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Abstract

Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This
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method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance

cell viability and the expression of markers of liver-specific functions. We consider the early stages

of aggregate formation, and develop a new mathematical model to investigate two alternative hy-

potheses (based on evidence in the experimental literature) for the role of stellate cells in promoting

aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects

the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction

between the two cell types is by direct physical contact: the stellates extend long cellular processes

which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted

to a chemical they themselves produce, and the cells can experience repulsive forces due to over-

crowding. We formulate non-local (integro-partial differential) equations to describe the densities

of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The

behaviour of the model under each hypothesis is studied using a combination of linear stability

analysis and numerical simulations. Our results show how the initial rate of aggregation depends

upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the

relative strengths of attraction and repulsion between the cell types. Guided by our results, we

suggest experiments which could be performed to distinguish between the two hypotheses.

Keywords: Cell aggregation, Chemotaxis, Tissue engineering, Integro-differential equations

1 Introduction

At present there are few treatments for chronic liver disease, organ transplant being the most successful.

However, a lack of suitable donor organs means that interest is turning to the development of liver

support devices. As a result, increasing research effort is being focused on the in vitro engineering of

liver tissue for such devices, as well as for drug testing and, potentially, for transplantation (Green

et al., 2009). Approximately 80% of a healthy liver is composed of hepatocytes (Mitaka, 1998),

cells which perform most of its biological functions (Selden et al., 1999). The liver contains at least

four other cell types including stellate cells (also known as Ito cells), which are thought to play an

important role in hepatic regeneration in vivo; hence there is interest in their potential use in liver

tissue engineering in vitro (Bhandari et al., 1997; Riccalton-Banks et al., 2003; Thomas et al., 2005).

A number of studies suggest that cell-cell contact between hepatocytes, and between hepatocytes and

other cell types, is key to maintaining the viability and functionality of liver tissue grown in vitro. Such
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contacts are promoted by culture techniques that result in the formation of spheroidal cell aggregates

(Abu-Absi et al., 2002; Riccalton-Banks, 2002; Richert et al., 2002; Thomas et al., 2005). Our aim

in this paper is to use mathematical modelling to investigate the effect of hepatocyte - stellate cell

interactions on the aggregation process.

When hepatocytes and stellate cells are co-cultured, cell aggregates form more rapidly and retain

liver-specific functions (such as albumin production and cytochrome P450 activity) for a longer pe-

riod than when the hepatocytes are cultured alone (Krause et al., 2009; Riccalton-Banks et al., 2003;

Riccalton-Banks, 2002; Thomas et al., 2005). One mechanism that may contribute to enhanced aggre-

gation is chemotaxis. Hepatocytes are known to respond chemotactically to hepatocyte growth factor

(HGF) in vitro (Stolz and Michalopoulos, 1997), and stellate cells from rats produce HGF when stim-

ulated with hepatocyte-conditioned medium (Skrtic et al., 1999). In fact, stimulation with just one

component of the hepatocyte-conditioned medium, insulin-like growth factor-1 (IGF-1), was sufficient

to cause the stellate cells to produce HGF. Another study, by Gentilini et al., reported that IGF-1

is a chemoattractant for human hepatic stellate cells (Gentilini et al., 2000). Hence there may be a

feedback loop between the two cell types: the hepatocytes produce insulin-like growth factor-1 which

attracts the stellates, and stimulates them to produce more HGF. HGF then acts as a chemoattractant

for the hepatocytes, leading to the formation of heterogeneous cell aggregates.

[Figure 1 about here.]

An alternative explanation has been put forward by Thomas et al. (2006). Time-lapse video footage

reveals that stellates extend long processes, which, on contact with an hepatocyte, appear to pull the

cell into the nascent aggregate (Fig. 1). We speculate that this physical contact between the two cells

types promotes aggregation. It is possible that the action of the processes is provoked by a chemical

factor secreted by the hepatocytes, as mono-cultured stellates stimulated with hepatocyte-conditioned

medium retracted their processes (as they do when pulling heptocytes into an aggregate), whilst

this did not occur when the conditioned medium was absent. Furthermore, aggregates formed more

slowly, and were less well defined, when the stellates were co-cultured with cells of the Hep G2 cell line

(hepatocellular carcinoma cells) rather than hepatocytes, suggesting an interaction specific to these

particular cell types. However, the stellates exhibited the same contractile response to hepatocyte

fragments as to whole cells, which suggests that the retraction of the processes is not solely due to
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the secretion of chemical factors by hepatocytes. Thomas et al. (2006) suggest that the attraction

between stellate cells is negligible. Stellates cells in monoculture were found to have low cell motility

compared to those in co-culture, and did not form aggregates (e.g. see Fig. 4 of Thomas et al. (2006)).

In this paper, we use mathematical modelling to explore the two hypotheses outlined above for

hepatocyte - stellate cell interactions. Our model accounts for chemical signalling between the two

cell types, the forces exerted by the stellates’ cellular processes, and the effects of overcrowding,

which causes cells to repel each other when they become too densely packed. We adopt an approach

which combines a Keller-Segel modelling framework to describe chemotactic movement with non-local

(integro-differential) terms to represent cell-cell interactions due to overcrowding or the action of

the stellates’ processes on hepatocytes. Similar non-local terms have previously been used to model

differential adhesion in cell sorting experiments (Armstrong et al., 2006; Sherratt et al., 2008), cancer

invasion (Gerisch and Chaplain, 2008; Szymanska et al., 2009), and to describe interactions within a

social aggregate (such as a swarm) consisting of a homogeneous population (Mogilner and Edelstein-

Keshet, 1999). Other applications have included Myxobacteria aggregation (Mogilner, 1995), and

ecological problems (Billingham, 2004; Gourley et al., 2001). To illustrate the form of these non-

local terms, we consider a simple example in which a single population of density C moves in a one

dimensional Cartesian geometry by a combination of random motion and advection so that

∂C

∂t
+

∂

∂x
(vC) = D

∂2C

∂x2
, (1.1a)

where D is the random motility coefficient, and v is the density-dependent velocity of the cells, which

is related to C via a convolution integral:

v(x, t) = K ∗ C ≡
∫

Ω
K(x − y)C(y, t)dy. (1.1b)

The velocity at a position x thus depends upon the density of individuals in a neighbourhood Ω

surrounding x. In (1.1b), the kernel function K weights the effect of interactions according to distance

(usually, interactions between nearby individuals have greater effect). K(x−y) is generally assumed to

be proportional to the force exerted on an individual at x by another at y (Mogilner, 1995). (However,

a formal momentum balance is not usually stated in this type of model.) The kernels are prescribed

functions of the spatial variable, and, in the absence of environmental biases, are assumed to be odd
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functions of their argument because we expect individuals to the right of x to induce a velocity of the

opposite sign to that induced by individuals to the left of x (see Fig. 2).

