- reactive T-cells.  

.  
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9 Thesis aims and hypothesis 

 

The work presented in this thesis aimed to investigate novel therapies that may promote 

allograft tolerance without the use of immunosuppressive agents in the context of islet 

transplantation. In order to do this the following aims and hypothesis were investigated: 

 
 
Aim 1 - To investigate the immunomodulatory effects of IFN-γ on the development and function 

of human monocyte-derived DC using ‘standard’ propagation techniques (Chapter 3) 

Hypothesis:  

IFN-γ mediates its regulatory effect by inhibiting allogeneic T-cell activation through the 

modification of dendritic cell function 

 

Aim 2 - To examine the propagation of tolerogenic DC in a short-time frame using a ‘Fast-DC’ 

approach to make tolerogenic DC therapy more clinically applicable to islet transplantation. 

(Chaper4) 

Hypothesis:  

The combination of IFN-γ and a FAST-DC protocol would generate DC with 

tolerogenic function in 48h 

 

Aim 3- To induce the transgenic expression of inhibitory molecule PD-L2 by human islets and 

examine the potential benefits of signalling through the PD-1 receptor (Chapter 5). 

 
Hypothesis:  
 

The induced expression of human PD-L2 by human islets may promote signalling through 

inhibitory PD-1 pathway causing the inhibition of T-cell activation 
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2.1 CELL ISOLATION PROTCOLS 

2.1.1 Peripheral blood mononuclear cell isolation 

 

Peripheral blood mononuclear cells (PBMNC) were isolated from healthy human blood donors 

(Australian Red Cross Blood Service, Adelaide, South Australia). Ten millilitres (mL) of buffy 

coat was diluted with 25mL of PBS. Diluted blood was under laid with 12mL of Ficoll Paque. 

Samples were spun at 600g (No brake) for 20min at RT. Monolayer was harvested and washed 

with PBS at 300g for 10min at 4°C, this was repeated 3 times.  

 

2.1.2 Nylon Wool T cells 

 

Approximately 10g of teased nylon wool was packed into sterile 10ml syringes after removing 

the plunger. All nylon wool columns (NWC) were autoclaved for sterility and allowed to dry. 

Prior to purification NWC was equilibrated with 7ml of RPMI at 37°C for 20min.  PBMNC were 

panned as described in 2.2.1, however the non-adherent fraction was collected. Approximately 

108 non-adherent cells in s10g (10% FCS in RPMI containing 1% glutamine – see section 15) 

placed into RPMI equilibrated NWC. Columns were incubated in an up-right position at 37°C / 

5% CO2 for 30min. Nylon wool T-cells were then eluded with 12.5ml s10g.  

 

2.1.3 CD4+ T-cells 

 

CD4+ T-cells were purified using a magnetic bead depletion kit by stem cell technologies 

(catalogue 19052) according to the manufacturer‟s instructions.  In brief PBMNC were isolated 

as described as in 2.1.1. Cells were resuspended in recommended suspension media (PBS 

with 2% FCS) at a concentration of 5x107/ml and max of 2ml was transferred to sterile 

polystyrene FACS tube. Recommended volume (50ul/ml) of human CD4+ T-cell enrichment 
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cocktail was added to tube and incubated at RT for 10min. Then 100ul/ml of provided magnetic 

beads (EasySep magnetic particle D) was mixed into cells and allowed to incubate for 5min at 

RT. Mixture of cells and magnetic beads were resuspended and transferred to the EasySep 

magnet (catalogue# 18000) and incubated for 5min. Enriched CD4+ T cells were decanted into 

clean tube and counted. 

 

2.1.4 CD3+ T cells 

 

Post primary MLR T-cells were separated from DC using the magnetic bead depletion kit by 

stem cell technologies (catalogue# 18051) according to the manufacturer‟s instructions.  In 

brief cells were harvested from 96well plates and pooled into a 25ml tube. Cells were 

centrifuged for 5min at 600g and resuspended in recommended media (PBS with 2% FCS) at 

108/ml. A maximum of 2.5ml was transferred into sterile polystyrene FACS tubes and incubated 

with 100ul/ml of EasySep positive selection cocktail for 15min at RT. Then 100ul/ml of 

magnetic nanoparticles was added thoroughly mixed and incubated for 10min at RT. 

Suspension was topped-up to 2.5ml and transferred to the EasySep magnet for 5min. Non 

CD3+ cells were discarded in one swift motion with tube being inverted for 2-3 seconds. Tube 

was removed from magnet and CD3+ cells were resuspended with 2.5ml of recommended 

media. To increase purity cell suspension was returned to the magnet for a further 5 minutes. 

Once again non CD3+ cells were discarded. CD3+ cells were resuspended in s10g media and 

counted.  

 

2.1.5 Positive CD25 selection  

 

CD25+ T-cells were isolated using Easysep positive selection kit according to manufacturer‟s 

instructions. In brief, cells were resuspended in EasySep buffer (PBS with 2% FCS) and 
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incubated with CD25+ cocktail for 15min at RT (5ul/100ul). Then magnetic beads were added 

and incubated at RT for 10min (5ul/100ul of cell suspension). Suspension was then topped up 

to 2.5ml and tube was then placed into magnet for 5 min at RT. Non CD25+ were decanted 

and fresh 2.5ml of Easysep buffer was added to the tube. This was repeated 2 times to enrich 

CD25+ cells or 1 time if depleting CD25+ T cells. 

 

2.2 IN VITRO DC GENERATION  

 

2.2.1 Standard- 7 day generation protocol of human monocyte-derived dendritic 
cells  

 

PBMNC were prepared as per 2.1.1. and resuspended in RPMI supplemented with 1% FCS at 

a concentration of 5x106 per ml. Approximately 5x107 PBMNC were transferred into 75-cm2 and 

incubated for 1h at 37°C under 5% CO2. Non adherent cells were thoroughly washed away 

with PBS. Adherent monocytes were cultured in RPMI  1640 containing 10% FCS, 800U/ml 

(1.2x107 U/mg)  of  granulocyte colony stimulating factor (GMCSF)-LeucomaxTM and 400U/ml 

(1x107 U/mg)  of IL-4, monocytes were allowed to differentiate into immature DC for 5 days at 

37°C under 5% CO2. Immature DC were matured with 10ng/ml of TNF-α for 2 days 

 

2.2.2 Fast – 2 day generation protocol of human monocyte-derived dendritic cells  

 

PBMNC were prepared as per 2.1.1. and resuspended in RPMI supplemented with 1% FCS at 

a concentration of 5x106 per ml. Approximately 5x107 PBMNC were transferred into 75-cm2 and 

incubated for 1h at 37°C under 5% CO2. Non adherent cells were thoroughly washed away 

with PBS. Adherent monocytes were cultured in RPMI 1640 containing 10% FCS, and a higher 

concentration of GMCSF-LeucomaxTM (1000U/ml) and IL-4 (500U/ml). Monocytes were 
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allowed to differentiate into immature DC for 24h at 37°C under 5% CO2. Immature DC were 

matured with 10ng/ml of TNF-α and 1µM PGE2 for 24h.  

 

2.3 Fluorescence Activated Cell Sorting (FACS) 

  

2.3.1 Surface staining Conjugated mAb 

 

Cells were thoroughly washed with PBS. FACS wash was used to resuspend cells at 

approximately 2x106/ml. Rabbit serum (10%) was used as a blocking agent for 20min at 4°C. 

Then 100µl of cell suspension and recommended amount of mAb was aliquoted into FACS 

tubes and incubated at 4°C for 30min. Samples were equilibrated to room temperature for 5 

min. One ml of FACS lysing solution was then added to fix cells. Samples are then washed with 

FACS wash and spun at 300g for 5 min. Cells were resuspended with 200µl of FACS wash. 

 

2.3.2 Primary mAb staining with secondary antibody detection 

 

 Cells were thoroughly washed with PBS. FACS wash was used to resuspend cells at 

approximately 2x106/ml. Rabbit serum (10%) was used as a blocking agent for 20min at 4°C. 

Then 100µl of cell suspension, mAb was added into FACS tubes and incubated at 4°C for 

30min. Cells were then washed with FACS wash and spun at 300g for 5min at 4°C, 

supernatant was decanted and cells resuspended. Appropriate amount of conjugated 

secondary antibody (50ul of 1:50) was added and incubated for 25min at 4°C. Samples were 

equilibrated to room temperature for 5 min. One ml of FACS lysing solution was then added to 

fix cells. Samples are then washed with FACS wash and spun at 300g for 5 min. Cells were 

resuspended with 200µl of FACS wash. 
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2.3.3 Intracellular staining of Foxp3  

 

T cells were stained for intracellular expression of Foxp3, using Foxp3 staining kit as per 

manufacturer‟s instruction.  Briefly, cells were permeabilised and fixed before blocking with 

normal rat serum. Cells were then incubated with anti-human Foxp3 PE-conjugated mAb 

(PCH101) for 30min at 4°C.  Expression of Foxp3 was assessed by flow cytometry (FACS 

CANTO). 

 

2.3.4 Intracellular staining of phosphorylated STAT-6 

 

Approximately 5x105 cells were incubated with IL-4 (500U/ml) and GMCSF (1000U/ml) plus or 

minus IFN-γ (500U/ml) in 0.5ml RPMI for 10 minutes in FACS tubes at 37°C. BD cytofix was 

pre-warmed at 37°C and then 0.5ml was added to treated tubes. Tubes were then incubated 

for a further 10min in 37°C water-bath. Cells were surfaced stained with CD14-PE for 25min at 

4°C. Then 1ml of BD permeabilisation buffer was added and tubes were incubated for 30min 

on ice.  Cells were washed with FACS wash and spun for 5min at 300g 4°C. Cells were stained 

with 5ul of anti-STAT-6 antibody for 30min at RT in the dark. Cells were finally washed with 

FACS wash and spun for 5min at 300g 4°C and resuspended in 200ul of saline.  

 

 

2.3.5 PI Staining 

 

Islet cells were stained with propidium iodide (20µg/ml) in 100µl for 15min on ice and then 

immediately analysed on FACS CANTO II (BD Bioscience, USA).  

 

 



 64 

2.3.6 Cytometric Bead Array (CBA) 

 

 A human TH1/TH2 BD bioscience CBA cytokine kit was used to determine the concentration 

of IFN-γ, IL-2, IL-10 and IL-4 in supernatants from DC-T cell co-cultures. DC were co-cultured 

with T-cells and 50ul of supernatant from each sample was assayed according to 

manufacture‟s instructions  

2.4 MIXED LYMPHOCYTE REACTION (MLR) 

 

2.4.1. Primary MLR 

 

DC were washed with PBS three times, irradiated (30Gy) and used as stimulators in the MLR. 

DC were co-cultured with T-cell responders in 96-well round bottom plates, at stimulator to 

responder ratios of 1:10, 1:100 and 1:1000. After 4 days cells were pulsed with 1µCi [3H]-

Thymidine for 18 h and then harvested onto glass-fibre filters and counted in β-scintillation fluid 

using a Wallac Microbeta Counter. Proliferation was expressed as counts per minute (mean of 

5 replicates, +/- SD).  

 

2.4.2 Suppression assay by [3H]-Thymidine 

 

CD4+ Naïve T-cells and DC were co-cultured at a ratio of 10:1 for 5 days. Then CD3+ primed T-

cells were isolated (Stem Cell Technologies, Vancouver, Canada) and co-cultured with 

autologous un-primed CD4+ T-cells at varying ratios and UT-DC were used as stimulators. 

After 4 days cells were pulsed with 1µCi [3H]-Thymidine (Amersham, Biosciences LTD, Bucks, 

UK) for 18 h and  harvested onto glass-fibre filters and counted on a Wallac Microbeta Counter 

(Turku, Finland). Proliferation was expressed as counts per minute (mean of 5 replicates, +/-

SD).  
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2.5 Immunohistology  

 

Slides were fixed with cold acetone for 5 min and air dried. Slides were washed with PBS for 

5min at RT. Primary antibody, was applied after blocking with 3% goat serum (30min at RT) for 

2h at RT or O/N at 4°C. Slides were washed with PBS for 5min at RT. Optimal concentration of 

conjugated secondary antibody was applied and incubated at RT for 1h. Blocking serum used 

was adjusted according to the animal for which the secondary antibody was raised in. All 

antibody dilutions were prepared in blocking solution.   

 

2.6 ELISA 

 2.6.1 IL-12 ELISA  

 

DC were in 24 well plates (1x106 cells/ml) were stimulated with CD40L (500ng/ml) and IFN-γ 

(1000U/ml) for 48h as previously published methods [205]. Supernatants were harvested and 

assayed for the biologically active human IL12p70, using Ready-SET-go® ELISA Kit according 

to manufacturer‟s instructions, sensitivity 4pg/ml-500pg/ml (eBiosciences, San Diego, CA, 

USA). 

2.6.2 IL-2 ELISA 

 

Transduced human islets (10 IEQ) were co-cultured with hPD-1/mCD28 chimera T-cell murine 

hybridoma (2x104) per well in a 96 well plate at an approximate 1:1 islet cell to T-cell ratio. 

Supernatants were harvested after 3 days of culture in 37°C / CO2.  Samples were stored at -

80°C prior to analysis. Mouse IL-2 ELISA Ready set go kit was used according to 

manufacturer‟s instructions. The ability of transduced islets to induce signalling though PD-1 

was measured as depicted in Appendix D.  

. 
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2.7 CELL LINES 

2.7.1 HEK 293 

 

Human embryonic kidney 293 cells were obtained from Cell Biolabs (Catalogue# AD-100). 

Thawed and expanded in DMEM complete media. Cells were allowed to a maximum of 70-80% 

confluence. To split cells, adherent cells were washed with PBS and 1ml/75cm2 of pre-warmed 

Accutase (Sigma, St Louis, USA) was applied. Cells were incubated at 37°C for 2-3min. Light 

tapping of the sides of the flask results in HEK-293 detachment. Cells were centrifuged for 10 

min at 400g. Cell aggregates were dispersed using a 18G blunt needle and a 30ml syringe. 

Cells were resuspended and seeded into 75cm2 flasks at concentration of 2x105/ml.  

 

2.7.2 PD-1/CD28 murine T-cell hybridoma 

 

Murine T-cell hybridoma cell line expressing human PD-1 extracellular portion fused to murine 

origin intracellular portion of CD28 (DO.11.10) was obtained from Dr. Simon Davis from the 

Weatherall Institute of Molecular Medicine part of The University of Oxford.  Cells were thawed 

and expanded in JMEM media. In general DO11.00 cells were cultured at concentration of 104- 

105/ml. These cells grow in suspension, when of 60 - 80% confluent cells were split 1 into 3 

flasks, i.e. 3ml of cell suspension into 6ml of fresh media per 75cm2 flask.  

 

2.8 MOLECULAR BIOLOGY METHODS 

2.8.1 RNA extraction 

 

Total RNA was extracted using RNAspin mini kit (GE Healthcare, UK) according to 

manufacturer‟s instructions. In brief cells were washed with PBS to remove traces of FCS.  A 

maximum of 5x106 cells were transferred to a 1.5ml eppendorf and micro-centrifuged at 

13,000rpm for 5min. Cells were resuspended in 350ul of lysis buffer and 3.5ul of β-
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mercaptoenthanol and vortexed until suspension was homogenous. Samples were stored at -

80°C until multiple samples were accrued. When sufficient samples were collected, samples 

were allowed to equilibrate to RT, as the rest of the protocol is performed at RT. Samples were 

then placed through a RNAspin mini filter and micro-centrifuged at 11,000g for 1min.  The 

filtrate was transferred to a 1.5ml eppendorf and mixed with 350ul of 70% ethanol after careful 

vortexing (2x 5sec), sample was placed into a RNAspin mini column and spun at 8000g for 

30sec. Filter with bound RNA was transferred to a new collection tube and 350ul of desalting 

buffer was added and centrifuged at 11000g for 1 min. To digest any present DNA, 100ul of 

DNase1 was added directly to the filter membrane and allowed to digest for 15min. Filter was 

then washed with 200ul of wash buffer 1 and spun at 11000g for 1min. Then filter was washed 

with 600ul of wash buffer II and centrifuged. Finally filter is washed with 250ul of wash buffer II 

and spun at 11000g for 2min. RNA was eluded with 25-100ul of RNase-free water after 

spinning at 11000g for 1min. This step was repeated to improve yield. RNA quantity and quality 

was determined by NanoDrop 1000 absorbance at 260nm.  

 

2.8.2 Reverse Transcription using Oligo dT 

 

RNA samples of good quality were chosen for cDNA synthesis. In order to do this 1ug of total 

RNA was mixed with 4ul of Oligo dT and headed for 5 minutes at 60°C.  Samples were 

transferred to ice and cooled. Then 14ul of master mix (as per table 2.1) was added. Finally 

nuclease free H20 was added giving a final volume of 40ul per tube. 
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Table 2.1: Reverse Transcription Master mix 

Reagent Volume per reaction (µl) 

5x First Strand Buffer 8 

40nM dNTP 4 

RNAsin 1 

MMLV reverse transcriptase 1 

TOTAL 14 

 

Samples were mixed well by vortex. Pulsed samples were incubated for 60min at 37°C. 

Sample inactivation was performed at 70°C for 10min and then transferred directly to ice. 

Samples were pulsed to collect precipitate, then 60ul of nuclease free water was mixed into 

each samples. All samples were stored at -80°C. 

 

2.8.3 Reverse Transcription using Random Hexamers  

 

Reverse transcription using random hexamers was used to reverse transcribe, RNA extracted 

from mouse transplant tissue, according to the following table: 

Table 2.2: Reverse Transcription Master mix using random hexamers 

Reagent Volume per reaction (µl) 

10x Buffer 2 

 dNTP (5mM each) 2 

Random hexamers (10µM) 0.9 

RNase inhibitor 1 

Omniscript Reverse Transcriptase 1 

RNA 1µg 2* 

Nuclease free water 11.1** 

TOTAL 20 

* varies according to RNA concentration 

 ** Varies according to volume of RNA added. 

Samples were prepared in 0.2ml PCR tubes and incubated at 37°C for 1h. Samples were then 

transferred to ice and pulsed, prior to adding 80µl of nuclease water. Throughly mix samples 

were then stored at -20°C. 
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2.8.4 Western Blot 

 

Samples were harvested and washed well with PBS to remove FCS residue. Samples were 

then lysed with western blot lysis buffer (refer to section 2.15). Vortex was used to homogenize 

sample. Samples were stored at -80°C prior to analysis.   Samples were thawed at RT and 

then mixed with 5µl of loading buffer and 2µl of reducing agent and run through invitrogen pre-

cast gels as per manufacturer‟s instructions at 200mV for 45min. Chemiluminescence kit was 

used to visualise blot, in brief membrane was incubated with 1:1000 anti-mouse HRP for 1h at 

RT and then visualised with kit as per manufacturer‟s instructions.  

 

2.9 POLYMERASE CHAIN REACTION  

2.9.1 Standard PCR 

PCR master mixes were prepared as per table 2.2 in a strictly DNA free area of laboratory.  

Master mix (22.5μl) was aliquoted per reaction into DNA free 0.5ml PCR tubes. In order to 

prevent liquid evaporation 1 drop of sterile mineral oil was carefully placed on top of master 

mix.  2.5μl of cDNA as per prepared in section 2.8.2 was mixed into master mix.  Tubes were 

vortex mixed and then pulsed. Standard PCR were run in Perkin Elmer DNA Thermal Cycler.  

2.9.2 Quantitative Real-time PCR using standard primers 

RNA was extracted as per section 2.8.1 and cDNA was produced by reverse transcription PCR 

(section 2.8.2). Quantitative Real-Time PCR based on a standard curve of copy numbers for 

each specific gene. PCR was conducted according to optimised conditions as shown in 

APPENDIX A. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the house-

keeping gene in order to verify RNA integrity and cDNA synthesis.   
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Table 2.3. Standard PCR Master mix 

Reagent Volume per Reaction  
(ul) 

Sterile Water 15.9* 

10x Tth Buffer 2.5 

25mM MgCl2  2.5* 

dNTP (0.2 mM) 0.5 

Forward Primer (50uM) 0.5* 

Reverse Primer (50uM) 0.5* 

Tth Polymerase 0.1 

cDNA 2.5 

TOTAL VOLUME  25 
 

 

 

Table 2.4 Real-time PCR Master mix 

Reagent Volume per Reaction  
(ul) 

Sterile Water 15.7* 

10x Tth Buffer 2.5 

25mM MgCl2  2.5* 

dNTP (0.2 mM) 0.5 

Forward Primer (50uM) 0.5* 

Reverse Primer (50uM) 0.5* 

Tth Polymerase 0.1 

cDNA 2.5 

Syber green 0.8 

TOTAL VOLUME  25 
 

* Can very depending on gene being examined.  
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2.9.3 Quantitative Real-time PCR using TAQMAN primers 

 

Taqman primers were used according to the manufacturer‟s instructions. Briefly, PCR reaction 

was prepared according to the following table: 

   Table:2.5 Taqman PCR reaction  

Reagent Volume 
per Reaction (µl) 

Taqman master mix 5 

Taqman primer 0.5 

Water 3.7 

cDNA 0.8 

TOTAL 10 
 

Samples were run on Corbbett Real-time machine according to manufacturer‟s recommended 

cycling conditions. Gene expression was determined according to a standard curve.   

 

2.10 AGAROSE GEL ELECTROPHORESIS 

2.10.1 PCR product Electrophoresis 

 

 2.5µl of PCR product was mixed with 6x Loading buffer to make a total of 15µl sample. 

Samples were loaded into a 2% agarose gel and run for approximately 1h at 80mV, using a 

Bio-Rad Mini-gel Apparatus. 

2.10.2 Restriction digest product electrophoresis 

 

Approximately 10µl of restriction digest products was mixed with 2ul of 6x loading buffer. 

Samples were run on a 1% w/v agarose gel. 
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2.10.3 Adenoviral digests product electrophoresis 

 

 All adenoviral digest products were run in a 0.8% w/v agarose gel. 

 

2.10.4 DNA markers 

 

SPP1/EcoRI and pUC19 were used as appropriate size markers according to product size that 

was expected in the gel. In general 2.5µl of markers were mixed with 10µl water (DNA free) 

and 2.5µl of 6x loading buffer.  

 

2.11 GENERATION OF ADENOVIRAL CONSTRUCT  

 

2.11.1 Bioinformatics and Primer Design 

 

Primers were designed to incorporate an EcoR1 restriction site in the forward primer. Both full 

length and soluble isoforms of PD-L2 were amplified with the same forward primers but used 

different reverse primers. Both reverse primers had a BamHI restriction site incorporated into 

them. The soluble isoform was designed to amplify a truncated transcription product with the 

transmembrane region interrupted.   Designing of primers were designed with the aid of 

bioinformatics software tools from „The National Center for Biotechnology Information‟ website.   

