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Complex systems consisting of vector or matrix oscillators can synchronize to a common state characterized
by a frequency matrix with distinct eigenvalues, leading to multiple frequencies of synchronization. In quantum
networked systems the synchronized state is a linear combination of states corresponding to different energy
levels. Suitable symmetry-breaking network interactions, however, allow only one or more such frequencies to
appear. A specific example in three dimensions, where all trajectories lie on the 2-sphere, is a model of interacting
spin-1 quantum angular momentum states, where synchronization to a nontrivial frequency occurs despite the
presence of zero-frequency modes of oscillation.

DOI: 10.1103/PhysRevE.84.026207 PACS number(s): 05.45.Xt, 89.75.Fb, 03.65.Aa

I. INTRODUCTION

The phenomenon of self-synchronization on complex
networks appears in many applications and has been widely
investigated (see the general accounts [1–5]). We focus here
on phase synchronization for complex networks of vector or
matrix oscillators, in particular, models that generalize the
standard Kuramoto model and are relevant to both classical and
quantum networks. For such models the natural frequencies
of oscillation at each node synchronize to one or more
eigenvalues of a frequency matrix � that is independent of
the node. Because � generally has unequal eigenvalues it is
possible for the synchronized system to lie in a superposition of
states of different synchronized frequencies, which can either
evolve indefinitely in such a superposition or eventually be
dominated by states corresponding to a single synchronized
eigenvalue, depending on the initial values of the system and
properties of the model. While multiple energy levels appear
naturally in quantum systems, one might wish in classical
applications to be able to restrict the system to one or more of
the synchronized frequencies.

We show here how a particular mode of oscillation can be
selected by means of suitable network interactions, for both
quantum and classical networks, and take as a specific example
quantum systems of spin-1 angular momentum interacting
over a nonlinear quantum network. This system is defined
by a set of vector equations that determine trajectories xi(t),
where each xi is a unit 3-vector that remains confined to
the 2-sphere for all t > 0. This model is of interest for both
classical and quantum systems, since it may be regarded as
a higher dimensional generalization of the widely studied
Kuramoto model [6], for which all trajectories lie on the circle
S1, but can also be viewed as a system of spin-1 quantum
oscillators with three-component wave functions at each
node.

The possibility that synchronization over complex networks
can occur in quantum systems is discussed in [7] and requires
nonlinear network interactions for its operation. Nonlinear
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quantum mechanics has been investigated at various times (see,
e.g., [8]), however, we do not specify here any mechanisms
or environmental interactions by which these nonlinearities
might appear, only that the wave function at each node evolves
according to the Schrödinger equation, through a specific
Hermitian Hamiltonian that is constructed from the wave
functions at all nodes. When synchronized, all spin-1 wave
functions of the quantum network are correlated both spatially
and in frequency, i.e., the spins have almost-identical orien-
tations and frequencies of oscillation. Multiple frequencies of
synchronization correspond to different energy levels, but by
means of suitable network interactions we ensure that all nodes
have the same energy level.

These quantum models may also be regarded as classical
complex systems, by parametrizing wave functions in terms of
real variables. Conversely, however, classical systems do not
generally correspond to quantum systems, which must satisfy
more stringent requirements. First, every quantum system must
evolve according to the time-dependent Schrödinger equation
with an Hermitian Hamiltonian operator, which ensures that
the amplitude of every wave function is constant in time, i.e.,
probability is conserved. Second, this Hamiltonian must be
scale invariant, so that each wave function can be normalized to
unity. Hence, the resulting differential equations are indepen-
dent of the wave-function amplitudes. The Kuramoto model,
Eq. (1), has this property and may, indeed, be formulated as
a spin-0 quantum complex system. One can, however, devise
models in which the amplitude, although constant in time,
depends on the node; e.g., in the matrix models discussed
in [9], one can write each variable Ui as the product of an
amplitude matrix Ai and a unitary matrix, where each Ai is
constant and, unless it is the identity matrix, appears explicitly
in the resulting equations. Such classical models, and also
those that do not preserve amplitudes, such as chaotic models,
do not correspond to quantum systems.

The vector models of synchronization that we consider
here are of interest in classical as well as quantum networks,
because they allow for a much wider range of behaviors
than do scalar systems such as the Kuramoto model and
the generalizations described in [10] (Sec. V). Multiple
frequencies of synchronization appear and can be controlled by
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means of coupling parameters as we describe in the following.
We also discuss how to identify the frequency matrix � for a
synchronized system, and hence whether multiple frequencies
exist, and we analyze in detail the three-component spin-1
system.

