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Abstract

Since the late 1960s and early 1970s humerous hpee been written on the formulations and methods
for solving the governing equations for flows amgds in water distribution systems. Many different
names have been given to the various formulatiodsv@ethods for solution used including the linear
theory method, Newton's method, the Todini andtiRitethod etc. The underlying equations are the flo
continuity equations at nodes in the network, thadcloss-flow relationships for individual pipesian
finally the head losses around closed loops op#ébhs between fixed head nodes in the network séhe

of equations is nonlinear and hence requires aatie solution process.

The aim of this paper is to revisit the formulasaf the equations for flows and heads in water
distribution systems and provide clarity for a tjipresentation of a framework for the different
formulations. Five formulations are described idahg 1) flow equations where the equations are
formulated only in terms of the unknown flows inetwork 2) head equations 3) loop flow equations 4)
flow and head equations and 5) the Todini andiRitat and head formulation. Graph theory is used t
show how many unknowns are required to be solvethfeach of the five formulations. A Newton
solution method is derived for the flow formulatiand the Todini and Pilati formulation.

INTRODUCTION

Pipes, pumps, tanks and valves are connectedrtodavater distribution system, often in a complex
manner. A network for a city, small town or new division is an example. Many or several loops or
circuits are usually present in the network. Thaeeusually entry points to the network (for exagapl
tanks, storages and reservoirs) and also many raitlad points (for example—homes, industries, parks
and gardens, commercial buildings, etc.).

Nodes are defined as the end points of links im#te/ork (pipes, pumps or valves) and are ideutifie
either junction nodes with a variable head or fikedd nodes (for example-reservoirs). Flow mayrente
or leave the network at junction nodes.

There are a number of alternative formulationheféquations describing a water distribution system
(Wood and Rayes (1981)—for the first three fornmatet; Todini and Pilati (1988) for the fifth
formulation). Five formulations that are preseritedetail in the paper include:
1. flow equations oQ—equationgormulation in terms of unknown flow§§) in each link
2. head equations dt—equationdormulation in terms of unknown heads or HGHs) at each
node
3. loop flow equations formulation dF—equationsn terms of unknown loop flowd Fs)
4. flow and head equations @H equationgormulation in terms of both the unknown flows and
unknown heads



5. Todini and Pilati Q—H equation®rmulation in terms of unknown flows and unknoleads
(Todini and Pilati 1988)

The objective of this paper is to provide claritythe presentation of the five different possible
formulations of the equations governing flow anddhe a water distribution system network. The
structure of the paper is as follows. Graph théskyriefly introduced to define the number of vatés to
be solved for in each formulation. The vectors aradrices required are then defined. Finally, detail
the five formulations are given.

GRAPH THEORY FOR NETWORKS

Consider a network in the most general terms (basdtie nomenclature of both Wood and Rayes 1981
and Boulos and Altman 1991). From graph theory #hown that the above variables are related as
follows (Boulos and Altman 1991)
NP=NJ + NL +(NF - NC) (2)

where

e NP = number of links (including pipes, pumps and eaphin the network

¢ NJ= number of nodes in the network (excluding resiesvor fixed head nodes))

¢ NL = number of closed simple loops in the networki®that have no interior crossing links—

also called non—overlapping or natural or primagpis)
* NF = number of reservoirs or fixed head nodes imitgvork
*« NC=number of separate disconnected subnetworksallysuC = 1 but if a link closes in a
network that results in separated parts it is fdes$0 haveNC > 1.

For networks containing two or more reservoirsdghrer form of fixed head source), it is necessary t
consideMNF-NCrequired independent paths between nodes of fired in the analysis of a network. A
path is defined as a non—intersecting series k§ Ioetween any two fixed head nodes (e.g. resajvoir
that does not contain a closed simple loop. Consideexample network that is fully connected sinett t
NC=1. For two reservoird\F=2) there is only one path between the two reses\{thusNF-NC=
2-1=1). For three reservoirslE=3) there are three possible paths between thevodse however, there
are only two independent paths requirblé{NC=3-1=2). It does not matter which of the two paths
between the reservoirs are selected in the thesgwair case, as one path between two of the reisgiig
redundant and is not required.

Based on Eq. 1, it generally holds that there ayeertinksNP in the network than nodé@&l such that
NP > NJ.