[Figure 2 about here.]

The choice of kernel function is key to determining the behaviour of the system; whilst an odd kernel

describes aggregation in a swarm (or aggregate) whose centre of mass is stationary, an even kernel

gives rise to collective movement (Mogilner and Edelstein-Keshet, 1999). When the kernel includes

an even component, travelling wave solutions of the model can be found, provided the odd part of the

kernel is sufficiently small (Mogilner, 1995; Mogilner and Edelstein-Keshet, 1999). In Mogilner (1995),

analysis of the bifurcation structure of the model for a particular choice of odd kernel reveals that

both large scale aggregations (having wavenumbers close to zero) and periodic patterns may arise,

depending on the strengths and ranges of attraction and repulsion. In the latter case, the onset of

patterning close to bifurcation is studied using a weakly nonlinear analysis.

An alternative model for inter-individual interactions in a social aggregate is presented in (Mogilner

et al., 2003). There, a Lagrangian (individual-based) approach is adopted, with each member of the

swarm treated as a point mass whose movements are governed by the pairwise sum of its interactions

with the other swarm members. The model is written as

dxi

dt
=
∑

i6=j

F (xi − xj), (1.2)

where xi is the position of the ith member of the swarm, F is the interaction force on the ith individual

due to a neighbour at xj , and i, j = 1, 2...N (N being the number of members of the swarm). Hence

(1.2) can be viewed as a force balance between inter-individual forces and drag, where inertial effects

are assumed negligible, and the units are so chosen that the constant of proportionality (i.e. drag

coefficient) is unity.

Bodnar and Velazquez (2005) have formally established that, in the one-dimensional case, models

of the form (1.1a) can be derived as macroscopic limits of Lagrangian models such as (1.2), provided

the interaction force F is of gradient type (i.e. F = −∇W ). In summary, if the lengthscale over which

interactions take place (i.e. the lengthscale over which W undergoes O(1) variations) is much greater

than the typical distance between individuals, then, as N → ∞, one can introduce a density C and
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replace the sum in equation (1.2) by a convolution integral. The macroscopic equation is

∂C(x, t)

∂t
=

∂

∂x

(

C(x, t)

∫

Ω
W ′(x − y)C(y, t)dy

)

, (1.3)

which is equivalent to equation (1.1a) when W ′ = −K and D = 0. Furthermore, if the potential

W is repulsive, then the addition of a ‘white noise’ term to the right-hand side (RHS) of equation

(1.2) gives rise, in the continuum limit, to a diffusion term on the RHS of equation (1.3) (making it

equivalent to (1.1a)) - although the diffusion coefficient may depend on C for certain choices of W

(Bodnar and Velazquez, 2005). The significance of the connection between the individual-based and

continuum models is clear: given a knowledge of the interactions between a pair of cells, we can infer

the correct form for the interaction kernel in the continuum model (subject to the assumptions about

cell spacing and pairwise interactions stated above).

In this paper, we investigate the two hypotheses about hepatocyte-stellate interactions by develop-

ing continuum models. We focus on cell-cell interactions, neglecting the effects of the ECM and culture

medium (which are considered in (Green et al., 2009; Green, 2006)). We present a general model (§2)
which can be specialised to the two hypotheses described above. The behaviour of the model is inves-

tigated using a combination of linear stability analysis (§3) and numerical simulations (§4). For each

hypothesis, we determine how the distribution of cells within aggregates depends upon the strengths of

attraction and repulsion between the cells. Experimental observations of the cell distibution can thus

be used to make inferences about the relative strengths of hepatocyte-hepatocyte, hepatocyte-stellate

and stellate-stellate interactions (c.f. cell sorting due to differential adhesion (Steinberg, 1963)). We

also use the model to predict the seeding ratio of hepatocytes to stellate cells that gives the most

rapid aggregate formation. The paper concludes in §5 with a comparison of our model predictions

and recent experimental results, and suggestions for further work.

2 Model formulation

We develop a general mathematical model for the aggregation of hepatocytes and stellate cells, which

embodies the hypotheses introduced in §1. We consider a one-dimensional geometry, −L < x <

L, and denote the densities of the hepatocytes and stellate cells by n(x, t) and m(x, t) respectively

(where t denotes time). For simplicity, proliferation and death of both cell types are neglected. (This
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appears reasonable for the early stages of cell culture (approximately the first 24 hours) in which

we are interested; Thomas et al. (2006) found that around 10 % of the cells died between 24 and

48 hours in culture.) We assume that hepatocytes secrete a chemoattractant (possibly IGF-1), with

concentration c1(x, t), which stimulates their aggregation in the absence of the stellates. We assume

that stellates are also attracted to this chemical. In addition, stellates produce a second chemical

(possibly HGF), with concentration c2(x, t), which acts as a chemoattractant for hepatocytes only.

We use the familiar Keller-Segel framework to describe the cells’ motion up chemical gradients. We

assume, as in (Mogilner, 1995), that the timescale for diffusion of both chemicals is short compared

to that for cell movement, and, hence, that the quasi-steady approximation for c1 and c2 is valid.

We also allow for non-local cell-cell interactions, using the integro-PDE framework. These effects

include repulsion due to overcrowding and attraction due to the extension of processes by the stellates.

