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Using the model of Nambu and Jona-Lasinio to provide a microscopic description of both the structure
of the nucleon and of the quark to hadron elementary fragmentation functions, we investigate the
transverse-momentum dependence of the unpolarized quark distributions in the nucleon and of the quark
to pion and kaon fragmentation functions. The transverse-momentum dependence of the fragmentation
functions is determined within a Monte Carlo framework, with the notable result that the average P3 of
the produced kaons is significantly larger than that of the pions. We also find that (P7 ) has a sizable z
dependence, in contrast with the naive Gaussian ansatz for the fragmentation functions. Diquark
correlations in the nucleon give rise to a nontrivial flavor dependence in the unpolarized transverse-
momentum-dependent quark distribution functions. The (k%) of the quarks in the nucleon are also found to
have a sizable x dependence. Finally, these results are used as input to a Monte Carlo event generator for
semi-inclusive deep inelastic scattering (SIDIS), which is used to determine the average transverse
momentum squared of the produced hadrons measured in SIDIS, namely, (P%). Again, we find that the
average P2 of the produced kaons in SIDIS is significantly larger than that of the pions and in each case

(P%) has a sizable z dependence.

DOI: 10.1103/PhysRevD.85.014021

L. INTRODUCTION

Semi-inclusive deep inelastic scattering (SIDIS) has a
very rich structure which provides a wealth of observables
far in excess of the familiar inclusive deep inelastic scat-
tering. The two-dimensional picture of a target provided by
SIDIS promises many new insights into nucleon and nu-
clear structure [1-4]. For example, it has been realized that
SIDIS may shed light on the angular momentum structure
of the proton in terms of the spin and orbital angular
momentum of its quarks and gluons [5-7]. It will also
provide new information on the in-medium modification
of bound nucleons and deepen our understanding of QCD
itself [1-4]. The study of the transverse-momentum distri-
bution of hadrons produced in SIDIS [1-4,8-11] is char-
acterized by determining the transverse-momentum-
dependent (TMD) parton distribution functions (PDFs)
and the TMD fragmentation functions.

Early theoretical models of the fragmentation functions
have been constructed in Refs. [12-16] and more recently
the development of the Nambu—Jona-Lasinio—jet model
[17] has provided a framework which automatically
satisfies the relevant sum rules. Lattice QCD studies of
TMD PDFs are presented in Ref. [18] and the QCD evo-
lution of TMD PDFs is discussed in Ref. [19]. Extensive
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phenomenological data analysis of transverse momentum
in distribution and fragmentation processes was presented
in Ref. [20]. Considerable experimental work has already
been carried out at JLab [21-25], HERMES [26-28], and
COMPASS [29-31], while for an overview of the future
perspectives for this field we refer to the recent review by
Anselmino et al. [32].

In this work, we present the first microscopic calculation
of the spin-independent TMD quark distribution functions
in the nucleon and the TMD quark to pion and kaon
fragmentation functions, where none of the parameters
are adjusted to TMD data. The underlying theoretical
framework is the Nambu—Jona-Lasinio (NJL) model
[33,34]. While this certainly represents a simplification
of QCD, it has many desirable properties. For example, it
is covariant and respects the chiral symmetry of QCD,
including its dynamical breaking. Moreover, it describes
the spin and flavor dependence of the nucleon PDFs, as
well as their modification in-medium [35-37]. It also
produces transversity quark distributions [38] which are
in good agreement with the empirical distributions ex-
tracted by Anselmino et al. [39].

For the present purpose, the recent developments in the
NJL-jet model [17,40,41], which provides a quark-jet de-
scription of the fragmentation process using elementary
fragmentation functions calculated within the standard
NJL model, are also critical. This framework provides a
good description of the parametrizations of experimental
data and has been extended to include vector meson
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resonances and nucleons as fragmentation channels. The
use of Monte Carlo methods to calculate these fragmenta-
tion functions has also been implemented and that develop-
ment allows us to address a wider array of processes within
the model, including physical cross-section calculations.

In Sec. II, we present the general formalism for describ-
ing transverse-momentum distributions in SIDIS, includ-
ing the quark-jet model originally proposed by Field and
Feynman. The calculation of the elementary, unintegrated
fragmentation functions in the NJL model, which are the
input to the jet model which describes the TMD fragmen-
tation functions in quark hadronization, is explained in
Sec. III. Our model for the TMD quark distribution func-
tions in the nucleon is outlined in Sec. IV, where we also
present results for the TMD PDFs. Results for the TMD
fragmentation functions are discussed in Sec. V and the
average transverse momentum in the SIDIS process, de-
termined using our Monte Carlo event generator, is dis-
cussed in Sec. VI. Finally, Sec. VII contains a summary
and outlook.

II. TRANSVERSE MOMENTUM IN
THE NJL-JET MODEL

The kinematics of semi-inclusive hadron production,
IN — I'hX, is illustrated schematically in Fig. 1, where a
lepton with momentum / scatters on a target, by emitting a
virtual photon with momentum ¢ that hits a quark with
initial momentum k. As usual, the z axis is chosen to
coincide with the direction of the photon’s momentum,
where the target has its momentum in the negative z
direction. The transverse momenta in the process—Ilabeled
with a subscript T—are defined with respect to this z axis,
so that the photon and target have no transverse-
momentum component (yN collinear kinematics). The
angle between the lepton scattering plane and the quark
scattering plane is denoted as ¢. We allow for the struck

FIG. 1 (color online).