II. VECTOR OSCILLATORS

The Kuramoto model describes a system of N oscillators
parametrized by an angle θi at each node i, with equations
given by

θ̇i = ωi + κ

N

N∑
j=1

aij sin(θj − θi) (i = 1, . . . ,N) (1)

where ωi is the natural frequency of the ith node, κ is a
coupling constant, and (aij ) is the connectivity matrix. As
is well known [4,10,11], the trajectories of the unit 2-vectors
xi = (cos θi, sin θi) synchronize in phase provided that κ is
sufficiently large, in the sense that θi(t) = θ0

i + λt is a limit
cycle of the system, where λ = ∑

i ωi/N is the phase-locked
frequency and θ0

i denotes constant angles.
The Kuramoto model, (1), can be generalized to models in

which matrix or vector variables at each node synchronize to
a common frequency, depending on properties specific to the
model [9]. Consider, in particular, the following equations for
real m vectors xi of unit length:

ẋi = �i xi + κ

N

N∑
j=1

aij [xj − xi (xj · xi)]

+ κ ′

N

N∑
j=1

aij J xi (xj · J xi), (2)

where �i is a prescribed m × m antisymmetric real matrix,
the eigenvalues of which are, in absolute value, the natural
frequencies of oscillation at the ith node, J is an m × m

antisymmetric real matrix independent of the node, and κ,κ ′
are positive coupling constants. Such models arise from both
the matrix models and the quantum mechanical (vector)
models considered in [7] and [9]; the last term in Eq. (2),
e.g., appears in the quantum equations expressed in real form
(see Eqs. (10) and (22) in [7]) and arises from an expansion of
the Hamiltonian in powers of the wave functions (see Sec. 3.1
in [7]).

System (2) preserves the unit length of xi as a constant
of the motion. For m = 2 these equations reduce to the
Kuramoto system, (1), if we set xi = (cos θi, sin θi) and
�i = ωiJ , where J = ( 0 −1

1 0 ), with a coupling constant κ + κ ′.
For m = 4 and κ ′ = 0, Eqs. (2) arise from the matrix model
discussed in [9] (Sec. VI) and, for sufficiently large κ , have
properties such as phase locking that are similar to those of
the Kuramoto model. All trajectories xi(t) approach the limit
cycle et�ni arbitrarily closely, where ni is a constant unit
vector, and where the 4 × 4 real antisymmetric frequency
matrix � commutes with �i for all i = 1, . . . ,N . Since for

this particular model the four eigenvalues of � are equal in
absolute value, multiple frequencies of synchronization do
not arise. Equations (2) for m = 4 and κ = κ ′ arise in the
model of quantum synchronization considered in [7], where
xi parametrizes spin-1/2 wave functions (qubits) that interact
nonlinearly over a quantum network.

III. MULTIPLE FREQUENCIES

In general, multiple frequencies can occur for system (2) as
follows: the frequency matrix � is an element of a subalgebra
of the Lie algebra som of the rotation group SO(m); for
m = 4, e.g., �i belongs to one of the so3 subalgebras of
so4 = so3 ⊕ so3, while � is an element of the other so3. We
require in general that [�,�i] = 0 in order that the limit cycle
et�ni should satisfy Eqs. (2) with κ ′ = 0, where the constant
unit vectors ni satisfy corresponding algebraic equations. The
frequencies of synchronization of the system are given by
the (real) eigenvalues of i� and are generally distinct, and
so multiple frequencies of synchronization can occur. The
synchronized states, being close to the limit cycle, are a linear
combination of eigenstates corresponding to these frequencies,
with the actual combination depending on the initial values of
the system.

We may select one of the multiple frequencies by allowing
κ ′, in the last term in Eqs. (2), to take nonzero values and
so act as a symmetry-breaking interaction. This last term,
or possibly a sum of such terms, requires that [�,J ] = 0
as well as [�,�i] = 0, in order that et�ni should behave
as a limit cycle. By making a suitable choice of J one can
therefore restrict the form of � such that there exists only a
single frequency of synchronization; i.e., by means of suitable
network interactions one can restrict the frequencies to which
the system synchronizes. For the m = 4 case of (2) with κ ′ = 0,
as discussed in [9], � is an element of so3 and hence has
three independent frequency components. When the term with
nonzero κ ′ is included, however [see Eq. (22) in [7], where
J = K3], we have � = λJ and so there is now only a single
frequency component, λ.