Combining these effects, the general model takes the form:

∂n

∂t
+ χ∗

1

∂

∂x

(

n
∂c1

∂x

)

+ χ∗
2

∂

∂x

(

n
∂c2

∂x

)

+
∂

∂x
[n (K∗

n ∗ n) + n (K∗
nm ∗ m)] = D∗

n

∂2n

∂x2
, (2.1a)

∂m

∂t
+ φ∗ ∂

∂x

(

m
∂c1

∂x

)

+
∂

∂x
[m (K∗

m ∗ m) + m (K∗
mn ∗ n)] = D∗

m

∂2m

∂x2
, (2.1b)

D∗
1

∂2c1

∂x2
+ α∗

1n − γ∗
1c1 = 0, (2.1c)

D∗
2

∂2c2

∂x2
+ α∗

2m − γ∗
2c2 = 0. (2.1d)

The kernel functions describe the non-local interactions between the different populations: K∗
nm repre-

sents the effect of stellates (m) on hepatocytes (n); conversely, K∗
mn represents the effect of hepatocytes

on stellates; K∗
n and K∗

m represent the interactions between members of the same population. D∗
n and

D∗
m are the random motility coefficients for the two cell types. The constants χ∗

1 and χ∗
2 represent

the sensitivity of the hepatocytes to gradients of c1 and c2, and φ∗ similarly gives the sensitivity of

the stellates to gradients of c1. We denote the diffusion coefficients of the two chemicals by D∗
1 and

D∗
2 respectively. We assume they are produced at rates α∗

1 and α∗
2, and decay at rates γ∗

1 and γ∗
2 . If

we identify c2 with HGF then we should make α∗
2 depend on c1 as the results of Skrtic et al. (1999)

suggest that the amount of HGF produced increases with increasing IGF-1 concentration. However,

for simplicity, we assume here that α∗
2 is constant.
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2.1 Boundary and initial conditions

Equations (2.1) are solved subject to the following boundary and initial conditions. We assume that

the cell densities are symmetric about x = 0, and are spatially periodic functions, with period 2L.

The latter condition ensures the convolution terms vanish at the edges of the domain, and thus that

the no flux conditions for the cells and chemoattractants at x = ±L take their familiar forms. The

initial and boundary conditions thus read

n(x, 0) = ni(x), m(x, 0) = mi(x), (2.2a)

∂n

∂x

∣

∣

∣

∣

x=±L

=
∂m

∂x

∣

∣

∣

∣

x=±L

=
∂c1

∂x

∣

∣

∣

∣

x=±L

=
∂c2

∂x

∣

∣

∣

∣

x=±L

= 0. (2.2b)

2.2 Hypothesis 1: Hepatocyte-stellate interactions through chemotaxis

We now specialise the above model to the case where the attraction between hepatocytes and stellate

cells is caused by diffusible chemicals. Thus all the chemical signalling processes described above

are active, and, hence, the chemotaxis coefficients χ∗
1, χ∗

2 and φ∗ are non-zero. The only non-local

interactions assumed to take place are due to overcrowding: when cells come close to each other they

experience a repulsive force. We thus set

K∗
n = K∗

m = K∗
nm = K∗

mn = K∗
R, (2.3a)

where the repulsion kernel, K∗
R, takes the form

K∗
R(x) =



















R∗
(

r∗

x
− 1
)

if 0 < x ≤ r∗,

R∗
(

r∗

x
+ 1
)

if − r∗ ≤ x < 0,

0 otherwise.

. (2.3b)

Thus, the repulsive force has strength R∗, and is experienced only when cells come within a range r∗ of

each other (measured as the distance between their centres). As the distance between the cells tends to

zero, the repulsive force becomes arbitrarily large (see Fig. 3(a)). For simplicity, we have assumed that

the strength of repulsive interactions is independent of the type of cells involved. Differences in cell

size or the strength of cell-substrate adhesion between the two cell types mean that this assumption

may not hold in practice. However, it could easily be relaxed by taking different values of R∗ and r∗

for each of the four kernels. We postpone such considerations for future work.
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[Figure 3 about here.]

2.3 Hypothesis 2: Hepatocyte-stellate interactions via direct physical contact

Here, we assume that hepatocyte-stellate attraction is due to direct physical contact. Hepatocytes

again aggregate via chemotaxis in response to a diffusible signalling molecule that they produce, but

chemical signalling between hepatocytes and stellates is neglected. Thus, in equations (2.1) we fix

χ∗
1 > 0, χ∗

2 = 0, φ∗ = 0. (2.4a)

As before (see equation (2.3)), all cells, regardless of type, repel each other if they are too close.

However, we assume additionally that stellate cells exert attractive forces on hepatocytes if the latter

come within range of their processes. The hepatocyte-stellate and stellate-hepatocyte interaction

forces are thus of the same form. For simplicity, we shall assume they are also of the same magnitude,

and hence write Kmn = Knm. (This assumption neglects the possibility that one of the cell types

may be larger or more strongly adherent to the ECM than the other. However, it is consistent with

our earlier assumption about the strength of the repulsive force.) We suppose that the stellates exert

a constant attractive force on the hepatocytes when they are within a finite range of each other.

Combining the above effects, we employ the following forms for the kernels

K∗
n = K∗

m = K∗
R, (2.4b)

K∗
nm = K∗

mn = K∗
R + K∗

A (2.4c)

where

K∗
A(x) =



















−A∗
2 if r∗ ≤ x ≤ a∗2,

A∗
2 if − a∗2 ≤ x ≤ −r∗,

0 otherwise,

(2.4d)

and K∗
R is defined in equation (2.3b). In (2.4d), the constant A∗

2 represents the strength of stellate-

hepatocyte attraction, a∗2 is the average length of a stellate cellular process (and represents the typical

range of attraction) and r∗ is the range of repulsion, as defined earlier. The function K∗
A is plotted in

Fig. 3.

We note that under Hypothesis 2, equation (2.1d) for c2 decouples, since when χ∗
2 = 0, c2 has no

effect on cell behaviour. Hence, under this hypothesis we need only solve equations (2.1a)-(2.1c).

9



2.4 Nondimensionalisation

We nondimensionalise equations (2.1) as follows

x = λx̃, t = T t̃, n = nsñ, m = nsm̃, c1 =
α∗

1ns

γ∗
1

c̃1, c2 =
D∗

1α
∗
2ns

D∗
2γ

∗
1

c̃2,

(K∗
n,K∗

m,K∗
nm,K∗

mn) =
χ∗

1α
∗
1

D∗
1

(K̃n, K̃m, K̃nm, K̃mn),

where

λ =

√

D∗
1

γ∗
1

, T =
D∗

1

χ∗
1α

∗
1ns

,

and ns is a typical initial cell seeding density. In the above we have thus taken as our lengthscale,

λ, the diffusion lengthscale of c1, and our timescale, T , is the timescale of hepatocyte aggregation by

chemotaxis in response to other hepatocytes. The dimensionless system is then (dropping tildes)

∂n

∂t
+

∂

∂x

(

n
∂c1

∂x

)

+ χ2
∂

∂x

(

n
∂c2

∂x

)

+
∂

∂x
[n (Kn ∗ n) + n (Knm ∗ m)] = Dn

∂2n

∂x2
, (2.5a)

∂m

∂t
+ φ

∂

∂x

(

m
∂c1

∂x

)