 

 

 

 

 

 



 73 

2.11.2 Endonuclease restriction enzyme digestion  

 

Enzyme digestion reactions were conducted in 20µl volumes as demonstrated in the table 

below for 18 hours at 37°C.  

Table 2.6: Single Digest Reaction 

Reagent Volume (µl) 

10x Buffer 2 

10xBSA 2 

Enzyme 1 (10 Units) 

H20 5* 

DNA  10 (1µg)* 

Total 20 
 

 

Table 2.7: Double Digest Reaction 

Reagent Volume (µl) 

10x Buffer 2 

10xBSA 2 

Enzyme 1 1 (10 Units) 

Enzyme 2 1 (10 Units 

H20 4* 

DNA  10 (1µg)* 

Total 20* 
*=Volume will vary according to DNA concentration 

 

 

 

 

 

 

 

 

 

 



 74 

2.11.3 Agarose gel product restriction digest purification 

 

 Digested produced were run on 1% w/v Agarose gel. Digests were divided into equal amounts 

and run in separate well. The exterior wells flanking were removed and stained with gel red. 

These gel regions were visualised under UV light to identify band and marked by cutting gel 

piece out of where the band is situated. Unstained gel portion was covered with cling wrap and 

stained portions were re-aligned in the original position over the cling wrap. Using the mark 

from the stained gel and a new blade gel was cut to excise the ban from unstained gel. DNA 

was then purified according to section 2.11.4.  

 

2.11.4 Purification of DNA from gels 

 

DNA from gels was purified using the UltracleanTM DNA purification Kit as per manufacturer‟s 

instructions.  

 

2.11.5 DNA ligation 

 

In order to conduct ligation reactions a mix as described in table below was prepared and 

incubated at RT for 2h or at 4°C for 18h. 

 Table 2.8:  DNA Ligation Reaction 

Reagent Volume (µl) 

10x Buffer 1 

T4 Ligase Enzyme 1  

H20 3* 

DNA insert 5* 

Total 10 

*=Volume will vary according to DNA concentration 
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2.11.6 Preparation of Competent E.coli TG1-alpha and DH10β cells 

 

Competent E.coli were prepared as per standard laboratory protocol. In brief bacterial were 

taken from glycerol stocks and streaked on to LB agar plates. E.coli were grown for 18h at 

37°C. Single colonies were selected and inoculated into LB media and were grown under 

shaking conditions at 37°C (200rpm) overnight. Overnight cultures were then transferred (1ml) 

into 25ml LB media. Then allowed to grow until they reached an OD600nm of 0.42 (log phase of 

growth) under 37°C shaking at 200rpm. E.coli were transferred onto ice for 15min and then 

centrifuged for 280g for 10min at 4°C. Supernatants were discarded and cells were 

resuspended with 2ml of 0.1M CaCl2 / 20mM MgCl2 solution. E.coli were then incubated on ice 

for no less then 1h before use. All competent E.coli were used within 18h post competence was 

induced.  

2.11.7 Transformation of competent E.coli cells 

 

Competent E.coli (200ul) were transformed with 5ul of ligation reaction (as per prepared in 

section 2.11.5). Cells and ligation mix were incubated on ice for 30min and then were heat 

shocked for 90s at 42°C and snap cooled on ice for 10min. This mix was then transferred to V-

bottom 20ml tubes, which contained 0.5ml LB media and incubated for 1h at 200rpm 37°C. 

Volume of cell suspension was reduced to 200-300ul and spread on LB agar supplemented 

with the appropriate antibiotics. Agar plates were incubated at 37°C for 18h.  

 

2.11.8 Plasmid Mini-preparation 

 

Positive single colonies were selected from plates generated in section 2.11.7.  These colonies 

were placed into 2ml LB media supplemented with the appropriate antibiotics and incubated at 

37°C under shaking conditions (200rpm) for 18h.  Approximately 1.5ml of cell suspension was 

transferred into 2ml eppendorf and microcentrifuge at 11,600g for 1min. Pellet was 
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resuspended in 100ul of mini-prep solution-1 for 5min. Then 200ul of solution-2 was added and 

cells transferred for 5 min onto ice (causing cell lysis). Lysis was neutralized with 150ul of 

solution-3 and this was allowed to incubate for another 5 min on ice. Cells were centrifuged for 

10min at 11,600g, supernatant was transferred into a new 2ml eppendorf tube. DNA phenol 

(225ul) and chloroform (225ul) were added to cell lysate and mixed thoroughly. Mixture was 

centrifuged for 10min (11,600g), then approximately 300-400ul of the upper phase layer was 

transferred into new tubes and mixed with 2 x volumes of 100% ethanol (600-800ul) to 

precipitate DNA plasmids. Precipitates were centrifuged for 10min (11,600g). DNA pellets were 

washed with 250ul of 70% ethanol and centrifuged for 10min (11,600g) an then air-dried. DNA 

was resuspended in 45ul of TE8 (TRIS-HCL EDTA Ph 8 refer to section 15) and 5ul of DNase 

inactivated RNase A (200ug/ml) and stored at -80°C.  

  

2.11.9 Plasmid midi preparation 

 

Single colonies were selected and transferred to 2mlof LB media containing corresponding 

antibiotics. Bacterial colony was grown at 37°C in a shaking incubator (200rpm) for 18h. This 

2ml bacterial culture was transferred to 100ml of LB media (containing the same antibiotic) and 

incubated for a further 18h at 200rpm 37°C. Jetstar 2.0 plasmid midi kit was used to isolate 

plasmid according to the manufacturers‟ instructions. Approximately 1ml of the plasmid elution 

was transferred into eppendorf tubes. Then 700µl cold isopropanol was mixed in to precipitate 

plasmid. Precipitate was centrifuged at 4°C, 11600g for 30min. Plasmid pellet was washed with 

1.5ml of 70% ethanol and centrifuged at 4°C, 11600g for 20min, this was repeated twice with 

drying of pellet between each wash. Pellet was resuspended in 30µl of sterile water. Plasmid 

concentration was determined by absorbance at 260nm on the Nanodrop 1000 (Thermo 

Scientific, USA). 
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2.11.10 DNA sequencing 

 

Dideoxy based DNA sequencing with chain-terminating inhibitors was  used for sequencing 

recombinant pShuttle vectors. Sequencing was performed by the Flinders Sequencing Facility, 

which is part of the Department of Haematology at the Flinders Medical Centre.   

 

2.11.11 LipofectAMINE Transfection into HEK 293 

 
HEK293 cells (2x106) were seeded into a 25cm2 flask 18-20h prior to transfection, allowing 

cells to get 50-70% confluent. Approximately 16-18h prior to transfection recombinant plasmid 

was digested with PacI (5U/1µg of Plasmid) in a 20µl reaction.  Approximately 4-5µg of 

digested plasmid was used to transfect HEK-293.  Digested plasmid was mixed with equal 

volume of LipofectAMINE 2000, this was then mixed with 500ul of DMEM media and incubated 

for 30min at RT. Cells were washed with serum free DMEM to remove residual FCS.  

Approximately 2.5ml of serum free DMEM was added to flask and then 0.5ml of 

DNA/LipofectAMINE was added drop wise to flask. Cells were transfected for 4h at 37°C at 

5%CO2. Transfection media was replaced with 7ml of complete DMEM media (see section 

2.15). Transfected cells were incubated (at 37°C at 5%CO2) for 10-12 days.  

 

2.11.12 Adenoviral HEK-293 viral lysate production 

 
Infected HEK-293 were used to produce viral lysates. All cells were scraped and spun at 600g 

for 10min. Pellet was then resuspended in 3ml of DMEM (serum free). Cell suspension was 

frozen using liquid nitrogen and then thawed in 37°C water bath until just thawed. Lysate was 

vigorously vortexed for 30-60sec. The lysate underwent freeze/thaw/vortex cycle for 3-4 times 

prior to spinning at 600g for 10min to remove cell debris.   Viral lysates were stored at -80°C in 

10% glycerol if not used immediately.  
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2.11.13 Viral particle up-scale 

 
HEK-293 cells were used for virus production. Virus was amplified via multiple rounds of HEK-

293 as described below:  

Round 1: 

HEK-293 cells at a confluence of 80-90% in a 25cm2 was infected with 1/3 of viral lysate from 

cells prepared in section 2.11.12. In brief cells were washed to remove FCS residue. Lysate 

was carefully run down side of flask to avoid detaching cells. Then carefully the lysate was 

evenly spread to cover all cells and incubated for 4h at 37°C at 5%CO2. Cells were then 

supplemented with 5ml of complete DMEM. When 50-70% of cells from round 1 have rounded 

and detached, cells were collected into 50ml tube. Viral lysate was then prepared as described 

in section 11.12. This round was repeated 3 times prior to moving on to round 2, with repeat 

the number of flasks were doubled. 

 

Round 2: 

HEK-293 of early passage (less then10) was used to prepare 6 x 75cm2 of approximately 80-

90% confluency. Viral lysate prepared from round 1 was used to infect these cells. 

Approximately 3-4ml was used per flask. Cells were infected for 4h at 37°C at 5%CO2 and then 

supplemented with 7-8ml of complete DMEM media. Cells were cultured until 50% of cells had 

rounded and detached. Cells were harvested and viral lysates were prepared as per section 

11.12.  

 

Round 3 (final): 

HEK-293 cells of low passage were used to prepare 5x 175cm2 of 80% confluency. Viral titres 

were determined by flow cytometry (see section 11.13) and an MOI of 10 was used to infect 

HEK-293.  Cells were infected for 4h at 37°C at 5% CO2. After this incubation cells were 
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supplemented with complete DMEM media.  Cells were incubated until 50% of cells had 

rounded and detached. Lysate was prepared as per in section 11.12. 

 

2.11.14 Viva pure virus purification and concentration 

 
Lysate was collected from 5 T175 infected HEK-293 cells. Lysate was filtered through 5 µm, 

1.2 µm and 0.8/0.2 µm filters prior to proceeding. Virus was purified with Cell biolabs Vivapure 

kit as per manufacturer‟s instructions. In brief, filtered lysate was treated with 12.5U/ml of 

benzonase nuclease and incubated for 30min at 37°C.  Treated lysate was then loaded into the 

vivaclear maxi column and spun for 5min at 500g. Appropriately calculated volume of 10x 

loading buffer was added to lysate. The adenopack 20 maxi-spin column was equilibrated with 

5ml of 1x wash buffer. Lysate was then transferred to equilibrated column and spun for 5min at 

500g to allow virus binding to membrane. Column was then washed twice with 18ml of wash 

buffer (spun in between at 500g for 5min). Column was then transferred to a clean column 

holder provided by kit. Then 1ml of elution buffer was applied to the membrane of the column. 

Column was briefly centrifuged for 30sec at 500g, and then incubated for 10min, prior to 

complete elution with a 5min spin at 500g. Buffer exchange and concentration was performed 

using a concentrator column also provided in kit.  Virus was loaded into buffer and 

concentration column chamber and topped up to 10ml with virus storage buffer (25mM Tris, 

25mM NaCl, 2.5% glycerol, pH8). Centrifuged for 30min at 800g, concentrated virus was 

collected from the top chamber.  
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2.11.15 Adenoviral titre determination by flow cytometry 

 

 Serial dilutions of virus was prepared in 0.5ml and 80-90% confluent HEK-293 in 25cm2 flask 

were infected for 4h at 37°C at 5%CO2. Cells were then supplemented with complete DMEM 

and incubated for 24h. Cells were then harvested and approximately 106 cells were transferred 

into FACS tubes and fixed with 1ml FACS lysing solution. Samples were analysed on FACS 

CANTO.  Viral titre was calculated according to previously published formula [206]:  

 

TITRE (GFU/ML) = %INF x TOTAL CELL x DIL 

    100 x VOL 

 

%INF = Percentage of positive cells 

TOTAL CELL = The initial number of cells infected 

DIL= dilution factor 

VOL= Initial infection volume (during the 4h incubation) 

 

2.11.16 Viral titre determination by ELISA 

 

Once the virus had been purified and concentrated the viral titer was determined by ELISA 

using the QuickTiterTM  Adenovirus Titer ELISA Kit. ELISA was conducted according to the 

manufacturer‟s instructions. In brief, HEK-293 cells at a concentration of 5x105/ml was seeded 

into 96 well plate provided (100µl/well). Cells were allowed to attach for 1h at 37°C. Serial 

dilution of positive control, which formed the standard curve and dilutions of purified virus were 

prepared as per instructions. Drop wise dilutions were placed into appropriate cells (50µl/well). 

Each dilution was performed in duplicate.  Cells were incubated for 2 days at 37°C 5%CO2. 

Then media was carefully removed without disturbing attached cells. The cells were fixed with 

100µl of cold methanol and incubated at -20°C for 20min. Cells were washed with PBS 3 times 
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for 5min.  BSA (1%) in PBS (200µl/well) was used to block for 1h at RT on a orbital shaker. 

Then 100µl of provided anti-hexon antibody was added and incubated at RT on orbital shaker 

for 1h. Plate was washed 3 times with PBS for 5min each time. Provided secondary antibody 

(HRP-conjugated) was used to detect the hexon antibody. One hundred micro litres was placed 

into each well and incubated for 1h at RT on orbital shaker.  Plate was then washed 5 times 

with PBS for 5min each time. TMB solution was then added and incubated for 10min 

(100µl/well), the reaction was then stoped with the provided stop solution (100µl/well). Optical 

density was then measured at 450nm. Viral titre was calculated on the basis of the standard 

curve.  

 

2.12 STATISTICS 

 

 Prism statistical software was used for statistical analysis, where T-test and ANOVA analysis 

were used. With statistical significance considered to P < 0.05. 

 

2.13 ISLET ASSOCIATED CULTURES  

 

2.13.1 Culture conditions 

 
Human islets clusters were maintained in CMRL media supplemented with 10% human serum 

(Albumex 20) and 1% glutamine. Media exchange was performed daily, unless otherwise 

indicated. All use of human islet tissue has been approved by the Royal Adelaide Human 

Ethics Committee and was kindly given research consent by the donor families. All human 

islets were sourced from isolating centres that form the „Australian Islet Consortium‟. Prior to 

shipping, islets underwent clinical grade testing at the isolating centres with ethidium bromide / 

acridine orange staining and FACS analysis to determine islet and beta cell viability 
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respectively.  Prior to experimental use islet quality and viability was determined by dithizone 

staining.  

 
 
 
 
 

2.13.2 Islet dissociation 

 

Islets were washed with PBS to remove serum and centrifuged at 300g for 2 min, supernatant 

was decanted. Accutase (0.5ml) was used to resuspend islets and incubated in water bath at 

37°C in order to disaggregate islet cell clusters for 10min. Cells per agitated every 3-4min. 

Islets were further dissociated with gentle pipetting . Accutase was inactivated with the addition 

of 2ml of complete CMRL media. Cells were centrifuged to remove accutase (300g for 5min). 

Cells were passed through a 50uM mesh filter.  

 
 
 

2.13.3 Viral transduction 

 
Islets were transduced in a minimal volume to just resuspend islets in serum free CMRL. Islets 

were infected for 2-4h at 37°C at 5%CO2. After incubation islets were supplemented with 

complete CMRL media.  
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2.14  NOD-SCID model of islet transplantation 

 

2.14.1 Animal housing 

 

NOD-SCID mice were housed in a pathogen free environment. Mice were purchased from the 

ARC, Perth. Mice were used in accordance and overseen by the animal ethics committee of 

the University of Adelaide and the IMVS approval number: M-2009-124 (The University of 

Adelaide), 91/09 IMVS. 

 
 
 
 

2.14.2 STZ diabetes induction 

 

Diabetes was induced in mice according to previously published data and according to the 

standard operating protocol of the Australian Islet Consortium.  In brief, mice of a minimum of 

20g were injected with 180mg/kg of STZ intra peritoneal. STZ was prepared immediately prior 

to reconstitution with sodium citrate buffer pH 7.8. All mice were injected within 10 minutes of 

reconstitution. Mice were monitored twice daily, with regular re-hydration with 0.5ml S.C or I.P 

saline, as required. Mice with 2 consecutive readings of high BGL were treated with insulin 

pellet or insulin injection of 1U.  

2.14.3 Human islet transplantation   

 

Mice were anaesthetised with ketamine (100mg/kg) and xylazine (6mg/kg) via IP, and kept on 

a heat mat for the entirety of the procedure. Eye ointment was applied to eyes to prevent drying 

out of the retina, while under anaesthesia. Under aseptic conditions and in a pathogen free 

environment, the left side at the cost vertebral angle was wiped and cleaned with sterile swabs. A 

1cm incision on the left side was made to expose the kidney. With a sterile scalpel a small nick 
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was made to the kidney capsule and a glass rod was used to create a pocket for the islets. The 

kidney was covered with wet gauze during islet pellet preparation. Islets were prepared by gently 

spinning at 800 rpm for 1min. Islets were then transferred to a pre-loaded gel-foam  tip and spun 

further at 1000rpm for 2min. Excess media was removed and tip was unplugged prior to insertion 

under the kidney capsule. Using an insulin syringe plunger, islets were gently and carefully pushed 

under the capsule. Islets were spread by gently rubbing with the glass rod. The kidney was 

returned to its natural position and the muscle and skin was sutured using 4.0 catgut suture. Plain 

relief (temegsic) was administered sub-cut for long lasting relief.   

 

 

2.15 BUFFERS AND SOLUTIONS 

 
DMEM complete media 
DMEM (High Glucose) 
10% FCS 
1% Glutamine 
1% Pen/step 
 
CMRL complete  
CMRL Media 
10% Albumex 20 
1% L-Glutamine 
1% Pen/step 
 
 
 
RPMI Complete media (s10g) 
RPMI media 
10% FCS  
1% L-Glutamine 
1%Pen/strep 
 
GelRed TM Nucleic Acid gel Stain (1x) 
5ul of 10,000x stock GelRed  
50ml of 0.1M Sodium Choride 
 
Agarose gel per 100ml 
0.8% = 0.8g 
 
1% = 1g 
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2% = 2g 
 
In a conical flask required amount was weight out and mixed with distilled water to measure 
100ml. Agarose gel was heated in microwave until agarose gel had dissolved.   
 
50x TAE per 100ml 
Trizma base -193.8g [1.6M] 
Sodium acetate – 65.6g [800mM] 
EDTA – 14.9 [40.27mM] 
pH to 7.2 
 
6x loading Buffer per 10ml 
200ul of 50x TAE 
5ml glycerol (50%) 
2.4ml Bromophenel Blue (24%) 
2.4ml Water 
 
TE8 per 100ml 
0.5ml 2M TRIS-HCL pH 8 
0.2ml 0.5M EDTA pH 8 
Make up to 100ml with water 
 
Luria Broth (LB) per 1L 
5g Bacto-Yeast Extract 
10g Bacto-tryptone 
10g Sodium Chloride 
Make up to 1L with water 
 
LB Agar 
15g Bacteriological Agar 
LB to 1L 
 
Autoclave mix prior to use. To melt agar heat in microwave. Then add 1ml of 30mg/ml 
kanamycin stock to bring final concentration of kanamycin to 30ug/ml. Make sure antibiotic is 
added when agar is 55°C or less. 
 
1M CaCl2 solution per 100ml 
14.7g of  CaCl2 
Mix with water and make up to 100ml autoclave the solution prior to use 
1M MgCl2 per 100ml 
20.33g MgCl26H20 
Mix with water and make up to 100ml autoclave the solution prior to use 
 
0.1M CaCl2/ 20mM MgCl2 Transformation Solution per 10ml 
1ml 1M CaCl2 

0.2ml 1M MgCl26H20 
8.8ml water 
 
Mini-preparation solution 1 
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50mM D-Glucose  
25mM Tris-HCL 
10mM EDTA 
pH to 8 
 
Mini-preparation solution 2 
0.2M Sodium Hydroxide 
1% SDS 
 
Mini-preparation solution 3 
3M Potassium acetate  
11.5% Glacial acetic acid 
Adjust pH to 4.8 
 
Mini-preparation storage solution 
200ng /5ml DNase inactivated RNaseA 
5ml TE8  
 
SOC Media per 1L 
5g Bacto-Yeast Extract 
20g Bacto-Tryptone 
2ml 5M NaCl 
2.5ml 1M KCl 
Water make up to 1L 
Adjust pH to 7  
 
Western Blot lysis buffer  
50mM HEPES (Ph 7.4) 
150mM NaCl 
1% Triton-X-100 
1mM Na3VO4 
30mM NaF 
10mM Na4P2O7 

10mM EDTA  
 
10x Tris buffered Saline (TBS) 
24.2g Tris base 
80g NaCl 
pH to 7.6 with HCL 
 
Western blot blocking buffer  
1x TBS 
0.1% Tween-20 
5% w/v nonfat dairy milk 
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2.16 PRODUCT LISTS 

 

2.16.1 Antibodies 

 

Antibody 
Antigen 

Conjugate Clone Source 

CD83 n/a HB15e Serotec LTD, 
Oxford, UK 

CD86 n/a BU63 Serotec LTD, 
Oxford, UK 

CD80 n/a MAB104 Immunotech, 
Mareille, France 

CD40 n/a LOB7/6 Santa Cruz 
Biotechnology, 
Santa Cruz, CA, 
USA 

ILT3 n/a ZM3.8 Dr. Marco 
Colonna, 
Washington State 
University, St 
Louis, USA 

mouse IgG  FITC - Southern Biotech, 
Birmingham, AL, 
USA 

mouse IgG  PE - Southern Biotech, 
Birmingham, AL, 
USA 

CD-14 FITC  MY-4 Beckman Coulter, 
Fullerton, CA, 
USA 

ILT2 PE HP-F1 Beckman Coulter, 
Fullerton, CA, 
USA 

ILT4 n/a 42D1 gift of Dr. Marco 
Colonna, 
Washington State 
University, St 
Louis, USA 

Foxp3  PE PCH101 eBioscience, San 
Diego, USA 

IL-17 FITC Clone: 
eBio64DEC17 

eBioscience, San 
Diego, USA 

CD83  FITC HB15e eBioscience, San 
Diego, USA 

CD86 FITC FUN1 BD Bioscience, 
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San Jose, 
California, USA 