Illustration of the three-dimensional
kinematics of SIDIS. The photon momentum defines the z axis
and the struck quark has initial transverse momentum ky in the
nucleon, with respect to the z axis.
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FIG. 2 (color online). Illustration of the kinematics of SIDIS,
where the final transverse momentum of the produced hadron
with respect to the z axis is denoted by P, which is related to the
initial quark transverse momentum in the nucleon k; and that
generated in the fragmentation process P; by Eq. (1).

quark in the target to carry a transverse momentum K.
Some of this transverse momentum is then transferred to
the hadrons emitted by the quark.

The kinematics of the quark fragmentation process is
depicted in Fig. 2. The emitted hadron & carries a trans-
verse momentum Pz with respect to the z axis which can
be decomposed into two contributions. First, the quark
transfers a fraction of its transverse momentum kg to the
hadron and second the hadron also acquires a momentum
transverse to the direction of the quark’s momentum, P .
Up to corrections of order O(k%/Q?), the following rela-
tion holds [42]:

Py =P, + zky. (D

This relation allows one to probe the quark transverse
momentum inside a nucleon by measuring the z depen-
dence of the emitted hadron’s transverse momentum (P2.),
provided (Pi) is independent of z. However, in the NJL-jet
model framework we find that (P? ) is strongly z dependent
and this z dependence is also observed at COMPASS [31].
A recent analysis of the HERMES data [27] was performed
in Ref. [20], where a Gaussian ansatz for the TMD quark
distribution and fragmentation functions was assumed and
an average was performed over the quark flavor and type of
hadron detected. Using a fit region of 0.2 < z < 0.7, they
extracted the following results for the average transverse
momentum squared [20]:

(k2y = 0.38 £ 0.06 GeV?, 2)

(P2)=0.16 + 0.01 GeV2. 3)

The latest iteration of the NJL-jet model [41] employs
Monte Carlo simulations to calculate the integrated quark
fragmentation functions. It assumes that the initial high
energy quark emits hadrons in a cascade-like process,
schematically depicted in Fig. 3. At every emission vertex,
we choose the type of emitted hadron / and its fraction of
the light-cone momentum z of the fragmenting quark, by
randomly sampling the corresponding elementary quark

014021-2
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FIG. 3 (color online).
momentum.

NJL-jet model including transverse

fragmentation (splitting) functions, ﬁg(z), that are calcu-
lated within the NJL model. In each elementary fragmen-
tation process, we record the flavor of the initial and final
quarks and the type of the emitted hadron, we also note the
light-cone momentum fraction of the initial quark trans-
ferred to the hadron and that left to the final quark. The
fragmentation chain is stopped after the quark has emitted
a predefined number of hadrons, Nj;,,. We repeat the
calculation Ng;,,,s times, with the same initial quark flavor,
g, until we have sufficient statistics for the emitted had-
rons. The fragmentation functions are then extracted by
calculating the average number of hadrons of type &, with
light-cone momentum fraction z to z + Az, which we
denote by (N!(z, z + Az)). The fragmentation function in
the domain [z, z + Az] is then given by

Y Ni(z z+ Az)
NSims

D!i(z)Az = (Nl(z,z + Az)) = €]

N, Sims

In this work, we extend the NJL-jet model to include the
transverse-momentum dependence of the emitted hadrons
in the fragmentation process. This is achieved by using
TMD elementary quark fragmentation functions at the
hadron emission vertices and by keeping track of the
transverse momenta of all the particles in the process.
Our goal is to calculate the TMD fragmentation function,
Dg(z, le), using its probabilistic interpretation. That is, the
probability of a quark ¢ to emit a hadron /& with a fraction z
of its light-cone momentum and P, is given by
Dg(z, Pi)dzdzl’i.

We calculate elementary (one-step) TMD splitting func-
tions, c?g(z, pﬁ_), using the NJL model, where p, denotes
the transverse component of the hadron’s momentum with
respect to the parent quark, as illustrated in Figs. 3 and 4. In
each step of the Monte Carlo simulation of the quark
cascade emission, we randomly sample the type, the
light-cone momentum fraction, z, and the transverse
momentum, p |, of the emitted hadron using as the proba-
bility distribution the elementary TMD splitting functions
of the quark, where the elementary probability is
d(z, p? )dzd?p . Schematically, the quark emission pro-
cess is depicted in Fig. 4, where the 7z’ axis denotes the
direction of the original parent quark’s 3-momentum. The

PHYSICAL REVIEW D 85, 014021 (2012)

FIG. 4 (color online). Quark elementary fragmentation kine-
matics, for an arbitrary hadron emission in the cascade chain.
The 7’ axis is defined by the direction of the 3-momentum of the
original parent quark.

vectors k and k' denote the 3-momentum of an arbitrary
quark in the cascade chain before and after hadron emis-
sion with transverse components k| and k', , respectively.
The emitted hadron’s momentum is labeled by ph, where
its transverse component with respect to k and the z’ axis is
denoted by p | and P, respectively. P, is obtained using
the relation P, = p, + zk |, analogous to that in Eq. (1).
The recoil transverse momentum of the final quark, k’l, is
calculated from momentum conservation in the transverse
plane, namely,

k, +P, +K,. 5)

The TMD fragmentation function is then calculated after
the trivial integration over the polar angle of P, in the
transverse plane, that is

Dli(z, PY)AzmAPY = (Nl(z,2+ Az, P3P} + AP?)

