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[1] Many hydrologic systems are likely to be affected by climate change. This is of
particular importance given that agricultural production systems are inextricably linked to
the hydrologic systems they rely upon. Although irrigation is often employed as a method to
dampen the effect of short-term variation in climatic inputs to agricultural production,
sources of irrigation water are not immune to long-term climatic change. Irrigation water
use decisions are most often made at the farm level. It is at this scale that the economic and
social impacts of climate change will be manifest. This paper presents an integrated
stochastic dynamic modeling framework that can be used to investigate the viability of
irrigated farms under alternative climate change scenarios. The framework is applied to a
theoretical farm in the Murray Darling Basin, Australia, under four potential future climate
scenarios. It is found that neglecting interannual variability in climatic inputs to agriculture
consistently underestimates the reduction in farm viability caused by climate change and
that multiyear sequences of climate states strongly influence estimates of farm profitability.
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1. Introduction

[2] Agricultural production and hydrologic systems are
inextricably linked. Natural variability in climatic proc-
esses, such as rainfall and potential evapotranspiration,
drive changes in both these systems and, as such, adds sig-
nificant complexity to this nexus. In regions where this nat-
ural variability in climate processes would severely limit
agricultural output, irrigation is commonly used to increase
productivity. The long-term viability of irrigated agricul-
tural production depends on cost-effective access to sources
of irrigation water that can reliably meet seasonal shortfalls
in crop water requirements on an ongoing basis. The typi-
cally lagged response of irrigation water sources to system
change is what gives them their appeal. Regardless, these
water resources are not immune from ongoing changes to
the hydrological cycle.

[3] Although the hydrological impacts of climate change
cannot be predicted with certainty, successive reports from
the Intergovernmental Panel on Climate Change (IPCC) have
painted a clearer and more stark image of the type of climate
that might be expected in decades to come [/PCC, 1996,
2001, 2007]. In regions where agricultural production is al-
ready reliant upon irrigation, changes to both the magnitude
and temporal variability of climatic inputs to agricultural and
hydrologic systems could threaten the viability of agricultural
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production [Easterling and Apps, 2005]. There are several
key drivers to these potential changes: first, irrigation
requirements are likely to increase because of enhanced
evapotranspiration, reduced natural rainfall, and, in some
areas, longer growing seasons; second, long-term sustainable
yield of water resources might be reduced by decreased
resource replenishment over the longer term; third, increased
temporal variability of climatic drivers to both agricultural
and hydrologic systems may severely compromise the reli-
ability with which crop water requirements can be met, thus
undermining the ongoing viability of crop production.

[4] Estimating the combined impact of these three
effects is not trivial, and most modeling approaches strug-
gle to explicitly account for the uncertainty present in the
temporal dimension of a naturally stochastic climate. This
shortcoming is of particular importance when modeling
irrigated agriculture because investments in irrigation infra-
structure and perennial crop plantings are expensive and
are made on the basis that incurred costs will be recovered
over a relatively long period. While it has been common
for previous studies (such as the one by Carey and Zilber-
man [2002]) to assume investment in irrigation technology
or permanent plantings to be irreversible, Baerenklau and
Knapp [2007] showed that this is not strictly the case and
that this assumption leads to overestimated trigger prices
for investment. Baerenklau and Knapp [2007] do, however,
show that reversing investments is still costly. Uncertainty
about future conditions makes decisions on these invest-
ments difficult to evaluate and optimize.

[s] The literature on this topic can be considered in
terms of a few predominant methodological approaches,
each of which has its limitations. Econometric regression
models, for example, Ricardian models [e.g., Mendelsohn
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et al., 1994], describe how the complex relationships
between historical climate, hydrology, and crop production
decisions result in observable spatial variation in farm
value. The approach of Mendelsohn et al. [1994] has been
applied in many regions as diverse as the United States
[Polsky, 2004], China [Liu et al., 2004], Europe [Lang,
2007; Reidsma et al., 2007], and Africa [Benhin, 2008;
Kabubo-Mariara and Karanja, 2007], as well as being
adapted for applications that do not fit the traditional land
market—based approach [Deschénes and Greenstone, 2007 ;
Polsky, 2004 ; Schlenker et al., 2005]. Because such studies
rely on historical data and an assumed relationship between
historical spatial variation and future temporal changes,
they cannot provide much more than a general indication
of the impact of climate at the regional scale. The very na-
ture of the regression approach means they do not consider
the fundamental processes that drive farm profitability. As
a consequence of this shortcoming, these models are able
to explain very little about climate change impacts outside
the range of past events, including system behavior under
new management policies.

[6] Process-based mathematical optimization models
allow for representation of both crop production dynamics
and farmer decision-making behavior, most often using a
comparative static approach. Most of these models do not
account for the natural variability present in climatic inputs
to farming, but rather assess the impact of known changes
to average values of variables such as reductions in rainfall
and irrigation water availability and increased potential
evapotranspiration [Audsley et al., 2008 ; Elbakidze, 2006].
There have been several attempts to consider irrigator
response to climate-induced changes that incorporate uncer-
tainty in climate processes [Connor et al., 2009; McCarl
et al., 1999]. These models assign probability distribution
functions to stochastic climate variables, and farmers have
perfect knowledge of these distributions. This knowledge is
used to inform farmer decisions, with farmers considering
the probability of each climatic state occurring in any single
year. As a consequence of their static architecture, these
models lack the ability to represent critical events resulting
from a sequence of similar climatic states, such as droughts,
which have the potential to impact farm profitability far
more severely than intermittently occurring individual years
or short sequences of dry cropping seasons.