In addition there are usually more link® or nodedNJ than closed simple loopélL plus required
independent paths in the netwoNH-NC) such that

NP> NL + (NF-NO.

Finally, for networks with at least one closed dierpop the number of nodeN.J) exceeds the number
of closed simple loops plus required independetitya

NJ> NL + (NF-NQO).

As a result, the ordering from the minimum numbfevasiables to the maximum to be solved for is
shown in Table 1. A ten pipe example network isnghn Figure 1.



Table 1. Number of variables to be solved for eadiormulation

FORMULATION | NUMBER OF VARIABLES NUMBER FOR TEN-PIPE NETWORK
Loop flows NL + (NF - NQ 3

Heads NJ 7

Flows NP 10

Todini Q+H NP + NJ 17/10

Flows+Heads NP + NJ 17

*however, only a matrix solution of sia&J is required to solve for the heads (see latendhe paper)

Thus in summary, for networks that contain loope,iumber of unknown loop flowkKs) is always

less than or equal to the number of unknown hedsdsthat in turn is always less than the number of
unknown link flows Qs).
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Figure 1. The unknown flows and heads in a ten-pipeetwork

VECTORS OF UNKNOWNS AND KNOWNS

Consider a water distribution network of pipes amdttions or nodes in which the system Ndspipes,
NJ variable-head nodeblF fixed-head nodes andL closed loops. The number of required independent
paths is NF-NC). Assume the network is completely connected (M@s1). The general column vector

of flows for NP pipes or links (expressed as the transpose o aector) for a water distribution system
is

q=[QuQ ..., QNP]T
The general column vector of heads féd nodes is
h= [Hl, Hg, ceny HNJ] T

The ten pipe network shown in Figure 1 has 10-unknflows and 7-unknown heads.



The known column vector of demands kb nodes in a general network is
dm = [DMy, DM 5, ..., DMy "

In the third formulation of the equations for a @radistribution system unknown loop flows will be
solved for. A vector of unknowns is defined as

U=[LFy, LFy ..., LF ] "
where the number of closed loops and required ieiégnt paths iNTL = NL + (NF — NG.

TOPOLOGY MATRICES FOR NETWORKS

Two matrices are useful for describing the topolofjg network (Todini and Pilati 1988) including:

¢ The unknown head node matrixAd (the size of the matrix NP x NJ). If a link (in rowj of Al)
enters the nodein the designated flow direction (in columaf theAl matrix) then they;
element is -1. If it leaves the node it is +1 hié inode and link are not connected it is O (zero).

« The fixed head node matrixA2 (the size of matrix idIP x NF). If a link (in rowj of matrixA2)
enters the fixed head noflén the designated flow direction (in colurhaf matrixA2) then the
as element is -1. If it leaves the fixed head nods i1. If the fixed head node and link are not
connected it is O (zero).

THE BASIC NODE AND PIPE GOVERNING EQUATIONS

There are two types of governing equations for feowd head (HGL or pressure) in a network of pipes.
These include

e continuity of flow at each node

* head loss—flow relationship for each individualepip

The continuity equation at each of the variabledheades in the network is given by:

NP
> (ajQ;) +DM; =0......... fori=1,2,...NJ )
j=1

where thea; elements (a zero, -1 or +1 value) are fromAh& matrix. Typically only 2 to 4; elements
of a row of theA1™ matrix will be non-zero. Thus only non-zero valeés; will contribute to the
continuity equation for the pipes attached to nioddote that flows out of the node will be positivbile
flows into the node will be negative.

The head loss equation (or energy equation) fopigpep; in the network connecting nodand node is
given by:

H =H, =1,Q[Q| ... forj=1,2,...NP 3)

wherer; = resistance factor assuming say the Darcy Welsbhaad loss equation based on the Darcy-
Weisbach friction factof is used (that is dependent on the Reynolds nuarmkthe relative roughness
for the pipe). The modulus sign in Eq. 3 ensurasttie sign of the flow matches the sign of thedhea
difference on the left hand side of the equatidre fesistance factor is given by:



ro=—> forj=1,2,....NP 4)
wherelL; = pipe lengthg = gravitational acceleratiol; = pipe internal diameter. The friction factor may
be estimated by the Swamee and Jain (1976) equagion

f. = 1825 forj=1,2,....NP (5)

j 2
£ 574
In +
3.7D j Re%®

where €; = roughness heighRe = Reynolds number for the flow in the pipe. A Haa#illiams head

loss equation could easily be also used to retace. The vector of pipe resistance factors3g(ry, ra,
..., Inp )T.