+
∂

∂x
[m (Km ∗ m) + m (Kmn ∗ n)] = Dm

∂2m

∂x2
, (2.5b)

∂2c1

∂x2
+ n − c1 = 0, (2.5c)

∂2c2

∂x2
+ m − γ2c2 = 0, (2.5d)

where we have introduced the following dimensionless parameters

χ2 =
χ∗

2D
∗
1

χ∗
1D

∗
2

, φ =
φ∗

χ∗
1

, Dn =
D∗

nγ∗
1

χ∗
1α

∗
1ns

, Dm =
D∗

mγ∗
1

χ∗
1α

∗
1ns

, γ2 =
γ∗
2D∗

1

γ∗
1D∗

2

, ǫ =

√

D∗
1

L
√

γ∗
1

, (2.6)

so that χ2 and φ are the dimensionless chemotaxis coefficients, Dn and Dm are ratios of the timescales

of aggregation and random movement for the two cell types, γ2 is the dimensionless decay rate of c2

and ǫ is the ratio of the aggregate lengthscale to the domain length. Under this rescaling, the

domain in which the dimensionless equations (2.5) are solved is thus −1/ǫ < x < 1/ǫ.

The dimensionless kernels are

KR(x) =



















R
(

r
x
− 1
)

if 0 < x ≤ r,

R
(

r
x

+ 1
)

if − r ≤ x < 0,

0 otherwise,

(2.7a)
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KA =



















−A2 if r ≤ x ≤ a2,

A2 if − a2 ≤ x ≤ −r,

0 otherwise,

(2.7b)

where we have introduced the dimensionless parameters

r =

√

γ∗
1

D∗
1

r∗, R =
R∗D∗

1

χ∗
1α

∗
1

, A2 =
A∗

2D
∗
1

χ∗
1α

∗
1

, a2 =

√

γ∗
1

D∗
1

a∗2. (2.8)

In (2.8), R and r are the dimensionless strength and range of repulsion respectively, A2 represents the

strength of the attraction between hepatocytes and stellates, whilst a2 is the average dimensionless

length of a stellate cellular process (hence representing the typical range of attraction).

In the absence of suitable experimental data, it is impossible to give precise values for many of

the parameters introduced above. Since the random motility coefficients for hepatocytes and stellates

have not been measured, we use published data for other cell types to estimate the orders of magnitude

of Dn and Dm. Luca et al. (2003) report that microglia (a type of cell found in the brain) have a

diffusivity of 33 µm2 min−1 (= 5.5 × 10−9 cm2 s−1), whilst for microvessel endothelial cells, Stokes

et al. (1990) report values in the approximate range 5 × 10−9 cm2 s−1 - 8 × 10−9cm2 s−1, depending

upon the concentration of a chemical in the culture medium. We note that the cell aggregation

timescale, T , is of the order of several hours to one day (≈ 104 − 105 s), and the lengthscale of

an aggregate, λ, is around 100 µm = 10−2 cm (Green et al., 2009). Combining these values gives

estimates for the dimensionless parameters Dn and Dm of 0.1−1.0. The quantities χ2 and φ represent

relative chemotactic affinities for hepatocyte-stellate interactions, compared to hepatocyte-hepatocyte

interactions. As a first approximation, we suppose that these effects are equally important, and take

χ2, φ = O(1). The relative diffusive lengthscale of the chemical c2 is taken to be similar to that for c1,

i.e. γ2 = O(1). For similar reasons, we take the strength of the hepatocyte-stellate attraction due to

cell-cell interaction, A2, and its range, a2, to be O(1). However, as repulsion is considered to be due

to overcrowding, we assume it is strong and short-ranged (as in (Mogilner et al., 2003)), and hence

we take r ≪ 1 ≪ R. Finally, as in (Green et al., 2009), we take the length, L, of the domain to be of

the order of 1 cm, based on the typical radius of a culture well. This gives ǫ = O(10−2).

The boundary conditions now become

∂n

∂x

∣

∣

∣

∣

x=± 1

ǫ

=
∂m

∂x

∣

∣

∣

∣

x=± 1

ǫ

=
∂c1

∂x

∣

∣

∣

∣

x=± 1

ǫ

=
∂c2

∂x

∣

∣

∣

∣

x=± 1

ǫ

= 0, (2.9)
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where the period of n and m is now 2/ǫ .

In the limit as ǫ → 0 it is possible to solve for c1 and c2 in terms of n and m using Green’s functions

(Lee et al., 2001; Luca et al., 2003). For a domain of infinite spatial extent, we have

c1(x, t) =
1

2

∫ ∞

−∞

n(y, t) exp (−|x − y|)dy, (2.10a)

c2(x, t) =
1

2
√

γ2

∫ ∞

−∞

m(y, t) exp (−√
γ2|x − y|)dy. (2.10b)

Using (2.10), the chemotaxis terms in equations (2.5) resemble the non-local interaction terms. We

exploit this result to simplify our linear stability analysis in §3.
For subsequent reference, the main assumptions (in terms of the dimensionless chemo-

taxis parameters and kernel forms) of the two hypotheses are summarised in Table 1.

[Table 1 about here.]

3 Linear stability analysis

We now investigate the linear stability of spatially uniform steady states of the model equations in

order to determine the parameter regimes in which we may expect to see aggregation. We consider an

infinite domain (ǫ = λ/L → 0) so that we can absorb the chemotaxis terms into the non-local terms

by employing a suitably modified kernel (Mogilner, 1995). We then need only consider the system

∂n

∂t
+

∂

∂x
[n (Kn ∗ n) + n (Knm ∗ m)] = Dn

∂2n

∂x2
, (3.1a)

∂m

∂t
+

∂

∂x
[m (Km ∗ m) + m (Kmn ∗ n)] = Dm

∂2m

∂x2
. (3.1b)

We investigate the spatially homogeneous steady state, n = n0, m = m0 which approximates the

conditions immediately after the cells are seeded in the culture wells, and introduce small perturbations

of the form

n = n0 + n̂(x, t), m = m0 + m̂(x, t), (3.2)

where |n̂|, |m̂| ≪ 1. We substitute these forms into the governing equations (3.1) and linearise to

obtain
∂n̂

∂t
= Dn

∂2n̂

∂x2
− n0

∂

∂x
(Knm ∗ m̂ + Kn ∗ n̂) , (3.3a)
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∂m̂

∂t
= Dm

∂2m̂

∂x2
− m0

∂

∂x
(Kmn ∗ n̂ + Km ∗ m̂) . (3.3b)

In writing (3.3) we have exploited the fact that terms containing convolutions with constant densities,

e.g. Knm ∗ m0 vanish, since the kernels are assumed to be odd.