CD80  FITC L307.4 BD Bioscience, 
San Jose, 
California, USA 

DC-SIGN FITC DCN46 BD Bioscience, 
San Jose, 
California, USA 

HLA-DR PE-Cy5 G46-6 BD Bioscience, 
San Jose, 
California, USA 

PD-L2 n/a MIH18 eBiosciences, 
USA 

PD-L1 n/a MIH1 eBiosciences, 
USA 

ILT4 n/a 42D1 Santa Cruz, USA 

rat IgG FITC - Silenus, Australia 

pY641 Alexa488 clone: 18 BD Bioscience, 
California, USA 

CD14 PE M5E2 BD Bioscience, 
California, USA 

CD25 PE-Cy7 M-A251 eBiosciences, 
San Diego, USA 

CD4 Percp5.5 OKT4 eBiosciences, 
San Diego, USA 

CD3 FITC SK1 BD Bioscience, 
California, USA 

RelB  n/a polyclonal Santa Cruz 
Biotechnology, 
USA 

anti-rabbit IgG  FITC - Santa Cruz 
Biotechnology, 
USA 

human F(ab‟)2 PE - Immunex 
France 

CD124 PE hIL4R-M57 BD Bioscience, 
California, USA 

Asialo GM1 n/a polyclonal Wako, Japan 

Insulin n/a polyclonal Millipore, USA 

 

2.16.2 Cytokines 

 

IL-4 (eBiosciences, USA)  

IFN-γ (eBiosciences) 

Prostaglandin E2   (Sigma, USA)  
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TNF-α (R&D Systems, USA) 

CD40L (R&D Systems, Minneapolis, USA) 

(GMCSF)-LeucomaxTM (Sandoz Australia, Australia) 

 

2.16.3 FACS Reagents 

 

FACS lysing solution (BD Bioscience, USA)  

Rabbit serum cytofix buffer (BD Bioscience, USA)  

BD perm-buffer (BD Bioscience, California, USA)  

2.16.4 Molecular Reagents 

 

Agarose – DNA Grade (Progen, Australia) 

Ampicillin (Roche, Germany) 

Custom Oligo-nucleotides (Sigma-Genosys, USA) 

BamH I restriction endonuclease (New England Biolabs, USA) 

EcoR I restriction endonuclease (New England Biolabs, USA) 

Kanamycin (Life Technologies, USA) 

LipofectAMINE 2000TM (Invitrogen, USA) 

MgCl2 25mM Solution (Fisher Biotech, USA) 

Mineral Oil (Sigma-Aldrich, USA) 

MMLV Reverse Transcriptase (Life Technologies, USA) 

Not I Endonuclease (New England Biolabs, USA) 

Oligo dT (Amersham, Australia) 

Pac I restriction endonuclease (New England Biolabs, USA) 

pUC19 (Bresatec, Australia) 

RNase A (Sigma-Aldrich, USA) 
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RNAsin (Promega, USA) 

Random Hexemers (Qiagen, USA) 

Sal I restriction endonuclease (New England Biolabs, USA) 

SPP1/EcoRI (Geneworks, Adelaide, Australia) 

T4 Ligase (Promega, USA) 
 
Tth Polymerase (Fisher Biotech, USA) 
 
Tth PCR buffer (Fisher Biotech, USA) 
 
GelRedTM Nucleic Acid Gel Stain (Biotium, USA) 
 
 

2.16.5 Plasmid vectors  

 
Pshuttle-CMV (Vogelstein, B, The John Hopkins University, Baltimore, USA) 
 
pAdEasy-1 (Vogelstein, B, The John Hopkins University, Baltimore, USA) 
 
pEGFP-N1 Vogelstein, B, The John Hopkins University, Baltimore, USA) 
 
 

2.16.6 Tissue Culture Reagents 

 
Accutase (Sigma-Aldrich, USA) 

RPMI 1640 (Invitrogen, USA)  

DMEM (Invitrogen, USA) 

Albumex 20 (Australian Red Cross, Australia) 

[3H]-Thymidine (Amersham, Biosciences LTD, Bucks, UK)  

CMRL (Invitrogen, USA) 

2.16.7 Kits 

 

CD4+ enrichment kit (Stem Cell Technologies, Canada)  

CD3+ positive selection kit (Stem Cell Technologies, Canada)  

RNAspin mini kit (GE Healthcare, USA)  
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IL12p70 ELISA (eBiosciences, San Diego, USA). 

Human Insulin Elisa (Mercodia, Uppsala, Sweden)  
 
Mouse IL-2 ELISA (eBiosciences, San Diego, USA). 

Cytometric bead array kit, (BD Bioscience, USA) 

UltracleanTM DNA purification Kit (Mo Bio Laboratories, USA) 

Jetstar 2.0 Plasmid midi kit (Genomed, Germany) 

QuickTiterTM Adenovirus Titer Kit (Cell Biolabs, San Diego, CA, USA) 

 

2.16.8 Other Reagents 

 

Dimethyl sulphoxide (DMSO) (Ajax Chemicals, Australia) 

Trypan Blue (BDH, Australia) 

Tween-20 (Bio-Rad, USA) 

Dithizone (Sigma-Aldrich, USA) 

Streptozocin (Sigma-Aldrich, USA) 

Propidium Iodine (Invitrogen, USA) 

2.16.9 Equipment  

 

Cytospin II Shandon (Thermo scientific, USA) 

NanoDrop 1000 (Thermo Scientific, USA) 

Perkin Elmer DNA Thermal Cycler (USA) 

Bio-Rad Minigel Apparatus 

Wallac Microbeta Counter (Turku, Finland)  

FACS CANTO (BD Bioscience, San Jose, California, USA),   
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CHAPTER 3 - IFN-γ generates 
maturation-arrested dendritic cells 
that induce T-cell 
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3.1 INTRODUCTION 

 

Cytokines are small non-structural proteins that regulate the response to infection, 

inflammation, trauma and immune responses [207]. Classically cytokines that are known to 

promote disease severity are called „proinflammatory‟ whereas those that promote healing are 

regarded as „anti-inflammatory. Interferon-gamma (IFN-γ), a type II cytokine, classically 

considered as proinflammatory is the primary focus of this chapter [208]. IFN-γ (also known as 

macrophage –activating factor) plays an important role in macrophage stimulation, which 

induces anti-microbial and anti-tumour mechanisms. Its capacity to upregulate antigen 

processing and presentation pathways as well as supporting leukocytes attraction, growth, 

differentiation and maturation of many cell types, it is well known as a proinflammatory cytokine 

[209, 210].  Initially,  IFN-γ was thought to be exclusively released by CD4+ T-helper cell Type 1 

(TH1) lymphocytes, CD8+ cytotoxic lymphocytes and natural killer cells [211, 212]. However B-

cells and professional APC have also been found to produce IFN-γ. The secretion of IFN-γ by 

APC such as DC, may be important in self-activation and the activation of nearby cells in their 

local environment [213] [214-216].  IFN-γ release by NK cells is important in the early phase of 

infection defence mechanisms. T-cells on the other hand are the primary source of IFN-γ, in the 

adaptive immune response [213, 217].  

 

IFN-γ is well known in the field of allograft transplantation for promoting antigen-specific Th1 

differentiation involved in cell-mediated rejection.  It does this by inhibiting the growth of Th2 T 

cell subsets and by promoting T-cell and APC interactions. Thus it upregulates the presentation 

and stimulatory capacity of APC, which increases CD4+ T-cell differentiation [218]. The 

presence of IFN-γ in the micro environment of naive T-cells during TCR engagement, is 

thought to heavily influence Th1 T-cell differentiation. Subsequently the production of IFN-γ and 
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IL12 further inhibits the secretion of Th2 cytokine IL-4, driving a Th1 response [219-221].  Thus 

the presence of IFN-γ at the graft site is associated with acute allograft rejection [222]. 

However there is a large body of work which suggests that IFN-γ has a paradoxical role as an 

anti-inflammatory cytokine.  

 

Studies in the mid 1990s elucidated the unexpected protective role of IFN-γ in models of 

autoimmune disease. Initially the disruption of the IFN-γ gene in mouse models of experimental 

autoimmune encephalomyelitis and collagen induced arthritis, demonstrated that IFN-γ was 

required for protection against disease onset and severity rather than promoting the disease 

state [223-226].  In models of skin and cardiac allograft transplantation, it was observed that 

the supplementation of IFN-γ was essential for prolonging graft survival and inducing tolerance 

by co-stimulatory blockade [227-229].  More recently, in 2008 in vitro studies by Feng showed 

that the addition of IFN-γ into murine DC-allogeneic T-cell co-cultures promotes the enrichment 

of CD4+ CD25+ Foxp3+ T-regulatory cells, by converting and eliminating T-effector cells [230], a 

phenomenon that contradicts the view that IFN-γ solely drives Th1 mediated immune 

responses.  Moreover, IFN-γ KO models have demonstrated that, IFN-γ is required to 

negatively regulate the stimulatory capacity of DC, an occurrence that has only been vaguely 

described in humans.  

 

In the past decade some human studies have also suggested that IFN-γ may negatively 

regulate monocyte differentiation into mature DC [231, 232]. These studies however failed to 

accurately phenotype the resultant APC and they did not investigate the effect of IFN-γ on 

inhibitory molecule or Lineage marker expression, nor did they assess the tolerogenic capacity 

of these APC.  As discussed in section chapter 1.4.1, DC are crucial regulators of the immune 

responses and are capable of directly inhibiting allograft rejection by promoting tolerogenic 
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immune responses. Therefore the aim of this chapter was to investigate the tolerizing capability 

of IFN-γ to modulate DC function to promote tolerance. 

 

It was hypothesised that: 

 The capacity of IFN-γ  to negatively regulate DC function lies with the timing of IFN-γ 

exposure during DC differentiation (day 0 treatment)  and maturation (Day 5 treatment) 

 

 The negative regulation of DC function is related to IFN-γ inducible negative co-

stimulatory molecule expression 

The capacity of IFN-γ to negatively regulate DC function was shown to be dependent on the 

timing of exposure during DC development. IFN-γ treatment only at day 0 of DC differentiation 

inhibited the capacity of DC to efficiency prime T-cells, thus causing T-cell 

hyporesponsiveness. Moreover, IFN-γ treatment at day 0 upregulated the expression of 

inhibitory Immunoglobulin-Like Transcript (ILT) family molecules and inhibited the expression of 

maturation marker CD83, which in part may have contributed to the poor capacity of DC to 

drive a Th1 response, whereas the latter exposure of IFN-γ had little effect on DC function. 
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3.2 MATERIALS AND METHODS 

 

3.2.1. Generation of human monocyte-derived dendritic cells  

 

Monocytes were isolated from healthy human blood donors as described in chapter 2 section 

1.1 and 2.1. Monocytes were cultured in RPMI  1640 containing 10% FCS, 800U/ml (1.2x107 

U/mg)  of  recombinant human granulocyte colony stimulating factor (GMCSF)-LeucomaxTM 

(Sandoz Australia, Australia) and 400U/ml (1x107 U/mg) of recombinant human  IL-4 

(eBiosciences, USA) in the absence (UT-DC) or presence of  500U/ml  of IFN-γ (eBiosciences, 

USA) (IFN-γ-DC0) for 5 days to generate immature DC (iDC). At day 5 of culture, iDC were 

treated with 10ng/ml of TNF-α (R&D Systems, USA) for 2 days to generate mature DC (mDC). 

In some experiments iDC were matured with TNF-α (R&D Systems, USA)in the presence of 

IFN-γ (eBiosciences, USA) (500u/ml) (IFN-γ-DC5).  All cell cultures were incubated under 5% 

CO2 at 37°C. 

3.2.2 Phenotypic analysis of DC by flow cytometry  

 

The phenotypic profile of DC was defined using the following primary mAb: anti-CD83 (HB15e) 

(Serotec Ltd, UK) and anti-CD86 (BU63) (Serotec Ltd, UK), anti-CD80 (MAB104) (Immunotech, 

France) anti-CD40 (LOB7/6) (Santa Cruz Biotechnology, USA), anti-MHC Class II (In house 

tissue supernatant), anti-ILT3 (ZM3.8) (Kind gift from Dr. Marco Colonna, Washington State 

University, St Louis, USA) anti-PD-L1(MIH1) and anti-PD-L2 (MIH18) (eBioscience, USA).  

Unconjugated mouse mAb were detected with FITC or PE conjugated anti-mouse IgG 

secondary antibody. Conjugated mAb were used to assess the expression of CD-14-FITC 

(MY4) (Beckman Coulter, USA), ILT2-PE (HP-F1) Beckman Coulter, USA), and DC-SIGN-FITC 

(DCN46) (BD Bioscience, USA). Rat anti-human ILT4 (42D1) (A gift of Dr. Marco Colonna, 

Washington State University, St Louis, USA) was also used as a primary mAb, whist FITC-
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conjugated anti-rat IgG was used for detection. For antibody details please refer to chapter 2 

section 16.1.  

 

3.2.3 Mixed lymphocyte reaction 

 

DC were washed with PBS three times, irradiated (30Gy) and used as stimulators in the MLR. 

Allogeneic T-cells were purified from PBMNC using nylon wool packed columns as described in 

chapter 2 section 1.2. DC were co-cultured with T-cell responders in 96-well round bottom 

plates, at stimulator to responder ratios of 1:10, 1:100 and 1:1000. After 4 days cells were 

pulsed with 1µCi [3H]-Thymidine (Amersham, UK) for 18 h and then harvested onto glass-fibre 

filters and counted in β-scintillation fluid using a Wallac Microbeta Counter (Tuku, Finland). 

Proliferation was expressed as counts per minute (mean of 5 replicates, ± SD).   

 

3.2.4 Messenger RNA expression analysis 

 

RNA was extracted was as per described in the methods (Chapter 2 section 2.8.1) cDNA was 

synthesized using 1μg total RNA by reverse-transcription (Chapter 2, section 2.8.2). 

Quantitative Real-Time PCR, based on a standard curve of copy numbers for each specific 

gene was generated and used to analyse the expression of  RelB, IL-12p40, IDO and HLA-G.  

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the house-keeping gene 

in order to verify RNA integrity and cDNA synthesis.  Please refer to appendix A for sequence 

details and cycling conditions. 
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3.2.5 T-cell cytokine and phenotype analysis 

 

Purified T-cells were co-cultured with DC at a ratio of 100:1, for 6 days in RPMI 1640 

supplemented with 10% FCS at 37ºC under 5% CO2.   T-cells (5x105) were stained for CD4 

and intracellular expression of Foxp3 or IL-17A (eBioscience, USA).  Briefly, cells were 

permeabilised and fixed (with buffer provided in kit) before blocking with normal rat serum. 

Cells were then incubated with anti-human Foxp3-FITC mAb or IL-17-FITC. CD4+ T cells were 

gated and analysed on BD FACSDIVA Software, quadrant gates were set according to isotype 

control.   In addition, supernatants from co-cultures were collected and assayed for the 

production of IL-2, IFN-γ, IL-4 and IL-10 by using a cytometric bead array kit (BD Bioscience, 

USA). Cells and supernatants were analysed by flow cytometry on a FACS CANTO (BD 

Bioscience, USA).  

 

3.2.6 Statistical analysis  

 

Student‟s t-test was conducted, with statistical significance at P < 0.05, using Microsoft Excel 

software. 
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3.3. RESULTS 

3.3.1 IFN-γ modifies the expression of positive co-stimulatory molecules and 
negative regulatory molecules on DC during differentiation and maturation 

 

In preliminary experiments a range of 50 to 1000U/ml of IFN-γ was used to determine the 

effects on DC differentiation and maturation from monocyte precursors.  The concentration of 

500U/ml was considered as optimal as no cytopathic effects were observed and 1000U/ml did 

not significantly improve the capacity of DC to further inhibit T cell proliferation (see appendix 

B), thus 500U/ml was used in subsequent experiments.  IFN-γ treatment of monocytes at day 0 

prior to DC differentiation or at day 5 during maturation caused phenotypic changes (Figure 

3.3.1A). DC differentiation was observed by the loss of the monocyte marker and the high 

expression of the DC lineage marker DC-SIGN (>92%+ve cells for all groups).  IFN-γ treatment 

at day 0 (IFN-γ-DC0) however reduced the CD83 percentage positive population to 6%, which 

was considerably less compared to UT-DC, in which 74% of its population expressed CD83. 

IFN-γ-DC0 also caused the down regulation of co-stimulatory molecules. CD86 saw a 9% 

reduction in the percentage of IFN-γ-DC0 expressing this molecule. Moreover, only 33% of the 

IFN-γ-DC0 population expressed CD80 compared to 93% of the UT-DC population (Figure 

3.3.1A). Treatment with IFN-γ at day 5 (IFN-γ-DC5) on the other hand did not modify the 

expression profile of co-stimulatory molecules compared to UT-DC.  

 

Flow cytometric analysis of negative regulatory molecules showed that both IFN-γ-DC0 and 

IFN-γ-DC5 had induced expression of PD-L1 (Figure 3.3.1B). IFN-γ increased the MFI of PD-L1 

to 325 in IFN-γ-DC0 and 245 in IFN-γ-DC5 from 136 in UT-DC. However, ILT4 expression was 

exclusively upregulated in IFN-γ-DC0 from negative UT-DC to 22% of the IFN-γ-DC0 population. 

The MFI of ILT2 and ILT3 were also upregulated in IFN-γ-DC0 compared to UT-DC. IFN-γ-DC5 

and UT-DC had similar expression levels of inhibitory receptors ILT2, ILT3 and ILT4. Both IFN-
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γ treated groups had reduced PD-L2 expression (68%+ve UT-DC vs 34% +ve IFN-γ-DC5 vs 

9%+ve IFN-γ-DC0). The surface expression of HLA-G, an inhibitory ligand for ILT2 and ILT4 

associated in regulating DC and T-cell responses, was not present in UT-DC and IFN-γ-DC0, 

whilst IFN-γ-DC5 showed a negligible upregulation to 3%. Overall IFN-γ-DC0 appears to have 

an immature DC phenotype despite stimulation with maturing agent TNF-α. This coincided with 

reduced expression of positive co-simulation and the upregulation of inhibitory molecules a 

phenomenon not seen in UT-DC or IFN-γ-DC5. 
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FIGURE 3.3.1A. IFN-γ modifies the expression of positive co-stimulatory molecules by 

DC during differentiation and maturation.  DC were treated with IFN-γ at day 0 (IFN-γ-DC0) 

and at day 5 (IFN-γ-DC5) or cultured in the absence of IFN-γ (UT-DC) for 5 days, then matured 

with TNF-α for 2 days. Flow cytometry was used to analyse the phenotype of IFN-γ treated DC 

and compared to UT-DC. The following costimulatory and lineage markers were examined: 

CD83, CD86, CD40, MHC class II, DC-SIGN and CD14. The expression of all markers was 

analysed by flow cytometry. Solid line indicates the isotype control and dash line shows the 

tested mAb. Mean Fluorescence Intensity (MFI) is indicated in the top-right corner of each 

graph and percentage positive cells are shown below the MFI. Representative of 10 

independent experiments.  
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FIGURE 3.3.1B. IFN-γ upregulates the expression of inhibitory co-stimulatory molecules 

from the ILT family and PD-L1. To further study the phenotype, the expression of negative 

co-stimulatory molecules was examined including: PD-L1, PD-L2, HLA-G, ILT-2, ILT-3 and ILT-

4. The expression of all markers was analysed by flow cytometry. Solid line indicates the 

isotype control and dash line shows the tested mAb. Mean Fluorescence Intensity (MFI) is 

indicated in the top-right corner of each graph and percentage positive cells are shown below 

the MFI. Representative of 4 independent experiments. 
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3.3.2 Monocyte-derived DC differentiated in the presence of IFN-γ induce 
allogeneic T cell hyporesponsiveness 

  

The effect of IFN-γ on the stimulatory function of DC, was examined in a DC mixed lymphocyte 

reaction (MLR). After DC maturation with TNF-α, cells were harvested and extensively washed 

to minimise the transfer of residual factors into the MLR. In comparison to UT-DC, IFN-γ-DC0 

inhibited the proliferation of T-cells by 33% (P=0.02) at a stimulator : responder ratio of 1:100 

and 97% (P=0.007) at a 1:1000 ratio (Fig. 3.3.2A).  The stimulatory capacity of IFN-γ-DC5   

remained unchanged compared to UT-DC. The addition of IL-2 (100U/ml) to T-cells co-cultured 

with IFN-γ-DC0 (Figure.3.3.2B), did not revert T-cell proliferation, suggesting that T-cells co-

cultured with IFN-γ-DC0 are not anergic in nature [233]. 

 

3.3.3 IFN-γ treatment at day 0 prior to DC-differentiation produces maturation-
arrested DC 

In order to confirm the maturation status of phenotypically immature DC the gene expression of 

NF-κB transcription factor RelB and proinflammatory cytokine IL-12 were assessed by 

quantitative real-time PCR (Figure 3.3.3). Expression of RelB was significantly inhibited by 79% 

(P=0.01) in IFN-γ-DC0 when compared to UT-DC. However exposure to IFN-γ at day 5 during 

DC maturation resulted in a significant increase of 48% in RelB expression, when compared to 

both other groups (UT-DC and IFN-γ-DC0).  IFN-γ-DC0 failed to upregulate the gene expression 

of IL-12, instead a significant inhibition was observed by 97% (P=0.02) in comparison to UT-

DC, whereas IFN-γ-DC5 showed a significant increase of 50%.   
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FIGURE 3.3.2A: Monocyte-derived DC differentiated in the presence of IFN-γ induce 

allogeneic T-cell hyporesponsiveness. DC were treated with IFN-γ at day 0 (IFN-γ-DC0) and 

at day 5 (IFN-γ-DC5) or cultured in the absence of IFN-γ (UT-DC) for 5 days, then matured with 

TNF-α for 2 days. T cells (1x105) were incubated with DC, at a DC to T-cell ratio of 1:10, 1:100 

and 1:1000 for 5 days. Proliferation was determined by [3H] thymidine incorporation (CPM). 

*=p<0.05. (Mean ± SD of 5 replicates within the experiment). Figure representative of 5 

independent experiments. 
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FIGURE 3.3.2B. IFN-γ-DC0 cause T cell hyporesponsiveness independent of T cell 

anergy. To test the ability of IFN-γ-DC0 to induce T cell anergy, 100U/ml of exogenous IL-2 

was added to the co-culture of DC and T cell at a ratio 1:100 for 5 days.  Proliferation was 

determined by [3H] thymidine incorporation (CPM) (n=10) (B). *=p<0.05, NS= No Significance. 

±SD of 5 replicates within the experiment. Figure representative of 5 independent experiments 
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FIGURE 3.3.3: IFN-γ treatment at day 0 prior to DC-differentiation produces maturation-

arrested DC. DC were treated with IFN-γ (500U/ml) at day 0 (IFN-γ-DC0) and at day 5 (IFN-γ-

DC5) or cultured in the absence of IFN-γ (UT-DC) for 5 days, then matured with TNF-α for 2 

days. Quantitative real-time PCR was used to analyse the mRNA expression levels of NF-κB 

transcription factor RelB (A) and IL-12 (B) to confirm the maturation status of IFN-γ-DC0 as 

immature. Mean ± SD of quadruplicates, *=p<0.05, **=p<0.01, NS= No Significance. Figure 

representative of 5 independent experiments 
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3.3.4 T-cell hyporesponsiveness induced by IFN-γ-DC0 is independent of the 
generation of total Foxp3+ T regulatory cells. 