EZNSimsN(];(Z’Z—’_ AZ,Pﬁ_,PZL + APi)
NSims

(6)

The model can easily accommodate the initial transverse
momentum of the quark, for example, with respect to the
direction of the virtual photon in SIDIS (see Fig. 1). Our
goal is to describe the average transverse momentum of the
hadrons produced in different reactions. The differential
cross section for SIDIS up to terms of order O(k2/Q?) can
be written as [42]

d3 UlN—»l’hX

W -~ Ze?] [dszq(X, k%)DZ(Z, Pi)
q

= Y e2Dli(x, z P}), (7
q

where P and Py are related by Eq. (1) and g(x, k%) are the
TMD quark distribution functions of the target. Thus, for
SIDIS, we can use the TMD quark distribution functions to
randomly sample the initial transverse momentum of the
quark to calculate the relevant number density of the
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produced hadrons. In this work, we use TMD valence
quark distributions in the nucleon—calculated within the
NJL model—to determine the average transverse momen-
tum of the produced hadrons with respect to the direction
of the virtual photon, that is (P%), by calculating the
corresponding probability densities D”(x z, P%), using an
expression analogous to Eq. (6). In this way, we obtain a
self-consistent description of the entire process in the
regime where the virtual photon samples the valence quark
component of the target, that is, when the struck quark
has x = 0.3. The type of target and the allowed range of x
in the Monte Carlo simulation can be matched to those
measured in any particular experiment.

In this article, we only consider the production of pseu-
doscalar mesons, that is, the pions and kaons, as a first step
in determining the TMD fragmentation functions.
Eventually, we will also include the vector mesons and
nucleon-antinucleon channels, as done for the integrated
fragmentation functions in Ref. [41].

III. ELEMENTARY TMD FRAGMENTATION
FUNCTIONS

In this section, we evaluate the “‘elementary’’ fragmen-
tation functions of quarks to hadrons as a “‘one-step”
process in the NJL model, using light-cone coordinates.'
The NJL model which we use includes only four point
quark interactions in the Lagrangian, with up, down, and
strange quarks (see, for example, Refs. [43—45] for detailed
reviews of the NJL model). In the present work, we use the
notation introduced in our previous studies [40,41].

The elementary fragmentation function for quark, g, to
emit a meson, m, carrying light-cone momentum fraction,
z, and carrying transverse momentum, p, is depicted in
Fig. 5. In the frame where the fragmenting quark has zero
transverse momentum, but a nonzero transverse-
momentum component — p | /z with respect to the direc-
tion of the produced hadron [1,17], the unregularized
elementary TMD fragmentation functions to pseudoscalar
mesons are given by

dr(z, p})
cr Ldk_ .
2q 85qu2 %Tr[Sl(k)y S1(k)ys
X (K= p+My)ys18(k- — p_/2)2w8((p — k)* — M3)
cy pi +lz— 1M, + M,]

_16 58007 [P} +z(z— DMZ + M3 + (1 — 2)m2 >
(®)

The trace is over Dirac indices only and the subscripts on
the quark propagator, S;(k), and constituent masses, M,

'We use the following LC convention for Lorentz 4-vectors
(a*,a,ay), a = \/iz(ao +ad),and a; = (a', d?).

PHYSICAL REVIEW D 85, 014021 (2012)
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FIG. 5 (color online). Feynman diagram describing the ele-
mentary quark to hadron fragmentation functions.

and M,, denote quark flavors. Quark flavor is also indicated
by the subscripts ¢ and Q, where a meson of type m has the
quark flavor structure m = ¢Q and m,, denotes the meson
mass. The corresponding isospin factor and quark-meson
coupling constant are labeled by C7' and g, 0, respec-
tively, and are determined within the NJL. model [40,41].
The integrated elementary splitting function is obtained
from the elementary TMD splitting function via integration
over p |, that is,

an(z) = f PpdV G pA)
an 2 dzp_l_
~ 2 8maet | gy
pi +z— DM, + M,J
[pi + z(z — 1)M% + zM% + (1 —2m2 P
9)

The probability densities 32’(z) are then obtained by multi-
plying a normalization factor so that 3, [} dzd}'(z) = 1.
The isospin and momentum sum rules are then satisfied
automatically [40,41].

Previously, we employed the Lepage-Brodsky (LB)
regularization scheme to calculate loop integrals such as
that in Eq. (9). This method puts a sharp cutoff on the
invariant mass squared, M3,, of the particles in the final
state (see Refs. [17,40,41,46] for a detailed description as
applied to the NJL-jet model). The maximum invariant
mass of the two particles in the loop, A, is determined by

MY, = A2 = (JM + pd + AT+ Mz) (10)

where p; and w, denote the masses of the particles in the
loop and A; denotes the 3-momentum cutoff, which is
fixed in the usual way by reproducing the experimental
pion decay constant. For a light constituent quark mass of
M = 0.4 GeV, the corresponding 3-momentum cutoff is
A3 = 0.59 GeV. The strange constituent quark mass is
determined by reproducing the experimental kaon mass,
giving the value M, = 0.61 GeV and the corresponding
quark-meson coupling constants are g,,o = 4.23 and

quQ = 4.5]1.

