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ABSTRACT

A new method is presented for integration of audio and visual

information in multiple target tracking applications. The pro-

posed approach uses a Bayesian filtering formulation and ex-

ploits multi-Bernoulli random finite set approximations. The

work presented in this paper is the first principled Bayesian

estimation approach to solve the sensor fusion problems that

involve intermittent sensory data (e.g. audio data for a person

who occasionally speaks.) We have examined our method

with case studies from the SPEVI database. The results show

nearly perfect tracking of people not only when they are silent

but also when they are not visible to the camera (but speak-

ing).

Index Terms— audio-visual tracking, Bayesian filtering,

random finite sets, finite set statistics, sensor fusion.

1. INTRODUCTION

Audio-visual multi-target tracking is an essential component

of various applications such as monitoring people behaviour,

traffic monitoring and smart rooms. In a Bayesian estimation

framework, the states of the targets are predicted (based on a

stochastic motion model for the targets) and updated (using

the measurements) in each iteration. Sensor fusion naturally

takes place in the update step where instead of the raw mea-

surements, their likelihoods are combined. The main chal-

lenge here is that a target can be silent in periods of time and

not detectable through the audio measurements, or it can be

hidden from the camera while emitting sounds (detectable by

the audio measurements but not appearing in the image).1 It is

important to note that in both cases we might still have clutter

measurements for the undetectable target.

To integrate the sensory data, we need to efficiently com-

bine the likelihoods in the update process of a Bayesian filter,

in such a way that the intermittent nature of the sensory data

This work was supported by the Australian Research Council through

the ARC Discovery Project grants DP0880553 and DP0989007.
1All trackable targets are assumed to be never silent and invisible at the

same time.

are considered. Several solutions have appeared in the lit-

erature. The simplest one is to multiply the two likelihoods

based on independence assumptions. But this will only work

to track the targets which are visible and emit sounds at the

same time (e.g. the speaker tracking application in [1]).

This paper focuses on applications where multiple active
speakers are to be tracked (e.g. active participants in a round

table discussion or multiple speakers lecturing to a silent audi-

ence). A straightforward solution is to multiply the audio and

visual likelihoods but setting the likelihood to 1 if the modal-

ity is unavailable [2]. However, the availability itself needs

to be determined and can be erroneous in presence of clut-

ter measurements or measurements corresponding to other

speaking and visible targets. The most common solution is

to linearly combine the measurement likelihoods of the visual

and audio observations where the weights of the combination

are adjusted dynamically according to an acoustic confidence

measure [3] or using separate confidence measures for the au-

dio and video channels [4]. However, linear combination of

the two likelihoods is mainly heuristic and not mathematically

accurate.

In this paper, we present a principled approach to com-

bine audio and video data in a Bayesian estimation frame-

work. Our tracking method is formulated based on treating

the states of multiple targets as a single random finite set

(RFS) and using the finite set statistics (FISST) to formulate

the prediction and update steps. The basic difference with

other approaches is that an RFS formulation allows an ele-

gant and rigorous modelling of targets birth and death as well

as false measurements and missed detections. Our solution

involves applying consecutive update steps, each time using

a single source of sensory information (audio or visual). The

major point of novelty lies in our implementation of the con-

secutive updates in an RFS framework based on modifying

the Cardinality-Balanced MeMBer (CB-MeMBer) filter [5]

and modelling the intermittency of the sensory information

in terms of the detection probabilities. A sequential Monte

Carlo implementation of the multi-Bernoulli approximation

to the Bayesian filter is explained and examined in three chal-

lenging case studies from the SPEVI database.
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2. THE CB-MEMBER FILTER

Mahler’s Finite Set Statistics (FISST) [6] has been recently

recognised by the tracking community as an appropriate

framework to formulate multi-target tracking solutions. In

this framework, the multi-target state is modelled as a finite

set. This modelling based on finite sets admits a mathemat-

ically consistent notion of estimation error since distance

between sets is a well understood concept. In addition, since

in a set the elements are not ordered, the filtering scheme

works without the need for the data association problem to

be explicitly solved. FISST provides practical mathematical

tools for dealing with RFSs, based on a notion of integration

and density that is consistent with point process theory. Using

these tools, the prediction and update steps of Bayesian esti-

mation of the posterior density of an RFS have been properly

formulated [6, 7]. These steps constitute what is commonly

known as the Bayes multi-target of multi-object filtering.