The additional term in Eq. (2) acts to restrict the frequencies
of synchronization even when the scenario as outlined above
does not eventuate. This can occur in two ways. First, if the
matrices �i in som are sufficiently general, then the limit cycle
does not exist; i.e., there is no antisymmetric matrix � with
the properties [�,�i] = 0 = [�,J ]. Investigations for m = 3
as discussed below show, however, that synchronization still
occurs in the sense that trajectories are closely correlated,
although not phase locked. Second, even when � exists, being
antisymmetric, for odd m it has at least one zero eigenvalue in
addition to the nonzero eigenvalues. Depending on the initial
trajectories, the system can indeed synchronize to this zero
frequency, as we see for m = 3, which means that all trajecto-
ries approach a constant state, i.e., a fixed point on Sm−1. But
for suitably chosen values of κ ′, the additional term in Eqs. (2)
suppresses such states, and the system synchronizes to a non-
trivial frequency determined by the nonzero eigenvalues of �.
We quantify the level of synchronization by means of several
measures.
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IV. OSCILLATORS ON THE 2-SPHERE

In order to demonstrate these properties, we now consider
explicitly the case m = 3. This is of interest in classical
complex systems as an immediate generalization of the
Kuramoto model from two to three real dimensions but is also
relevant to quantum systems carrying spin angular momentum
1, where the quantum wave functions are distributed over a
quantum network as discussed further below. The matrix �i

has the general form

�i =

⎛
⎜⎝

0 −ω3
i ω2

i

ω3
i 0 −ω1

i

−ω2
i ω1

i 0

⎞
⎟⎠, (3)

and hence �i xi = ωi × xi , where ωi = (ω1
i ,ω

2
i ,ω

3
i ) are pre-

scribed vector frequencies, and xi = (xi,yi,zi). For general ωi

the limit cycle does not exist, since there is no antisymmetric
matrix � that commutes with all �i , but it was found
in [9] [taking κ ′ = 0 in Eqs. (2)], for sufficiently large κ ,
that trajectories on S2 nevertheless synchronize spatially as
measured by the order parameter r = ‖xCM‖, where xCM =∑N

i=1 xi/N is the average, or center-of-mass, coordinate. The
parameter r takes a value close to unity following the initial
transient, which indicates that the trajectories, when plotted on
a common 2-sphere, are bunched together. An alternative and
related measure of spatial correlations is the average separation
defined by

DAvSep = 2

N (N − 1)

∑
i<j

‖xi − xj‖, (4)

where the sum is over all N (N − 1)/2 distinct nodes i,j .
DAvSep has the properties of a disorder parameter, since
it is 0 for identical trajectories and large for uncorrelated
trajectories. It was found numerically in [9] that as the system
evolves, trajectories drift to one of the poles at ±ω̂, where
ω̂ = ω/‖ω‖ and ω = ∑

i ωi/N . This occurs because at κ = 0
the free equations ẋi = ωi × xi have the constant solution
xi = ω̂i = ωi/‖ωi‖, which is the zero-frequency mode of
oscillation, and the nonlinear network interactions (for κ ′ = 0)
evidently synchronize the system to this zero frequency,
rather than to an average of the nontrivial frequencies
‖ωi‖ of �i .

For large positive κ ′, however, we find numerically that
the system synchronizes to a nontrivial frequency close to
the average

∑
i ‖ωi‖/N . Equations (2) for nonzero κ ′ are

covariant under global SO(3) rotations; i.e., if we replace
xi → Oxi where O ∈ SO(3), then the equations retain the
same form but with transformed frequency vectors ω′

i and
with J → J ′ = OtJO. By a suitable orientation of the whole
system we may therefore choose J to be

J =

⎛
⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎠. (5)

In our numerical computations we chose N = 50, κ = 2, κ ′ =
8, with random frequencies ωi and random initial values for
the unit vector xi , with all-to-all coupling. Following the
initial transient, trajectories bunch together in a small cluster

r

DAvSep

DFSep
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FIG. 1. (Color online) Spatial order and disorder parameters r

and DAvSep, as well as the frequency separation DFSep, as functions of
t for synchronized trajectories on S2.

as measured by either r or DAvSep. Figure 1 shows, for a
typical set of initial values, that r achieves a value close to
unity following the initial transient but is not exactly constant
in time. This is more evident from the plot of the average
separation of trajectories DAvSep which, although small in
value, varies periodically. The unit center of mass trajectory
x̂CM = xCM/r is confined, even at very large times, to a
narrow band at a fixed latitude on S2 with respect to the
poles ±ω̂. This implies that all trajectories are synchronized
to a nontrivial frequency, i.e. the network coupling involving
κ ′ in (2) does indeed suppress the zero frequency modes of
oscillation.