[7]1 By including the temporal dimension and using
a stock and flow model architecture, dynamic models
improve the representation of environmental variability as
a driver of system dynamics. Booker et al. [2005] applied
this approach at the basin scale to optimize water allocation
in a regulated hydrologic system in the Rio Grande Basin,
United States, and Letcher et al. [2004] use an integrated
hydrological-economic framework approach for their
model used to assess allocation options in the Namoi River
catchment, Australia. While this approach enables the
hydrological dynamics of a regulated river system to be
represented as a sequence of states, basin-scale (or even
subbasin scale, in the case of Letcher et al. [2004]) models
necessitate the aggregation of both long- and short-run de-
cision processes that occur at the level of the water user,
therefore making it difficult to accurately represent the na-
ture of irrigation and crop capital stock investment deci-
sions that, in reality, occur at the farm level.
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[8] Representing farms as individual decision-making
units allows the outcomes of previous water use and invest-
ment decisions to influence the farm state at any point in
time. While not explicitly modeling climate impacts on
farm investment behavior, Baerenklau and Knapp [2007]
apply a stochastic dynamic programming approach to a sin-
gular farm household to investigate price conditions under
which farmers’ would switch irrigation technology. Model-
ing at this scale allows for a more representative model of
farmer decision-making behavior; however, the optimiza-
tion approach of dynamic programming (which was also
used by Letcher et al. [2004], albeit at a subbasin, not
household, scale) can only provide a single output repre-
senting the expected value of the objective, even when
uncertainty in states of nature are taken into account in the
optimization process. This type of output does not provide
any indication of the possible range of outcomes and the
likelihood of any potential outcome occurring.

[o] Agent-based models (ABMs) aim to represent multi-
ple actors at the farm level with a more realistic model of
decision-making behavior and have been applied to water
resources management [Feuillette et al., 2003; Happe
et al., 2006; Perez et al., 2002] and, more specifically, in
the context of climate change impacts on crop production
[Bharwani et al., 2005]. As dynamic recursive models,
they too allow sequencing effects that influence the system
state to be considered; however, their main focus is on
investigating the complex social processes present in multi-
actor systems. The dynamic complex network structure of
ABMs can make handling uncertainty difficult, and data
requirements for describing this complexity are intense.
Iglesias et al. [2003] modeled drought impacts at the farm
level by simplifying the ABM approach to consider farms
on an individual basis, rather than as a complex network.
Like most dynamic simulation models, the objective of
their study is to estimate the impacts of drought rather than
climate change in general, and it is therefore only run over
a short period of historical data.

[10] While drought and climate change are closely
related in most areas that currently rely upon irrigation,
using historical data sequences describing singular drought
events does not allow the modeler to draw any conclusions
on the basis of long-term impacts of climate change. At
any point in time the future sequence of climatic states is
uncertain, and the nature of this uncertainty means climate
change impact models should investigate the range of prob-
able outcomes for a generalized case, rather than the likely
outcome from a single event that is assumed to be critical.
Short model runs over sequences of historical data cannot
do this as they do not represent the relationship between
farm investment decisions (the outcome of which is real-
ized over decades) and important aspects of climate change
like increased drought frequency.

[11] Regardless of model structure and whether or not
uncertainty of future climate states is accounted for in deci-
sion-making processes, few farm models are able to gener-
ate probabilistic outputs, and those that do [e.g., Gibbons
and Ramsden, 2005] neglect the importance of sequences
in both climatic events and crop production decisions.

[12] This paper presents a generic framework for creat-
ing an integrated model of irrigated agricultural production
at the farm scale that acknowledges that climate processes

20f13



W07520

are one of the key drivers of farm profitability. The model
framework explicitly accounts for sequencing effects pres-
ent in naturally variable climate parameters and is specifi-
cally designed to incorporate uncertainty and thus model a
general, uncertain climate future by using Monte Carlo
simulation methods. The framework is used to create a
model to estimate the impact of climate change on the
underlying financial viability of farms already reliant on
irrigation technology and to test the often implicitly made
assumption that ignoring climatic sequences does not sys-
tematically underestimate the costs of climate change for
irrigated agriculture.

[13] The rest of this paper proceeds as follows. The pro-
posed model framework is described in section 2 along
with a novel representation of farmer decision-making
behavior. Section 3 describes an application of the model
framework to a case study in the Murray-Darling Basin,
Australia, to create a model that is used to assess the bene-
fits of this methodology. Section 4 presents a discussion of
the results of this application, focusing on the importance
of probabilistic output and sequencing effects in stochastic
climate variables, while section 5 gives a summary and
concludes the paper.

2. Model Framework
2.1.

[14] The integrated environmental-economic system rep-
resented by the proposed model framework is shown in
Figure 1. The conceptual framework represents an irrigated
agricultural production system from the point of view of an
individual farmer by separating the system into three sub-
systems representing environmental processes, markets the
farmer interacts with, and the farm itself. Figure 1 illus-
trates how individual processes within each of these sectors
are disaggregated to component models that are linked
through flows of resources (solid arrows) and information
(dashed arrows).

Overview
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[15] Central to the modeled system is the farmer. In gen-
eral terms, the farmer utilizes resources provided by the
environment sector (e.g., rainfall and irrigation water) to
produce a crop and engages the market sector to realize
economic gain from this activity. The farmer model con-
sists of both a short-run decision model that optimizes an-
nual profit given the known climatic state of the current
cropping season and other constraints on production and a
long-run model that attempts to maximize future profits
given expected future climatic states. Constraints on these
decisions are dynamic and are a function of the farmer’s
stock of financial capital, which is itself a function of past
farm decisions.

[16] The farmer’s access to irrigation water in any year
varies and is a function of the volume of water entitlement
the farmer owns (a long-run variable) and the degree to
which water allocations will fulfill the entitlement in any
year. Seasonal allocation levels vary from season to season
and are a fraction of the farmer’s water entitlement ranging
from 0 to 100%. They are determined in the model by a set
of allocation rules that are implemented by the river regula-
tor in response to information describing climatic state and
result in the regulator controlling the degree of access the
farmer has to irrigation water.

[17] To effectively utilize each growing season’s cli-
matic state and available water to generate marketable
goods, the farmer relies on his knowledge of how to best
employ his own farm capital. This farm capital includes pe-
rennial crops, typical farm machinery, production infra-
structure, and irrigation equipment, which together
compose the field component model. The productivity of
the field varies in time as a result of both the state of matu-
rity of the crop and changes in the efficiency of irrigation
infrastructure that occur with age. Therefore, the long-run
decision must take into account the temporal aspect of both
climate variability and field productivity.