 

To investigate other possible mechanisms causing T-cell hyporesponsiveness by IFN-γ-DC0, 

the ability of IFN-γ-DC0 to generate Foxp3+ T-regulatory cells and IL17-secreting TH17 cells 

was assessed. The proportion of CD4+Foxp3+ T-cells and CD4+IL17+ T cells (Figure 3.3.4A) 

after co-culturing DC and T-cell for 6 days was determined by FACS. UT-DC on average  64% 

of the CD4+ T-cell population were Foxp3+ compared to 38% generated by co-cultures with 

IFN-γ-DC0 (p=0.017 based on 4 independent experiments). The presence of IL17 producing 

CD4+ T-cells in the resultant co-cultures was similar in both groups. IFN-γ-DC0 promoted on 

average 4% of CD4+IL17+ T-cells which was not significantly different to UT-DC (mean = 4%) 

(p=0.43).  Analysis of supernatants (Figure 3.3.4B) from IFN-γ-DC0 and T-cell co-cultures had 

significantly reduced concentration of IL-2 (p=0.0097) and IFN-γ (p=0.037) production by 67% 

and 73% respectively, when compared to UT-DC. The production of IL-4 and IL-10 was not 

statistically different in IFN-γ-DC0 co-cultures compared to UT-DC. IFN-γ responsive regulatory 

molecules indoleamine 2, 3-dioxygenase (IDO) and HLA-G (Figure 3.3.4C), were also 

examined as they are known to regulate T-cell responses.  IDO and HLA-G mRNA expression 

in IFN-γ-DC0 were not significantly upregulated compared to UT-DC. However IDO and HLA-G 

were upregulated in IFN-γ-DC5 by 94% and 97%, respectively.   
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FIGURE 3.3.4A:  T-cell hyporesponsiveness induced by IFN-γ-DC0 is independent of the 

generation of Foxp3+ T regulatory cells and the generation of IL-17 producing T-cells. DC 

were treated with IFN-γ at day 0 (IFN-γ-DC0) and at day 5 (IFN-γ-DC5) or cultured in the 

absence of IFN-γ (UT-DC) for 5 days, then matured with TNF-α for 2 days. IFN-γ-DC0 were co-

cultured for 6 days with 1x105 T-cells (1:100, DC to T-cell ratio), then stained for surface 

expression of CD4 and intracellular expression of Foxp3 (A) or IL17 (b) (n=4). *=p<0.05, NS= 

No significance (Mean ± SD of 4 independent experiments).  
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FIGURE 3.3.4B: IFN-γ-DC0 co-cultured with T-cells inhibits the production of IL-2 and 

IFN-γ. DC were co-cultured for 6 days with 1x105 T-cells (1:100, DC to T-cell ratio). 

Supernatants from co-cultures were harvested and analysed by cytometric bead array assay 

(as described in chapter 2.3.6) for the production of IL-2 (A), IFN-γ (B), IL-4 (C) and IL-10 (D) 

(Mean ± SD of 5 independent experiments). *=p<0.05, **=p<0.01, NS=No significance.  
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FIGURE 3.3.4C:  IFN-γ-DC0 do not have upregulated expression of soluble inhibitory 

molecules IDO and HLA-G. DC were treated with IFN-γ at day 0 (IFN-γ-DC0) and at day 5 

(IFN-γ-DC5) or cultured in the absence of IFN-γ (UT-DC) for 5 days, then matured with TNF-α 

for 2 days. DC total RNA was extracted and reverse transcribed. The mRNA expression of 

immunomodulatory molecules IDO (A) and HLA-G (B) were determined by quantitative PCR 

(n=5). *=p<0.05, **=p<0.01, ***=p<0.001. Mean ± SD of quadruplicates. Figure representative 

of 5 independent experiments.   
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3.3.4. DISCUSSION 

 
IFN-γ has classically been considered as a proinflammatory molecule known to primarily drive 

Th1 allo-responses [218]. In this chapter the timing of IFN-γ exposure during DC development 

was investigated, in order to examine its capacity to negatively regulate DC function.   In this 

study an in vitro model of DC differentiation with GMCSF and IL-4 was used to assess the 

immunomodulatory effects of IFN-γ at day 0 and day 5 of DC propagation, to define its effects 

during DC differentiation and maturation. It was found that the anti inflammatory function of 

IFN-γ was time dependent. Treatment at day 0 (IFN-γ-DC0), but not at day 5 down regulated 

positive costimulatory molecule expression and remarkably inhibited the expression of DC 

maturation marker CD83, which also known to play an important role in the activation of T-cells 

[234, 235]. This study also observed an up regulation of inhibitory molecules ILT2, ILT3 and 

ILT4, a finding which has not been previously described. It is speculated, that the known 

antagonistic effects of IFN-γ on IL-4 may play role in the mechanism, by which IFN-γ exerts its 

regulatory function.  

 

IFN-γ is known to inhibit IL-4 activated STAT-6 phosphorylation, which reduces IL-4 receptor 

expression [236]. The promoter region of DC development factor IRF4 has a STAT-6 binding 

element, which helps to regulate its expression. Therefore it is speculated that the reduction of 

STAT-6 phosphorylation may inhibit the downstream expression of IRF4 [237, 238]. IRF4 also 

binds to PU.1 a negative regulator of ILT2/ILT4. Thus inhibited IRF4 expression may also 

reduce binding of PU.1 resulting in increased expression of ILT2 and ILT4. The expression of 

immunoglobulin like transcript (ILT) molecules and in particular ILT3 and ILT4 are important in 

regulating allo-immune responses. ILT4 and ILT2 are known to bind to HLA-G, which has 
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immunosuppressive functions relevant to transplantation [239], ILT3 on the other hand has no 

known ligand [240-242]. Tolerogenic dendritic cells have been shown to inhibit allogeneic T-cell 

proliferation in a ILT3 and ILT4 specific manner as shown by mAb mediated blocking. High 

expression of these molecules is also important in the induction of CD4+CD25+ Treg cells 

[243, 244]. Moreover, signalling through these receptors causes a calcium-dependent down 

regulation of NF-κB transcription factor [240, 242, 243], which may contribute to the reduced 

expression of RelB observed in IFN-γ-DC0. 

 

RelB is a NF-κB transcription factor, and its nuclear expression is related to DC maturation 

[245, 246]. RelB is known to target genes that control the expression of MHC class II, CD80, 

CD86, CD40 and CD83 [247-249]. The reduced expression of co-stimulatory molecules and 

CD83 in IFN-γ-DC0, may therefore be a downstream effect of RelB inhibition. Inflammatory 

cytokine IL-12p40 mRNA expression was also significantly lower in IFN-γ-DC0 compared to 

UT-DC, suggestive of decreased production of IL-12 protein. Previously published data have 

demonstrated that IL-12 protein production positively correlates with mRNA expression of IL-12 

[250]. These factors combined render IFN-γ-DC0 immature with a reduced capacity to activate 

T-cells causing T-cell hyporesponsiveness.   

 

T-cell hyporesponsiveness induced by IFN-γ-DC0 is supported by previously published studies, 

which reported similar effects of IFN-γ on monocyte-derived APC [231, 232]. In contrast to 

these studies, it was demonstrated that IFN-γ-DC0 are of  DC lineage, through the expression 

of DC specific marker DC-SIGN [251].  In this chapter we have extended this observation of 

induced T cell hyporesponsiveness to examine the polarization to either a Th2 or Th1 

response. We did this by examining the secretion of Th1 and Th2 cytokines during a DC-MLR. 

We found that IFN-γ-DC0 reduced the production of IL-2 and IFN-γ in comparison to UT-DC.   
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Suggesting a de-polarization from Th1 response, however there is no evidence to suggest that 

a Th2 response was present. The reduced production of IL-2 and IFN-γ may be a factor 

contributing to the inhibition of T-cell proliferation by IFN-γ-DC0 affecting the polarization of Th1 

responses [219, 252, 253]. Although this assay did not take into account the differences of final 

number of cells, the overall immune response was blunted by IFN-γ-DC0 in comparison to UT-

DC. However this also does not exclude the induction of T-cell anergy by IFN-γ-DC0, as 

mechanism of inducing T-cell hyporesponsiveness.   

 

T-cell anergy is characterized by the induction of an unresponsive state in T-cells, where T-

cells become functionally inactivated following stimulation through the T-cell receptor, in the 

absence of co-stimulation [254]. Given that IFN-γ-DC0 have reduced co-stimulation in 

comparison to UT-DC, it was hypothesised that IFN-γ-DC0 may induce T-cell anergy. 

Surprisingly, the addition of exogenous IL-2 did not reverse the T-cell hyporesponsiveness, 

unlike other studies [233], suggesting that IFN-γ-DC0 does not induce IL-2 reversible T-cell 

anergy. However, this does not exclude cell division-arrest, whereby the IL-2 receptor is not 

induced by TCR signals [255, 256]. In addition, there is no evidence to suggest that IFN-γ-DC0 

induced T-cell hyporesponsiveness, correlates with the total number of Foxp3+ T-cells or the 

deviation to a Th17 response. 

 

T-cell mediated immunoregulation is the primary mechanism known to maintain antigen-

specific tolerance in vivo [257]. In particular CD4+ Foxp3+ T-regulatory cells (Tregs), have been 

described as the most potent suppressive T-cell subtype. Initially described in murine models 

as CD4+CD25+ highly suppressive T-cells by Sakaguchi [258], this T-cell subtype was later also 

described in humans [259-264].  Foxp3 has been described as the master gene, involved in the 

development and function CD4+ Tregs [107, 265] [266]. Recent studies however have shown 
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that, unlike in murine models Foxp3+ cells are not homogenous in their function to be 

suppressive. Various studies have now shown that TCR stimulation alone can induce Foxp3 

expression in naive CD4+Foxp3- T-cells, without conferring any suppressive function [267-270]. 

More recently it was described that activated human CD4+ T-cells expressing low levels of 

Foxp3 fail to be suppressive and rather are cytokine producing effector T-cells, whereas 

activated CD4+ Foxp3HI T-cells are highly suppressive [271]. Thus measuring the total 

CD4+Foxp3+ population alone does not define the suppressive capacity of this T-cell population 

in humans. This suggests that the reduced capacity of IFN-γ-DC0 to promote Foxp3+ cells is a 

reflection of the its reduced capacity to activate T-cells rather than their ability to promote the 

generation of suppressive Tregs. Therefore this study was limited in its capacity to determine 

the ability of IFN-γ-DC0 to promote a suppressive Treg population. However the reciprocal 

relationship that exists between Foxp3 Tregs and Th17 cells, and the observation that IFN-γ-

DC0 depolarizes a Th1 response and do not  induce a significant generation of IL-17, suggests 

that Foxp3 Tregs are more like to be promoted by IFN-γ-DC0 rather than UT-DC.  However this 

does not exclude the possibly of IFN-γ inducible inhibitory soluble molecules or enzymes 

playing a role in IFN-γ-DC0 mediated T-cell hyporesponsiveness.  

 

Immunomodulatory molecules Indoleamine 2,3-Dioxygenase (IDO) and HLA-G are  

upregulated by IFN-γ [272-274].  IDO is an enzyme that catabolises tryptophan to inhibit T-cell 

proliferation [274]. HLA-G is a ligand for ILT2 and ILT4, where binding to its receptors mediates 

its immunomodulatory effects [275, 276]. Surprisingly, mRNA of IDO and HLA-G was not 

induced in IFN-γ-DC0, thus unlikely to play a role in IFN-γ-DC0 induced T-cell 

hyporesponsiveness. Significant increases of HLA-G and IDO mRNA in IFN-γ-DC5 did not 

affect their ability to stimulate T-cells when compared to UT-DC. A surprising result given the 

inhibitory function of these molecules, but not uncommon given that other studies have shown 
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the same phenomenon [277-279]. However, the regulatory effects of IDO and HLA-G may be 

overcome by the robust positive co-stimulation provided by IFN-γ-DC5.  Munn and colleagues 

have suggested that IDO can be also be present in enzymatically active and inactive states 

[278]. Accordingly, IDO may be present in IFN-γ-DC5 in an inactive state, thus unable to 

contribute to the T-cell regulation.  

 

 

In summary this chapter has demonstrated that the timing of IFN-γ exposure during DC 

development is important for its function as either a pro-inflammatory or anti-inflammatory 

cytokine.  IFN-γ exposure only at day 0 during DC differentiation (IFN-γ-DC0) was able to down 

regulate the expression of positive co-stimulatory molecules and most importantly maturation 

marker CD83, a function not seen in IFN-γ-DC5. It is speculated that early monocyte exposure 

to IFN-γ during differentiation, antagonistically inhibits IL-4 activated STAT-6 phosphorylation, 

and the downstream expression of IRF4, which precipitates in a cascade of events leading to 

maturation arrest. It is believed that IRF4 gene inhibition promotes the expression of ILT 

inhibitory molecules, which signal to inhibit RelB expression. Inhibited expression of RelB in 

turn arrests DC maturation resulting in CD80/CD86 down regulation and inhibition of CD83. 

Subsequently, the immature phenotypic features of these DC, in particular their poor 

stimulatory capacity contributes to the observed T-cell hyporesponsiveness. However this is 

speculative and warrants confirmation at the molecular level, in particular it is important to 

demonstrate that STAT-6 phosphorylation and IRF4 are inhibited in addition to RelB protein 

expression and translocation into the nucleus. The ability of IFN-γ-DC0 to generate T-regs still 

remains elusive due to the limitations associated with the T-cell assay used in this chapter. 

Human Treg populations should therefore in future be defined according to recent publications, 

which have defined the Foxp3HI population as suppressive, in addition to in vitro suppression 
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assays to show functionality. Nevertheless IFN-γ-DC0, may potentially serve as a tolerogenic 

DC for the cellular therapy of allograft rejection. The standard DC propagation protocol to 

generate IFN-γ-DC0, which takes 7-10 days is suitable for living donor kidney transplantation, 

where there donor and recipient pairs are identified well in advance.  However it is not 

applicable to deceased donor transplantation and in particular islet cell transplantation, where 

living donors are not suitable. Therefore, a novel propagation strategy to generate IFN-γ 

modulated DC in 48 hours was investigated in chapter 4.   
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CHAPTER 4 - IFN-γ inhibits STAT-6 
signalling in human monocytes 
promoting the rapid generation of 
tolerogenic dendritic cells  
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4.1 INTRODUCTION 

 

Dendritic cells (DC) play a key role as sentinels of the immune system for the detection of 

pathogens and disturbance of the immunological milieu [280]. All transplantable organs 

possess a cellular component of passenger leukocytes, which migrate from the allograft to 

initiate rejection via the direct pathway of allorecognition [126, 129, 281, 282]. DC are an 

important component of the passenger leukocyte population [135, 136, 283]. However, under 

certain conditions DC may be modulated to become tolerogenic and inhibit T-cell function. In 

particular, immature DC (iDC) have been shown to inhibit allogeneic T-cells proliferation [184, 

284, 285], while the injection of antigen pulsed iDC block T-cell responses in humans [286]. 

However, iDC undergo maturation in vivo limiting their tolerogenic potential. The modification of 

DC to stably inhibit maturation has been extensively studied in recent years. A variety of 

pharmacological and immunological approaches including interleukin 10, vitamin D3, 

dexamethasone, aspirin and most recently the NF-κB inhibition by curcumin was shown to 

arrest DC in an immature state and promote tolerance in vitro and in vivo. [143, 144, 149, 150, 

152, 287]. 

 

The use of tolerogenic DC to modify the recipient immune system to promote allograft 

acceptance is a potential alternative therapeutic approach, which has the advantage of not 

requiring conventional immunosuppressive therapy. However their use in the clinic has faced 

significant hurdles - current protocols to generate monocyte-derived DC take 7-10 days [288] 

while rejection begins within hours of transplantation and is well established within 7 days 

[289].  Clinically useful DC must be generated in a short period of time. In 2003, Dauer and 

colleagues published a „FAST-DC‟ protocol to generate potent immunostimulatory mature 
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monocyte-derived DC for the purpose of cancer immunotherapy in 48hr [205].  In the present 

study a complementary approach to rapidly generate stable immature DC was developed.  

 

 

IFN-γ is regarded as a potent proinflammatory cytokine and is secreted by CD4+ T-helper type 

1 (Th1) lymphocytes, CD8+ cytotoxic lymphocytes and NK cells, which play key roles in 

allograft destruction [290, 291]. IFN-γ also plays an essential role in allograft acceptance. IFN-γ 

KO models of skin and cardiac allograft transplantation demonstrate that IFN-γ is essential for 

prolonging graft survival and inducing tolerance [227-229]. However, IFN-γ also has an 

immunomodulatory role as illustrated by knockout (KO) mouse models of experimental 

autoimmune encephalomyelitis and collagen induced arthritis where IFN-γ is required for 

protection against disease onset and severity [223-226].  Moreover, a recent study by Wu and 

colleagues showed IFN-γ was required for the negative regulation of DC migration and T-cell 

priming [292]. In chapter 3 it was demonstrated that the timing of IFN-γ exposure is critical in its 

function to either inhibit or promote the stimulatory potential of DC. It was shown that negative 

regulation of DC stimulatory capacity is only mediated by IFN-γ if exposure occurs early during 

DC differentiation at the monocyte level [156].    

 

In this chapter the mechanism of action by IFN-γ, where by the maturation arrest of DC 

maturation was further examined, extending chapter 3 by developing a „rapid‟ DC protocol to 

produce tolerogenic DC in the clinically applicable timeframe of 48 hours. Here it was 

demonstrated that the effect of IFN-γ is mediated by the inhibition of STAT-6 phosphorylation 

and NF-κB activation resulting in DC maturational arrest and the development of a tolerogenic 

DC phenotype.  These rapidly generated IFN-γ modulated DC support the generation of 

antigen specific T-regulatory cells in vitro. These cells were then used in a surrogate NOD-
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SCID chimeric model of islet transplantation. However poor human cell engraftment into the 

NOD-SCID mouse model, failed to demonstrate the tolerogenic potential of IFNγ-DC. 

 

 

4.2 METHODS AND MATERIALS 

4.2.1 Antibodies 

 

The phenotypic profile of DC was defined using the following directly conjugated mAb: anti-

CD83-FITC (HB15e) (eBioscience, USA), anti-CD86-FITC (FUN1) (BD Bioscience, USA), anti-

CD80-FITC (L307.4) (BD Bioscience, USA), anti-DC-SIGN-FITC (DCN46) (BD Bioscience, 

USA), anti-HLADR-PE-Cy5 (G46-6) (BD Bioscience, USA), anti-PD-L2 (M1H18) (eBioscience, 

USA) and rat anti-human ILT4 (42D1) used as a primary mAb and FITC-conjugated anti-rat IgG 

was used for detection.  STAT-6 phosphorylation was detected by intracellular staining, using 

anti-pY641-Alexa488 (Clone 18) (BD Bioscience, USA)and surface staining with CD14-PE 

(M5E2) (BD Bioscience, USA). T-cell phenotypes were determined using anti CD25-PE-Cy7 

(M-A251) (eBioscience, USA), anti CD4-Percp5.5 (OKT4) (eBioscience, USA)and anti-human 

Foxp3 PE-conjugated mAb (PCH101) (eBioscience, USA). IL-4 receptor expression was 

detected using anti-human CD124 PE conjugated (hIL4R-M57) (BD Bioscience, USA). Anti-

human RelB polyclonal antibody (Santa Cruz Biotechnology, USA) was used as the primary 

antibody to detect localisation of RelB by immunohistology. For further antibody details please 

refer to chapter 2 section 2.16.1. 
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4.2.2 Generation of ‘FAST’ human monocyte-derived dendritic cells  

 

Peripheral blood mononuclear cells (PBMNC) were isolated from buffy coat of healthy human 

blood donors (Australian Red Cross Blood Service, Adelaide, South Australia) by Ficoll Paque 

density gradient centrifugation as described in chapter 2 section 2.1.1.  DC were rapidly 

generated as described in section 2.2.2, chapter 2. Monocytes were cultured in RPMI  1640 

containing 10% FCS, 1000U/ml (1.2x107 U/mg)  of  granulocyte colony stimulating factor 

(GMCSF)-LeucomaxTM (Sandoz Australia, Australia) and 500U/ml (1x107 U/mg) of IL-4 

(eBioscience, USA) in the absence (UT-DC) or presence of  500U/ml  of IFN-γ (eBioscience, 

USA)  (IFNγ-DC) for 24h.  Cells were then treated with 10ng/ml TNF-α (R&D Systems, USA) 

and 1 µM Prostaglandin E2 (Sigma-Aldrich, USA) for a further 24h. All cell cultures were 

incubated under 5% CO2 at 37°C. 

  

4.2.3 FACS Analysis  

 

DC surface staining. (Please refer to section 2.3.1 and 2.3.2 of chapter 2). To determine 

terminal differentiation of IFN-γ modulated DC, cells were harvested and extensively washed to 

remove all residual cytokines. Then DC were either analysed by FACS (Day 0 post wash-out) 

or were placed back into culture for 12 days in complete S10g media and then analysed 

(Day12 post wash-out). 

Intracellular STAT-6 phosphorylation staining.  Please refer to chapter 2 section 2.3.4. 

Monoclonal antibody targeting phosphorylated STAT-6 (pY641) (BD Bioscience, USA) was 

used to examine STAT-6 phosphorylation. Samples were analysed within 1hr of staining.  
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Treg phenotyping. For the enumeration of Foxp3+ cells, T-cells from the primary MLR were 

harvested and stained with directly conjugated mAb targeting CD25 (eBioscience, USA) and 

CD4 (eBioscience, USA) for 25 min at RT.  Cells were stained for the intracellular expression of 

Foxp3 as per manufacturer‟s instructions.  Briefly, cells were permeabilised and fixed (Fix/Perm 

buffer provided by kit) before blocking with normal rat serum to prevent non-specific binding. 

Cells were incubated with anti-human Foxp3.  Numbers of CD4+CD25+Foxp3+ T regulatory 

cells were assessed by flow cytometry. For detailed methods refer to section 3.1 and 3.3 of 

chapter 2.   