014021-4
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In loop integrals containing two particles, we assign a
light-cone momentum fraction x (of the initial particle’s
light-cone momentum) to the particle with mass u; and
consequently a light-cone momentum fraction 1 — x for
the particle with mass mu,. Then, in the frame where the
initial particle’s transverse momentum is zero, the invariant
mass of the two particles in the loop can be expressed as

M%ZZM%JFPZLJFM%WLPQ
X 1—x

1D

The relation in Eq. (10), when applied to the integral in
Eq. (9), yields a sharp cutoff in the integral over the
transverse momentum, namely,

2
P =P =1 - z)l:\/A_% PR e Mg]

= (1= ui —zu3. (12)

A consequence of LB regularization is that it restricts the
corresponding regularized functions to a limited range of z,
namely, 0 < 0 = 7 = Zjax < 1, where z,;, and z,,,,, are
determined by imposing the condition P2 = 0 in Eq. (12).
These range limitations depend on the masses of hadrons
and quarks involved. For example, the z limits are very
close to the endpoints (z = 0 and z = 1) for quark splitting
functions to pions, but are further from these endpoints for
heavier hadrons like kaons. The plots depicted in Fig. 6
show the limited range for the normalized splitting func-
tions of a u quark to 7% and K*, calculated using LB
regularization.

In this work, we employ a slightly modified version of
the LB regularization, which replaces the sharp cutoff of
the invariant mass squared in the integrals, namely,
O(Af, — M7,), by a dipole regulator:

1
[T+ M3/ AT

Gn(pr) = (13)

A physical motivation for this regularization scheme is that
it gives a pion quark distribution that at large x behaves

0.8 T T T '
| — u—>.7'[+, LB
ceccccces u_>_7[+’ LB-DIP o~
06 ——— uaK+, [7: I <A
:\'\i [ ceoamecce u—-K*, LB-DIP / ]
SF 041 1
e
02}t i
0 0.2 0.4 0.6 0.8 1.0

FIG. 6 (color online). The normalized integrated splitting
functions for a u quark to #* and K™, calculated using LB
and LB-DIP regularizations with the same light constituent
quark mass of M = 0.4 GeV.
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approximately as (1 — x)>¢ for 0> = 16 GeV?, which is in
good agreement with the recent reanalysis of Aicher et al.
which finds (1 — x)>3* at the same scale [47]. Using this
dipole cutoff version of the LB regularization scheme
(LB-DIP), we fix the model parameters by reproducing
the experimentally measured hadronic properties, such as
f- and the kaon mass to determine the cutoff as A; =
0.773 GeV and the strange constituent quark mass be-
comes M, = 0.59 GeV. The corresponding quark-meson
coupling constants are g,,o = 4.24 and gg,o = 4.52. The
quark distribution functions calculated with LB-DIP regu-
larization satisfy both the number and momentum sum
rules and allow us to set the model scale at Qg5 =
0.2 GeV? in the usual way by comparing the evolved
pion distribution function with that obtained from experi-
ment. This procedure is discussed in detail in Ref. [40].
The plots in Fig. 6 clearly show that the z range of the
splitting functions calculated using LLB-DIP allows for a
smooth continuation of the corresponding splitting func-
tions calculated using LB regularization to the endpoints
z =0 and z = 1. The plots in Fig. 7 present results for the
fragmentation functions of a u quark to 77+ and K™ using

0°=4 GeV?
0.8 o e e HKNS
—~ I\ s e DSS
+ﬁ 0.6 ~o NJL-jet
B ~
Q KN
v 04r N\,
S
02 ~ ~.
s.§.~.
1 1 1 1 1 1 1 o
0.1 02 03 04 05 06 0.7 08 09 1.0
Z
0.30
0?=4 GeV?
025
s wn HKNS
__ 020F Dss
[S¥)
C. 015 -
= A »
Q
No0.10F
0.05 | .
v
0 1 1 1 -

1 1 1 1 1
0.1 02 03 04 05 06 0.7 08 09 1.0
Z

FIG. 7 (color online). The integrated fragmentation functions
for a u quark to 77" (upper) and K* (lower), calculated using the
LB-DIP regularization with a light constituent quark mass of
M = 0.4 GeV and evolved from the model scale to Q2 =
4 GeV?2. The results are compared to phenomenological parame-
trizations of experimental data from Ref. [48] (HKNS) and
Ref. [49] (DSS). The shaded area represents the uncertainties
in the HKNS results.
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the LB-DIP regularization scheme. We use the QCD evo-
lution code of Ref. [50] at next-to-leading order to evolve
our model results from the scale 0} = 0.2 GeV? to Q* =
4 GeV?. We find a slightly better description of the em-
pirical parametrizations compared to our earlier work
[40,41], especially in the region where z is close to 1.
Previously, artifacts of the LB regularization did not allow
a good description in this domain.

IV. TMD QUARK DISTRIBUTIONS
IN THE NUCLEON

The TMD quark distributions in the nucleon are again
determined by utilizing the NJL. model. The nucleon bound
state is described by a relativistic Faddeev equation that
includes both scalar and axial-vector diquark correlations,
where the static approximation is used to truncate the quark
exchange kernel [35]. The relevant terms of the NJL inter-
action Lagrangian are

L, =G (ysCrBAyT) YT C  ysmaBath)

+ G (Uy, Crima BT C oy, Bath),
(14)

where C = iy,y, and B4 = \/%/\A (A €2, 5,7) are the

color 3 matrices [35]. The strength of the scalar and axial-
vector diquark correlations in the nucleon are determined
by the couplings G, and G, respectively. To regularize the
NJL model for the calculation of the nucleon, we choose
the proper-time scheme, with an infrared and ultraviolet
cutoff, labeled by Az and Ayy, respectively. This scheme
enables the removal of unphysical thresholds for nucleon
decay into quarks, and hence simulates an important aspect
of confinement [51-53]. This simulation of quark confine-
ment has also been shown to provide a natural saturation
mechanism for nuclear matter in the NJL model [53].