[18] The model created using the framework is a dynamic
simulation model with an annual time step. Execution of

Environment Farm Market
— Climate - -k == Farmer > Crop Market
rY
> Field Regulator
7YY \
> River
Figure 1. Proposed integrated simulation model framework.
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each time step involves first updating stocks of stochastic
environmental variables (i.e., drivers outside the actor sector
as defined in Figure 1) and execution of the farmer decision
and field production models.

2.2. Model Framework Structure

2.2.1. Environment Sector

[19] The environment sector comprises processes that
affect crop water requirements (potential evapotranspira-
tion), irrigation water requirements (rainfall), and irrigation
water availability (state of irrigation water source). To-
gether, these models provide the farmer sector with a set of
random variables that describe the environmental state at
any point in time and are therefore key inputs to the farmer
decision-making models. It is this representation of the sto-
chastic nature of environmental processes, coupled with the
dynamic model structure, that allows the model framework
to represent sequencing effects that result from interannual
variability in climatic state.
2.2.2. Market Sector

[20] The market sector provides the farmer model with
price information for inputs to and outputs from crop pro-
duction. This framework considers crop production as the
sole farm output.
2.2.3. Farm Sector
2.2.3.1. Field Model

[21] The field component model describes physical crop
production processes occurring on the farm, which are
driven by climatic inputs and farmer decisions. More spe-
cifically, the field model describes the crop water yield
response as a function of current climatic state (potential
evapotranspiration and rainfall) and farmer short-run inputs
(applied irrigation water) and as a consequence of preced-
ing farmer long-run decisions (crop and irrigation infra-
structure type and age). Following from Baerenklau and
Knapp [2007], this model includes vintage effects resulting
from the reduction in the efficiency of irrigation systems as
they age. This model extends Baerenklau and Knapp’s
approach by also including crop age effects relating to the
different phases of productivity typical of perennial crops.
This approach allows the model to represent a key dynamic
of long-run investments in irrigated perennial crops, which
typically exhibit an initial period of low productivity after

ROWAN ET AL: MODEL FOR CLIMATE CHANGE IMPACT ON AGRICULTURE

W07520

planting due to crop immaturity, a period of peak productiv-
ity, and a subsequent gradual decrease in productivity due to
aging effects. The temporal dynamics of farm productivity is
accounted for by including a yield reduction factor that com-
bines the effects of both crop maturity and irrigation infra-
structure age on farm productivity and that varies in time.
Figure 2 gives a conceptual example of how the combined
effects of crop and irrigation infrastructure age affect the pro-
ductivity of the farm in terms of maximum attainable relative
yield. Inclusion of this temporal aspect of farm productivity
within the field model contributes to the ability of the frame-
work to account for sequencing effects of long-run decisions.

[22] The field component model has two functions within
the model framework. First, the dynamics of the crop water
relationship described by the field model informs the farmer
short-run decision model (described in section 2.2.3.2), and
second, the model is used to determine crop production in
any season as a result of farmer decisions.
2.2.3.2. Farmer Model

[23] Traditional models that use a single objective func-
tion for both long- and short-run decisions tend to use the
discounted sum of all farm profits over a fixed planning
horizon to evaluate decision options. This net present value
approach to investment analysis ignores the potential value
to the farmer of retaining the option to make long-run
investments at some point in the future by delaying invest-
ment decisions [Dixit and Pindyck, 1995]. The true value of
delaying long-run investments should be evaluated on the
basis of expected return over the whole productive life of
the investment once it is made. This is important when con-
sidering climate change impacts, as modeling a generalized
case involves long simulation runs where the age-productivity
relationship described in section 2.2.3.1 is a driver of long-
run investment decisions. Options involving delayed invest-
ment require a dynamic assessment horizon to ensure that
decisions are not made on the consideration of only a portion
of the expected life of an investment and that costs associated
with reversing an investment are captured.

[24] To account for this important dynamic, the model
represents the farmer decision-making process using two
objective functions, one explicitly representing short-run
water use decisions and the other representing long-run
investment decisions in farm capital comprising irrigation
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Figure 2. Productivity stages of a perennial crop over its lifespan.

4 0f 13



W07520

technology and perennial crop plantings. Together, these
objectives still represent the farmer as a profit-maximizing
agent; however, this disaggregation allows for each deci-
sion process to be represented by the most appropriate met-
ric. The model represents the short-run decision as
maximization of annual profit within the constraints of cur-
rent environmental state and previous long-run investment
decisions and the long-run decision as a maximization of
expected equivalent annual worth of capital stock invest-
ment options available to the farmer, including delaying
investment to subsequent years.

[25] The short- and long-run decisions are evaluated
sequentially at each simulated time step. To ensure that the
outcome of both long- and short-run decisions are taken
into account in subsequent decisions, the farmer is modeled
as having a stock of financial capital that varies in time.
The value of this stock in any given year is represented by
an attribute analogous to a bank account. Flows into and
out of this bank account result from revenue generated and
both fixed and variable costs incurred at each time step,
respectively. Both short- and long-run decision models are
described further.

[26] The objective of the short-run farmer decision
model is to maximize profit in the current year on the basis
of the known current climatic state with irrigation water
volume as the decision variable. The objective function is

Maximize 7, = Y (vy; Ey,iy)pe — vic (1)
subject to
v<aV, (2)

where 7, is the gross profit in year ¢; Y (') is the crop yield
function describing gross yield (from crop production
model); v, is the volume of irrigation water applied in year
t (decision variable); E; is a vector describing environmen-
tal state in year # composed of terms representing pan evap-
oration and rainfall; i, is the age of current farm capital
(irrigation infrastructure and crop plantings); p. is the mar-
ket price for crop c; c is the volumetric cost of irrigation
water application for technology r; V' is the irrigation water
entitlement of the farmer in a year of full allocation; a; is
the fractional allocation level in year ¢.