Among various RFS models used for implementation of a

multi-object Bayesian filter, we employ a special type of RFS

called multi-Bernoulli RFS, which is defined as the union of

M independent Bernoulli RFSs X(i). Each Bernoulli RFS

is either empty or a singleton with probabilities 1 − r(i) and

r(i), respectively. In case X(i) is a singleton, its only ele-

ment is distributed according to a probability density p(i)(·).
Mahler [6] has shown that the parameter M , existence proba-

bilities ri and the distributions pi(·) all together form a com-

plete characterisation of the multi-Bernoulli RFS denoted by

X ∼ {(r(i), p(i)(·))}Mi=1. With multi-Bernoulli assumptions,

Mahler [6] derived the prediction and update steps of a par-

ticular implementation of the Bayesian filter, called the MeM-

Ber filter. Vo et al. [5] later derived a modified version which

involved unbiased cardinality and called it the Cardinality-

Balanced MeMBer (CB-MeMBer) filter. Since the Bayes re-

cursion is generally intractable, a sequential Monte Carlo im-

plementation of the multi-Bernoulli filter is presented.

Suppose that at time k − 1, the posterior density {(r(i)k−1

, p
(i)
k−1(·))}Mk−1

i=1 is given. In the prediction step of the fil-

ter, the random finite set of targets evolves to a new multi-

Bernoulli RFS including two ensemble of tracks associated

with surviving and new born targets. Existence probabilities

and distributions of these predicted targets are computed us-

ing a target death process modelled by a death probability, a

target birth process modelled by a multi-Bernoulli RFS, and a

target survival process modelled by a survival probability.2

Let us denote the predicted multi-Bernoulli distribution by

{(r(i)k|k−1 , p
(i)
k|k−1(·))}

Mk|k−1

i=1 where each predicted Bernoulli

component density p
(i)
k|k−1(·) comprises L

(i)
k|k−1 particles, i.e.

p
(i)
k|k−1(x) =

∑L
(i)

k|k−1

j=1 w
(i,j)
k|k−1δx(i,j)

k|k−1

(x).

We consider a measurement model in the form of the

2Due to space limits, details of prediction step are not presented here.

Interested readers can refer to [6, 5, 8].

likelihood function gk(z|x) where z is a point measure-

ment corresponding to a single target with the state x. The

measurement model also includes a probability of detec-

tion denoted by pD,k(x) and the clutter measurements mod-

elled as a Poisson RFS (with Poisson distributed cardinal-

ity with its mean denoted by κk(z)). The updated RFS

comprises the union of two multi-Bernoulli sets: πk =

{(r(i)L,k, p
(i)
L,k(·))}

Mk|k−1

i=1 ∪ {(rU,k(z), pU,k(·; z))}z∈Zk
. The

first set, called legacy tracks, includes the parameters of the

undetected targets. The second set is called measurement-
corrected tracks and includes the parameters of detected

targets modified according to the measurements. The param-

eters of the two tracks are given by [6, 5]:

r
(i)
L,k = r

(i)
k|k−1(1− �

(i)
L,k)/(1− r

(i)
k|k−1�

(i)
L,k)

p
(i)
L,k(x) =

∑L
(i)

k|k−1

j=1 w̃
(i,j)
L,k δ

x
(i,j)

k|k−1

(x)

rU,k(z) =

∑Mk|k−1
i=1

r
(i)
k|k−1

(1−r
(i)
k|k−1

)�
(i)
U,k

(z)

(1−r
(i)
k|k−1

�
(i)
L,k

)2

κk(z)+
∑Mk|k−1

i=1

r
(i)
k|k−1

�
(i)
U,k

(z)

1−r
(i)
k|k−1

�
(i)
L,k

pU,k(x; z) =
∑Mk|k−1

i=1

∑L
(i)

k|k−1

j=1 w̃
(i,j)
U,k (z)δ

x
(i,j)

k|k−1

(x)