We now set

n̂ = n1e
(iqx+ωt), m̂ = m1e

(iqx+ωt), (3.4)

where q and ω are, respectively, the wavenumber and growth rate of the perturbation, and |n1|,
|m1| ≪ 1. It is straightforward to show that the convolution terms can be written

Kn ∗ n̂ = n1

∫ ∞

−∞

Kn(x − y)e(iqy+ωt)dy = n1e
(iqx+ωt)K̃n(q), (3.5)

where K̃n(q) denotes the Fourier transform of Kn, defined as

K̃n(q) =

∫ ∞

−∞

Kn(x)e−iqxdx.

We note that since the kernels are odd functions of their argument, their Fourier transforms are

imaginary.

Substituting (3.4) into equations (3.3) we obtain

J





n1

m1



 = 0, (3.6)

where

J =





ω + Dnq2 + iqn0K̃n iqn0K̃nm

iqm0K̃mn ω + Dmq2 + iqm0K̃m



 . (3.7)

For nontrivial solutions, (n1,m1) 6= 0, we require det(J) = 0, which leads to a quadratic dispersion

relation of the form

ω2 + Bω + C = 0, (3.8)

where

B = q2(Dn + Dm) + iq(n0K̃n + m0K̃m), (3.9a)

C = (Dnq2 + iqn0K̃n)(Dmq2 + iqm0K̃m) + q2n0m0K̃nmK̃mn. (3.9b)
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We note that, since interactions between cells of the same type are identical under both hypotheses,

so are the modified versions of Kn and Km, which are given by

Kn(x) = −sign(x)
1

2
exp (−|x|) + KR(x), (3.10a)

Km(x) = KR(x), (3.10b)

where the first term on the RHS of equation (3.10a) arises from the incorporation of

hepatocyte-hepatocyte chemotaxis into the kernel. The Fourier transforms are

K̃n(q) =
iq

q2 + 1
− 2iRrΨ(qr), (3.11a)

K̃m(q) = −2iRrΨ(qr). (3.11b)

In (3.11), the function Ψ(·), which is plotted in Fig. 4, denotes the Fourier transform of the repulsion

kernel (2.7a), so that

Ψ(x) = Si(x) − 1

x
(1 − cos x), (3.12)

where Si(x) is the sine integral (Abramowitz and Stegun, 1970)

Si(x) =

∫ x

0

sin t

t
dt.

With K̃n and K̃m defined by (3.11), equation (3.9a) gives

B = q2

(

Dn + Dm − n0

q2 + 1

)

+ 2q(n0 + m0)RrΨ(qr). (3.13)

We note that the function C defined by (3.9b) takes different forms under the two hypotheses, and is

hence presented in §§3.1-3.2, where the behaviour under each hypothesis is considered in turn.

[Figure 4 about here.]

In order to identify the regions of parameter space in which instability can occur, we first determine

the most unstable wavenumber of the system (i.e. the value qc of q which maximises ℜ(ω)) and define

ωmax ≡ ℜ(ω(qc)). We then partition the parameter space into regions where the spatially uniform

steady state is linearly stable to perturbations of all wavenumbers (ωmax < 0) and others where it is

linearly unstable to perturbations of certain wavenumbers (ωmax > 0). In simple cases this can be
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done analytically. (We note that it may be possible to derive sufficient conditions for the

uniform state to be linearly stable in more general cases. However, because a spatially

uniform steady state is biologically undesirable, we do not attempt it here.) In general,

however, we use the following procedure to determine the regions numerically. We first choose two

parameters of interest (e.g. n0 and χ2) and create a rectangular array of pairs of these values (the

other system parameters being held fixed). We note that the sum of the roots of equation (3.8) is

given by −B and the product by C. Thus, for a particular pair of parameter values, if there exists a

q such that C(q) < 0, then the dispersion relation has one real positive and one real negative roots,

and the spatially uniform steady state is unstable. We thus evaluate min C(q) (for a range of values

of q) for each pair of parameter values in our array; if min (C(q)) < 0 for a particular pair, we colour

the relevant square in the array white. The region of the array where min C(q) > 0 is then further

subdivided. If min (C(q)) > 0 and min (B(q)) < 0, then for the parameter values in question, there

exist wavenumbers for which the spatially uniform steady state is unstable; if min(C(q)) > 0 and

min (B(q)) > 0, then the spatially uniform steady state is stable to perturbations of all wavenumbers.

In fact, each of the latter two regions may be further subdivided, into regions where all the roots are

real (min (B2 − 4C) > 0) and those where there may be complex conjugate roots (min (B2 − 4C) < 0).

In the following sections, we consider the stability of the spatially uniform steady state under each

hypothesis.

3.1 Hypothesis 1

Incorporating the chemotaxis terms into the kernel functions Knm and Kmn gives

Knm(x) = −sign(x)
χ2

2
exp

(

−|x|
a

)

+ KR(x), (3.14a)

Kmn(x) = −sign(x)
φ

2
exp (−|x|) + KR(x), (3.14b)

where a = 1/
√

γ2 is the dimensionless attraction range of c2. It is straightforward to show that the

associated Fourier transforms are

K̃nm(x) =
iqχ2a

2

a2q2 + 1
− 2iRrΨ(qr), (3.15a)

K̃mn(x) =
iqφ

q2 + 1
− 2iRrΨ(qr), (3.15b)
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For simplicity, we first consider the case for which repulsion effects are negligible (R = 0). The

coefficient C in the dispersion relation (3.8) is then

C = q4

[

Dm

(

Dn − n0

q2 + 1

)

− n0m0χ2φa2

(q2 + 1)(a2q2 + 1)

]

. (3.16)

A sufficient condition for instability to occur is C < 0, or equivalently,

Dm

(

Dn − n0

q2 + 1

)

<
n0m0χ2φa2

(q2 + 1)(a2q2 + 1)
. (3.17)

Thus, in order for instability to arise, chemotaxis must dominate random motion of the two cell

populations. If m0χ2φ = 0 , then condition (3.17) reduces to Dn < n0/(q
2 + 1), which is

equivalent to the condition for instability in a model for chemotactic aggregation of a

single population of cells. We remark that whilst the case B < 0 < C could give rise to instability,

in practice it cannot occur for the following reason. If B < 0, then

n0

q2 + 1
> Dn + Dm ≥ Dn, (3.18)

and the first term of equation (3.16) is non-positive, which means that C ≤ 0. (However, the case

B < 0, C = 0, corresponding to ω having one zero and one positive root is possible, but only if Dm = 0

and some other parameter e.g. χ2 is also zero.) Thus, for Dm > 0, inequality (3.17) is both necessary

and sufficient for instability to occur.