[27] The optimization is constrained only by irrigation
water availability (a,V), which is determined as part of the
water allocation process within the regulator component
model and is therefore exogenous to farmer decision proc-
esses. The water availability constraint ensures that in years
with zero allocation, water cannot be applied as irrigation.
Coupled with the irrigation water availability constraint is a
soft constraint describing the smallest volume of irrigation
water that must be applied in each year. Unless contradicted
by the water availability constraint, farmers must apply at
least enough irrigation water to ensure half the maximum
evapotranspiration requirements for the crop are met or the
maximum volume of water available, whichever is less.
This soft constraint takes into account seasonal rainfall and
is included in an effort to further represent the imperfect re-
versibility of investments in perennial crop plantings.

[28] The short-run objective function explicitly incorpo-
rates the trade-off between irrigation water application and
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crop yield, allowing farmers to carry out deficit irrigation
i.e., where yield is sacrificed by deliberately underwatering
the crop in an attempt to maximize profit rather than yield.

[20] The objective of the long-run decision model is to
maximize the expected benefits from long-run investments
in farm infrastructure, composed of planting perennial
crops and irrigation equipment. The age-productivity rela-
tionship described earlier is the driver of investment in new
farm infrastructure. The decision variable is a binary vari-
able representing the “invest—not invest” nature of the
long-run decision. The model does not use any heuristic
constraints on the long-run decision to prevent retiring new
or force replacement of old farm infrastructure. Instead, it
relies upon the concave nature of the solution space defined
by feasible investment strategies and the outcome of past
decisions in the context of previously experienced climate.

[30] The outcome of past short- and long-run decisions
made in the context of experienced variability of climatic
state are accounted for by the state of the farmer’s stock of
financial capital at any point in time. This attribute is
described by a variable analogous to a bank account that
operates as a line of credit. The value of this variable (i.e.,
the “account balance”) changes in time and is updated by
adding (or subtracting) annual profit (or loss) from farm-
ing activity in the current time step to the value of the at-
tribute at the previous time step along with interest on
debt or savings and other costs borne by the farm in that
time period. The flow of the farmer’s financial capital is
described by

AB, = AB, | + AB, IR + 7, — FC — VC — H — x,(IC — SV,),
(3)

where AB; is the account balance in year #; IR is the an-
nual interest rate paid or received on the account balance;
FC is the fixed cost of access to water (e.g., license or con-
nection fees); VC is the variable cost of farm operations
(i.e., annual operating costs not including costs directly
associated with water use decisions); H is the annual farm
income requirement for non-farm-related expenditure; x;
= 1 for years when the farmer invests in infrastructure and
0 for all other ¢; IC is the capital cost of new farm infra-
structure; SV, is the salvage value of farm infrastructure in
year t.

[31] It is assumed that variable costs are incurred regard-
less of the irrigation application decision because of the pe-
rennial nature of the crop and ongoing maintenance
requirements of the farm. Other variables are as previously
defined.

[32] As a result of the binary nature of x, the fact that IC
represents the full capital cost of farm infrastructure, and
the representation of AB as a line of credit, the model
requires no assumptions on either the time period over
which fixed costs are amortized or the age of farm infra-
structure at which investment in new infrastructure is either
prohibited or compulsory.

[33] To include the temporal dimension of the long-run
decision process, the evaluation of investment options uses
a variable planning horizon. The length of this horizon is
based on the expected productive life of the investment (a
fixed period) and the expected performance of the existing
farm infrastructure between the current time step and that
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at which the investment would be made (a variable period).
Investment in new infrastructure only occurs when the
expected value of investing in the current time step is
greater than that estimated by delaying the investment deci-
sion by a year or more. In order to compare investment
options with various planning horizons, the evaluation pro-
cess uses the equivalent annual worth of each option as the
grounds on which they are compared.

[34] When estimating the expected value of investment
options, the current account balance is used as the basis
from which expected financial benefits of investment are
estimated. This approach ensures the financial realization
of past farmer decisions is taken into account. To estimate
the value of renewing infrastructure, a time series of future
cash flow from the current year to the end of the planning
horizon is estimated on the basis of expected future climate
conditions. This time series of expected cash flow is used
to calculate the expected value of the farmer’s account bal-
ance at the end of the planning horizon.

[35] As an example of the variable planning horizon
approach, if the expected productive life of farm capital
(irrigation infrastructure and crop plantings) is 25 years,
when the farmer evaluates the option of investing in the
current year, the projected account balance at the end of the
planning horizon is 25 years into the future and therefore
takes into account the salvage value of the current invest-
ment, the fixed cost of the new investment, and the dis-
counted expected annual costs and revenue over the 25
years. When, however, the farmer evaluates the option of
delaying the decision to invest by one year, the projected
account balance at the end of the planning horizon is 26
years into the future. This account balance takes into
account the discounted salvage value of the current invest-
ment and fixed costs associated with the new investment,
which occurs one year into the future, the expected costs
and revenue the current investment will generate in the
next year, and the expected costs and revenue of the new
investment for the 25 years beyond the point of investment.
This approach allows for consideration of costs and benefits
associated with both current and new farm infrastructure
and crops regardless of the point in time the investment
occurs and therefore captures the value to the farmer of
delaying investment. However, the mismatch in the tempo-
ral dimension of the estimation of future farm performance
that comes from the option to delay is accounted for by
using the equivalent annual worth of the investment as the
basis of comparison. Using the projected future account
balance for each option also allows for the financial realiza-
tion of past investment decisions to be treated as a lump
sum payment at the end of the planning horizon and the
equivalent annual worth to be calculated as an annuity over
that same time period.

w o AB IR @
YA+ R \[1 = (1 +R)"0) )

where EW, is the estimated equivalent annual worth of
investing in new farm infrastructure y years into the future,
[ is the expected productive life of the investment, and 4B,
is the projected account balance / years beyond year y, the
point of investment. On the basis of assessment of invest-
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ment options available to the farmer in the current year ¢,
the projected account balance / years after delaying invest-
ment by y years beyond year ¢ is determined using

y+1

4B, = Z {AB,,_I +ir(AB,_1)
v (5)
+7, —FC —VC —H —x,(IC - SV,)

subject to

ABy = 4B,

where 7, is the estimated annual profit in the uth year
beyond year ¢, x,, is a dummy variable equal to 1 when u =
y and 0 for all other u, and SV, is the salvage value of
existing farm infrastructure U years into the future. Other
variables are as previously defined. Investment in renewed
farm infrastructure only occurs when EW, is greater than
EW, for all other y.