The proper-time regularization scheme is not used for
the fragmentation functions because the emitted hadrons
are not confined. Therefore, the confining nature of the
proper-time regularization is not appropriate in this case.
However, for consistency between both regularization
schemes we use the same light constituent quark mass
and fix the UV cutoff so as to reproduce the pion decay
constant.

The five parameters of our NJL model for the nucleon
are the light constituent quark mass, M, the regularization
parameters Ajr and Ayy, and the couplings G, and G,.
These are determined by fixing M = 0.4 GeV, AR =
0.24 GeV, and then reproducing the nucleon mass, pion
decay constant, and the nucleon axial coupling via Bjorken
sum [37,54]. Strange quarks are not yet included in our
model for the nucleon.

The leading-twist spin-independent TMD distribution of
the quarks of flavor ¢ in the nucleon is defined via the
correlator [6,55]

PHYSICAL REVIEW D 85, 014021 (2012)
d¢ dgr
dn=p [
Q(x T) p (277_)3

X AN, S, 0)y " W(&) s,

X (f_’ fT)lN’ S>|§+:0|) (15)
where W(&) is a gauge link connecting the two quark
fields, which are labeled by ¢ ,. In QCD, this gauge link is
nontrivial for £ # 0, however at the level of approxima-
tion that we are working at, this gauge link equals unity in

the NJL model. Our states are normalized using the non-
covariant light-cone normalization, namely,

DUN, Sl (0)y* i, (0)IN, S) = 3. (16)

eixp+§—e—ik,<.§1

Equation (15) can be expressed in terms of two TMD quark
distribution functions, namely,
e~ Tiiki gl
Q(xk) = alx k) =S gk (), (17)
where the first TMD PDF integrated over kp gives the
familiar unpolarized quark distribution function and the
second TMD PDF, known as the Sivers function [56,57], is
time-reversal odd and is zero at the level of approximation
included in this work.
To determine the TMD quark distributions in this model,
it is convenient to express them in the form [58,59]
. (dkTdk™ ( kT

q(x, k%) =1 Wﬁ X ])Jr)Tr[y+Mq(p, k)],
(18)

where M, (p, k) is the quark two-point function in the
bound nucleon. Therefore, within any model that describes
the nucleon as a bound state of quarks, the quark distribu-
tion functions can be associated with a straightforward
Feynman diagram calculation.

The Feynman diagrams considered here are given in
Fig. 8, where the first diagram represents the so-called
quark diagram and the second the diquark diagram. The
single line in each diagram represents a quark propagator
which is the solution to the gap equation and the double

FIG. 8 (color online).

Feynman diagrams which give the un-
polarized TMD quark distribution functions in the nucleon. The
single line represents the quark propagator and the double line
the diquark ¢ matrix. The shaded oval denotes the quark-diquark
vertex function, obtained from a relativistic Faddeev equation
and the operator insertion has the form y*&(x — %) 11 £ 73).
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line is the diquark 7 matrix obtained from the Bethe-
Salpeter equation. The vertex functions represent the
solution to the nucleon Faddeev equation. The resulting
distributions have no support for negative x and therefore
this is essentially a valence quark picture. By separating the
isospin factors, the spin-independent # and d TMD quark
distributions in the proton can be expressed as

u(x, k) = ‘;/N(x, k7) + %fZ/N(x, k3) + %f;(D)/N(x, kZ)

d(x, k%") = %fZ/N(x’ k%) + %f;(D)/N(xr k%‘)
+ %wa)/N(x, k7). (20)

The superscripts s and a refer to the scalar and axial-vector
terms, respectively, the subscript g/N implies a quark
diagram and g(D)/N a diquark diagram. Explicit expres-
sions for the functions in Egs. (19) and (20) are given in the
Appendix.

Results for the u- and d-quark TMD quark distributions
functions in the proton are illustrated in Fig. 9. The Q2
scale to which these results correspond is not determined
by the model. Previously, for the familiar spin-independent
PDFs we fitted the valence u-quark distribution in the
proton to the empirical result at some large Q scale, this
gives a model scale of 03 = 0.16 GeV? [35,37,38] in the
proper-time regularization scheme. Rigorous comparison
with the experimental data requires QCD evolution of the
model TMD PDFs, which is left for future work. Here, we
just show the results as they emerge from our model, the
exact scale of which is not so important for this purpose.
When QCD evolution is included, both the TMD PDF and
TMD fragmentation function model scales must be equal
when determining observables like SIDIS cross sections.
The integral of these TMD PDF results over k¢ gives the
familiar spin-independent quark distributions functions,
which satisfy the baryon number and momentum sum
rules. The Bjorken x and k2 dependence in these expres-
sions is not separable, and therefore the Gaussian ansatz for
the TMD quark distributions, namely, that they can be
written in the form