FORMULATION 1: FLOW EQUATIONS OR THE Q-EQUATIONS FO R A NETWORK

The unknown flow€);s are labeled on Figure 1 for the ten-pipe netwbhle direction of flow in each
pipe has been selected based on an expected fteavrpa the network. The direction may have been
selected incorrectly in some pipes but this doagmadter. In the final solution, if a pipe flow g out to
be negative, then that flow was assumed to beeimvtiong direction initially.

The flow equations are formed from both the coritinequations at each of the nodes (a totdll bf
equations) and the energy equations for simpleedit@mops and required independent paths in the
network (a total oNL+NF-NC equations). To implement this formulation the Isoged to be defined
via the loop matrix (Todini and Pilati 1988). Indatibn, required independent paths between nodes of
fixed head also have to be defined.

For the Q-equations formulation, the set of contijnequations are given by Eq. 2.

Now consider the energy equations around closedlsitoops or between fixed head nodes along
required independent paths in a network. Thesetiemsaare nonlinear. A direction (usually positfee
clockwise) for each of the loops must be assum@odnUraversing a closed simple loop in the network
the sum of head loss around the loop must be Zéis.is expressed as

_zerj‘Qj‘zo ......... fork=1,...,NL (6)

for each closed simple loop in the network whgre {indices of the pipes in look}.

In addition to closed simple loop energy equatigN&-NC) required independent paths between
reservoirs or fixed head nodes in the network ralsgt be considered. Consider a series of pipescaatw
two reservoirs designated as reserwoand reservoig. The head loss in the pipes between two
reservoirs must be equal to the difference in ¢iemar HGL between the 2 reservoitsL(, andEL).
Each path should be traversed in the same direatiche loop flow direction (usually clockwise).igh
may be expressed as



ijQj\Qj\—(ELm—ELq)zo ......... fork=1,...NF-NC  (7)
jos,

whereS, = {indices of the pipes in patk}. Note that application of Eq. 7 may be a litttieky. It is best

to traverse the loop in the direction of the lolmgwfarrow between the reservoirs—then make tha-igh
hand side equal to the head loss difference bettteereservoirs or fixed head nodes. Finally, minee
right—-hand side term to the left—hand side of tipgagion so that the function is then equal to zZ€he
same sign convention regarding the sign of therasdihead loss and the assumed flow direction in the
pipe is assumed for required independent path gregngations as for closed simple loop energy
equations. It is clear that the equations in Earelinear while Egs. 6 and 7 are non-linear.

Solving this set of non-linear equations for tl@wvlequations formulation can be carried out by gisin
Newton iterative solution which requires computatid the Jacobian matrix. This approach provides a
linearizing approximation that is amenable to amditive solution process (details of the Newtomitsmh
process are given in Formulation 5). Newton’s metisoequally applicable to all formulations preseht
here. The characteristics of the Jacobian (for @ansymmetry, positive definiteness, Stieltjesslyand
the use of sparse solution methods, where appéicalil significantly affect the computational castd
hence the speed of the Newton solution techniguedoh of the formulations. The formulation witle th
minimum number of variables to be solved for doetsnecessarily lead to the most effective method in
terms of speed of convergence. A detailed compaa$ohe numerical and convergence propertiesef th
various formulations is beyond the scope of thizgpa

FORMULATION 2: HEAD EQUATIONS OR THE H-EQUATIONS

The unknown headd;s are labeled on Figure 1 for the ten-pipe netwbhie head equations are formed
from the continuity equations (Eq. 2) and the filakv equations (Eqg. 3) by eliminating the flow tegim
Eg. 2 between both sets of equations. Solvinghferfiow from Eq. 3 gives for pipg linking nodes and
k:

@/n)-1
Hi -~ Hy)H; —H
sz( M) - S forj=12,...NP  (8)
I’j :

The H-equations formulation thus becomes by sultistg Eq. 8 into Eq. 2.