In the limit as q → ∞, C > 0 so the spatially uniform steady state is linearly stable to perturbations

of sufficiently large wavenumber. We note that the zeros of C are q = 0 and the roots of the expression

q4DnDma2 + q2Dm(Dn + Dna2 − n0a
2) + DnDm − n0Dm − n0m0χ2φa2 = 0, (3.19)

which, for convenience, we view as a quadratic for q2. For instability to occur, (3.17) must be satisfied,

and hence the roots of (3.19) have differing sign. Thus we conclude that instability will occur for a

finite range of wavenumbers 0 < q2 < q2
max, where q2

max is the positive root of (3.19).

Assuming that Dm > 0, we note that by, for example, increasing χ2, we can decrease C from

C > 0 to C < 0. In this case, one of the two negative real roots of equation (3.8) becomes positive so

we have a saddle-node bifurcation as C passes through C = 0. (Note that we have established above

that we cannot have B < 0 < C, and hence this is the only type of bifurcation that the model can

exhibit in this case.)
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[Figure 5 about here.]

When repulsion effects are neglected (R = 0), it is straightforward to show that C(q) < 0 for

certain values of q only if the following inequality is satisfied:

Dm (Dn − n0) < n0m0χ2φa2.

With m0 = 1 − n0 (i.e. assuming that the total cell seeding density is unity), we deduce that the

curve partitioning the stable and unstable regions of parameter space is given by

n2
0 − n0

(

1 +
Dm

χ2φa2

)

+
DnDm

χ2φa2
= 0. (3.20)

This curve can be plotted in e.g. (n0, χ2) space, and validates the results presented in Fig. 5 (com-

parison not shown).

We now assume R > 0, in which case the coefficients in equation (3.8) are given by (3.13) and

C =
(

q2Dm + 2qm0RrΨ(qr)
)

(

q2Dn + 2qn0RrΨ(qr)− q2n0

q2 + 1

)

− q2n0m0

(

qχ2a
2

a2q2 + 1
− 2RrΨ(qr)

)(

qφ

q2 + 1
− 2RrΨ(qr)

)

. (3.21)

As before, a sufficient condition for instability is C < 0. We note that B > 0, C > 0 in the limit as

q → ∞, (since Ψ(qr) → π/2 as q → ∞ (Abramowitz and Stegun, 1970)). Hence the model remains lin-

early stable to perturbations of large wavenumber. However, we observe that the introduction

of the repulsion terms can lead to the apparently paradoxical behaviour where increasing

the strength of hepatocyte-stellate attraction (χ2) is stabilising (see Fig. 6). To under-

stand why this can occur, let us assume that Dn = Dm = 0 (it will subsequently be obvious

that our arguments also apply when 0 < Dn, Dm ≪ 1), and that the repulsion strength

R is sufficiently large that B(q) > 0 for all q. Under these assumptions, we see from

equation (3.21) that when χ2 = 0, the terms quadratic in R cancel, and C < 0 provided

that φ < 1. As χ2 is increased, assuming φ is sufficiently small, C increases and eventually

becomes positive. This corresponds to strong repulsion between all cell types, with weak

attraction of stellates to hepatocytes. When hepatocyte-stellate attraction is absent (or

very weak), hepatocyte-hepatocyte repulsion is weaker than hepatocyte-stellate repul-

sion (since the former is overcome to some extent by hepatocyte-hepatocyte attraction)
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and the hepatocytes will aggregate. As the hepatocyte-stellate attraction increases, the

difference in strength between hepatocyte-hepatocyte and hepatocyte-stellate repulsion

decreases, until eventually the hepatocytes can no longer be pushed together in this

way.

[Figure 6 about here.]

In contrast to the R = 0 case, we note that it is possible to have B < 0 < C, which represents

an alternative sufficient condition for instability. Since Ψ(·) is an odd function of its argument, C is

an even function of q (and hence it suffices to consider positive q). Further, Ψ(0) = 0; and, since

Ψ′(x) = (1 − cos(x))/x2 ≥ 0, it follows that Ψ(x) > 0 for x > 0 (see Fig. 4). We can then say that,

if B < 0, the second bracket of the first term in (3.21) is negative. Hence, with B < 0, a necessary

condition for C > 0 is that the second term in (3.21) be negative - i.e.

(

qχ2a
2

a2q2 + 1
− 2RrΨ(qr)

)(

qφ

q2 + 1
− 2RrΨ(qr)

)

< 0. (3.22)

The two bracketed terms above each represent a balance between hepatocyte-stellate attraction and

repulsive effects. Thus, if (3.22) is satisfied, either hepatocyte attraction to stellates is weaker than

repulsion and stellates experience a net attraction to hepatocytes or vice versa.

For there to be complex conjugate roots, we require B2 < 4C. A Hopf bifurcation occurs when

the real part of two complex conjugate roots of (3.8) changes sign. We observe from (3.13) and (3.21)

that we can fulfil the conditions B,C > 0, B2 − 4C < 0 by judicious choice of Dn, Dm, χ2 and φ. In

this case (3.8) has complex conjugate roots with negative real part. By reducing Dn or Dm, we can

decrease B through zero, whilst keeping C > 0 (through appropriate choice of χ2, φ). Thus a Hopf

bifurcation can occur when R > 0 (in contrast to the R = 0 case).

[Figure 7 about here.]

Illustrative plots of the stability regions in (n0, χ2) space are shown in Fig. 7

We are also interested in how the rate of aggregation is affected by the cell seeding ratio, since

promoting swift spheroid formation is important for preventing cell de-differentiation and death. We

thus use our analysis to determine how max{ℜ(ω(q))} depends on n0 (fixing m0 = 1 − n0 so the
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total cell density remains constant). Fig. 8 reveals that, when hepatocyte-hepatocyte chemotaxis

is strong relative to hepatocyte-stellate attraction, the greatest rate of aggregation can be achieved

by setting n0 = 1 (solid line) - i.e. seeding hepatocytes alone, without stellates. As the attraction

between hepatocytes and stellates becomes stronger, the rate of aggregation is improved by increasing

the proportion of stellates. When the hepatocyte-stellate attraction becomes very strong, the ideal

seeding ratio comes close to 1:1 (dot-dash line).