2.2.4. Model Dynamics

[36] The sequence of component model execution fol-
lows the order described in Table 1. Data extracted from
the model display strong temporal variability as a result of
the complex dynamics of both stochastic environmental
state and short- and long-run farmer decision processes and
should be further analyzed to derive a set of secondary indi-
cators that describe system performance over the whole
simulation run. Application of Monte Carlo simulation
methods allows for probabilistic representation of these
secondary indicators. The Monte Carlo simulation is exe-
cuted using multiple time series of randomly generated
synthetic data for climate inputs.

[37] As this model is intended to provide an indication of
climate change impacts for a generalized case, model runs
must be long (i.e., greater than 100 years) to provide suffi-
cient data for analysis and to ensure that the influence of
any individual shock is not overrepresented within the
results. Long model runs are also important to minimize
sampling errors resulting from the use of randomly gener-
ated synthetic data in a Monte Carlo simulation. It is neces-
sary to stress that time series of model outputs over
individual model runs should not be considered as accurate
predictions of farm conditions over the specific climate
future represented by that run, but rather as data to be used
for comparative analysis of a generalized case that takes
into account both long- and short-run decision processes.

3. Case Study
3.1. Background

[38] The Murray Darling Basin (MDB) is located in
southeastern Australia. It covers over 1 x 10° kmz, and
agriculture within the system makes a significant contribu-
tion to Australia’s agricultural production, particularly
within the irrigated sector [Bryan and Marvanek, 2004].
The Sunraysia district of the MDB is located in northwest-
ern Victoria, and like many other semiarid regions of the
basin, the district’s predominant industry is irrigated agricul-
ture, a legacy of early to mid-twentieth century policies
designed to promote economic development and expansion
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Table 1. Sequence of Component Model Execution Within the Simulation Time Step

Process Component

Description

1. Update exogenous processes Climate river regulator

2. Update perception Farmer
3. Short-run decision Farmer
4. Short-run response Field farmer market
5. Long-run decision Farmer

6. Decision execution Farmer field

Generation of stochastic variables describing climate-based inputs to farm
processes

Propagation of data from environment sector that allows the farmer to form
a view of the current system state

Selection of appropriate level of irrigation water use given current system
state

Realization of the farmer’s short-run decision (crop growth, harvest, update
bank balance)

Analysis of long-run options based on current and expected future climatic
states; selection of investment strategy

Realization of the farmer’s long-run decision (investment in new infrastruc-
ture, update bank balance)

in the basin’s sparsely populated regions [Quiggin, 2001]. In
recent years the region has been faced with the most severe
drought on record, and current conditions within the basin
suggest that water has been substantially overallocated.

[39] Most future climate scenarios for this region suggest
that as a result of climate change, average annual rainfall
will decrease while annual potential evaporation will
increase, impacting the demand for, and availability of, irri-
gation water. These changes are likely to occur amid more
pronounced variability of climatic conditions between
cropping seasons and increased probability of prolonged
drought [Stokes and Howden, 2008].

[40] The objective of the case study was to evaluate the
impact of climate change on the financial viability of a styl-
ized typical farm in the Sunraysia district. The study is a
comparative analysis based on the expected range of cli-
mate futures for a baseline case and three climate change
scenarios. The impacts considered in this study were limited
to those influenced by interannual climate variability rather
than the costs associated with climate change adaptation.
The stylized farm was considered to have perfect knowl-
edge of the long-run average climate conditions for each
climate scenario and therefore held sufficient water entitle-
ments to optimize crop production for the average climate
state. However, the farmer was represented as unable to
anticipate the future climate sequence for any scenario. The
results of the study were used to investigate the role of vari-
ability and sequencing effects in determining model output.

3.2. Model Development

[41] In order for the proposed model framework to repre-
sent the case study location, component models were speci-
fied to represent conditions experienced by farmers in the
Sunraysia district under four climate change scenarios.
This case study adopts the four climate change scenarios
used by Connor et al. [2009] and described by the parame-
ters shown in Table 2.

[42] The modeled farm produces wine grapes using drip
irrigation. This is a common crop and irrigation technology
combination in Sunraysia and is also considered to be an
efficient and high-value use of irrigation water. This speci-
fication is described in terms of each model sector.

3.2.1. Environment Sector

[43] Values for annual rainfall and pan evaporation were
generated using simple lag 1 Markov models. The applica-
tion of the Markov approach followed the methodology
described by Grayson et al. [1996]. Parameters used to

specify the model were derived from daily rainfall and pan
evaporation data recorded by the Australian Bureau of Me-
teorology at Mildura Airport from 1946 (rainfall) and 1965
(pan evaporation) to 2008. These daily data were used to
produce time series of annual values based on a July to
June water year, corresponding to local cropping seasons.
Time series of rainfall and pan evaporation for each climate
change scenario were created using synthetically generated
data for baseline conditions and scaling them using the pa-
rameters shown in Table 2.

[44] The river and regulator components of the environ-
mental sector were combined into a single component
model, and this was used to generate multiple time series
of water allocation levels on the basis of each climate sce-
nario. The model uses a state transition probability matrix
based on a set of discrete allocation levels between 0 and
100% using 10% intervals. The transition probabilities
were calculated on the basis of predicted allocations using
the MSM-BIGMOD model [Murray Darling Basin Com-
mission, 2002] (the flow and salinity routing model used by
the Murray Darling Basin Authority) as used by Connor
et al. [2009].

3.2.2. Market Sector

[45] While the proposed framework presented here is ca-
pable of using a crop market component model that
includes dynamic price effects, for the purposes of this case
study it was assumed that crop prices are exogenous to the
modeled system and are constant. While uncertainty in
future crop price is a determinant in farmer long-run deci-
sions (particularly with reference to technology adoption),
the explicit aim of this study is to investigate the role of the
dynamic nature of variability in climatic processes in
assessing the viability of established farming approaches.
As noted by Carey and Zilberman [2002], including a
dynamic representation of crop price adds additional com-
plexity that may increase model realism at the cost of
masking the processes of interest.