Cytokine Cytometric Bead Array (CBA). A human TH1/TH2 CBA cytokine kit (BD Bioscience, 

USA) was used to determine the concentration of IFN-γ, IL-2, IL-10 and IL-4 in supernatants 

from DC-T cell co-cultures. DC were co-cultured with purified T-cells (1:10 stimulator to 

responder ratio) for 5 days in complete RPMI medium (10% FCS and 1% glutamine) in 96 

round well bottom plates (under 5% CO2 at 37°C). Supernatant was harvested and assayed, 

according to the manufacturer‟s instructions. The lower detection limits for the tested cytokines 

were: IL-2: 2.6 pg/ml, IFN-γ: 7.1 pg/ml, IL-4: 2.6 pg/ml, IL-10: 3.0 pg/ml. 

 

 4.2.4 Allogeneic mixed lymphocyte reaction assay  

 

Primary MLR. DC were washed with PBS three times, irradiated (30Gy) and used as 

stimulators in the MLR. Allogeneic T-cells were purified from PBMNC using nylon wool packed 

columns (85% CD3+ T-cells) as described in section 2.1.2 chapter 2. DC were co-cultured with 

T-cell responders in 96-well round bottom, at stimulator to responder ratios of 1:10, 1:100 and 

1:1000. After 4 days cells were pulsed with 1µCi [3H]-Thymidine (Amersham, UK) for 18h and 

harvested onto glass-fibre filters and counted in β-scintillation fluid using a Wallac Microbeta 

Counter (Turku, Finland). Proliferation was expressed as counts per minute and expressed as 

the mean of 5 replicates, +/- SD.  
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Suppression Assay. Primary MLR were performed using naïve CD4+ T-cells purified from 

PBMNC using a human CD4+ T cell enrichment kit (Stem Cell Technologies, Canada) (95-98% 

CD4+ T-cells)(see methods chapter 2 sections 2.1.3).  Naïve CD4+ T-cells and IFNγ-DC were 

co-cultured at a ratio of 10:1. After 5 days, primed CD3+ T-cells were harvested using a CD3+ 

positive selection kit (Stem Cell Technologies, Canada) (see methods chapter 2 section 2.1.4). 

These IFNγ-DC primed T-cells were co-cultured with naïve CD4+ T-cells (105 cells per well) at 

varying ratios of 1:1, 1:2, 1:4 or 1:8 from the same donor. In addition, at the 1:1 ratio an 

irrelevant non-related donor 3rd party DC was used to determine the antigen specificity of Treg 

cells. Cells were cultured for 5 days and thymidine incorporation was used to measure 

proliferation following an 18h pulse with 1μCi of [3H] thymidine (Amersham, UK). 

 

4.2.5 Gene expression analysis 

 

RNA was extracted from DC using RNAspin mini kit (GE Healthcare, UK) (see methods 2.8.1 

chapter 2) and cDNA was synthesized using 1μg total RNA by reverse-transcription using an 

oligo-dT primer (materials and methods 2.8.2 chapters 2). Quantitative Real-Time PCR based 

on a standard curve of copy numbers for each specific gene generated was used to analyse 

the expression of RelB, IL-12, IRF4 and GAPDH. PCR was conducted according to optimised 

conditions (Please refer to appendix A for PCR conditions and primer sequences. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the house-keeping gene 

in order to verify RNA integrity and cDNA synthesis.  

 

4.2.6 Immunohistology 

 

 DC (2x105) were spun onto slides at 20g (400 rpm) for 5 min using a Shandon Cytospin II 

(Thermo Scientific, USA). Staining conditions are described in section 5 chapter 2. Anti-RelB 



 124 

polyclonal antibody was used as the primary antibody, and goat-anti-rabbit IgG-FITC (Santa 

Cruz Biotechnology, USA) was used to detect the protein localisation of NF-κB transcription 

factor RelB. Frozen spleen sections (5µm) from humanely killed mice islet transplanted mice, 

were stained with mouse anti-human CD3-FITC (20µg/ml) overnight in humid chamber at 4°C, 

after blocking (3% mouse serum in PBS) for 25min at RT.   

 

4.2.7 IL-12 ELISA 

 

DC were in 24 well plates (1x106 cells/ml) were stimulated with CD40L (500ng/ml) and IFN-γ 

(1000U/ml) for 48h. Supernatants were harvested and assayed for the biologically active 

human IL12p70 by ELISA (eBioscience, USA). For details please refer to section 2.6.1 in 

chapter 2. 

4.2.8 Islet transplantation 

 

NOD-SCID female mice of >20g of weight were I.P injected with 180mg/kg Streptozocin (STZ)  

(Sigma-Aldrich, USA) a dose previously published to be effective in inducing diabetes and 

optimised by our laboratory and shown to have an induction rate of 70% with low morbidity (see 

Appendix  C). Diabetes was diagnosed by 3 consecutive readings of BGL of >16.6mmol/L. 

Diabetic mice were transplanted with approximately 3000IEQ of human islets 80% pure under 

the kidney capsule. All human islets used in this project had research consent given by donor 

families. This project was approved and over seen by the University of Adelaide (Approval 

number: M-2009-124) and IMVS (Approval number: 91_09) animal ethics committees. 

 

4.2.9 Allogeneic challenge of islet transplant 

 

DC were generated from monocytes obtained from the islet donor at the time of organ 

procurement. In order to so approximately 100ml of donor peripheral blood was collected into 
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9ml lithium heparin tubes (approximately 12 altogether). Blood was pooled and diluted 1 part 

blood 2 parts PBS, then 30ml of diluted blood was under laid with 15ml of ficoll (GE Healthcare, 

UK)  and processed as described in section 2.2 (approximately 6-7 million DC were generated 

per donor).  Prepared DC were mixed with allogeneic PBMNC (isolated as per chapter 2, 

section 2.1.1) at a 1:100 ratio (106 DC to 108 PBMNC) and resuspended with 300µl of sterile 

PBS, containing 50µl of anti-asialo GM1 (Wako BioProducts, Japan) as per manufactures‟ 

instructions. Using a 27 gauge insulin syringe mice were injected with DC: PBMNC via I.P 1 

day post islet transplantation. Mice were sacrificed at 21 and 30days post allogeneic challenge. 

Spleen and transplanted kidney were harvested and placed into OCT. Approximately 200µl of 

blood serum was stored for human c-peptide analysis. Serum samples were analysed by the 

IMVS, Frome Road, Adelaide, which used IMMUNOLITE 2000 C-PEPTIDE, a solid phase two-

site chemiluminescent immuno assay for the detection of human c-peptide (Siemens 

Healthcare, Llanberis, Gwyneed, UK). 

 

4.2.10 mRNA analysis of transplanted islet tissue 

 

Total RNA was extracted from frozen sections of tissue RNA spin column as per 

manufacturer‟s instructions (chapter 2, section 2.8.1). A total of 1µg of RNA was reverse 

transcribed using random hexamers (Qiagen, USA) (refer to chapter 2, section 2.8.3). 

Quantitative Real-Time PCR based on a standard curve using taqman primers according to the 

manufacturers‟ instructions (Applied Biosystems, USA) was used to analyse the mRNA 

expression of CD8A, CD4, IL-2 and IFN-γ (see chapter 2, section 2.9.3). 
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4.2.11 Statistical analysis  

 

T-test and ANOVA statistical tests were conducted using Prism Statistical Software where 

appropriate. With statistical significance of P < 0.05. 

 

4.3 RESULTS 

 

4.3.1 IFN-γ in combination with the FAST-DC protocol generates phenotypically 
tolerogenic dendritic cells 

 
The phenotype of monocyte-derived DC generated via the FAST-DC protocol (TNF-α and 

PGE2 maturation) following pre-treatment with IFNγ (IFNγ-DC) was examined using flow 

cytometry (Figure 4.3.1A). Monocyte-derived DC that did not receive IFNγ pre-treatment (UT 

DC) were used as a control. Both groups showed marked upregulation of the DC-specific 

marker CD209 (DC-SIGN) and HLA-DR molecules. Pre-treatment with IFNγ, reduced the 

number of cells expressing the DC maturation marker CD83 to 22% (compared to 76% in UT-

DC), without affecting CD209 expression. IFNγ-DC showed decreased expression of positive 

co-stimulatory molecules CD80 and CD86 by 17% and 10% respectively compared to UT-DC.  

The negative co-stimulatory molecule ILT4 was upregulated from 19% of UT-DC expressing 

ILT4 to 35% of IFNγ-DC, thus IFN-γ treatment increased ILT4 by 1.8 fold.  

 

At the transcriptional level, quantitative real-time PCR demonstrated that IFNγ-DC produced 

60% fewer transcripts of NF-κB transcription factor RelB, which was confirmed at the protein 

level (Figure 4.3.1B). Immunohistology also showed that UT-DC had distinct co-localisation of 

RelB in the nucleus; indicative of typical DC maturation in response to maturation stimuli. 

However, IFNγ-DC had reduced expression of RelB in the cytoplasm, with little to no 

translocation into the cell nucleus (Figure 4.3.1B). Similarly, pro-inflammatory molecule IL-
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12p40 gene expression was markedly reduced in IFNγ-DC both at the level of messenger RNA 

(decreased by 86% compared to UT-DC) and protein (IFNγ-DC produced 62% less biologically 

active IL-12p70 compared to UT-DC) (Figure 4.3.1C).The ability of DC to terminally 

differentiate and stably maintain in their differentiated state is important for its applicability as a 

DC therapy. Thus the ability of IFNγ-DC to terminally differentiate was examined. IFNγ-DC 

were harvested after stimulation with maturation stimuli (after 24 hours) and washed 

extensively to remove all residue cytokines. IFNγ-DC were then returned to culture and 

maintained for 12 days in complete media without cytokines. After this wash-out period IFNγ-

DC showed a marginal decrease in the expression of Lineage marker-DC sign by 2%, whilst 

CD83 expression changed by only 0.3% (Figure 4.3.1D). Thus, pre-treatment of human 

monocytes with IFN-γ prior to exposure to maturation stimuli, produces DC with a phenotype 

that has been associated with tolerogenic properties, shown by cell surface molecule 

expression, transcriptional profile and cytokine production. 
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Figure 4.3.1A: IFN-γ in combination with the FAST-DC protocol generates phenotypically 

tolerogenic DC. Monocytes were isolated from peripheral blood and cultured in the without 

(UT-DC) or with IFN-γ (IFNγ-DC) in the presence of IL-4 [500U/ml] and GMCSF [1000U/ml] for 

24h. DC were subsequently treated with TNF-α and PGE2 for another 24h period. Flow 

cytometry was used to analyse the phenotype of IFN-γ treated DC and compared to UT-DC. 

The following co-stimulator and Lineage markers were examined: CD83, CD80, CD86, HLA-

DR and DC-SIGN. Solid line indicates the isotype control and solid histogram shows the tested 

mAb. This figure is representative of 6 independent experiments  
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Figure 4.3.1B: IFN-γ treated DC have reduced expression and production of RelB. 

Isolated monocytes were treated with IFN-γ (IFNγ-DC) or without (UT-DC) in the presence of 

IL-4 [500U/ml] and GMCSF [1000U/ml] for 24h and matured for another 24h period with TNF-α 

[10ng/ml] and PGE2 [1μm]. (A) Quantitative real-time PCR was used to determine the gene 

expression of NF-κB transcription factor RelB. (B) Fluorescence microscopy was used to 

visualise the protein co-localisation of RelB, where blue depicts DAPI nucleus staining and 

green shows RelB expression. Mean ± SD **p<0.001. This figure is representative of 4 

independent experiments 
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Figure 4.3.1C: IFN-γ treated DC have reduced expression and secretion of 

proinflammatory cytokine IL-12. Isolated monocytes were treated with IFN-γ (IFNγ-DC) or 

without (UT-DC) in the presence of IL-4 [500U/ml] and GMCSF [1000U/ml] for 24h and 

matured for another 24h period with TNF-α [10ng/ml] and PGE2 [1μm]. (A) Quantitative real-

time PCR was used to determine the gene expression of IL-12. (B) ELISA was used for the 

detection of biologically active IL-12p70. Mean ± SD **=p<0.001. This figure is representative 

of 4 independent experiments 
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Figure 4.3.1D: IFN-γ treatment does not affect the ability of DC to terminally differentiate. 

Isolated monocytes were treated with IFN-γ [500U/ml] in the presence of IL-4 [500U/ml] and 

GMCSF [1000U/ml]  for 24h. DC were then stimulated with TNFα [10ng/ml] and PGE2 [1μm].  

After another 24h cells were harvested and washed to remove cytokines and returned to 

culture (wash-out period). Cells were surfaced stained for DC Lineage marker DC-SIGN and 

maturation marker CD83, at day 0 (A) and day 12 (B) post wash-out period. Black line 

represents isotype control and solid histogram depicts tested mAb.  Representative of 5 

independent experiments. 
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4.3.2 IFN-γ inhibits IL-4 driven STAT-6 in monocytes 

 

To investigate the mechanism of IFNγ-mediated effects on monocyte-derived DC, human 

PBMNC were treated with or without IFN-γ in the presence of IL-4 and GMCSF to induce the 

activation mediated phosphorylation of STAT-6. Flow cytometric analysis showed that IFN-γ 

pre-treatment inhibited the phosphorylation of STAT-6 in monocytes by 65% compared to IL-4 

and GMCSF alone (Figure 4.3.2A).  STAT-6 is known to be involved in the transcription of IRF-

4 molecule, which is upregulated during DC maturation [237]. Accordingly, the downstream 

effects of STAT-6 inhibition on the transcription of IRF-4 gene were investigated.  PCR 

demonstrated that the inhibition of STAT-6 in IFNγ-DC reduced the expression of IRF4 by 78%-

95% compared to UT-DC as determined by 6 independent experiments (Figure 4.3.2B). The IL-

4α chain of the IL-4 receptor is essential in the recruitment and phosphorylation of STAT-6, 

which in turn regulates its own IL4α chain expression [293]. Therefore the cell surface 

expression of IL-4α receptor subunit was examined. IFN-γ down regulated the protein 

expression of IL-4α chain subunit in treated monocytes to 29% compared 42% in IL-4 and 

GMCSF alone. Monocytes alone had a baseline expression of 38% (Figure 4.3.2C).  
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Figure 4.3.2A: IFN-γ treatment of monocytes inhibits the phosphorylation of STAT-6. 

Isolated PBMNC treated with or without IFN-γ [500U/ml] in the presence of IL-4 [500U/ml] and 

GMCSF [1000U/ml] for 10 minutes. Cells were then immediately fixed and then permeabilised 

(using BDTM Cytofix (containing formaldehyde) and  BDTM Phosflow perm buffer, see materials 

and methods section 2.3.4 - chapter 2). Cells were surface stained for CD14-PE and intra-

cellularly stained for STAT-6(pY641)-AF-488, to determine STAT-6 phosphorylation. 

Representative of 6 independent experiments. 
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Figure 4.3.2B: IFN-γ treatment of monocytes inhibits the downstream gene expression of 

IRF4. Quantitative real-time PCR was used to analyse the mRNA expression of IRF4 in DC 

post maturation with [10ng/ml] and PGE2 [1μm]. The mean ± SD of quadruplicate samples 

within experiment **=p<0.01. This figure is representative of 6 independent experiments. 
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Figure 4.3.2C: IFN-γ regulates the expression of IL-4 receptor. IL-4 receptor expression 

was determined by FACS analysis using anti-CD124 24h post treatment with + or - IFNγ 

[500U/ml]   in the presence of IL-4 [500U/ml] and GMCSF [1000U/ml]. Solid black line defined 

the isotype control, whilst the solid red histogram shows the test mAb. Representative of 3 

independent experiments. 
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4.3.3 IFNγ-DC induce T-cell hyporesponsiveness that is associated with a 
reduction of IL-2 and IFN-γ 

 
The stimulatory capacity of rapidly generated DC to induce T-cell proliferation was measured in 

primary MLRs.  IFNγ-DC significantly inhibited the proliferation of allogeneic T-cells by 71% at 

1:10, 89% at 1:100 and 95% at 1:1000 DC to T-cell ratios (Figure 4.3.3A). Analysis of 

supernatants demonstrated that T-cell co-cultures with UT-DC contained significantly greater 

quantities of IFN-γ (UT-DC: 2300pg/ml vs IFNγ-DC: 240pg/ml, p=0.003) and IL-2 (UT-DC: 

40pg/ml vs IFNγ-DC: 20pg/ml, p=0.02) compared to IFNγ-DC (Figure 4.3.3B).  

 
 
 

4.3.4 IFNγ-DC promote the generation of antigen-specific T-regulatory cells 

 
T-cells from a primary MLR were assayed for the enumeration of Tregs. IFNγ-DC increased the 

frequency of Foxp3Hi CD4+CD25+ T-cells from 7% by UT-DC to 17% by IFNγ-DC (Figure 

4.3.4A). When IFNγ-DC primed T-cells were co-cultured with naïve T-cells at varying ratios, T-

cell proliferation was suppressed at a 1:1 and 1:2 ratio, by 70% and 49% respectively (Figure 

4.3.4B). Moreover at a 1:1 ratio, when stimulated instead with an irrelevant 3rd party donor DC, 

there was a significant increase in proliferation compared to naïve T-cell alone by 30% 

(p=0.0004) indicating that IFNγ-DC generated T-regs were antigen specific in their suppressive 

function.  
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Figure 4.3.3A: IFNγ-DC induce T-cell hyporesponsiveness. Human monocytes were treated 

with IFN-γ (IFNγ-DC) or cultured in the absence of IFN-γ (UT-DC) for 24h in the presence of IL-

4 and GMCSF, then matured with TNF-α [10ng/ml] and PGE2 [1μm] for another 24h. Nylon 

wool T-cells (1x105) were incubated with DC, at a DC to T cell ratio of 1:10, 1:100 and 1:1000 

for 5 days. Proliferation was determined by [3H] thymidine incorporation (CPM). The mean ± 

SD ***=p<0.001 (This figure is representative of 10 independent experiments).  

 
 
 

*** 

 

*** 
*** 



 138 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.3B: IFN-γ modulated DC inhibit the production of IL-2 and IFN-γ. DC were co-

cultured with purified T cells at 1:10 stimulator to responder ratios for 5 days. Supernatants 

from co-cultures were harvested and analysed by cytometric bead array for the production of 

IL-2 (i), IFN-γ (ii), IL-4 (iii) and IL-10 (iiii). The mean ± SD *p<0.02, NS= Not Significant. 

Representative of 4 independent experiments. 

 
 

* ** 
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Figure 4.3.4A: IFNγ-DC promote the generation of antigen-specific Tregs. A, DC were co-

cultured with CD3 T-cells for 5 days at a 1:10 DC to T-cell ratio and then stained for surface 

expression of CD4, CD25 and intracellular expression of Foxp3. Cells were gated for 

CD4+CD25+Foxp3HI population. Samples were analysed by flow cytometry. B shows the 

percentage of positive cells for CD4+CD25+Foxp3HI population (Mean ± SD of 4 independent 

experiments).*=p<0.05 

A 

* 



 140 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.4B: IFNγ-DC primed T-cells are suppressive and antigen-specific Tregs. IFNγ-

DC primed T-cells were isolated from primary MLR and co-cultured with unprimed CD4+ T-cells 

at varying ratios of 1 naïve (remained constant at 103 per well) to 1 primed (1:1), 1:0.5, 1:0.25 

or 1:0.125 and stimulated with UT-DC. In addition, at the 1:1 naive to primed T-cell co-cultures 

an irrelevant 3rd party DC was also used to determine the antigen specificity of Tregs. Cells 

were cultured for 5 days and proliferation was determined by [3H] thymidine incorporation 

(CPM). Mean ± SD ***=p<0.001, ****=p<0.0001, NS=p>0.05. This figure is representative of 4 

independent experiments 

**** 

**** 

NS 

*** 

**** 
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4.3.5 Humanised NOD-SCID mouse model of islet transplantation failed to show 

significant differences between UT-DC and IFNγ-DC in vivo 

 
STZ dosages were batch tested, using a single dose range from 170-200mg/kg to determine 

the optimal dose (see appendix C). The STZ dose of 180mg/kg was chosen as it stably 

induced diabetes in 70% of animals tested, with the least amount of morbidity and a dose 

which has been successfully used by other groups [294]. Diabetes was established by 

hyperglycaemia (3 consecutive readings of >16.6 mmol/L), polyuria and weight loss. Isolated 

human islets of more then 80% purity and high viability as determined by dithizone staining 

(note all preparations used were of clinical grade, which were not used for human transplant 

due to insufficient numbers) were transplanted under the left kidney capsule of NOD-SCID 

mice (3000IEQ), which resulted in the reversal of the hyperglycaemic state to normal BGL. DC 

were propagated from donor-derived monocytes, on the day of pancreas procurement, 

approximately 100ml of donor blood resulted in the production of 6-7million donor monocyte 

derived-DC.   The following day post transplantation, PBMNC from allogeneic donor were 

isolated and mixed at 1:100 DC to PBMNC ratio and administered via IP to transplanted mice. 

BGL were recorded on daily basis post transplantation. As demonstrated in figure 4.3.5A, from 

the 3 treatment groups there was no significant difference in BGL readings. Suggesting that 

graft function was similar between the groups, even 21 days post challenge. Plasma serum 

was taken from humanly killed mice and samples were analysed for c-peptide levels, a by-

product of insulin production (Figure 4.3.5B). Although the mean value for the IFNγ-DC treated 

group was 10 and 20% higher than the mean value of UT-DC and PBMNC alone controls 

respectively, it failed to show significance (p=0.988 as determined by Kruskal-Wallis non-

parametric test).   
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Days Post Transplantation 

 

 

Figure 4.3.5A:  Allogeneic challenge did not reverse euglycaemia 21 days post 

transplant. NOD-SCID mice were rendered diabetic by 180mg/kg of STZ via IP. Diabetic mice 

were transplanted with 3000IEQ of human islets under the kidney capsule. One day post 

transplant mice were challenged with allogeneic PBMNC and reconstituted with donor DC at a 

DC to PBMNC ratio of 1 to 100 via IP. Blood glucose levels were taken daily for 21 days post 

transplant.  (±SD of daily BGL of mice within treatment group).  Where n= number of mice per 

group.  
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Figure 4.3.5B: On average IFNγ-DC treated mice had improved C-peptide serum levels 

but it failed to show significance. NOD-SCID mice were rendered diabetic by 180mg/kg of 

STZ via IP. Diabetic mice were transplanted with 3000IEQ of human islets under the kidney 

capsule. One day post transplant mice were challenged with allogeneic PBMNC. Plasma 

samples were isolated from blood samples and were analysed for C-peptide concentration, all 

results were tabulated in A. B, column graph of C-peptide serum levels mean ± SD of c-peptide 

level within treatment group. PBMNC (n=2), UT-DC (n=6) and IFNγ-DC (n=5). NS = no 

significance, 0.989 (p>0.05) as determined by Kruskal-Wallis non-parameteric test.  
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4.3.6 Human PBMNC engraftment evident in spleen and at graft site 

 

Spleen from transplanted mice was stained with anti-human CD3-FITC antibody to detect 

PBMNC engraftment. Spleen sections from all treatment groups demonstrated the presence of 

human CD3+ cells in the spleen (Figure 4.3.6A), of allo-challenged mice. Messenger RNA 

analysis of islet allograft by real-time PCR showed the presence of human CD8 and CD4 gene 

expression, indicative of T-cell infiltration of the graft (Figure 4.3.6B). Expression of these 

genes, varied considerably between animals. At day 21 post transplantation, mouse 166 (+UT-

DC) showed significantly higher CD4 expression compared to 163 (+IFNγ-DC), whilst animal 

165 (+UT-DC) did not. However 166 (+UT-DC) and 165 (+UT-DC) both had significantly higher 

CD8 expression compared to IFNγ-DC treated mouse 163 (Figure 4.3.6B).  Day 30 post 

transplantation,   there was no significant differences in the gene expression of CD4 and CD8 

between mouse 116 (+UT-DC) and 115 (+IFNγ-DC) or 117 (+UT-DC) and 114 (+IFNγ-DC). 