[Figure 8 about here.]

3.2 Hypothesis 2

We start with the simple case for which R = 0, and the Fourier transform of the hepatocyte-stellate

interaction kernel, K̃nm = K̃mn, is given by

K̃nm = −2iFs(Knm) = −2i

∫ ∞

0
Knm(x) sin(qx)dx

= 2i
A2

q
(cos(qr) − cos(qa2)), (3.23)

where the dimensionless constants A2 and a2 are as defined in (2.8). The Fourier transform of Kn is

given by equation (3.11a).

Substituting these forms into the dispersion relation (3.8), we find the coefficient C is given by

C = q4Dm

(

Dn − n0

q2 + 1

)

− 4n0m0A
2
2 (cos qr − cos qa2)

2 . (3.24)

Applying the same reasoning used in §3.1, we deduce that a necessary and sufficient condition for

instability is that C < 0, and hence

q4Dm

(

Dn − n0

q2 + 1

)

< 4n0m0A
2
2 (cos qr − cos qa2)

2 . (3.25)

As for hypothesis 1, the model is linearly stable to perturbations of large wavenumber (q → ∞), as in

this limit inequality (3.25) is violated. For small wavenumbers (q ≪ 1), inequality (3.25) supplies

Dm (Dn − n0) < n0m0A
2
2

(

a2
2 − r2

)2
. (3.26)

Hence, in the biologically realistic case where a2 ≥ r, instability is more likely to occur if the range of

attraction a2 is increased or the range of repulsion r decreased.
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[Figure 9 about here.]

For the more general case, R > 0, we have

C =
(

q2Dm + 2qm0RrΨ(qr)
)

(

q2Dn + 2qn0RrΨ(qr)− q2n0

q2 + 1

)

− 4q2n0m0

(

A2

q
(cos(qr) − cos(qa2)) − RrΨ(qr)

)2

. (3.27)

For instability, we require either C < 0 or B < 0 < C. The first condition can once again be

interpreted as stating that attractive interactions must be strong enough to overcome diffusion and

now also repulsion. The second condition cannot occur, since B < 0 implies the first term of C is

negative, and hence C < 0. Hence a Hopf bifurcation is not possible in this case, in contrast to

Hypothesis 1.

Illustrative stability diagrams in (n0, A2) space are plotted in Fig. 9. As for Hypothesis 1, it is

interesting to note the counter-intuitive result from Fig. 9b, that, in certain parameter

regimes, increasing the strength of attraction (A2) can be stabilising (e.g. for n0 = 0.5,

when A2 is increased from 0 to 1). This can be explained by referring to equation (3.27).

For simplicity, let us assume that Dn = Dm = 0 (the arguments also apply when Dn,

Dm ≪ 1). If A2 = 0, then (3.27) reduces to give C = −2q3n0m0RrΨ(qr)/(q2 + 1) < 0, and

hence we conclude the spatially uniform state is unstable. This is because hepatocyte-

hepatocyte attraction partially cancels out hepatocyte-hepatocyte repulsion (i.e. the term

on the second line of equation (3.27) increases). Since the hepatocyte-hepatocyte repul-

sion is the weakest of the interactions, the hepatocytes will tend to cluster together

because the hepatocyte-stellate repulsion is stronger than that from each other. As

A2 is increased, then hepatocyte-stellate attraction begins to neutralise the effect of

hepatocyte-stellate repulsion, and eventually becomes so strong that the difference be-

tween hepatocyte-stellate and hepatocyte-hepatocyte repulsion strength effectively dis-

appears. This prevents the hepatocytes from being pushed together and stabilises the

spatially uniform steady state. Further increases in A2 will eventually destabilise the

spatially uniform state, as hepatocyte-stellate attraction becomes strong enough to over-

come the repulsive forces.

20



When we again consider the effect of the cell seeding ratio on the rate of aggregation, we find that,

similar to hypothesis 1, as hepatocyte-stellate attraction becomes stronger relative to hepatocyte-

hepatocyte chemotaxis, the value of n0 at which the greatest rate of aggregation reduces towards

n0 = 0.5, which corresponds to a seeding ratio of 1:1 (results not shown).

We conclude this section by noting that the above stability analysis can, potentially,

be used to verify our model predictions experimentally. In the context of culturing

microvessel endothelial cells, it was noted in Stokes et al. (1990) that increasing the

concentration of certain chemicals in the medium can increase the cells’ diffusion co-

efficients. The analysis above suggests that increasing the diffusion coefficients could

stabilise an unstable case (though of course, this will depend on the specific parameter

values). Chemicals which enhance the random movement of hepatocytes and stellates

could be added to the culture medium in the wells, and by thus increasing the cells’

diffusion coefficients, prevent aggregation in cases where it would otherwise occur. This

would provide validation of our linear stability results. However, care would need to be

taken that the culture medium was well mixed, so as to avoid any potential chemotactic

effect caused by chemical gradients.

4 Numerical simulations

Although the stability analysis allows us to determine the parameter regimes in which aggregation

can occur, it does not provide us with information about the distribution of the two cell types within

aggregates, nor is it applicable to situations where the cells are not seeded in a spatially uniform manner

(e.g. where the two types of cells are initially separated by a ring, which is then removed at the start of

the experiment or simulation). In order to investigate such questions, we solve the governing equations

(2.5) numerically, using the finite element method. Full details of our implementation, and the steps

taken to validate the numerical results, are given in the Appendix.

4.1 Results

Throughout this section, we set ǫ = 0.1 (giving a spatial domain −10 ≤ x ≤ 10) rather

than the value of 10−2 quoted in §2.4. This is to reduce the computational expense of the
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simulations. Given the boundary conditions stated in §2.1, the solutions are periodic,

and so this domain truncation should not affect the observed behaviour. We begin by

setting the initial conditions to be n(x, 0) = m(x, 0) = 0.5+ 0.05 cos(πx/10), so the cells are seeded in

a 1:1 ratio. We observe that, under both hypotheses, three qualitatively different types of behaviour

can occur, depending upon the parameter values. We term these: segregation, partial segregation,

and intermixing. An illustration of segregation under Hypothesis 1 is shown in Fig. 10. The defining

feature is that the hepatocytes, n (Fig. 10(a)), form an aggregate, from the centre of which the

stellates (Fig. 10(b)) are excluded (m ≈ 0 close to x = 0). In this particular case, hepatocytes are

equally strongly attracted to stellates and other hepatocytes, but stellates are only weakly attracted

to hepatocytes, and the overcrowding effect is quite strong. As aggregation takes place, the stellate

attraction to the hepatocytes is not strong enough to overcome repulsive effects due to overcrowding.