�
(i)
L,k =

∑L
(i)

k|k−1

j=1 w
(i,j)
k|k−1pD,k(x

(i,j)
k|k−1)

w̃
(i,j)
L,k = w

(i,j)
L,k

/∑L
(i)

k|k−1

j′=1 w
(i,j′)
L,k

w
(i,j)
L,k = w

(i,j)
k|k−1(1− pD,k(x

(i,j)
k|k−1))

�
(i)
U,k(z) =

∑L
(i)

k|k−1

j=1 w
(i,j)
k|k−1pD,k(x

(i,j)
k|k−1)gk(z|x(i,j)

k|k−1)

w̃
(i,j)
U,k (z) = w

(i,j)
U,k (z)

/∑Mk|k−1

i′=1

∑L
(i′)
k|k−1

j′=1 w
(i′,j′)
U,k (z)

w
(i,j)
U,k (z) =

w
(i,j)

k|k−1
r
(i)

k|k−1
pD,k(x

(i,j)

k|k−1
)gk(z|x(i,j)

k|k−1
)

1−r
(i)

k|k−1

.

In order to avoid numerical explosion, after the update

step, the Bernoulli targets (tracks) with very small probabil-

ities of existence are removed. The CB-MeMBer filtering

algorithm also includes resampling the particles for each

track and merging the tracks that are very close to each other.

See [5] for details.

3. AUDIO-VISUAL TRACKING

In our implementation of the CB-MeMBer filter, we use the

constant-velocity model as motion model [5] and the state of

each target in the image includes the location and dimensions

of a rectangular blob containing the target as well as the lo-

cation derivatives, i.e. x = [xim. yim. ẋim. ẏim. wim. him.]
�.

The audio and visual signals need to be processed so as to

extract information pertaining to the target states. For video

signals, we use the kernel-based background subtraction

method [9] followed by a number of morphological image

operations. The result is a set of rectangular blobs in each

frame characterised by their image locations and dimensions
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Fig. 1. Working out the linear relationship between the target

x locations and TDOA measurements. There are two targets

in the scene and the line equations are consistently the same

for both persons as shown in (a) and (b). The red points are

the inliers segmented by the HBM robust estimator and the

rest (black points) are outliers.

in pixels. The set of visual point measurements is denoted

by Zv = {zvi} where each point measurement is formed

as zv = [xim. yim. wim. him.]
� and with Gaussian noise

assumptions, the visual measurement likelihood function is

given by gv(zv|x) = N (zv;Cvx, σ
2
v) where σv is the scale

of noise and N (z;μ, σ2) � exp(−(z− μ)2/(2σ2))/(
√
2πσ)

and Cv = diag(1, 1, 0, 0, 1, 1).

The audio signals from the microphones on two sides

of the camera are processed to compute the time difference

of arrival (TDOA). The processing involves computation of

cross-correlation between the signals using the Generalised

Cross Correlation function - Phase Transform (GCC-PHAT).

Due to reverberation effects, there are usually several peaks

in the GCC-PHAT curve plotted versus time difference. In

our experiments which involve tracking of up to two people,

we pick at most five largest peaks of the GCC-PHAT values

and consider them as TDOA measurements in each frame.

Some of these are clutter measurements. Since the distance

of the targets from the microphones is large compared to the

distance between the two microphones, there is an approx-

imately linear relationship between the xim. location of a

target and its corresponding TDOA [2]. To estimate the pa-

rameters of this linearity (calibration of the audio sensors), we

have plotted all the TDOA measurements versus the ground

truth x-coordinates of the targets in the image (see Fig. 1).

The results are plotted for one of the three case studies from

the SPEVI database involving two targets.3

It is important to note that many of the data points plot-

ted in Fig. 1 are not relevant to the target state. Indeed,

only one of the maximum five TDOA’s measured in each

frame correspond to a target location, the rest are either ir-

relevant peaks (due to reverberation effects) or correspond

to the other target. To calibrate the audio sensor, we need

to detect such points (outliers) and remove them before esti-

mating the line parameters. For this purpose, we have used

a high-breakdown robust estimator called HBM [10]. Fig-

ures 1(a) and (b) show that the lines estimated for each of the

targets are almost identical which demonstrates the accuracy

3http://www.eecs.qmul.ac.uk/˜andrea/spevi.html

of calibration. If za = αxim. + β is the estimated line equa-

tion, then audio measurement likelihood function is given by

ga(za|x) = N (za;Cax + β, σ2
a) where σa is the scale of

noise and Ca = [α 0 0 0 0 0].