3.2.3. Farm Sector
3.2.3.1. Field Model

[46] Crop production was represented as a function of
the volume and quality of water available to plants for
growth and potential evapotranspiration. Water volume
includes both effective rainfall and applied irrigation water,
and water quality is the volume-weighted average salinity
of rainfall and irrigation water. Maximum potential evapo-
transpiration was derived from annual pan evaporation
using monthly crop growth factors taken from Lipman

7of13



W07520 ROWAN ET AL: MODEL FOR CLIMATE CHANGE IMPACT ON AGRICULTURE W07520
Table 2. Climate Change Scenarios and Consequences on Rainfall and Runoff®

Average Temperature Average Potential Average Rainfall Average Runoff
Scenario Change (°C) Evapotranspiration Change (%) Change (%) Changeb (%)
Baseline 0 0 0
Mild +1 +4 -5 —13
Moderate +2 +8 —15 -38
Severe +4 +15 -25 —63

“Estimates based on results from Pittock [2003] unless otherwise indicated.

PEstimates based on the work of Kirby et al. [2006].

et al. [1998]. The crop yield response relationship was
taken from Kan et al. [2002] and adapted to allow for inter-
annual variation in maximum potential evapotranspiration.
The function takes the form

oo+ alETadj + azETadjz
- Ym,

RY : (6)

where RY is the relative yield, ayp, oy, and o, are empiri-
cally derived constants, m, is the maximum potential gross
yield of the crop for the reference site used to derive the
empirical constants, and ET,q; is the actual evapotranspira-
tion adjusted to allow transposition of modeled conditions
to those of the site for which empirical constants were
derived. This process is described by

ETm,

ETadj = 3
AW o
ECwy + /1 <—ETm) ]

1+ B e
m

where ET,, is the maximum potential annual evapotranspi-
ration for the crop at the reference site used to derive empir-
ical constants; EC,, is the weighted average salinity of the
rainfall and applied irrigation water; AW is the total water
available to the plant by irrigation and rainfall in the current
year; ET,, is the maximum evapotranspiration for the crop
at the site of model application for that year; 5o, (1, (>, and
(5 are empirically derived constants.

[47] The empirically derived constants «; and [, are
unique to a specific combination of crop and irrigation
technology and implicitly account for the effects of nonuni-
form irrigation water application. The benefit of this
approach is that it provides a crop yield—water function that
is smooth and monotonically increasing, with RY” (the de-
rivative of RY with respect to AW) approaching zero with
increasing AW. This allows the model to represent the
diminishing net marginal benefit of applying additional
irrigation water and, by extension, to represent deficit irri-
gation behavior more realistically than a discontinuous von
Liebig function, which although popular in the literature,
favors corner solutions.

[48] The age-productivity relationship described in sec-
tion 2.2.3.1 is represented using a set of estimated maxi-
mum attainable yield values for each year. The yearly
values were estimated from farm extension literature and
are based on a 5 year developmental stage and the field
entering the declining stage 25 years after investment
[Dakis et al., 2001 ; Weber et al., 2003]. During the declin-
ing stage, the maximum attainable yield is assumed to
decrease to zero in a linear fashion over 15 years.

[49] This case study does not consider the potential
impacts of elevated atmospheric CO, on crop productivity
as limited empirical information from Australian studies
are currently available. Studies on similar perennial crops
in California, United States (which shares many character-
istics with the southern MDB), conclude that the negative
yield impacts of increasing temperature are greater than the
yield benefits that would be expected from CO, fertiliza-
tion [Lobell et al., 2006].

[50] The salvage value of farm irrigation infrastructure
was assumed to initially equal the purchase cost of infra-
structure and to decrease with time using an exponential
decay function with an assumed depreciation factor of 25%
of remaining value per year.
3.2.3.2. Farmer Model

[5s1] The expected productive life of farm infrastructure
was assumed to be 25 years on the basis of procedures
found in typical extension literature [Dakis et al., 2001;
Weber et al., 2003]. The interest rate was assumed to be
8% per year on debt and 5% per year on savings. The capi-
tal cost of farm infrastructure and variable costs not related
to water use were derived from Connor et al. [2009]. Fixed
and variable costs associated with water use were acquired
from the historical supplier of irrigation water to farms in
the case study location.

3.3. Model Application

[52] The dynamic nature of the model means that annual
farm profit varies considerably between simulated cropping
seasons and is therefore not a suitable metric for describing
the underlying financial viability of the farm. Instead, this
case study used an alternative version of the farm income
requirement (H in equation (3)) as a metric describing fi-
nancial viability. The farm income requirement in the
farmer economic model accounts for household expenditure
that does not involve investing in farm capital or operations
but must still be met to maintain the viability of the house-
hold (see Iglesias et al. [2003] for a typical application of
this approach). This value is likely to vary significantly
between individual farms and is therefore impossible to
accurately determine for a generalized case. Given this dif-
ficulty, the model specification used in this study does not
assume a minimum farm income requirement. Instead, for
each run the model was solved to find the maximum farm
income requirement (H) that does not deplete the farmer’s
stock of financial capital over that model run. The change
in this stock over any model run is represented by the slope
of the linear regression of the farmer’s bank balance vari-
able against time. This method of analysis removes annual
variation of the financial state caused by the dynamic nature
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of the model, with a regressed slope of zero indicting the
farmer neither accumulates nor diminishes his stock of fi-
nancial capital over the course of the model run. In this con-
text, H represents the maximum annual dividend that could
be taken from the farm without jeopardizing the ongoing
profitability of the farm. This study employed H as an esti-
mator of long-run farm profitability and therefore an indica-
tor of the underlying viability of the farm.

[53] Initial conditions within the model were set in keep-
ing with the application of the model to a well-established,
informed, and technologically advanced stylized farm. The
farmer bank account was initialized at zero.

[54] The model was run over 100 replicates of randomly
generated 200 year synthetic time series of climate data for
each climate scenario. This resulted in a set of 100 estimated
farm profitability values (one for each run) and 20,000 val-
ues for variables determined on an annual basis (e.g., sea-
sonal volume of applied irrigation water and crop yield).
This 200 year run length was considered to be sufficiently
long to meet the requirements described in section 2.2.4.