1/n)-1

NP (Hi_Hk)|Hi_Hk|( " _ .

D - +DM; =0......... fori=1,2,...,NJ )
i=1 rj

where theg; elements (a zero, -1 or +1 value) are fromAh& matrix. If the node connected to ndde
for a particular pipe is a fixed head node therHhealue is replaced biL.,. Note that all equations in
Eq. 9 are non-linear in contrast to the Q-equatfonsulation where the continuity equations (Eqag)
linear equations. The H-equations formulation syda implement in a computer code. It is not
necessary to define the loops for this formulaiarcontrast to the Q-equations formulation) and th a
huge advantage of the technique. Only the link ectivity information is needed including the node
numbers at the end of each link, the length, diamatd roughness of each pipe and the properties of
each node (elevation and demand) (Todini and Fig8B).



FORMULATION 3: LOOP FLOW OR LF-EQUATIONS

The loop flow or LF—equations are obtained by wgtthe energy equations (similar to Eq. 6 and 77) fo
the closed simple loops and all required indepenpiatis in the network by incorporating appropriate

loop flows orLF values. The LF values for the ten-pipe networkstu@wvn in Figure 2. As each closed
simple loop is traversed the head loss along eakhd added (or subtracted) according to the sign
convention used. Flow directions must be assumeddcoh pipe. A direction (usually positive for
clockwise) for each of the loop flolaFs must also be assumed.
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Figure 2. Unknown loop flows for the LF-equations érmulation

A column vector of initial flows in the network niuse chosen such that they satisfy continuity ahea

node as follows

a=[1Q" Q5" ,..QE 1"

Thus as shown in Figure 2, flow directions in epigde must be chosen for ea

(10)

Nt in each pipe. In

Eq. 10, theQijnit values that satisfy continuity at each node inné®vork remain unchanged for all

iterations. Note that this is quite different frolhe loop flow corrections formulation for the mahua
Hardy Cross method (1936) where the initially sidddlows are updated in the loop immediately after
the computation of each loop flow correction.

From Eq. 6, the energy equations in the LF-equatiormulation for each of thdL closed loops in the

network are

2 i Q"

i0s

+ D LR [QM + Y LF|)=0..fork=1,...NL
CHN sL

(11)



whereS, = {indices of the pipes in closed logpandL; = {indices of the loops associated with pjpe

From Eq. 7, the energy equations in the LF-equatformulation for each of th&E-NC) required
independent paths in the network are

S (| QM + >R [QM + > LFg| ) - (ELy — ELg) =0...fork =1,..., NF-NO (12)
jos, gL, gL

whereS, = {indices of the pipes in closed lodpandL; = {indices of the loops associated with pipe
If the direction of the loop flow.F is in the same direction as the assumed link,ftoelLF value is
added to the initial flow assumed for the pipeiak.I To the contrary, if th&F direction for the closed
simple loop being considered is opposite to tharassl flow direction in the link, thieF value is
subtracted from the pipe flow. The initial link flos adjusted by the final converged valud_6&
computed for each closed simple Iaogf which the link is a member.

As seen in Table 1, the minimum number of equatresslts for the LF—equations formulation where the
NL closed simple loop equations and tNE&{NC) required independent path equations are formaliate
terms of a loop flows in each simple loop and pathof the equations in the LF—equations formudati

are nonlinear. In the LF-equations formulationfaghe Q—equations formulation, all loops and respli
independent paths need to be identified.

The continuity equations do not form part of theafeahe LF—equations as long as the initial flaweach
link satisfies the continuity at each node in teénork.

The LF—equations in terms of the unknown loop flamvhe network have in the past been recommended
as the preferred formulation of the equations foetavork due to the smaller size of the number of
variables to be solved for in the equation formala{Epp and Fowler 1970, Wood and Rayes 1981,
Nielsen 1989). Ellis and Simpson (1998) indicateat the process for determining the preferred
formulation is not straightforward. It not only deqls on the number of equations but also the lisitia

up time prior to the equations being iterativelived for (e.g. in determining a set of link flowsat

satisfy continuity) and also is quite dependentr@enstarting vector for the set of unknowns that is
selected to commence the iterative solution process

FORMULATION 4: THE Q-H EQUATIONS FORMULATION

The flow and head equations are formed from baghctintinuity equations (from Eqg. 2) at each of the
nodes and the head loss equations for each pipeessed in terms of nodal heads at each end gipke
(from Eg. 3). Thus there are a totalN#® + NJ unknowns to be solved for in the Q-H equation
formulation.