In order to measure frequency variations we define the
average frequency separation DFSep according to

DFSep = 2

N (N − 1)

∑
i<j

∣∣∣∣ d

dt
(xi � xj )

∣∣∣∣ , (6)

which calculates the change in angle between any two
trajectories, and hence the relative frequency, averaged over all
pairs of trajectories. Figure 1 plots the frequency separation as
a function of time, showing that DFSep varies periodically fol-
lowing the initial transient and takes small but nonzero values,
consistent with the fact that the distance ‖xi − xj‖ between
any two trajectories is not exactly constant. Frequencies of
individual trajectories are therefore not locked to a single value.
An approximate antisymmetric frequency matrix � may be
determined at any fixed time by minimizing

∑
i ‖ẋi − �xi‖2

with respect to �, which fits the synchronized trajectories xi(t)
to the form et�ni , from which we determine the synchronized
frequencies as the eigenvalues of �, in absolute value. We find
that the nonzero frequency is numerically close to

∑
i ‖ωi‖/N

and depends weakly on time. In summary, the system is
spatially synchronized in the sense that each trajectory is
approximately of the form et�ni , where the coordinates ni are
almost independent of i and are therefore each close to x̂CM, as
measured by r or DAvSep. The system is phase synchronized in
the sense that � is independent of i with a nonzero eigenvalue
close in absolute value to

∑
i ‖ωi‖/N , which indicates that

the zero-frequency component in the synchronized system is
small.
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We next choose natural frequencies with ω1
i = ω2

i = 0,
corresponding to commuting matrices �i = ω3

i J . In this case
the trajectories xi(t) = etλJ ni have properties similar to those
of a limit cycle, where λ is the synchronized frequency,
however, the zero-frequency mode of oscillation still exists.
As a numerical example we take N = 200,κ = 2,κ ′ = 8 with
ωi = (0,0,ω3

i ), chosen at random from a Gaussian distribution
about ω = 0.5, with a standard deviation of 0.2, and random
initial values for xi . For κ ′ = 0 it was found in [9] that
trajectories do indeed closely approach this “limit cycle” but
eventually drift toward a pole at large times, implying that the
vectors ni in fact depend weakly on time, and so the system
eventually synchronizes to the zero-frequency mode.

As with the case of general natural frequencies, however,
we can suppress these zero modes by choosing κ ′ > 0 in
Eqs. (2). If we first set κ = 0 and choose a sufficiently large
κ ′, then we find, following the initial transient, that trajectories
are approximately aligned along a common longitude on
S2 that varies with time, but with each node maintaining a
constant latitude. But by allowing κ also to take a nonzero
value (κ = 2) we find that all trajectories are quickly confined
to a constant latitude, still bunched longitudinally, and are
therefore spatially synchronized with a suppressed zero-
frequency component. Figure 2 shows the trajectories xi as
they synchronize, with longitudinal bunching evident. All
trajectories for t > 3 cluster tightly together and the unit center
of mass x̂CM(t) circulates S2 indefinitely at a fixed latitude.
The constant frequency λ may be determined by minimizing∑

i ‖ẋi − λJ xi‖2 with respect to λ; we find that the minimum
is numerically 0 and that |λ| is close to but less than

∑
i |ω3

i |/N .
The measures 1 − r and DAvSep are small and constant
following the initial transient, and DFSep takes a constant
value that is numerically 0. We may also define a disorder
parameter that measures the departure of trajectories from the
apparent limit cycle xi(t) = etλJ ni . Although very small, this
parameter is not 0, which indicates that trajectories are not
precisely aligned to the limit cycle, which is undoubtedly due
to the existence of small zero-frequency components in the
numerical solution.