The gene expression of Th1 cytokine IFN-γ and IL-2 were also examined (Figure 4.3.6 C). Both 

genes were present at day 21, where IFN-γ was significantly higher in mouse 166 and 165 

(+UT-DC) compared to 163 (+IFNγ-DC). However at day 30 no IL-2 gene expression was 

observed, whilst contradictory to day 21 results mouse 115 (+IFNγ-DC) had significantly higher 

IFN-γ expression compared to 114 (+IFNγ-DC) and 117 (+UT-DC).  
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Figure 4.3.6A: Human CD3 positive cells found in the spleen of PBMNC reconstituted 

NOD-SCID mice. NOD-SCID mice were rendered diabetic by 180mg/kg of STZ via IP. Diabetic 

mice were transplanted with 3000IEQ of human islets under the kidney capsule. One day post 

transplant mice were challenged with allogeneic PBMNC and reconstituted with donor DC at a 

DC to PBMNC ratio of 1 to 100 via IP. Mice were sacrificed 30 days post transplantation and 

the transplanted kidney was snap frozen in OCT. Frozen sections of spleen transplanted mice 

were collected and stained with anti-human CD3-FITC conjugated mAb and DAPI for nucleus 

staining. Isotype control used as a negative control.  
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Figure 4.3.6B: Human CD4 and CD8 gene expression found at islet allograft site. NOD-

SCID mice were rendered diabetic by 180mg/kg of STZ via IP. Diabetic mice were 

transplanted with 3000IEQ of human islets under the kidney capsule. One day post transplant 

mice were challenged with allogeneic PBMNC and reconstituted with donor DC at a DC to 

PBMNC ratio of 1 to 100 via IP. Mice were sacrificed either 21 days post transplantation or 30 

days post transplantation and the transplanted kidney was snap frozen in OCT. Sections of 

islet allograft were collected and RNA was extracted and reverse transcribed. Taqman primers 

were used to detect the expression of human CD4 and CD8 by quantitative real-time PCR. 

Untreated /Un-transplanted control was used as a comparative control. HPRT1 was used as a 

house keeping gene. Mean ± SD of quadruplicate of sample **=p<0.01, ***=p<0.001, 

****=p<0.0001, NS=p>0.05. 
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Figure 4.3.6C: Human proinflammatory cytokine gene expression observed at islet 

allograft site. NOD-SCID mice were rendered diabetic by 180mg/kg of STZ via IP. Diabetic 

mice were transplanted with 3000IEQ of human islets under the kidney capsule. One day post 

transplant mice were challenged with allogeneic PBMNC and reconstituted with donor DC at a 

DC to PBMNC ratio of 1 to 100 via IP. Mice were sacrificed either 21 days post transplantation 

or 30 days post transplantation and the transplanted kidney was snap frozen in OCT. Sections 

of islet allograft were collected and RNA was extracted and reverse transcribed. Taqman 

primers were used to detect the expression of human IFN-γ and IL-2 by quantitative real-time 

PCR. Untreated /Un-transplanted control was used as a comparative control. HPRT1 was used 

as a house keeping gene (Mean ± SD of quadruplicate of sample). *=p<0.05, NS= No 

Significance. 
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4.4 DISCUSSION 

 
The toxicities inherent in modern immunosuppressive therapy has prompted efforts to develop 

novel drug free ways to manipulate or condition the immune system to promote allograft 

acceptance or tolerance. DC are a prime cell for manipulation through their unique ability to 

dampen immune responses and their known role in maintenance of self tolerance. For living 

donor transplantation, conventional 7 day protocols to generate DC may be used; however, for 

deceased organ donor transplants this is clearly not practical, in particular in the setting of islet 

transplantation.  

 

In chapter 3 the immunomodulatory role of IFN-γ using a standard 7-day protocol was 

established. It was demonstrated that IFN-γ modulated monocyte-derived DC have a reduced 

capacity to induce T-cell proliferation. These DC featured a maturation arrested phenotype with 

increased expression of inhibitory molecules [156].  IFN-γ released in an allogeneic MLR, has 

also been previously shown to play a key role in promoting the generation of tolerogenic 

dendritic cells (Tol-DC) [295]. 

 

In this chapter the mechanism of IFN-γ modulated DC to suppress T cell responses was 

investigated in addition to the development a short-term DC protocol to promote the generation 

of maturation arrested Tol-DC in 48 hours. Rapidly generated IFNγ-DC express DC specific 

marker c-type lectin, CD209 (DC-SIGN) and HLA-DR, but have reduced CD83 and B7 

molecule expression (Figure 4.3.1A). In 1995 CD83 was characterised as a maturation marker 

for DC [296]. Early studies demonstrated that herpes simplex virus type 1 infected  iDC failed to 

induce the expression of CD83 during maturation without affecting the expression of CD80 and 

CD86, resulting in a poor capacity to stimulate T-cells. This was the first evidence to suggest 

that CD83 is essential in enhancing T-cell activation [234].   More recently the function of CD83 
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was further investigated, with the aid of siRNA knock down of CD83. Confirming further that 

CD83 functions as an enhancer of T-cell activation [235]. The inhibition of CD83 in IFNγ-DC 

therefore is an important factor contributing to their poor stimulatory capacity.  

Mechanistically, IFN-γ reduced the expression NF-κB transcription factor RelB, which 

failed to co-localise into the nucleus of monocytes, this correlated with reduced RelB gene 

expression (Figure 4.3.1B). The nuclear translocation of RelB is a known hallmark of DC 

maturation [246]. The importance of the NF-κB pathway in DC development was also shown in 

knockout mice lacking components of NF-κB, where these mice failed to generate mature DC 

[297]. NF-κB transcription factors are known to interact with κB sites in the regulatory region of 

target genes that control the expression of MHC class II, CD80, CD86 and CD40. [247, 248]. In 

addition, NF-κB is known to regulate the expression of CD83 [249].  Thus the down regulation 

of positive costimulatory molecules including CD83 seen in IFNγ-DC may be a downstream 

effect of the inhibition of RelB expression and nuclear translocation. Moreover, studies using 

maturation resistant donor-derived RelB silenced DC, functionally induce antigen specific 

tolerance in vivo, thus prolonging murine heart allotransplantation [151]. Others have also 

reported the blocking of NF-κB using pharmacological agents, such as proteasome inhibitor 

PSI, LF 15-0195, aspirin, N-acetyl-cystine, cyclosporine and tacrolimus, which subsequently 

inhibit DC maturation [150, 298-301]. DC maturation arrest evident in IFNγ-DC was 

accompanied with low production of biologically active IL-12p70 secretion and IL12p40 gene 

expression (Figure 4.3.1C). Early administration of IFN-γ did not interfere with the ability of 

IFNγ-DC to terminally differentiate, subsequently remained maturation arrested and for positive 

for DC-SIGN 12 days post wash-out period of cytokines (Figure 4.3.1D). 

 

The previously reported antagonist effects of IFN-γ on IL-4 were also observed by this study. 

IFNγ-DC had significantly reduced STAT-6 phosphorylation compared to UT-DC (Figure 
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4.3.2A). This is consistent with previous observations [236], showing that IFN-γ treatment of 

monocytes also reduced IL-4 activation of STAT-6, by suppressing the expression of the IL-4 

receptor [236]. In this chapter it was also found that rapidly generated IFNγ-DC in the presence 

of IL-4 and GM-CSF also resulted in the downstream inhibition of the IL-4α receptor (Figure 

4.3.2C). Transcription factor Interferon Regulatory Factor 4 (IRF4) a molecule also implicated in 

DC development and maturation was also down regulated by the inhibition of STAT-6 

phosphorylation (Figure 4.3.2B). The IRF4 promoter region has a STAT-6 responsive element 

that specifically up-regulates IRF4 in response to IL-4. [237]. The poor expression of IRF4 may 

contribute to the lack of responsiveness of IFNγ-DC to mature. IRF4 also binds to transcription 

factor PU.1 to negatively regulate the expression of ILT4. Reduced expression of IRF4 may 

therefore contribute to sustained expression of ILT4 (Figure 1) [238]. As discussed in chapter 3, 

the signalling through these molecules is also known to inhibit NF-κB transcription, thus may 

also contribute to the reduced expression of RelB in these rapidly generated IFNγ-DC. Studies 

have directly demonstrated that the up-regulation of ILT3 and ILT4 is associated with the 

inhibition of NF-κB that render human monocytes and DC, tolerogenic [243].  

 

The T-cell hyporesponsiveness induced by IFNγ-DC (Figure 4.3.3A) is due to reduced 

expression of positive co-stimulatory molecules and proinflammatory cytokines, that render 

IFNγ-DC poor T-cell stimulators, a characteristic that is associated with promoting a tolerogenic 

response [302].  Reduced concentration of IL-2 and IFN-γ in IFNγ-DC co-cultures (Figure 

4.3.3B) is believed to contribute to the T-cell hyporesponsiveness. The ability of the IFNγ-DC 

generated by the fast-DC protocol however appeared to have a reduced capacity to stimulate 

T-cells compared to their equivalent generated by the standard DC protocol (figure 3.32A). This 

variability may be a reflection of differences of ILT4 expression, for instance 22% of standard 

IFNγ-DC expressed ILT4 verses 35% of fast-DC generated IFNγ-DC. T-cell phenotypes from 
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primary MLR were also examined by FACS (Figure 4.3.4A). IFNγ-DC promoted a higher 

frequency of CD4+CD25+FOXP3HI T-cells compared to UT-DC. Miyara et al. demonstrated that 

in humans the Foxp3HI subpopulation of CD4+CD25+ T-cells are highly suppressive, compared 

to the Foxp3lo subpopulation, which were characterised as cytokine producing effector T-cells. 

Moreover, IFNγ-DC primed T-cells were shown to be antigen specific in their ability to 

functionally suppress the proliferation of naive T-cells (Figure 4.3.4B). However it was observed 

in this assay that at 1:0.125 (Naïve: IFNγ-DC primed) T-cell ratio there was a significant 

increase in proliferation compared to the 1:0 ratio. This suggests that possibly the IFNy-DC 

primed T-cells could be proliferating or may be acting as T-APC, which arises from a 

phenomenon known as „trogocitosis‟ when DC share molecules such as HLA-DR to T-cells via 

lipid rafts allowing them to act as APC [63]. It may therefore be necessary to further 

characterise these IFNγ-DC primed T-cells by firstly placing them into a suppression assay 

where they are labelled with PKH and co-cultured with CFSE-labelled naïve T-cells, to 

discriminate between the proliferation of primed T-cells and naïve T-cells. Secondly, IFNγ-DC 

primed T-cells should be analysed for DC surface molecules such as HLA-DR, to determine 

their ability to act as T-APC. Never the less this non-specific proliferation was not seen at high 

ratios (1:1), where there was 8 times more primed T-cells per well compared to the 1:0.125. 

Suggesting that the suppression of the naïve T-cells was specific, and that the proliferation of 

primed T-cells to be less likely.   

 

In order to test the in vivo properties of IFNγ-DC, a surrogate NOD-SCID chimeric model of 

islet transplantation was developed. Although there are several models of islet transplantation 

that exist with human islets, including transplantation of islets into the spleen and bone marrow 

[303, 304], none of these models have used donor-derived DC, which adds to the complexity of 

the model. Firstly, a large amount of blood (100ml) is required from the donor which is obtained 
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at the time organ procurement (with research consent from the families of the donor and 

overseen by the human ethics committee at the Royal Adelaide Hospital), to generate the 

donor-derived DC. From the time that the blood became available it was processed and DC 

were differentiated for 24 hr, during the time of islet isolation. The pancreas was shipped to 

isolating centres either in Sydney (Westmead Hospital) or Melbourne (St Vincent‟s Hospital), 

which form part of the Australian Islet consortium. The following day the islets were shipped 

back to Adelaide and transplanted as soon as possible into previously induced diabetic mice 

(note diabetic mice were stably diabetic and maintained using insulin pellets or injections), 

concurrently the donor-DC were matured for another 24hrs (with the approval of animal ethics 

committees of the University of Adelaide and the IMVS). Day post islet transplantation, PBMNC 

and DC were administered to transplanted mice. The procedure was logistically difficult to 

achieve and therefore was limited to the use of only South Australian donors.  This NOD-SCID 

model was based on previously developed human-skin mouse transplant model, previously 

published by our laboratory, which also used donor-derived DC [305]. Nevertheless a total of 

14 mice were transplanted for this study, 6 of which were treated with control DC (UT-DC), 6 

with IFNγ-DC and 2 which were challenged with PBMNC alone no DC.     

 

 All treatment groups failed to demonstrate allograft rejection, as defined by the reversal of 

euglycaemia (Figure 4.3.5A and 4.3.5B).  However mice spleen and the islet graft site 

demonstrated evidence of some PBMNC engraftment, with human CD3 protein expression 

(Figure 4.3.6A) and CD4, CD8 T–cell markers (Figure 4.3.6B) and Th1 proinflammatory gene 

expression (Figure 4.3.6C) in the spleen and graft site respectively.  However, the human 

PBMNC engraftment was insufficient to cause complete islet graft rejection, a problem 

previously experienced in studies using the NOD-SCID humanised mouse model [306-308] 

[309]. Although anti-asialo 1 was used to inhibit the reported residual activity of NK activity in 
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the NOD-SCID mouse [310] [311], it may have not been sufficient to prevent NK cytotoxicity, 

thus limiting the potential of PBMNC and DC to engraft. Poor DC engraftment may have 

contributed to defective DC/T-cell interactions, resulting incomplete allograft rejection. It has 

been previous reported that human myeloid cells have a reduced capacity to engraft into 

immuno-compromised hosts, which limits the activation of T-cells by DC, rendering them 

anergic and ineffective in mediating graft rejection [310, 312, 313]. Secondly the DC to PBMNC 

ratio of 1:100 may have been insignificant to mediate a robust rejection response. Thus a 1:10 

ratio may have given a better response, but the ratio in this study was limited by the number of 

DC generated from donor peripheral blood (approximately 6-7 million DC per 100ml of blood) 

Furthermore the dose of human islets of 3000IEQ is substantially larger than the constitutive 

islet mass found in mice, which also may have influenced incomplete graft rejection as seen at 

days 21 and 30. However incomplete rejection has also been reported in human skin transplant 

models, where rejection was detected post-facto by histology [306-308]. Therefore incomplete 

rejection, is more likely to be related to the strain of NOD-SCID mice, as described recently by 

King et al in 2008. In this study the NOD-SCID or otherwise known as the ND/LtSz-Prkdcscid 

was compared to the NOD.cg-PrkdcscidIL2rgtmWjl/SzJ (NOD-SCID IL2rynull). NOD-SCID IL2rynull 

has a targeted mutation in the IL-2 receptor gamma chain, and in comparison to the common 

NOD-SCID the NOD-SCID IL2rynull was shown to be a superior for the use in islet 

transplantation. This was evidenced by better PBMNC engraftment, directly related to the fact 

that these mice do not develop NK cells and do not spontaneously start producing T- and B-

cells at an older age. Furthermore this model was able to demonstrate robust rejection of 

human islet, which is believed to be related to the more physiological CD4:CD8 T-cell ratio 

which was only achieved by the NOD-SCID IL2rynull. Finally this study also demonstrated that 

I.V route of administration also improved PBMNC engraftment [303]. Moreover, studies have 

also shown that PBMNC, administered by I.P take 7-14 days to drain from the peritoneal cavity 
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and into circulation [314, 315]. Accordingly the I.P route of administration may also be a limiting 

factor, which affected complete islet allograft rejection. Another limiting factor associated with 

this model relates to the fact that a nephrectomy of the transplanted kidney was not performed. 

A nephrectomy or staining of the native pancreas of the transplanted mice was necessary to 

determine the source of insulin regulating the BGL, accordingly to exclude the regeneration of 

the native pancreas and thus production of mouse insulin. The re-generation of the native 

pancreas indeed may have affected BGL results in figure 4.3.5A where all mice exhibited 

normal BGL. However in figure 4.3.5B 3 mice had low detectable levels of c-peptide, which 

may have not been enough to regulate BGL at the levels seen in figure 4.3.5A.  

  

In summary, the observations of IFN-γ mediated DC maturational arrest described in chapter 3 

were further investigated in this chapter by using a DC protocol which generates DC in 48h. It 

was demonstrated that early exposure of CD14+ monocytes to IFN-γ inhibits efficient 

phosphorylation of IL-4 activated STAT-6 inhibiting the expression of IRF4 and RelB 

expression. Subsequently, arresting DC maturation and promoting a tolerogenic phenotype that 

resulted in the generation of antigen-specific Tregs. Although it failed to show statistical 

significance, IFNγ-DC in vivo trends towards improved C-peptide levels compared to the other 

2 control groups.  However the model failed to demonstrate overt allograft rejection as 

evidenced by hyperglycaemia, which makes it difficult to be conclusive about the role of IFNγ-

DC in vivo. IP route of administration and problems associated with human PBMNC 

engraftment in the NOD-SCID mouse, are confounding factors which have limited the model to 

demonstrate complete allograft rejection. Therefore in future, the more applicable NOD-SCID 

IL2rynull mouse should be used and PBMNC should be administered by I.V to improve human 

cell engraftment and prevent inter animal variability. Overall, the ability to generate Tol-DC in a 



 155 

short timeframe is fundamental in the ability for translational DC cellular therapy to be 

transferred into the clinic for the treatment of allogeneic transplant rejection. 
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CHAPTER 5 - Adenoviral mediated 
expression of PD-L2 in human islets 
maintains stable in vitro function and 
promotes signalling through 
inhibitory PD-1 T-cell receptor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 157 

5.1 Introduction 

 
 
Type 1 diabetes mellitus is a debilitating autoimmune disorder, which is characterised by the 

destruction of insulin producing pancreatic beta-cells, resulting in insulin deficiency and 

hyperglycaemia. T1D is a condition commonly diagnosed in children, but which can develop at 

any age. [316]. Insulin deficiency promotes increased gluconeogenesis and lipolysis resulting in 

elevated levels of blood fatty acids and ketone bodies, that can cause hyperglycaemic comas 

and death [317]. Prolonged episodes of hyperglycaemia have been associated with 

cardiovascular complications, renal disease, diabetic retinopathy, and peripheral neuropathy 

[318]. The current standard therapy for T1D involves the use of lifelong exogenous insulin 

replacement therapy, which is administered either multiple daily injections or by insulin pump 

[319]. However this approach is limited by the inability to achieve physiological blood glucose 

levels. Poor blood glucose control leaves patients vulnerable to the development of 

complications including hypo-glycaemia episodes, which are life threatening and severely 

compromise the life-style of patients [320]. The destruction of beta-cells is mediated by an 

array of cellular immune responses, which involves the coordinated interaction of CD4+ and 

CD8+ T-cells, B lymphocytes, dendritic cells and macrophages, which infiltrate islets [321-324]  

 

CD8+ cytotoxic T-cells (CTL) are known to play a key role in the pathogenesis of T1D. CD8+ T-

cells are the dominant cell type found infiltrating the pancreas of T1D patients and pancreatic 

grafts [325-330]. NOD mice have been instrumental in demonstrating the role of CD8+ T-cell 

mediated development of T1D. In particular mice lacking function of CD8+ T-cells fail to 

develop insulitis or diabetes [331-334]. Adoptive transfer studies have demonstrated that CD8+ 

T-cell clones isolated from NOD mice transfer T1D in the absence of CD4+ T-cells [335-337]. 

CD8+ T cells mediate the killing of their target cells by direct cell contact. They use cytolytic 

granules that contain membrane –disrupting proteins perforin and granzyme, a serine protease 
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family member [338, 339]. In vitro studies have demonstrated that granule-mediated 

cytotoxicity is the dominant mechanism of beta-cell destruction [340-342]. CD4+ T-cells also 

play a crucial part in T1D development. In mouse models the disruption of the CD4+ T-cell 

subset, MHC or MHC II transactivator, results in protection against insulitis and diabetes [331, 

343, 344]. However the reduced insulitis seen in these mouse models suggests that in the 

absence of CD4+ T-cells, CD8 T-cells fail to become efficiently activated.   This autoimmune 

response in T1D patients can go unnoticed for many years, as the beta-cell destruction is 

progressive and asymptomatic. When symptoms do arise, it‟s not uncommon to find more than 

80% of beta-cells destroyed at diagnosis [4], resulting in the clinical manifestation of insulin 

deficiency.  Islet transplantation is an emerging therapy, which aims to replace insulin 

producing beta-cells and ameliorate the need for daily insulin injections. 

 

Islet transplantation is a potentially curative approach to treating T1D, as it may improve 

metabolic control of blood glucose levels to an extent, which cannot be achieved with insulin 

injections or pumps. However patients have to replace the use of insulin for the use of 

immunosuppressive agents, which are associated with severe side-effects (as discussed in 

chapter 1 section 1.2.3) including the toxicity of islets. With the adoption of the Edmonton 

protocol in 2000, the success of islet transplantation has dramatically improved, with several 

groups reporting insulin independence and normalisation of blood glucose levels [22, 23, 345-

347]. However, long-term insulin-independence frequently fails to persist 5 years post 

transplantation [348, 349]. A variety of factors contribute to the short and long-term loss of islet 

graft function. Islet transplantation is a form of cell transplantation, which in comparison to solid 

whole organ transplantation, isolated islets have extended ischemia times. Furthermore, during 

the isolation process islets undergo mechanical and enzymatic digestion to separate them from 

surrounding tissue in the pancreas, which compromises their integrity [350, 351].  Islets are 
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infused into the portal vein of the liver, which is not the natural location of islet tissue, where as 

many as 50-70% if infused islets are lost immediately post-transplantation [352]. Subsequently 

remaining islets are extremely vulnerable to the alloimmune response and to the autoimmune 

processes that initiated the original disease [348].  