The column vector of unknown flows and heads innéevork is
m =[Qu, Qs ... Qur, Hy, Ha, ... Hug ™.
Thus the Q-H equation formulation is made up ofdbetinuity equations from Eqg. 2 as:
NP

8 Qi)+ DM; =0...... fori=1,2,...,NJ (13)
Zl< | J>
J:



where theg; elements (a zero, -1 or +1 value) are fromAh& matrix and the pipe head loss equations
from Eqg. 3 which are

Hi_Hk_erj‘Qj‘zo forj=1,2,...,NP (14)

where the andk indices refer to the node numbers at the end df pipej.

The number of equations in this formulation is dgfarger than the number of equations for the Q-
equations formulation or the H-equations formulatibhus the size of the matrices that need to b de
with in the iterative solution process will conseqtly be larger. However, the form of the governing
equations is simpler and computation of the Jacobi@ments is considerably easier. In additiois, fitot
necessary to determine the loops in the netwof&rate Q-equation formulation.

FORMULATION 5: THE TODINI AND PILATI Q-H EQUATIONS FORMULATION

The Todini and Pilati (1988) formulation is effealy a type of Q—H equation formulation. The
description below is based on material from Simpaach Elhay (2008). The formulation is based on two
sets of equations solving for all unknown headsflovds simultaneously in a sequential iterative mam
The method has an extremely efficient approachedrtversion of the Jacobian matrix by partitioning
the governing equations in a smart way. The adgentéthe Todini and Pilati formulation is that the
Jacobian matrices are symmetric. The Todini anatif11988) formulation is used in EPANET (Rossman
1994) and a number of other commercially availdlyi@raulic software packages for the simulation of
water distribution systems.

Based on Eq. 2 the continuity equations for allghpes in the network and the topology matrices
introduced earlier in the paper, the following matorm can be written:

A1" g+dm=0=f,(q,h) (15)

where the left-hand-side of Eq. 15 is denoted lyftimctionf,(qg, h). Now for the head loss equations
for each pipgy connecting nodeisandk then Eq. 3 can be re-written as:

r,»Q,»\Q,»\— (H, -H,)=0. (16)

This can also be written in matrix form, but fisstiagonal matrixc of sizeNP x NP is introduced
where:

nQ 1 ... 0 0
0 Q| ... ... 0 0
Go| e 17)
0 0 .. ... Typs|Queyl 0
0 0 ... .. 0 e |Que|



The non-linearity in the system arises becausenditeix G depends on the unknown flowsdgnThe
matrix form of Eq. 16 can be written as followsk{tay into account that some nodes are fixed head
nodes):

Gq-Alh-AZell = 0=f,(q,h) (18)

where[el] is a vector of the reservoir or fixed node headiste that Eq. 18 is denoted by the vector
function f,(qg, h). The two sets of matrix equations in Eq. 15 andIBgmay be written in the following

block matrix form as:

G | -Al)( ¢ A Zel]
f(q,.h)=| -- - --1]|-—-|-| -- |=0 (19)
-A1T | o Jlh dm

This system is really the set of equations for Rdation 4 — the Q-H equations, however, the
partitioning in Eq. 19 will be exploited below tewklop a much more efficient solution scheme. Titsé f
matrix on the left hand side of Eq. 19 shows thitiening of a (NP + NJ)—square matrix into 2 block
rows and 2 block columns. Note that the first blathtrix on the left hand side of Eq. 19 has a sppeci
structure that may be exploited because it is sytmenén addition the only non-constant valuestiist
matrix are the diagonal elements@&fA Newton iterative solution to the set of nonelam equations in
Eq. 19 can be formulated in terms of Taylor's seggpansion and linearization as:

sqk ) (=

@M nlny —— =] —- (20)

for thek+1% iteration where k = 0, 1, 2, etc. Decompositiorthrods that avoid the need for solving for
the inverse of the Jacobian are applied to solveBgAn initial set of guesses of initial flowsqELO)
are required. A value corresponding to a velocity.0 fps is often selected.