Various numerical experiments may be performed in order
to establish the effect of varying κ and κ ′ independently.
Despite the observation above, that for κ = 0 and κ ′ > 0
there is longitudinal spatial synchronization, for general initial
values with either κ = 0 or κ ′ = 0 the system usually eventu-
ally settles into the zero-frequency mode. This dependence

on the initial values is evident for the case ω1
i = ω2

i = 0,
for then an exact solution is xi = (0,0,1); i.e., if the system
begins with each node precisely in the zero-frequency mode,
it remains in this mode indefinitely. On the other hand, if the
last component zi is initially 0 for all i, then zi remains 0
for all later times and the equations reduce to the Kuramoto
model, (1), with a coupling κ + κ ′, and phase synchronization
to the nontrivial frequency

∑
i |ω3

i |/N occurs in the usual way.
For random initial values we find that the system synchronizes
to a nontrivial frequency when κ and κ ′ are of a similar
magnitude.

V. SPIN-1 QUANTUM SYSTEM

Having outlined the properties of solutions to Eqs. (2), we
now demonstrate how these equations may be viewed as a
model of interacting quantum systems. Consider a quantum
network where the wave function |ψi〉 at the ith quantum node
is a spin-1 angular momentum eigenstate. We parametrize |ψi〉
in terms of real coordinates xi = (xi,yi,zi) according to

|ψi〉 = 1√
2

⎛
⎜⎝

−xi − iyi√
2 zi

xi − iyi

⎞
⎟⎠. (7)

Although these components are the spherical harmonic func-
tions for orbital angular momentum 	 = 1, with a zero relative
phase between nodes, we view xi merely as time-dependent
parameters, not as the physical coordinates of the quantum
oscillator at the ith node. Hence, |ψi〉 describes a spin-1
system, with three possible states with magnetic quantum
numbers m = 0,±1. We find that |ψi〉 maintains the form (7)
as it evolves, provided it has this form initially, due to the
restricted form of the local Hamiltonian H 0

i as given below.
One could in principle generalize this system by allowing |ψi〉
to be a three-component complex vector, and H 0

i to be a general
3 × 3 Hermitian matrix, but we restrict our investigations to
the present system. We normalize |ψi〉 in (7) to unity in the
three-dimensional inner product, hence xi is a unit vector and
we find 〈ψi |ψj 〉 = xi · xj . It is convenient to define

U = 1√
2

⎛
⎜⎝

−1 0 1

i 0 i

0
√

2 0

⎞
⎟⎠;

FIG. 2. (Color online) Trajectories xi shown in red (dark-gray dots) on the unit sphere at times t = 1, 1.5, and 2; unit center-of-mass
trajectory x̂CM(t) shown in yellow (light-gray line) for t > 3.
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then U is unitary with U |ψi〉 = xi . |ψi〉 evolves in time
according to the Schrödinger equation, in units such that h̄ = 1:

i
∂

∂t
|ψi〉 = (

H 0
i + H int

i

)|ψi〉, (8)

where H 0
i + H int

i is the total Hamiltonian and the 3 × 3
Hermitian matrix H 0

i , the local Hamiltonian, is defined by
H 0

i = iU †�iU , where �i is given by (3). The eigenvalues of
H 0

i and hence the energy levels of the local quantum system
are {0, ± ‖ωi‖}, corresponding to magnetic quantum numbers
{0, ± 1}.

The interaction Hamiltonian H int
i , which is an Hermitian

operator, depends explicitly on all wave functions and so gives
rise to nonlinear network interactions. We choose

H int
i = iκ

N

N∑
j=0

aij (|ψ̂j 〉〈ψ̂i | − |ψ̂i〉〈ψ̂j |)

+ iκ ′

N

N∑
j=0

aij (J3|ψ̂j 〉〈ψ̂i |J3 − J3|ψ̂i〉〈ψ̂j |J3), (9)

where |ψ̂i〉 = |ψi〉/
√〈ψi |ψi〉 and J3 = −iU †JU =

diag[1,0, − 1]. Hamiltonians such as (9) arise from
expansions of the interaction operators over the network in
powers of the wave functions, as described in [7] (Sec. 3.1).
Since H int

i is invariant with respect to scale transformations
|ψi〉 −→ λi |ψi〉 for any λi > 0 we may normalize each wave
function |ψi〉 to unity. The Schrödinger equation, (8), now
reads

i
∂

∂t
|ψi〉 = H 0

i |ψi〉 + iκ

N

N∑
j=0

aij (|ψj 〉 − 〈ψj |ψi〉 |ψi〉)

− iκ ′

N

N∑
j=0

aij 〈ψj |J3|ψi〉 J3|ψi〉, (10)

where we have used 〈ψi |J3|ψi〉 = 0. If we now premultiply
(10) by U and use 〈ψj |J3|ψi〉 = −i xj · J xi , then we recover
Eqs. (2) for m = 3.