 

Shortly after transplantation islets come into direct contact to blood and its elements including 

monocytes, macrophages, platelets and complement proteins, which promote a thrombotic / 

inflammatory reaction known as „Instant blood-mediated inflammatory reaction (IBMIR). 

Accordingly IBMIR is characterized by the rapid (within 5 minutes) activation and binding of 

platelets, activation of the coagulation and complement systems, with the rapid infiltration of 

leukocytes cells into the islet graft [111, 112]. This reaction is primarily driven by the 

inflammatory factors that are endogenously produced by human islets such as tissue factor, 

IL1-β, IL-8, Macrophage Inflammatory Protein-2, Migration Inhibitory Factor and Monocyte 

Chemoattractant Protein-1[113, 114]. Long-term allograft rejection of islets involves the 

activation of the adaptive immune response. The specific cytotoxic mechanisms which cause 

islet loss are believed to be similar of those involved in autoimmune-immune mediated beta-cell 

destruction as described above. Accordingly antigen presenting cells transferred with islet graft 

also play a role in activating the adaptive immune response. In order to overcome this barrier of 

allograft rejection, islet transplant recipients are subjected to a lifetime of immunosuppressive 

drugs.  

 

Current protocols of immunosuppressive therapies for islet transplantation include a 

glucocorticoid-free regimen that consist of sirolimus, tacrolimus and daclizumab [22]. Although, 

„islet friendly‟ when compared to other immunosuppressive regimens, these drugs are still 

cytotoxic to transplanted islets [353].  In vitro studies have demonstrated that treatment of islets 
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with tacrolimus and sirolimus inhibits the insulin secretory capacity of islets and increases the 

mitochondrial release of pro-apoptotic factors [354]. The University of Miami is currently 

running a phase II trial using a steroid and calcinerine free protocol to try and minimise the side 

effects associated with the use of sirolimus (www.citregistry.org – NCT 00315627). Studies 

have also demonstrated that that in addition to the Edmonton protocol the use of etanercept 

(TNF-α inhibitor) induction in combination with extenatide ( a glucagon-like peptide 1 

analogue), reduce the number of islets required for transplantation [355]. An approach, which is 

also being used in phase III clinical trials at the University of Illinois (www.citregistry.org – 

NCT00679042). However, the systemic effect and long-term use of these drugs is associated 

with increased susceptibility of recipients to opportunistic infections, development of 

malignancies and cardiac complications [356]. Accordingly, there is a need to develop novel 

therapies that target the local environment of the graft to induce allograft acceptance without 

the use immunosuppressive regimens, which also targets the persistent autoimmunity of T1D.  

 

Gene therapy is a novel therapeutic approach, which involves the introduction of therapeutic 

molecules to cells and tissues to specifically target diseases, such as allograft rejection [159]. 

There are 4 major species of viral vectors that are commonly used in gene therapy, which 

include adenoviruses (AdV), adeno-associated viruses, herpes simplex virus and retroviruses 

(including lenti-viruses). AdV-based vectors are among the most commonly used vectors 

studied in clinical trials, where its efficacy as a vector has been extensively examined [357-

360]. AdV vectors originate from the human serotype 2 and 5 AdV species. In humans the wild-

type AdV infection manifests itself as a mild respiratory disease, which is otherwise known as 

„the common cold‟ [361]. Modifications to the virus via the removal of replication genes (E1-, 

E3- deleted), has enabled it to be applicable as a gene therapy vector. AdV vectors are known 

to transduce both dividing and non dividing cells (including islets) with high efficiency for 
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transient gene expression [362, 363]. Recombinant vectors containing the gene of interest can 

be produced in high titres and the vector itself does not integrate into the host‟s chromosomes, 

avoiding the risk of insertional mutagenesis [364]. AdV vectors require the presence 

coxsackie/adenovirus receptor (CAR), heparin sulphate, αVβ5 integin and adherin to enter the 

target cell [365, 366]. Ex vivo modification of human islets with AdV vectors, has been shown to 

be effective in promoting transgene expression without affecting their viability or function, when 

compared to others vectors [367-370]. 

 

In this chapter, an AdV vector was used to over-express the immunomodulatory molecule 

programmed cell death ligand 2 (PD-L2). PD-L2 is one of two ligands that bind to programmed 

cell death 1 (PD-1). PD-1 is an inhibitory receptor expressed by activated T-cells and B-cells 

and forms part of the immunoglobulin superfamily. As a monomeric protein, it recruits SHP-1 

and SHP-2 tyrosine phosphatases that bind to its cytoplasmic immunoreceptor tyrosine-based 

switch motif to mediate its inhibitory function. Binding of PD-1 during TCR signalling blocks T-

cell proliferation, cytokine production and cytolytic T-cell function and also impairs T-cell 

survival as described in chapter 1 (section 1.5). PD-L1 is the other known ligand for PD-1, it‟s 

widely expressed by hematopoietic and non-hematopoietic cells, including islets. Unlike PD-L1, 

PDL-2 is not expressed by islets and is highly restricted to DC, macrophages, B-cells and 

bone-marrow derived mast cells. PD-L2 also has a 3-fold higher affinity for PD-1 compared to 

PD-L1 and in vitro PD-L2 appears to be the dominant inhibitory ligand in humans. 

 

Therefore, it was hypothesised that the AdV mediated expression of human PD-L2 by human 

islets may promote signalling through inhibitory PD-1 pathway inhibiting T-cell activation and 

thus T-cell mediated immune responses. In order to test this hypothesis two recombinant AdV 

vectors were generated – one encoding a full length transmembrane isoform (AdV-PDL2-FL) 
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and another encoding a soluble isoform (AdV-PDL2-SOL). This chapter demonstrates that AdV 

transduced islets maintain stable in vitro function and are efficiently able to express PD-L2. 

However the main finding of this chapter suggests that soluble PD-L2 may potently suppress 

allogeneic and autoimmune T-cell function, as evidenced by its ability to potently induce PD-1 

T-cell signalling.  
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5.2. METHODS AND MATERIALS 

 

5.2.1 Generation of Adenoviral constructs containing PD-L2 isoforms 

 

PD-L2 isoforms were amplified using primers designed to incorporate EcoR1 and BamH1 (New 

England Biolabs, USA) restriction sites in the forward and reverse primers respectively (for 

primer sequences and PCR conditions refer to appendix A). PD-L2 gene isoforms were 

amplified from cDNA reversed transcribed from DC RNA (see sections 8.1, 8.2 and 9.1 for 

detailed methods). Purified PCR products and pEGFP plasmid were digested with EcoR1 and 

BamH1 to allow directional cloning of the gene of interest into the plasmid, allowing correct 

orientation and fusion to EGFP. Digestion products underwent a ligation and ligated products 

were then transformed into competent TG1-α E.coli. Positive colonies were screened by PCR. 

PD-L2-EGFP isoforms from pEGFP-N1 recombinant plasmids were cloned into CMV-pShuttle 

vector. Recombinant CMV-pshuttle vector underwent homologous recombination with 

pADEasy-1 Vector in BJ5183 E.coli. Basic Local Alignment Search Tool was used align the 

PDL2-FL and PDL2-SOL sequences with all highly similar nucleotides sequence on the NCBI 

database. Please refer to section 11 in chapter 2 for detailed methods on the generation of 

adenoviral constructs. 

 

5.2.2 Transduction of human islets with adenoviral constructs 

 

Human source of islets was obtained from the Australian Islet Consortium from deceased 

organ donors. Islets were isolated at isolating centres St Vincent‟s Institute in Melbourne, 

Victoria and Westmead Hospital, Sydney and shipped to Adelaide. Islets were washed with 

serum free CMRL media and then resuspended in serum free CMRL containing the desired 

viral dilution. Infection volumes for a 24 well and 6 well plate were 0.2ml and 0.5ml respectively. 
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Islets were transduced for 3-4h under serum free conditions at 37°C and 5% atmospheric CO2. 

Then, an equal volume of complete CMRL media containing 20% Albumex 20 (Australian Red 

Cross, Australia) was added per well and incubated for 48h (37°C and 5% CO2), with media 

exchange performed daily.   

 

5.2.3 FACS analysis 

Islets were dissociated as per described in chapter 2 section 2.13.2. Viability of islet cells was 

established by staining with propidium iodide (PI) as per manufacturer‟s instructions 

(Invitrogen, USA). Briefly, islet cells were resuspended with 100µl per tube of islet FACS wash 

(5% albumex 20 in PBS, Azide free) and stained with 2µl of PI per tube (20µg/ml )and placed 

on ice. Cells were analysed on FACS CANTO II (BD Bioscience, USA) within 1 hour of 

staining. Cells were kept on ice at 4°C until analysed.  To detect the expression of PD-L2, islet 

cells were stained with PD-L2 primary mAb (eBioscience, USA) and detected with Goat anti-

mouse IgG-FITC as per described in chapter 2 sections 2.3.2.  

 

 

5.2.4. Western Blot 

Islets were transduced as described in 5.2.2 and cultured at 37°C and 5% CO2. Islets were 

harvested at days 3, 5 and 7 days post viral infection. At each time point islets were washed 

with PBS to minimise the presence of FCS proteins and then lysed with western blot lysis 

buffer (refer to chapter 2 section 2.15). Samples were collected and stored at -80°C. Samples 

for each experiment were thawed at RT and then mixed with 5µl of loading buffer and 2µl of 

reducing agent and run through Invitrogen pre-cast gels as per manufacturer‟s instructions 

(Invitrogen, USA) at 200mV for approximately 45min. A chemiluminescence kit by invitrogen 

(Invitrogen, USA) was used to visualise blot, in brief membrane was incubated with 1:1000 anti-
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mouse horseradish peroxidise (HRP) for 1h at RT and then visualised with kit as per 

manufacturer‟s instructions.  

 

 

5.2.5. Static insulin release assay 

Islets were harvested and washed in low glucose RPMI (2.8mM glucose). Approximately 50IEQ 

of islets were resuspended in 0.6ml low glucose solution (2.8mM glucose).  Half of islet 

suspension (0.3ml) was transferred into 1.3ml of either low glucose solution (2.8mM glucose) 

or high glucose (25mM) solution in 5ml tubes. Islet were mixed well with the glucose solutions 

and incubated with loose lids at 37°C / 5% CO2 incubator for 2 hours. Supernatants were then 

harvested and stored at -80°C prior to further analysis. Collected samples were analysed by 

human insulin ELISA as per manufacturer‟s instructions (Mercodia, Sweden). 

 

5.2.6. Immunohistochemistry 

Islets were spun onto slides using a Shandon cytospin II (Thermo Scientific, USA) and fixed 

with cold acetone for 5min. Acetone fixing was used to quench the EGFP signal. Slides were 

blocked with 3% goat serum in PBS for 30min at RT. Slides were incubated with primary 

mouse-anti PD-L2 (12.5µg/ml) (eBioscience, USA) and guinea pig-anti insulin (1:100 dilution) 

(Millipore, USA) for 2h at RT prior to washing with PBS for 5min. Primary antibodies were 

detected with anti-mouse FITC IgG (1:100 dilution) and anti-guinea pig rhodamine IgG (1:100 

dilution) (Jackson Immuno Research, USA). Slides were incubated with detection secondary 

antibodies for 1h at RT. Slides were washed with PBS for 5 min prior to mounting with DAKO 

mounting media (DAKO, Denmark).  
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5.2.7. IL-2 ELISA  

Human islets were transduced at optimal viral concentrations for 48h. Approximately 10 IEQ 

was co-cultured with hPD-1/mCD28 chimera T cell murine hybridoma (2x104) (kindly supplied 

by Prof. Simon Davis and Dr Sara Morgan - The Weatherall Institute of Molecular Medicine, 

Oxford, UK, http://www.imm.ox.ac.uk/wimm-research/mrc-human-immunology-unit/simon-

davis), per well in a 96 well plate, thus at an approximate 1:1 islet cell to T-cell ratio. 

Supernatants were harvested after 3 days of culture in 37°C / CO2.  Samples were stored at -

80°C prior to analysis. A mouse IL-2 ELISA (as per manufacturer‟s instructions) (eBioscience, 

USA), was used to measure the ability of transduced islets to induce signalling though to see 

how this assay works refer to appendix D.  
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5.3 RESULTS 

 

5.3.1 Cloning of PD-L2 membrane-bound and soluble forms into adenoviral 
vectors 

 

Bioinformatic tools (Primer3) were used to design primers to amplify either the full length 

truncated gene or a truncated isoform of PD-L2. Primers were designed for soluble PD-L2 to 

incorporate a stop codon within the transmembrane section of the gene sequence. Directional 

cloning was used to insert the gene of interest into the pEGFP-N1 vector. EcoR1 and BamH1 

restriction sites were incorporated into the forward and reverse primers respectively for each 

isoform.  As shown in figure 5.3.1B both the PD-L2-FL and PDL2-SOL were successfully 

amplified from human DC. These PCR products were digested and ligated into the pEGFP-N1 

plasmid as shown in figure 5.3.1A to allow fusion EGFP sequence. Recombinant plasmids 

were amplified and selected on the basis of kanamycin-neomycin resistance. Positive colonies 

were then screened by PCR for PDL2 expression (figure 5.3.1B).  Amplified recombinant 

pEGFP-N1 plasmids were digested and ligated into CMV p-Shuttle vector as depicted in figure 

5.3.1C.  Recombinant p-Shuttle vectors were transferred into competent TG1-α E. coli. Positive 

colonies were selected based on their kanamycin resistance. These colonies were also 

screened by PCR for PDL2 expression (Figure 5.3.1C). Purified recombinant p-Shuttle vectors 

were electroporated into BJ5183 containing pADEasy-1 vector. This allowed for homologous 

recombination between the p-Shuttle and pAdEasy vector (Figure 5.3.1D).  Recombinant 

pShuttle vectors were DNA sequenced to confirm the correct sequence of PD-L2, prior to 

homologous recombination. Basic Local Alignment Search Tool enabled the alignment of 

PDL2-FL and PDL2-SOL sequences with all highly similar sequence on the NCBI database 

(Figure 5.3.1D). This search found that the gene cloned into the pShuttle had greater than 98% 

homology with the human PD-L2 molecule (NM_025239.3), this was evident for both PD-L2 

isoforms.  
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Figure 5.3.1A: Pictorial representation of cloning strategy into pEGFP-N1 plasmid, purified 

PCR products and pEGFP plasmid was digested with EcoR1 and BamH1 to allow forced 

cloning of gene of interest into the plasmid, allowing correct orientation and fusion to EGFP. 

Digestion products were ligated and transformed into competent TG1-α Ecoli.  
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Figure 5.3.1B:  PD-L2 isoforms was PCR amplified from DC cDNA and cloned into pEGFP-N1 

vector. (A) RNA was extracted from DC and reverse transcribed into cDNA. PD-L2 isoforms 

were amplified using primers designed to incorporate EcoR1 and BamH1 restriction sites in the 

forward and reverse primers respectively.  (B) Positive colonies were screened by PCR (i) 

showing PDL2-FL and (ii) PDL2-SOL.   
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Figure 5.3.1C: PD-L2-EGFP isoforms from pEGFP-N1 recombinant plasmids were cloned into 

CMV-pShuttle vector. (A) Illustrates schematically the digestion of pEGFP-N1 PDL2 

recombinant plasmid and the CMV-pShuttle vector with compatible RE enzymes to allow forced 

cloning of gene of interest into pShuttle vector. (B) PCR screening of positive colonies for PD-

L2 expression (+ = positive colonies for PD-L2).  

 

A 



 171 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3.1D: CMV-pShuttle vector underwent homologous recombination with pADEasy-1 

Vector. (A) Pictorial of cloning strategy, briefly BJ5183 E.coli containing pAdEasy-1 vector was 

electroporated to allow entry of PD-L2 recombinant pShuttle vector. Prior to homologous 

recombination, PD-L2 recombinant adenoviral constructs were sequenced. (B) Using Basic 

Local Alignment Search Tool the PDL2-FL and PDL2-SOL sequences were aligned with all 

highly similar sequence on the NCBI database of human origin.  

A 
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5.3.2 AdV transduction of human islets does not affect their viability 

 
Isolated human islets were transduced with purified AdV particles with a range of viral titres 

from 103 to 3x103 MOI, based on the assumption that each islet cluster has approximately 1000 

cells. Islets were transduced with AdV for 3-4h in serum free conditions. EGFP was expressed 

by all islet clusters transduced with either the AdV-PDL2-FL construct or AdV Vector blank 

(AdV-VB) 24h post infection (figure 5.3.2 (A). AdV-VB transduced islets were considerably 

brighter under fluorescence compared to the AdV-PDL2-FL. Figure 5.3.2 (B) depicts FACS 

analysis data, which summarises the calculated viabilities of islets cells 48h post transduction. 

Transduction of islets at the highest tested MOI did not affect the viability of islets cells when 

compared to the untreated islets. Accordingly 3x103 was chosen as an optimal dose for islet 

transduction, to achieve maximal transduction efficiency.   

 

 

5.3.3 Transduction of human islets with AdV does not affect their function 

 

Human islets were analysed for function 48h post transduction at the optimal MOI of 3x103, by 

treating transduced islets with low and high concentrations of glucose in the static insulin 

release assay. Supernatants were analysed by ELISA for insulin concentration. The stimulation 

index was calculated as per appendix E. As shown in figure 5.3.3 the ability of transduced islets 

to produce insulin in response to high glucose is not affected by the transduction with 

adenovirus, as the stimulation index was not significantly different from the untreated group 

compared to the AdV treated islets.   
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Figure 5.3.2: Human islets were successfully transduced with AdV vectors without 

significantly affecting viability.  (A) Human islets were transduced with varying MOI ranging 

from 102  -  3x103 and assessed by fluorescent microscopy after 48h (B) Transduced islets 

were harvested 48h post transfection and disaggregated with accutase and stained with PI to 

distinguish live cells from necrotic islet cells. Red dash line defines the viability of untreated 

islet cells. 
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Figure 5.3.3: AdV transduction of human islets does not affect their function to produce 

insulin in response to a high glucose environment. Human islets were transduced at 

optimal MOI (3x103) and harvested 48h post transfection and used in a static insulin release 

assay and compared to islets that were not infected with an AdV. Mean ± SD, NS= No 

Significance.  
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5.3.4 Islets transduced with AdV-PDL2-FL induces surface PD-L2 expression for 
at least 7days 

 

Human islets were dissociated 48h post transduction and analysed by FACS analysis.  AdV-

PDL2-FL induced PD-L2 protein surface expression in 17-19% of islet cells (Figure 5.3.4A), 

which was significantly higher than the expression seen in untreated and AdV-VB transduced 

islets (p<0.03) (Figure 5.3.4A). Immunohistological analysis of transduced islets (Figure 

5.3.4B), showed that AdV-PDL2-FL transduced islets co-expressed insulin and PD-L2. To 

determine the time course of expression of PD-L2 by transduced islets, PD-L2 protein content 

was examined by western blot 3, 5, and 7 days post initial transduction. AdV-VB was used as a 

transduction control. As shown in figure 5.3.4C, PD-L2 protein expression was seen at all time 

points tested, thus expression was sustained for at least 7 days post transduction.  
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Figure 5.3.4A: AdV-PDL2-FL transducted human islets specifically upregulate the 

expression of transmembrane PD-L2. (A) Human islets were transduced at optimal MOI 

(3x103) and harvested 48h post transfection and disaggregated and stained with mAb mouse 

anti-human PD-L2. This primary mAb was detected using anti-mouse IgG-PE. (B) Percentage 

of cells expressing PD-L2 combined from 4 independent experiments. Mean ± SD *=p<0.05, 

NS= No Significance.  
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Figure 5.3.4B: AdV-PDL2-FL transducted human islets co-express insulin and PD-L2. 

Islets were transduced at optimal MOI (3x103) and harvested 48h post transfection. Islets were 

transferred on to slides and stained with insulin (RED) and PDL2 (GREEN).  200x objective.  
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Figure 5.3.4C: AdV-PDL2-FL transducted human islets sustain expression of 

transmembrane PD-L2 up to 7 days post transfection in vitro. Optimally transduced islets 

(MOI 3x103) were harvested 3, 5 and 7 days post transduction. Protein lysates were assessed 

by western blot and visualised using chemiluminescence.   
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5.3.5 PD-L2 proteins expressed by human islets are able to bind PD-1 and induce 
signalling 

The function of the transgenic PD-L2 protein was tested to eliminate any problems associated 

with protein misfolding post transcription. Firstly, PDL2-FL expressed by HEK-293 cells was 

tested by flow cytometry for its ability to bind to a recombinant PD-1Fc protein. PD-L2-FL 

protein induced by AdV-PD-L2 in HEK-293 effectively bound to its receptor PD-1 (Figure 5.3.5), 

with high efficiency, untransduced and AdV-VB transduced controls did not express PD-L2 and 

thus did not bind to PD-1Fc (See APPENDIX H).  To test the efficiency of both PD-L2 isoforms 

to induce signalling after binding, a murine T-cell hybridoma cell line, engineered to express the 

human PD-1 extra-cellular portion fused with murine CD28 was used (kindly supplied by Prof. 

Simon Davis and Dr Sara Morgan - The Weatherall Institute of Molecular Medicine, Oxford, 

UK) Accordingly binding of PD-1 promotes signalling and produces murine IL-2 as a response. 