) L)
q(x’ kT) CI(X) 7T<k%~> ’ (21)
is not possible for our TMD PDF results. The Bjorken x
dependence of (k%) for our proton TMD quark distribution
results is illustrated in Fig. 10, where

J &krkiq(x, k7)
fdszq(x, k%)
If the x and k2 dependence of our TMD quark distributions
were separable, then the curves in Fig. 10 would be con-

stants, however we find that <k:‘}> has about a 20% variation
over the domain of Bjorken x. We also find that the x

(k) (x) = (22)
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FIG. 9 (color online). Results for the u (upper) and d (lower)
TMD quark distributions in the proton.
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FIG. 10 (color online). The Bjorken x dependence of (k%).
Diquark correlations in the nucleon give rise to the quark flavor
dependence.
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FIG. 11 (color online). Results for the TMD u-quark distribu-
tion in the proton for fixed x slices, where the upper plot has
x = 0.4 and the lower plot is for x = 0.8. Also plotted are
individual fits to the TMD quark distribution using the
Gaussian ansatz of Eq. (21) for each x, with (k2.) the single fit
parameter in each case.

dependence of <k%> for the u and d quarks differs some-
what, with the d quarks having slightly larger (k2.) for the
majority of Bjorken x.

Figure 11 illustrates our TMD quark distribution results
at particular x values and compares them to a Gaussian
ansatz fit for the same x slice. The Gaussian ansatz results
are obtained by a least squares fit of the TMD factor in
Eq. (21) to our ratios g(x, k2-)/q(x) calculated in the NJL
model, using (k2) of Eq. (21) as the only fit parameter for
each value of x. The fitted value of this parameter is
approximately 20% smaller than the value of (k%) calcu-
lated with our model distribution functions. In the least
squares fit, we included values of k% up to 4 GeV? and the
curves in Fig. 11 indicate that such a fit to a single Gaussian
is reasonable only for a limited k% region, for a single value
of x.

V. TMD FRAGMENTATION FUNCTION RESULTS

In this section, we present NJL-jet model results for the
TMD fragmentation functions. The number of emitted
hadrons in the decay chain is set to Ny = 6, which is

PHYSICAL REVIEW D 85, 014021 (2012)

sufficient to accurately obtain the pion and kaon fragmen-
tation functions in the domain z = 0.02. We solve for the
fragmentation of u, d, and s quarks to pions and kaons,
utilizing Monte Carlo simulations and the expression in
Eq. (6), similar to our previous calculations of the inte-
grated fragmentation functions detailed in Ref. [41]. The
computational challenge for the Monte Carlo simulations
is to obtain sufficient statistics and this becomes signifi-
cantly more difficult when we include the transverse-
momentum dependence, because now the number of bins
becomes quadratic in the size of the discrete bin size (taken
to be 1/500 both for z and transverse momentum, in the
corresponding units). Furthermore, the extent of the bins in
the transverse-momentum direction was extended to
6 GeV?, in order to avoid any notable numerical artifacts
arising from the limited range of transverse momentum. To
overcome the numerical challenge, our software platform
was developed to allow for parallel generation of the
Monte Carlo quark decay cascades, with different seeds

(S 2o 01 02 03 04 05 06 07 08 09 1

J z

zDj
S
]
il

Do 0.%'3 =
02 03 04 05 06 0.7 08 09
~ z

1

FIG. 12 (color online). TMD fragmentation functions for a u
quark to 77+ and 7. The upper figure illustrates the favored
case, which peaks at relatively large z, while the unfavored case,
shown in the lower figure, peaks at much smaller z.

014021-8



TRANSVERSE-MOMENTUM-DEPENDENT FRAGMENTATION ...

for their random number generators. The results were later
combined to produce the high statistics solutions. The
computations were facilitated on the small computer clus-
ter at the Special Research Centre for the Subatomic
Structure of Matter (CSSM) that consists of 11 machines
with Intel Core 17 920 quad core CPUs running on the
Linux Fedora Core 11 operating system and GCC 4.4. A
typical calculation of fragmentation for a given quark type
takes about 12 hours with 44 parallel processors.

Results for the TMD favored and unfavored fragmenta-
tion functions for a u quark to 7 and K mesons are
illustrated in Figs. 12 and 13. In each case, the favored
TMD fragmentation functions have more support at large z,
while the unfavored results are peaked at smaller z. It is also
evident that the kaon fragmentation functions fall off more
slowly in P} than the corresponding pion fragmentation
functions. The drop in each of the fragmentation functions
for 7 = 0.02 is a consequence of choosing Ny, = 6,
which means that in the Monte Carlo simulation there

0
0.(1)
.2
/39/ 0%6 rrr|||u\w|uu|uu|wwu|uu|uu‘uu‘uu‘
O@k '50 01 02 03 04 05 06 07 08 09 1
=)
~/ z

a\

K.
zD,
o
R

A AN
1 AN \
0.03 - \:\\\\\\\\\\\

Y\‘Illll\\\\l\\\\‘\lllll\\\l\\\\‘

,( =
KO@ 6'5 0o 01 02 03 04 05 06 07 08 0.9
z

1

FIG. 13 (color online). TMD fragmentation functions for a u
quark to K* and K. The upper figure illustrates the favored
case, which peaks at relatively large z, while the unfavored case,
shown in the lower figure, peaks at much smaller z.
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<P’> (GeV?)