It is implicit in Eqs. (10) that the quantum network dis-
tributes wave functions between connected nodes. Realizations
of quantum networks are discussed in [12], for example;
however, it is necessary for our purposes only that the network
preserves probabilities, i.e., that unitarity is preserved as the
wave functions evolve. This is guaranteed by the Schrödinger
equation (8), which controls the evolution of the complex
system. Equations (10) should be understood in this context,
specifically, that for each i,j there exists an operator Tij ,
constant in time, which transports the wave function |ψi〉 at the
ith node to the j th node; conversely, Tji = T

†
ij transports |ψj 〉

from the j th to the ith node, and both TijTji and TjiTij are
identity operators [7]. Hence |ψj 〉, as it appears in (10), means
the image of |ψj 〉 at the ith node with respect to the operator
Tji . As is the case with standard models of synchronization,
such as the Kuramoto system, (1), nonlinear interactions
between |ψi〉 and |ψj 〉 occur as the wave functions are
distributed between nodes and are modeled by the nonlinear
terms in (10). The wave function of the whole complex system
is the direct product of individual wave functions and maintains
this form as the system evolves.

Specific properties of the wave functions for the evolving
system follow from those of the trajectories xi(t), showing
that the system synchronizes with all nodes having a common
spin orientation and frequency of oscillation. The system
settles into a linear combination of spin states with magnetic
quantum numbers m = 0, ± 1 where the zero-frequency mode
corresponds to m = 0, but when synchronized with suffi-
ciently large κ,κ ′, the states m = 0 are suppressed and the
synchronized states correspond to either m = 1 or m = − 1.
Equations (2) are symmetric with respect to xi → −xi with
yi,zi unchanged, corresponding to a reversal of sign of
magnetic quantum number, as is evident if we premultiply (2)
by the matrix M = diag[−1,1,1]. We have MJM = −J

and �i → �̃i = M�iM , where �̃i is unchanged except
that the signs of ω2

i ,ω
3
i are reversed. Hence, whether the

synchronized system has magnetic quantum number m = 1
or m = −1 depends on the initial values of xi . For ω1

i =
ω2

i = 0 and sufficiently large κ,κ ′, the wave function ap-
proaches |ψi〉 = eitλJ3 |ψ0

i 〉, where |ψ0
i 〉 is constant in time,

and λ is the nontrivial frequency of synchronization. We
may regard λJ3 as the Hamiltonian of the synchronized
system, with energy levels 0, ± h̄λ, with a suppressed zero
energy.

The main difference between this system and the spin-1/2
model discussed in [7] is, first, that the latter has no zero
modes and so the system settles into either a spin-up or a
spin-down configuration and, second, that limit cycles exist
and so frequencies are phase locked. Furthermore, by means of
specific local unitary transformations the trajectories coincide
exactly, and so synchronization is complete. By contrast, the
spin-1 model discussed here is more difficult to analyze since,
apart from the zero modes, it synchronizes only to the extent
indicated by the measures r , DAvSep, and DFSep.

VI. SUMMARY

We have outlined how complex systems with vector
oscillators at each node can synchronize to a linear com-
bination of states corresponding to multiple synchroniza-
tion frequencies and that, by means of suitable network
interactions, one can select certain frequencies, or a single
frequency of synchronization, by breaking the symmetry
of the system. We have investigated in detail the m = 3
case for which trajectories are confined to the 2-sphere,
since this is of interest, first, as a vector generalization of
the Kuramoto model and, second, as a model of spin-1
quantum angular momentum states interacting nonlinearly
over a quantum network. This example is complicated by
the existence of zero modes that occur for all odd values
of m, although in the quantum theory these are merely
states with zero magnetic quantum number. The symmetry-
breaking interaction nevertheless suppresses such modes of
oscillation and so the system synchronizes to a nontrivial
frequency, as measured by r and DAvSep for spatial co-
herence and DFSep for frequency correlations. Our numeri-
cal examples are restricted to all-to-all network couplings,
but preliminary computations show that the synchroniza-
tion properties are maintained even with nontrivial network
topologies.
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