Transduced islets were co-cultured with PD-1/CD28 T cell hybridoma and supernatants were 

collected for IL-2 analysis by ELISA.  Figure 5.3.5B demonstrates that signalling was 

specifically induced by both PD-L2 isoforms. Full length PD-L2 induced signalling by 20 fold 

compared to untreated or AdV-VB transduced islets. However this was significantly less than 

soluble PD-L2, which induced signalling by 1000 fold. Blocking PD-L2 function with a 

neutralising mAb inhibited the ability of soluble PD-L2 to bind and signal through PD-1, 

demonstrating that signalling was specifically provided by soluble PD-L2.  
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Figure 5.3.5A: PD-L2 molecules induced by AdV-PDL2 are able to physically bind to PD-1 fc 

recombinant protein. Optimally transduced HEK-293 were harvested 24h post transduction and 

were tested for their ability to bind to recombinant PD-1fc by flow cytometry. Representative of 

3 independent experiments 
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Figure 5.3.5B: PD-L2 molecules expressed by AdV-PDL2 transduced islets specifically 

promote PD-1 signalling. Optimally transduced human islets (MOI 3x103) were co-cultured with 

murine T cell hybridoma expressing hPD-1/mCD28 chimera for 3 days. Supernatants were 

collected and concentration of IL-2 was used as a measure of PD-1 signalling. IL-2 

concentration was determined by ELISA.  Neutralizing antibody targeting PD-L2 was used to 

determine the specificity of PD-1 signalling. Mean ± SD of triplicates of sample, **=p<0.01, 

***=p<0.001, NS= No Significance.  Representative of 4 independent experiments. 
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5.4 DISCUSSION 

 
Disruption to the PD-1 pathway in mouse model, results in the spontaneous development of 

autoimmune diseases such as lupus-like proliferative arthritis, glomerulonephritis, autoimmune 

dilated cardiomyopathy and diabetes [174, 175, 371]. These studies demonstrate that PD-1 

plays a key role in the induction and maintenance of tolerance, providing inhibitory signals that 

regulate both the central and peripheral tolerance.  PD-L2 was a logical candidate molecule to 

investigate in the context of islet allo-immunity, given its strong affinity for PD-1 and evidence in 

human studies, which suggest PD-L2 is the potent ligand out of the two [184, 195].  This 

chapter aimed to investigate the induction of PD-L2 in human islets, which naturally do not 

express this inhibitory ligand. It was hypothesized that the expression of PD-L2 by human islet 

may promote PD-1 signaling, which may affect the proliferation of allo- and also auto-reactive 

T-cells which express the PD-1 receptor.    

 

In order to investigate this hypothesis recombinant AdV constructs were generated, which 

either expressed the soluble or full transmembrane isoform of PD-L2. Bioinformatic tools 

confirmed that the sequence used to generate the vectors, were homologous to the native 

sequence of human PD-L2. Proper protein folding was evidenced by the ability of PD-L2-FL to 

bind to PD-1 Fc recombinant proteins despite some discrepancy in some bases in the 

sequencing analysis (<2%). This discrepancy may be related to the fact that only forward and 

reverse primers were used to determine the sequence of the inserted PD-L2 isotypes. 

Accordingly the efficiency of the sequencing itself may have not been optimal resulting in this 

small difference in bases. It would have therefore been beneficial to do the sequencing with 

internal primers to increase the efficiency of the sequencing. However given the ability of the 

produced molecules to bind to PD-1 and detectable with relevant anti-bodies, it demonstrated 

that the protein was folding properly and functional.   The transduction of human islets with 
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either AdV-PDL2-FL or with the control vector (AdV-VB) did not demonstrate deleterious effects 

on the viability or functional characteristics of the islets.  Similarly, other studies have also 

shown efficacy of using AdV as a gene therapy vector for islet transplantation [118, 120, 121, 

372, 373]. However AdV vectors are limited by their poor capacity to transduce the inner mass 

of islets [363]. For this reason the expression of AdV induced PD-L2 expression was limited to 

only 17-19% of islet cells. Despite this low transduction efficiency of islets, immunoflorescence 

microscopy demonstrated that the AdV-PDL2-FL vector was also able to transduce beta-cells. 

This provided further evidence that AdV transduction of human beta-cells does not affect their 

ability to express insulin. A primary part of maintaining islet graft function is associated with the 

survival of beta-cells. T-cells in particular play a crucial part in beta-cell destruction both in allo-

immune and auto-immune processes. In the context of alloimmunity, TCR signaling by donor 

and recipient APC promotes T-cell activation (as discussed in chapter 1 section 1.3) and the 

externalization of the PD-1 molecule [169, 170], alloreactive T-cells infiltrate the graft to carry 

out their cytolytic functions to mediate islet mass destruction.  PD-L2 expression may therefore 

directly protect beta-cells from the cytolytic function of T-cells, as the PD-L2 will bind to PD-1 

receptor on these activated T-cells, to prevent their cytolytic activity. Similarly, the underlying 

problem of auto-reactive T-cells may also be managed in this manner as all activated T-cells 

express the PD-1 receptor. Moreover, the PD-1 pathway is naturally involved in the 

homeostasis of peripherial tolerance and the interruption of this pathway is believed to play an 

important role in the mediation of diabetes. Thus expression of PD-L2 may help in re-

establishing this homeostasis, which is interrupted in T1D patients.  

 

Functionally, PD-L2 expressed by transduced human islets was able to bind to the PD-1 

receptor. More importantly both isoforms of PD-L2 were able to induce PD-1 signaling. Soluble 

PD-L2 was able to induce signaling via PD-1 by a surprisingly 1000 fold when compared to the 
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transmembrane isoform. This interesting fact, to the best of our knowledge has not been 

previously shown in the literature, although the relative expression of both isoforms was not 

determined in this study. Until now the inhibitory function of human PD-L2 has commonly been 

investigated using soluble PD-L2Ig [195, 201, 374]. Rodent studies in which PD-L2 is blocked 

or knocked out, have failed to demonstrate a potent inhibitory function of PD-L2, which may be 

related to species differences. However it may also be a reflection of the restricted expression 

of PD-L2 as a transmembrane molecule. Thus low bioavailability of PD-L2 to the PD-1 receptor 

reduces its potential to efficiently induce signaling. This is supported by evidence, which has 

shown that the concentration of PD-1 molecules at the immunological synapses is determined 

by the affinity and availability of its ligand, in particular PD-L2 more so than PD-L1 is important 

in recruiting PD-1 [375].  In addition, gene splice variants of PD-L2 in humans do exists which 

suggests that humans may naturally produce soluble PD-L2 [376]. In light of the data presented 

in this chapter, investigations into the function and bioavailability of naturally occurring human 

soluble PD-L2, warrants further investigation. Furthermore the ability of soluble PD-L2 to 

potently activate PD-1 signaling is of special relevance to islet cell protection against 

immunological attack, as soluble PD-L2 may also protect those islet cells which remain 

untransduced, an obvious advantage over the use of the transmembrane isoform.   However, 

there is evidence to suggest that AdV vectors can trigger an innate immune response through 

the induction of type 1 interferons [377, 378].  

 

The direct administration of AdV in vivo has been of concern, with studies demonstrating that 

patients may suffer from complications [379, 380].  Other studies have shown that the local 

delivery of low and intermediate doses of AdV vectors in humans are well tolerated up to the 

dose of 1011 virus particles [381]. However the immunogenicity of AdV particles is not 

significant in the context of this study, because the strategy of gene transfer involves ex vivo 
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modification of islets. Hence islets are transfected in in vitro and would subsequently be 

washed to remove virus particles prior to transplantation.  In the setting of islet transplantation, 

the advantages of using AdV as a gene therapy vector outweigh the reported disadvantages. In 

particular, they accommodate large or multiple transgene expression, they are replication 

deficient, non-oncogenic and transduce both dividing and non dividing cells.  AdV vectors 

provide high short-term transient expression of genes and high viral titers can be easily 

generated. Furthermore, a recent study using CTLA-4Ig AdV mediated expression in mouse 

islets, demonstrated that local immunosuppression can be achieved with soluble secreted 

factors, without disturbing other immune responses [382]. The use of non-viral vectors to 

induce transgenic expression in islets have also been used, but with poor success mainly due 

to the toxicity of transduction reagents, methods and inefficiency [383].  

 

In conclusion, in this chapter the immunomodulatory molecule PD-L2 was successfully cloned 

into an AdV vector to encode either a soluble or full length transmembrane isoform. 

Transduced human islets maintained stable in vitro function. The potent capacity of soluble PD-

L2 to induce PD-1 signaling in comparison to its transmembrane counterpart was clearly 

highlighted in this chapter. Overall the secretion of soluble PDL2 by islets has the potential to 

protect the islet allograft from activated allo and auto reactive T-cells, given its signaling 

capacity and warrants further investigation in a chimeric NOD-SCID islet transplant model.   

Studies investigating the inhibitory role of human PD-L2 thus far have been limited. Only one 

study in the past year has looked that the role of human PD-L2 in the context of 

xenotransplantation, which demonstrated promising results in its role to negatively regulate 

human T-cell responses [204]. In light of this study and the data presented in this chapter 

human PD-L2 in the setting of allo- and auto- immunity warrants further investigation, as it may 

have great potential as a gene therapy molecule.   
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CHAPTER 6- Conclusions 
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Islet transplantation is a developing therapy for patients affected by T1D, which has been 

limited by problems associated with hypoxia, poor revascularisation and allograft rejection. 

Immunosuppressive agents used to prevent allograft rejection are associated with severe side 

effects including islet toxicity, increased susceptibility of recipient to the potential development 

of malignancies, opportunistic infections and cardio-vascular problems. Currently, islet 

transplantation is only available to patients with poor blood glucose control that experience 

severe episodes of hypo-glycaemia unawareness. In order for islet transplantation to be used 

widely as a potentially curative treatment for T1D there is a need to develop novel therapies to 

treat allograft rejection without the use of immunosuppressive agents. Dendritic cells (DC) play 

an important role in promoting allograft rejection, especially those derived from the donor 

tissue. However, under certain conditions DC can be modulated to promote acceptance of an 

allograft and induce tolerance. Thus, this thesis has explored strategies to promote immature 

hyporesponsiveness by manipulating monocyte-derived DC function.   

  

In chapter 3, the immunomodulatory effects of IFN-γ on human monocyte-derived DC were 

investigated. IFN-γ, a cytokine known for its pro-inflammatory role in allograft rejection, also 

has a paradoxical role in supporting allograft tolerance. Using a standard 7-day in vitro DC 

propagation protocol it was demonstrated that IFN-γ exerts its immunomodulatory function on 

monocytes early during DC differentiation (IFNγ-DCD0), resulting in an immature DC (iDC) 

phenotype with reduced expression of maturation marker CD83 and gene expression of NF-κB 

transcription factor RelB. IFNγ-DCD0 induced a state of T-cell hyporesponsiveness in MLR, 

which was independent of the generation of total Foxp3+ T-cells. The T-cell assay used to 

determine the promotion of Foxp3 Tregs, limited this chapter to demonstrate conclusively the 

difference in the promotion of Foxp3+ Tregs between UT-DC and IFNγ-DCD0.  Accordingly the 

use of total Foxp3+ population is not suitable in the context of these in vitro assays. As there 
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are inherent problems associated with human activated T-cell effectors that are known to 

express Foxp3 [271]. It is therefore necessary to use other markers such as CD25, Foxp3HI 

and CD127 low, which better reflect the presence of suppressive Tregs.  Therefore in hindsight 

the reduced capacity of IFNγ-DCD0 to promote Foxp3 Tregs, may have reflected poor 

stimulatory capacity of these cells to activate T-cells. IFN-γ treatment, on the other hand, at day 

5 (IFNγ-DCD5) did not modulate the stimulatory capacity of DC compared to untreated DC. 

Accordingly this chapter highlighted that the effect of IFN-γ to act as either a „pro-inflammatory‟ 

or „anti-inflammatory‟ cytokine, is dependent on the timing of IFN-γ exposure during DC 

maturation or differentiation respectively. Thus IFN-γ is only effective in producing maturation 

arrested DC, when administered during DC differentiation. This effect however is not exclusive 

to IFN-γ as IL-10 has also been reported to mediate its DC modulatory effects early during DC 

differentiation, having minimal effects on already differentiated DC. More importantly this 

chapter demonstrated that these IFN-γ modulated cells are of DC lineage, which has not been 

previously demonstrated by other groups. Overall chapter 3 demonstrated that the early 

application of IFN-γ during DC differentiation produced maturation arrested DC, which could 

potentially promote tolerogenic immune responses. In chapter 4 this concept was further 

explored by using a rapid / fast DC protocol, making the use the IFN-γ modulated DC more 

relevant to translational DC Therapy.  

 

In chapter 4 a FAST-DC protocol was used to generate IFNγ-DC in 48h, which featured similar 

iDC phenotype seen in chapter 3.  The mechanism used by IFN-γ to modulate DC was also 

further examined. It was demonstrated at the molecular level that IFN-γ treatment reduced the 

phosphorylation of IL-4 activated STAT-6, which in turn affected the downstream gene 

expression of Interferon regulatory factor 4 (IRF4). Rapidly generated IFNγ-DC were shown to 

be terminally differentiated and poor stimulators of allogeneic T-cells causing significant T-cell 
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hyporesponsiveness and promoting a higher frequency of CD4+CD25+ Foxp3HI T-regulatory 

cells. This however was significantly different to observations in chapter 3, where IFNγ-DCD0 

failed to promote a larger Treg population compared to UT-DC. It is believed that the difference 

in response is directly related to the different strategies used to define the Treg population in 

each chapter. As briefly discussed above not all T-cells expressing Foxp3 are suppressive in 

function, it has been previously reported that in humans CD4+CD25+Foxp3HI T-cell population 

is a better indicator of the suppressive function of human Tregs [271]. Therefore based on 

these findings the strategy of identifying suppressive Foxp3 population was modified in chapter 

4, which may then reflect the difference in the Treg results between chapters. However the 

suppressive activity of the Tregs generated by IFNγ-DC was confirmed in suppression assays. 

This then warranted further investigation of IFNγ-DC in an in vivo of islet transplantation. 

 

A surrogate chimeric NOD-SCID model of islet transplantation was then developed in chapter 

4. This model was different to that of previously published models of islet transplantation, as it 

involved the use of donor-derived DC, hence donor peripheral blood was required by this 

model, which considerably limited the potential of this model. As only South Australian donors 

could be used and only a few DC could be generated each time, thus limiting the ratio of 

DC:PBMNC used to reconstitute the transplanted NOD-SCID mice. Accordingly, the model 

achieved poor levels of human cell engraftment, which affected its ability to promote overt 

allograft rejection, as evidenced by hyperglycaemia. Poor cell engraftment may be attributable 

to the use of IP route of administration and the strain of NOD-SCID mice. It is therefore 

recommended as discussed in chapter 4 that a NOD-SCID lL2rynull mouse be used in future, as 

it has superior human cell engraftment capability and approximately 20 times less human 

PBMNC are required to mediate a robust allograft rejection. This would make the model 

developed in this chapter far more feasible, as less DC would be need to be propagated from 
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donor blood monocytes.  Accordingly, due to the limitations encountered the potential of IFNγ-

DC to be tolerogenic in vivo still remains elusive, although the c-peptide levels in IFNγ-DC 

treatment were promising (Figure 4.3.5B). Further investigations into the genes modulated by 

IFN-γ in DC is required, an extensive assessment by micro gene array of IFNγ-DC is 

necessary, as IFN-γ is known to affect the expression of over 200 known genes. This will help 

to further characterise the mechanism used by IFN-γ to modulate DC function. In addition, it of 

interest to establish whether this phenomenon of controlling DC function mediated by IFN-γ 

occurs naturally in vivo as a homeostatic mechanism of controlling immune responses.  Never 

the less this strategy of generating donor-derived tolerogenic DC in just 2 days is both novel 

and clinically applicable, allowing the in vivo targeting of the direct pathway of recognition to 

promote allograft tolerance in humans a possible reality.  

 

In chapter 5, human islets were genetically modified with programmed cell death ligand 2 (PD-

L2), as an alternative approach to protecting the allograft from the recipient‟s immune system. 

PD-L2 is a ligand for programmed death 1 (PD-1), an inhibitory molecule that limits the 

expansion of allo- and auto-reactive T-cells. Islets do not express PD-L2, thus it was 

hypothesised that the induced expression of PD-L2 would confer protection to islets. In this 

chapter, two recombinant adenovirus constructs were generated - one encoding a soluble 

isoform and the other expressing a full transmembrane molecule. It was demonstrated that AdV 

transduction did not affect the viability or insulin producing capacity of islets. Induced PD-L2 

was able to bind and induce signalling through PD-1. However soluble PD-L2 was more 

efficient at inducing signalling by 1000 fold, than the transmembrane isoform, a phenomenon 

which has not been previously described before in humans. These results are promising and 

warrant further investigation in a chimeric model of islet transplantation, to determine the 

protective effects of PD-L2 in a transplantation setting. The expression of soluble PD-L2 by 
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transplanted human islets could potentially also inhibit the underlying cytolytic activity of auto-

reactive T-cells present in T1D patients. The ability to target both the problem of alloimmunity 

and autoimmunity with one inhibitory molecule makes PD-L2 all the more attractive as gene 

therapy treatment for T1D.  

 

Experiments to investigate the islet protective properties of PD-L2 in vivo were largely limited in 

this study by the availability of human islet tissue. This could be overcome by the use of a 

transgenic line of NOD-SCID mice, which express human HLA-A2.1.  It has been demonstrated 

that NOD-SCID-HLA-A2 positive islets transplanted into diabetic NOD-RagnullPrfInull mice, are 

readily rejected by HLA-A2.1-negative human PBMNC, which is comparable to the rejection of 

transplanted human islets in NOD-SCID mice [309]. Thus NOD-SCID-HLA-A2 positive islets 

could potentially be transduced with AdV-PDL2 and used in vivo to further investigate the 

immunoregulatory role of human PD-L2 to protect islet survival and function. In addition this 

model would also address the inherent variability observed between donor preparations 

following islet isolation.   Alternatively, human PD-L2 could also be characterised in a 

xenogeneic pig islet transplant model. Where human PD-L2 transgenic pig islets could be 

transplanted into NOD-SCID lL2rynull and reconstituted with human PBMNC. The potential for 

human PD-L2 to promote human tolerogenic responses in a xenogeneic setting has been 

previously demonstrated, through the expression of human PD-L2 by pig APC. These finding 

further highlight the potential of human PD-L2 to protect pig islets in a xenogeneic model and 

warrants further investigation. The ability to use pig islets for the treatment of T1D, could serve 

as a great benefit as it could potentially overcome the shortage of organ donation and make 

this treatment more widely available.  
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Overall this thesis has contributed new knowledge in firstly the field of DC therapy. It has 

demonstrated that early application of IFN-γ during DC differentiation is crucial in altering the 

allo-fate of DC - producing hypo-responsive T-cells (Chapter 3). This has clinical applicability 

with the modification of the FAST-DC protocol, which allowed the propagation of IFN-γ 

tolerogenic DC in 48 hours (Chapter 4), making tolerogenic DC therapy more clinically 

applicable to deceased donor transplantation. Secondly this thesis has demonstrated soluble 

PD-L2 expression by human islet may have potential to protect against both allo- and auto- 

reactive T-cell mediated immune responses. In addition, the ability of soluble PD-L2 to act 

more potently then the transmembrane isoform to induce PD-1 signalling is an observation 

which has not been previously documented in the literature before.  
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APPENDIX A- Table of primer sequences and conditions 
 

Gene Forward primer Reverse Primer Cycling 

Conditions 

RelB  5’TTT TAA CAA CCT GGG 
CAT  CC   

5’ CGC AGC TCT GAT 
GTG TTT GT 

25s @ 95°C 
25s@55°C; 
25s@72°C  
for 50 cycles 

  IL-12  5’ TTT GGA GAT GCT GGG 
CAG TAC A 

5’GAT GAT GTC CCT GAT 
GAA GAA GC 

25s @ 95°C; 
25s@ 60°C; 
25s@72°C  
for 50 cycles 

IDO  5’GGC AAA GGT CAT GGA 
GAT GT, 

5’ CTG CAG TAT CCA TCA 
CGA AA, 

25s @ 95°C; 
25s@ 55°C; 
25s@72°C  
for 50 cycles 

HLA-G  5’AAG GCC CAC GCA CAG 
ACT GAC AGA ATG AAC 

AGG TCG CAG CCA ATC 
ATC CA 

25s @ 94°C; 
25s@ 55°C; 
25s@72°C  
for 50 cycles 

IRF4 5‘AGT CCT GAG CGA AAA 
CAG GA 

5’AAA GCC AAG AGG 
TGC GAG TA 

25s @ 95°C; 
25s@ 55°C; 
25s@72°C for 
35cycles) 

GAPDH  5‘ATC ACT GCC ACC CAG 
AAG ACT 

5’CAT GCC AGT GAG CTT 
CCC GTT 

25s @ 95°C; 
25s@ 55°C; 
25s@72°C for 
35cycles). 

PD-L2-
FL 

5’CGG AAT TCA TGA TCT 
TCC TCC TGC TA 

5’CGG GAT CCG ATA 
GCA CTG TTC ACT TC  

1min @94°C 
30sec@58°C 
30s@72°C 
Note: final  
conc of MgCl2 
3.5mM 

PD-L2-
SOL 

5’CGG AAT TCA TGA TCT 
TCC TCC TGC TA 

5’CGG GAT CCG ATG AAA 
ATG TGA AGC AG  

1min @94°C 
30sec@58°C 
30s@72°C 
Note: final  
conc of MgCl2 
3.5mM 
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APPENDIX B- Varying IFN-γ concentration at time 0 of DC 
propagation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varying IFN-γ concentration at time 0 of DC propagation 
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APPENDIX C - STZ dose batch testing results 
 
 
 

Dose (mg/kg) mice n= % Diabetic Mortality 

170 5 40% 0% 

180 12 66% 8% 

190-210 11 82% 27% 

 
 
 
Note doses 190-210 were grouped together because they cause high degree of morbidity 

and mortality and were considered as highly toxic. 180mg/kg was chosen over 170 as it 

improved the rate of diabetes induction by approximately 30%, with low degree of 

morbidly observed.  
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APPENDIX D - Diagram of hPD-1/mCD28 chimeric assay 
 
 
 
 

 
 
 
 
 
The above diagram illustrates how signalling of human PD-1 is measured by murine IL-2 

ELISA. In brief, when PD-L2 binds to the human PD-1 which forms the extracellular 

portion of the chimeric protein, which is fused to murine CD28. Thus signalling of PD-1 

induces the production of murine IL-2 as the hPD-1/mCD28 chimeric protein is 

expressed in a murine T-cell hybridoma cell line.  

 
 
 

  
                                          NOTE:   
   This diagram is included on page 220 of the print copy  
   of the thesis held in the University of Adelaide Library.
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APPENDIX E _calculation of stimulation index 
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APPENDIX F – Copy of publication in which data from chapter 3 
was presented 
 
Available Online 
              Rojas D, Krishnan R. IFN-gamma generates maturation-arrested dendritic cells that 

induce T cell hyporesponsiveness independent of Foxp3(+) T-regulatory cell 
generation. Immunology letters; 132:31-7.  
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APPENDIX G – Copy of publication of review  
Available Online 
Hughes A, Jessup C, Drogemuller C, Mohanasundaram D, Milner C, Rojas D, Russ GR, 
Coates PT. Gene therapy to improve pancreatic islet transplantation for Type 1 diabetes 
mellitus. Curr Diabetes Rev; 6:274-84.  
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APPENDIX H – HEK-293 Transduction Controls 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both Untreated and AdV-VB  transduced HEK-293 controls do not express 
PD-L2 and thus do not bind to PD-1Fc. 
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