FIG. 14 (color online).

The averaged transverse momentum of
7 and K mesons emitted by a u quark.

is a vanishingly small probability of emitting hadrons
with z < 0.02.

The Gaussian ansatz is widely used to describe the
traverse momentum dependence of both quark distribution
and fragmentation functions. In particular, the TMD frag-
mentation function of a quark g emitting a hadron 4 is
often modeled by

b e PL/PD)

Dj(z, P7) = Dg(2) Py (23)
where DZ(Z) is the corresponding integrated fragmentation
function and <P2l> is the average transverse momentum of
the produced hadron £, defined by

Jd?P, P2 Di(z, P?)

2 =
P = [P Dz PY)

(24)

In analyses that assume a Gaussian ansatz for the TMD
fragmentation functions, it is usual to assume that (P?)
does not depend on z, the type of hadron, /4, or the quark
flavor, g. These assumptions will be tested against the
NJL-jet TMD fragmentation functions.

The results in Fig. 14 depict the average transverse
momenta of 77 and K mesons produced by a u quark.
These plots show that the average transverse momenta of
the hadrons are relatively flat versus z in the region 0.3 <
7 < 0.6, however they have a significant dependence on the
type of the hadron. We find that the average transverse
momentum of the kaons is significantly larger than that of
the pions.

The curves in Fig. 15 depict the TMD fragmentation of a
favored u — " process for z = 0.8 and an unfavored s —
K* process for z = 0.2. Also presented are least squares
fits to the fragmentation functions for particular z slices
using the Gaussian ansatz of Eq. (23), with (P ) the single
fitting parameter for each z. The plots in Fig. 15 indicate
that such a fit to a single Gaussian is reasonable only for a
limited P} region. Also, because (P3 ) has a significant z
dependence, the Gaussian ansatz for the entire TMD frag-
mentation function offers at best a crude approximation to
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FIG. 15 (color online). Normalized TMD fragmentation for
the favored u — 7" process for z = 0.8 (upper) and the unfa-
vored s — K" process for z = 0.2 (lower). Also depicted are
fits to the fragmentation functions using the Gaussian ansatz of
Eq. (23), with (P?) as the single fitting parameter.

the full results. The corresponding average transverse mo-
menta obtained from the Gaussian fits are smaller than
those obtained directly using the relation in Eq. (24).

VI. AVERAGE TRANSVERSE MOMENTA IN SIDIS

For the SIDIS process, we have created a Monte Carlo
event generator that can calculate the physical cross sec-
tion. In future work, this will enable us to analyze the
relative importance of the different aspects of the process
and the implications of the constraints set in individual
experiments. We use it to determine the average transverse
momentum of the produced hadrons (at the model scale)
observed in a SIDIS experiment, namely, (P%), which is
defined as

[ d*PyPiD!(x, z, P} )
[d*P,Di(x,z, P})

(PP, 2) = (25)
The function ﬁg(x, z, P%) is defined in Eq. (7). The crosses
in Fig. 16 represent results for (P7) acquired by 77" mesons
in a SIDIS hadronization process, where the virtual photon
strikes a valence u quark in a proton carrying a light-cone
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FIG. 16 (color online). The averaged transverse momentum of
77" mesons in SIDIS produced on a u quark in a proton with
light-cone momentum fraction x = 0.4.

momentum fraction of x = 0.4. We also plot as the dash-
dotted line (P ) which is the average transverse momen-
tum that the 77" mesons acquire in the quark fragmentation
process. Recall that the transverse momentum P, is de-
fined relative to the direction of the original fragmenting
quark, while Pr is relative to the direction of the photon
momentum, these transverse momenta are related by
Eq. (1). For the factorization of the SIDIS cross section
given in Eq. (7), it can be shown that (P2 is given by

(PP, 2) = (P1)(2) + Z(kp)(x). (26)

As an additional check on the Monte Carlo calculation, in
Fig. 16 we plot the result obtained from Eq. (26) as the
solid line and find that it agrees perfectly with that obtained
from the Monte Carlo event generator for the SIDIS cross
section. We also find that both (P ) and (P%) illustrated in
Fig. 16 have a sizable z dependence.

Ilustrated in Fig. 17 are results for the average trans-
verse momentum acquired by 77 and K mesons in the
hadronization process in SIDIS, where the struck quark is

T L e, T T
0.4 e -
< IR

=~ 03[ —— N
N 02 W

a '.“
QL b i

v —_———
o1r TTT & u-h, x=0.4 -.::\‘-

.......... K'
O 1 1 L 1 L 1 L 1 M K
0 0.2 0.4 0.6 0.8 1.0
z

FIG. 17 (color online). The averaged transverse momentum of
7 and K mesons in SIDIS on a u quark in the proton with light-
cone momentum fraction x = 0.4. The unfavored fragmentation
functions rapidly approach zero for large z and this causes the
dramatic changes in (P%) at large z illustrated in this figure.
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a u quark in a proton with light-cone momentum fraction
x = 0.4. The rapid approach to zero for the unfavored
fragmentation functions in Fig. 17 is a consequence of
the large z behavior of the unfavored (P? ) illustrated in
Fig. 14, which also rapidly approach zero. The HERMES
experimental results for (P2) measured in SIDIS on a
deuterium target [27] are of comparable size to our results
shown in Fig. 17. We do not plot these HERMES results
because the kinematic range is too different for a quanti-
tative comparison. The average transverse momentum of
the kaons is larger than that of the pions at the low Q? scale
of the model. Our model includes only the valence quarks
in the proton, which should be the dominant component at
x = 0.4.