3.1. Sensor fusion

In order to integrate the information provided by audio and vi-

sual sensors in a Bayesian estimation framework, the update

step of the CB-MeMBer filter is run twice, first using the vi-

sual measurements then audio measurements. The important

point to note here is that detection probability for each sensor

is determined based on our definition of “active speaker”. For

instance if an active speaker is considered to be a person who

is expected to be visible to the camera in no less than 95% of

the time and to be speaking in at least 40% of the time, then

we set pDv
= 0.95 and pDa

= 0.40.

When the detection probability is close to one, most of

legacy tracks are assigned very small existence probabilities

– see the update equations. Thus, in the first round of update

(using visual cues), most of the legacy tracks almost die and

few of them are passed to get updated using the audio cues

along with the measurement-corrected tracks. In this round of

update, they evolve to a new set of legacy and measurement-

corrected tracks. Since the audio detection probability is not

very close to one, some legacy tracks can have large exis-

tence probabilities, representing the silent targets. More pre-

cisely, the targets which are visible to camera but are occa-

sionally silent will be tracked by this method. On the other

hand, the targets that are occasionally invisible to camera will

be tracked as long as they speak. This is because their cor-

responding tracks will be among the few legacy tracks that

survive through the first round of update. The existence prob-

abilities of such tracks will be increased in the second round

of update, because they will be associated to audio cues in the

sensory data.

4. SIMULATION RESULTS

We have examined the ability of our method to track speak-

ers in three audio-visual sequences from the SPEVI database.

Figures 2–3 show snapshots of the tracking results in two of

the sequences.4 For the first sequence shown in in Fig. 2, we

have shown the particle blobs as well as the final estimates.

The results show nearly perfect tracking performance.

Indeed, in 98.5% of all the frames, the existing targets are

all detected, correctly labeled and tracked. Labels are never

switched after or during occlusions, and an invisible target

is successfully tracked using the audio cues. The superior

tracking performance of our method is due to the principled

approach to the modelling of the intermittency of sensory

information in terms of detection probabilities using random

4Videos showing the tracking results in three cases can be downloaded

from: www.ee.uwa.edu.au/˜bnvo/icassp11.
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Frame 115 Frame 127 Frame 296 Frame 301

Fig. 2. Tracking results for sequence 1.

Table 1. Quantitative comparison of tracking performance.

The label switching rate is not applicable (n/a) to sequence 2

where a single target is tracked.

Without Audio With Audio

FNR FAR LSR FNR FAR LSR

Seq. 1 9% 2% 4% 3% 0% 0%

Seq. 2 32% 3% n/a 5% 0% n/a

Seq. 3 11% 2% 3% 2% 0% 0%

finite set theory as well as efficient solution to the multi-object

filtering problem.

Frame 237 Frame 252 Frame 264 Frame 312

Fig. 3. Tracking results for sequence 2.

To show the effect of fusion of visual and audio infor-

mation, we have quantified the detection and tracking errors

via computing three quantities in our experiments, once with

fusion of audio and visual information and once without the

audio information. The quantities include ratio of missed tar-

gets (called false negative rate or FNR for short), the ratio of

wrong detections (called false alarm rate or FAR for short)

and the ratio of label switching events (called label switching

rate or LSR for short) over all frames. The results are listed

in Table 1 and present substantial improvement in detecting

and tracking the targets when audio and visual information

are integrated.

5. CONCLUSIONS

A new method for audio-visual tracking of multiple targets

was proposed. The method is formulated in a random finite

set framework based on multi-Bernoulli approximations, and

implemented using sequential Monte Carlo techniques. Au-

dio and visual cues are integrated by multiple updates. The

random finite set formulation allows a natural and principled

way to model the intermittent nature of sensory data (mainly

audio).

Simulation results show that the proposed method almost

perfectly tracks multiple interacting targets, not only when

they are silent, but also in times when they are invisible to the

camera.
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