[s55] For each climate scenario, the model was also
run over a single 200 year simulation using steady state
expected value models for annual rainfall, pan evaporation,
and water allocation level to determine estimated farm prof-
itability values in the absence of climatic variability and re-
sultant sequencing effects. The results from the model using
steady state climate representation were used as a basis upon
which the benefits of using the proposed dynamic stochastic
simulation over traditional approaches were evaluated.

4. Results and Discussion
4.1.

[s6] Estimates of farm profitability using both stochastic
and steady state climate models are shown in Table 3.
Results generated using the steady state climate model
provide an estimation of farm profitability under average
climate conditions and exhibit an inverse relationship
between farm profitability and climate change severity
(Table 3). The negative value of this estimate under severe
climate change conditions indicates that the farmer would
expect the farm to have a loss and would therefore employ
his capital elsewhere or invest in long-run adaptation meas-
ures. These aspects are outside the scope of this paper, and
for that reason, results for the severe climate change sce-
nario are not considered further in this paper.

[s7] Figure 3 is a box plot of farm profitability estimates
obtained for the baseline, mild, and moderate climate

Impact of Climate Change on Farm Profitability

Table 3. Estimated Farm Profitability

Estimated Farm Profitability

($/yr) Probability That

Estimate by Dynamic
Climate Steady State Stochastic Model Will Exceed
Scenario Climate Model ~ Climate Model ~ Steady State Estimate®
Baseline 33,234 33,146 0.45
Mild 30,695 29,715 0.32
Moderate 22,861 11,913 0.01
Severe —16,121 - -

“Based on Kaplan-Meier estimates of the estimated farm profitability cu-
mulative distribution function using stochastic rainfall, pan evaporation,
and allocation submodels; n = 100.
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change scenario under drip irrigation using the stochastic
climate model. The upper and lower bounds of the box
indicate upper and lower quartile values, respectively, with
the vertical line within the box indicating the median.
Ranges of data are shown using whiskers that are at most a
factor of 1.5 greater than the interquartile range. Outliers
beyond this range are shown individually.

[s8] Results generated using the stochastic climate model
also indicate that average estimates of farm profitability
decrease with increasing severity of climate change. Figure 3
clearly illustrates that under baseline and mild climate
change conditions the difference in average values between
the baseline and mild scenarios is significant (p = 0.05);
however there is only a 10% reduction in this parameter.
Results from the moderate climate change scenario show a
more marked reduction in farm profitability, reducing the av-
erage estimate compared with baseline conditions by 64%.

[s59] These results are consistent with the steady state
model estimates and the intuitive expectation that farm
profitability would suffer under worsening climate change
as an outcome of increased crop water requirements,
decreased natural rainfall, and decreased availability of irri-
gation water. While this relationship is present in results
generated by both the steady state and stochastic models,
the steady state model results do not suggest that climate
change will reduce farm profitability to the same degree as
those from the stochastic model.

[60] Comparison of steady state model estimates with
average values generated using the stochastic model shows
that under baseline climate conditions, there is no signifi-
cant difference in estimated farm profitability using the two
modeling approaches. Under increasingly severe climate
change scenarios, estimates of farm profitability obtained
using the steady state expected climate model are signifi-
cantly higher than average values from the stochastic cli-
mate simulations (for p = 0.05). For the mild climate
change scenario, the steady state model estimates a fall in
farm profitability of 8%, which is close to the 10% average
reduction estimated by the stochastic model. Under moder-
ate climate change the farm profitability estimated by the
steady state model is reduced by 31% in comparison with
the baseline case, whereas the stochastic model estimates a
64% reduction in the same parameter, a discrepancy of 33
percentage points.

4.2. Role of Climate Variability and Sequencing in
Estimating Farm Profitability

[61] As the steady state and stochastic models are identical
in all aspects other than the structure of the climate compo-
nent model, the discrepancies in estimated farm profitability
can only result from two distinct, but related, sources: cli-
mate variability and climatic sequencing. Incorporating cli-
matic variability requires that a model incorporates the
various possible states of nature and the relative frequency
with which they occur, whereas climatic sequencing is a
result of how this variability manifests itself in the temporal
dimension. Introducing climatic variability to a dynamic
model invariably produces sequencing effects. For this rea-
son, analyzing the influence of these effects independently
poses a challenge. Regardless, the combined impact of cli-
mate variability and sequencing can be clearly seen in the
difference between results obtained using the stochastic
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Figure 3.
<1.5 interquartile range; n = 100.

climate model (which has both variability and sequencing)
and those generated using the steady state climate model
(which has neither).

[62] Looking at the spread and location of farm profit-
ability estimates generated by Monte Carlo simulation of
the stochastic model relative to those generated using the
steady state model supports the assertion that ignoring both
climatic variability and sequencing effects underestimates
the impact of climate change. Given that the farm profit-
ability estimate determined by the steady state model for
the baseline case is not significantly different from average
farm profitability estimated by the stochastic model and
that the spread of these values from the stochastic model is
relatively small, it seems reasonable to suggest that climate
variability and sequencing effects have limited influence on
farm profitability under baseline conditions. This observa-
tion does not hold for other climate change scenarios, with
significant differences between farm profitability estimates
generated using the steady state and stochastic models.

[63] The importance of sequencing effects (as distinct
from climate variability), which can only be represented
using a dynamic model, can be seen in the variability pres-
ent in estimates of farm profitability within each climate
scenario using the stochastic climate model. Under baseline
conditions, the coefficient of variation of farm profitability
estimates is 0.02. The value of the coefficient of variation
increases to 0.06 and 0.66 under mild and moderate climate
change, respectively.

[64] Results from the model were analyzed using mu-
tual information as a nonlinear measure of dependence
[see May et al., 2008] to test if any significant relation-
ships existed between the relative frequencies of climatic
states in each run (which will vary in randomly generated
series of synthetic data of finite length) and that run’s esti-
mate of farm profitability. The analysis found no such
relationships.