The Todini and Pilati (1988) method solves the #éiqua describing the flows and nodal heads in a&wat
distribution network by a reformulation of Eq. 1&ieh exploits the diagonal nature @fand which uses
an explicit block-form of the inverse as shown bel@his leads to a simplification and hence a
significant improvement in the speed of the solutgorithm.

Now consider the derivative of the first matrix te left side hand multiplied by the vectgf (") of
Eqg. 19 so that we can form the Jacobian as showq.i20. The diagonal nature Gfcan be exploited
with only the diagonal elements of t&& matrix changing upon differentiation so computatid the
Jacobian is very straightforward. Rewrite Eq. 19 as

Gq | —-A1lh AZel]
f(q.h)=| -- - -- | -] -- |=0. (21)
-Al'q | O dm



The derivatives of the diagonal element$gf assuming thatis constant (despite the fact that friction
factorsf actually depend on flow: the friction factors mag/updated at the end of each iteration) are:

d n- n-
d_Q(rin\Qi\ lj =g ["” forQ, # 0. (22)

The terms in the second matrix (W2 etc.) on the left hand side of Eq. 21 do not ddpmmg andh.
The Jacobian matrix for the system of equatiortsgn22 becomes:

nG | -Al
J=| -- - -- (23)
-A1" | o0

This matrix has some very nice properties of symyretd sparsenestodini and Pilati (1988) show an
analytic expression for the block-form of the irse0f] where we denote the inverse@to beD
temporarily. This inverse is easy to compute fdragonal matrix and is tractable as long as alWflQ,
are not zero. It has terms Ar(Q;[) at each location along the diagonal. Assumettieahead loss
exponenh is the same for each pipe. The Jacobian becomes:

1D—EDAJ(AlTDAl)‘lAlTD | -DALA1" DAD?
n n
Jt=s| - - - (24)
- (A1"pAD AT D |  -n(A1T DAD™

The reformulation allows the solution process facteiteration to be done in two stages: one for the
flows and another for the heads. Substituting BgE2). 15 and Eq. 18 into Eq. 20 and simplifyingegi
the two-step Todini and Pilati algorithm for solgiauccessively at each iteration for the heads and
discharges as follows:

n =(a1" 6 2 ALT(@-mq -G A Zell) ~ndm| (25)
and
&HD:@’#&M+%Gﬂmuﬂ“”+Aﬂm) (26)

wheren = 2.0 for the Darcy Weisbach head loss formula ©r1.852 for the Hazen-Williams head loss
equation. Note that in the pair of equations alibeeonly matrix inverse that is not trivial to conte

occurs in EQ. 25 and involves tBehur Complemetérm of A1" G1A1 which is the size dflJ by NJ
(the number of nodes in the network). Thus althonghare dealing with a total dlP + NJ) unknowns
the use of an analytical inverse of the Jacobiaréduced the matrix to be solved down to the il

CONCLUSIONS

The objective of this paper has been to providatglan the presentation of the five different pitis
formulations of the equations governing flow anddhés a water distribution system network. A set of



non-linear equations arises for each of the fortrarla. These include: 1) flow equations 2) head
equations 3) loop flow equations 4) flow and hequdagions and 5) the Todini and Pilati flow and head
equations formulation. Details of each of thesenidations have been presented in this paper. Graph
theory has been used to show the relationship leettvee numbers of variables in each formulation.

The order of size of problem ranked from minimunm@ximum number of variables for the five

different formulations is: 1) loop flows 2) hea@)sTodini and Pilati Q-Hs 4) flows 5) flows and kisa

The size of the problem does not necessarily datermhich is the most effective formulation. Curifgn
the Todini and Pilati Q-H equations formulatiorcanmonly used in many commercial and Government
hydraulic simulation packages. The main part ofittigative solution process in the Todini and Pilat
algorithm has been reduced to same size of proatetne head equations formulation. This has been
achieved by a smart reorganisation of the goveraguations using an analytic expression for therse

of the Jacobian using partitioning of the matrinrtRer work is required to evaluate if the loopaflo
equations formulation can be competitive with tloelifi and Pilati method is terms of computational
speed.
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