VII. CONCLUSIONS AND OUTLOOK

In this work, we extended the NJL-jet model to include
the transverse-momentum dependence in the quark hadro-
nization process. This was achieved using TMD elemen-
tary fragmentation functions and by keeping track of the
quark’s recoil transverse momentum in the hadron emis-
sion cascade. We modified the LB regularization scheme to
remove artifacts that limit the z range of the splitting
functions, and this in turn improved our description of
the integrated fragmentation functions. The TMD frag-
mentation functions for u, d, and s quarks to pions and
kaons were determined using a Monte Carlo approach. The
average Pﬁ_ of the produced kaons was found to be sig-
nificantly larger than that of the pions and in both cases
(P%) had a sizable z dependence. The high statistical
precision needed for these calculations was achieved
through parallel computing on the small computer farm
at CSSM.

The TMD quark distribution functions in the proton
were also determined using the NJL model. In this case,
we used the proper-time regularization scheme, because
this method simulates important aspects of confinement.
Our TMD PDF results when integrated over ky give our
earlier results for the familiar spin-independent quark dis-
tribution functions [35], whose moments satisfy the baryon
number and momentum sum rules. We found that the
average k> of the quarks in the nucleon have a significant
x dependence and therefore the familiar Gaussian ansatz
for the TMD PDFs produces only a crude approximation to
our full TMD PDF results.

Finally, using the TMD quark distribution functions for
the nucleon and the results for the TMD fragmentation
functions, we constructed a Monte Carlo event generator
for the SIDIS process. Using this Monte Carlo event gen-
erator, we determined the average transverse momentum of
the hadrons, (P%), produced in SIDIS. These results are of a
similar magnitude to those extracted from experiment,
even at our relatively low model scale. As a cross check
for this SIDIS Monte Carlo event generator, we compared
our results for (P7) with those obtained using Eq. (26),
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finding perfect agreement. We find that the (P%) of the
produced kaons is significantly larger than that of the
pions, which is not apparent in the current experimental
measurements.

An interesting extension of our model would be to
include the vector meson and nucleon antinucleon emis-
sion channels. This extension has already been completed
in our previous work on the integrated fragmentation
functions. It would also be intriguing to consider the
spin-dependent effects in the hadronization process, in
particular, to calculate the Collins fragmentation function.
Further, using the NJL description of nucleon structure we
will be able to develop a self-consistent description of the
spin-dependent effects in SIDIS reactions.
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APPENDIX: NUCLEON TMD PDF EXPRESSIONS

The u and d valence TMD quark distribution functions
in the proton are given by

wy (6 k) = f5 (0 k) + 3f0 (6 k7) + 35 ) (6 K7D

+ 3 aoyn % k7). (A1)
d,(x, k%) = %fZ/N(x’ k%‘) + %f;(D)/N(x, k%")
+ éff;(D)/N(x, k7). (A2)

The individual quark diagrams terms have the form

a3Z\Z,
1673
X e—r[k%.+x(x— DM, +xm?+(1 —x)MZ]’

f;/N(X, k%): (1 —x)[dr[l +Tx[(MN+M)2—m?]]

(A3)
7.7
fZ/N(X, k3)=— 16771;/(1 —x)fdr[(a% —2ay03—203)

X (14 72 (My — M)*> —m2])

_ lza%TxMMN]e*T[k%wLx(xf DM +xm2+(1 ﬂc)Mz]’

(A4)
and the diquark diagrams terms are given by
1
Faon e k) = fj; dydzd(x = y2)f}, (2 k)
X fon( =), (A5)
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1
Fioyne ) = [[ dvazote = yairy e i)
X fZ/N(l - )’)
The diquark TMD quark distributions are

3Z
3 /dT[l + 7x(1 — x)m?]
4ar

X e—r[k;+x(x— 1)m? +M2],

(A6)

f;/D(x, k7) =

(A7)

3:3‘1 x(1 — x)/dr[l + 7x(1 — x)m2]

X e—’r[k%.+x(x— 1)m2+M?]

£l k) =
(A8)

The constituent quark, scalar diquark, axial-vector diquark,
and nucleon masses in these expressions have the values
M = 0.4 GeV, m; = 0.687 GeV, m, = 1.03 GeV, and
My = 0.94 GeV. The weight factors in the nucleon
Faddeev vertex [35,60,61] and its normalization are given
by (a;, ay, az) = (0.429,0.0244, —0.445) and Zy = 29.9,
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respectively. Finally, the pole residues of the scalar and
axial-vector diquark ¢ matrices are Z; = 14.5 and Z, =
3.82, respectively. Integrating over kp in these expressions
gives the familiar spin-independent quark distribution
functions, the moments of which satisfy the baryon number
and momentum sum rules.

These expressions have been derived using the proper-
time regularization scheme, which in practice means to
make the substitution

1 1 0

= dr le— X

X (”_1)!/0 e
1

i [VAIZR drm" le™ ™
(n - 1)! 1/A6V

where X denotes the denominator function in a loop inte-
gral after Feynman parameterization and Wick rotation.
The infrared and ultraviolet cutoffs have the values Ajg =
0.240 GeV and Ayy = 0.645 GeV, respectively.
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