[6s] While the analysis above has demonstrated the
impact of sequencing effects in isolation to climate vari-
ability, the dynamic nature of this model makes it impossi-

Estimated farm profitability under climate change using drip irrigation. Whiskers indicate

ble to perfectly isolate the effect of variability from
sequencing. However, the finding that sequencing effects
are responsible for the spread in estimates of farm profit-
ability makes it possible to infer a qualitative relationship
between climate variability and model output.

[66] If the degree of temporal variability of climatic state
did not impact upon the model output, it would be expected
that the distribution of profitability estimates would be
located close to each relevant steady state estimate. The
results presented in Table 3 show that this is not the case
(using the average value as the central location of farm
profitability estimates generated using the stochastic
model). Comparison of average profitability values with
estimates generated using the steady state model indicates
that the increased climate variability associated with wor-
sening climate change leads to the consistently lower esti-
mates of farm profitability described in section 4.1.

[67] Even after taking into account the increasing uncer-
tainty in model output with worsening climate change that
results from sequencing effects, the severity with which the
steady state model underestimates reduced farm profitabil-
ity is clear. Under baseline conditions, 45% of stochastic
model runs generated farm profitability values higher than
the steady state model output (based on the Kaplan-Meier
estimate of the cumulative distribution function [Kaplan
and Meier, 1958]). Under mild climate change, only 32%
of farm profitability estimates from model runs using the
stochastic model are higher than the steady state estimate,
and this measure decreases to only 1% under moderate cli-
mate change.

[68] This discrepancy stems from the fact that the steady
state model cannot take into account the impact of climate
variability on water availability and the resulting impact
this has on annual profits. The concave nature of the crop
water production function combined with the fixed price
model results in a concave farmer profit function. Follow-
ing from this, the farmer’s marginal profit function is con-
tinually decreasing with respect to water application levels
and asymptotically approaches the marginal cost of water
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Figure 4. Marginal value of irrigation water conditional on nontrivial yield.

application. This indicates that shortfalls in irrigation water
application (caused by availability constraints) have a
much higher cost in terms of lost production than excess
volumes do in terms of benefits. With greater variability of
climate inputs, the expected irrigation water shortfall is
higher, meaning that the farmer’s selected level of irriga-
tion water application is further from the optimal point
where the marginal profit is zero. This phenomenon is
reflected in the marginal value of irrigation water (MVIW)
to the farmer under the different climate change scenarios.

[69] For each cropping season simulated by the model,
the MVIW was estimated by calculating the change in an-
nual farm profit that resulted from the application of a sin-
gle megaliter of irrigation water in addition to the irrigation
water volume determined by the farmer short-run decision
model, which considers irrigation water use constrained by
water availability rules. The MVIW calculations neglected
years with immature crops as crop production is influenced
more by crop age than irrigation water application in those
years. Average values of MVIW for each climate change
scenario were calculated as $5/ML under baseline condi-
tions, $22/ML under mild climate change, and $147/ML
under moderate climate change. The increase in average
value that occurs from the baseline through mild and mod-
erate climate change scenarios is consistent with what
would be expected as irrigation water becomes increasingly
scarce and production is more severely constrained by
water availability. The trend of increasing average MVIW
values is clearly visible in the empirical cumulative density
functions of MVIW data shown in Figure 4.

[70] Figure 4 clearly shows the increased frequency of
years with nonzero MVIW values that occurs with greater
variability in climatic inputs associated with more severe
climate change.

[71] As with all modeling exercises, the results presented
in this paper should be considered within the context in
which they were generated. While they are not intended to
predict the impacts of climate change on irrigated agricul-

ture in absolute terms, they do, however, provide a clearer
understanding of the dynamic relationships that are likely
to play a key role in determining the viability of irrigated
agriculture under climate change. As mentioned in section
3.2, the model has been applied to a well established,
informed, and technologically advanced theoretical farm.
Assessing the impact of the assumptions necessary to spec-
ify the model, particularly the initial model conditions, is
beyond the scope of this paper but should be the subject of
further research.

5. Summary and Conclusions

[72] This paper presents a dynamic simulation model
framework for assessing some of the impacts of climate
change upon irrigated agricultural systems. The framework
employs the farm as a meaningful indicator of these impacts
as it is the level at which decisions on resource use are ulti-
mately made. This scale of model framework is appropriate
given that system response to climate change is the cumula-
tive effect of decisions made by individual actors.

[73] By integrating multiple component models includ-
ing explicit representation of decision-making behavior,
the framework is able to represent complex relationships
between climate variability, sequencing of climatic events,
and long- and short-run farmer decisions. The framework
was applied to a generic, stylized farm in the Sunraysia dis-
trict of the Murray Darling Basin, Australia, for compara-
tive analysis of three climate change scenarios against a
baseline historical climate scenario. Application of the
model framework using both steady state expected values
and dynamic stochastic representations of climate showed
that the steady state climate representation overestimated
farm profitability compared to average estimates for the sto-
chastic model. The degree of this overestimation increased
with increasing severity of climate change. This is high-
lighted by the fact that even though the spread of farm prof-
itability estimates increases with increasing climate change
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severity, the vast majority, if not all, of these estimates are
lower than the corresponding steady state estimate. This
overestimation was most pronounced for moderate and
severe climate change scenarios. The importance of cli-
matic sequencing in determining farm profitability is high-
lighted in the spread of estimates of farm profitability
generated using Monte Carlo simulation techniques on the
stochastic model. The uncertainty in farm profitability esti-
mates increases with increasing climate change and is a
result of multiyear sequences of climatic state, rather than
short-lived perturbations from expected conditions.

[74] The impact of climate variability on farm viability
is most clearly explained by the changes in expected mar-
ginal value of irrigation water under varying degrees of cli-
mate change. Increasingly severe climate change leads to s
higher expected marginal value of irrigation water as a
result of an increased frequency of years in which crop pro-
duction is limited by water availability.

[75] These results strengthen the argument for using
dynamic integrated models for analyzing the impact of cli-
mate change on agricultural systems. In many cases com-
ponent models can be drawn from existing literature. The
modular architecture and explicit representation of the de-
cision making of actors within the system make for a versa-
tile tool for comparative analysis of alternative scenarios.
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