As a result, the stellates get ‘pushed out’ to the edge of the aggregate.

[Figure 10 about here.]

At the opposite extreme an example of intermixing behaviour, obtained under Hypothesis 1, is

presented in Fig. 11. Here aggregates form in which the maximum density for both cell types occurs at

the same point (though the ratio of the densities is not necessarily 1:1). This behaviour occurs when

the hepatocyte-stellate and stellate-hepatocyte attractions are stronger than hepatocyte-hepatocyte

attraction and repulsion.

[Figure 11 about here.]

The third type of behaviour, which we term partial segregation, is illustrated in Fig. 12, again

under Hypothesis 1. Here aggregates form in which the stellate density is lower in the centre (i.e. the

point of maximum hepatocyte density) than at the edge, but stellates are present throughout the

aggregate.

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]
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The preceding results do not enable us to discriminate between the two hypotheses. However, if

the two cell types are initially seeded in separate ‘clumps’ it is possible, for certain parameter values,

to observe behaviours which distinguish the two hypotheses. (Experimentally, this pattern could be

achieved by seeding the cells within rings, which are subsequently removed, as in (Krause et al.,

2009).) We consider the initial conditions: n(x, 0) = 0.05 + 0.5 exp (−(x − 4)2) + 0.5 exp (−(x + 4)2),

m(x, 0) = 0.05 + 0.5 exp (−x2), corresponding to a clump of stellate cells seeded in the centre of the

domain, with a clump of hepatocytes on either side. If cell-cell attractions are too weak, then, under

both hypotheses, the clumps simply spread out to give a uniform density throughout the domain (data

not shown). However, under hypothesis 1, if cell-cell attraction is strong enough, the two clumps of

hepatocytes merge, forming an aggregate at the centre of the domain. The stellates either aggregate

in the same position (this behaviour is illustrated in Fig. 13, where the same parameter values are used

as in Fig. 12), or are pushed to the edge of the aggregate as in Fig. 10 (results not shown) depending

upon the parameter values. By contrast, under hypothesis 2, the two hepatocyte clumps can move to

form three aggregates (centered at the positions of the initial clumps). These three aggregates then

merge to form one larger aggregate in the centre of the well, as illustrated in Fig. 14.

5 Discussion

In this paper, we have derived a new, non-local model for the interactions between hepatocytes and

stellate cells. Two hypotheses were investigated: in the first, stellates and hepatocytes are attracted

to each other by chemical signals; in the second, the attraction is assumed to be due to the stellates

putting out processes, which make physical contact with the hepatocytes. Under both hypotheses,

hepatocytes are attracted to other hepatocytes by a chemical signal, and the effects of overcrowding

are incorporated through the non-local repulsion terms.

For both hypotheses, we found that the final distribution of the cells within the aggregates depends

upon the relative strengths of attraction and repulsion between the cell types. When hepatocyte-

hepatocyte attraction dominates, aggregates have a core consisting of hepatocytes, and repulsion

relegates the stellates to the edges of the cluster. Conversely, when hepatocyte-stellate attraction

dominates, the two cell types intermix within the aggregates. Intermediate between these two be-

haviours, ‘partial segregation’ can occur when hepatocyte-stellate interactions are strong enough to
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permit the co-existence of both cell types in the aggregate, but repulsion is sufficiently strong to reduce

the density of one cell type in the core. We note that in earlier models of cell sorting by chemotaxis

(Painter and Sherratt, 2003; Painter, 2009), segregation and intermixing were observed, but not partial

segregation. Although Painter and Sherratt (2003) uses a similar Keller-Segel type framework, they

incorporated overcrowding by making the diffusion and chemotaxis coefficients vanish at a critical cell

density, rather than through a non-local term, as here.

Our results echo those of the Steinberg hypothesis (or differential adhesion hypothesis (DAH),

where the distribution of cells in aggregates depends upon the relative strengths of the adhesions

formed between cells of each type (Steinberg, 1963). Steinberg postulated the existence of a ‘free

energy’ function and proposed that cells can reduce their free energy by forming adhesions. The

arrangement of the cells in an aggregate then corresponds to a minimum of the free energy of the

system. His predictions have been validated experimentally, using detailed measurements of cadherin

(a cell adhesion molecule) (Foty and Steinberg, 2005). A continuum model of this phenomenon has

recently been proposed by Armstrong et al. (2006). They applied a non-local framework similar to that

used in this paper, with the non-local terms modelling adhesion forces. However, we also note that

both our model (under hypothesis 1) and the models of Painter and Sherratt (2003); Painter (2009)

display similar cell sorting based on the cells having different affinities for the chemoattractants.

This suggests that it may be of interest to explore (experimentally, and through modelling) how

differential adhesion and chemotaxis might interact to produce different tissue architectures. Can the

two phenomena combine to produce new patterns and behaviours?

[Figure 15 about here.]

One of the main aims in this paper was to compare the predictions of our models with experimen-

tal results, particularly in relation to the distribution of hepatocytes and stellates within spheroids

(Thomas et al., 2006). Fig. 15 shows the location of the stellate cells (stained green) within five

different aggregates. Comparison of these images with our theoretical results leads us to reject the

possibility that hepatocyte-hepatocyte attraction is the strongest effect, since we do not observe a

clear segregation of the two cell types into a hepatocyte-only core surrounded by stellates. Instead,

stellates can be found both in the centre, and at the edges of the aggregates. However, it is not clear

whether the images in Fig. 15 represent intermixing or partial segregation. Part of the difficulty is
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the fact that our model is continuous, whilst, in practice, cells are discrete; consequently we could

not expect an even intermixing of the two types. This question could be resolved by measuring the

variation in densities of the two cell types across the spheroid radius in a large number of spheroids.

Intuitively, we might expect attraction between the two cell types to dominate hepatocyte-hepatocyte

attraction, as there would otherwise be little reason to add the stellates (replacing them with more

hepatocytes would have a greater effect). Our results are consistent with this idea; indeed, they sug-

gest that the optimal ratio of the seeding densities of the two cell types to promote swift aggregation

is close to 1:1 (see Figs. 8). Experimental research carried out by Riccalton-Banks (Riccalton-Banks,

2002) found that a 2:1 ratio of hepatocytes to stellates resulted in the formation of greater numbers of

aggregates than did ratios of 5:1, 10:1, or hepatocyte-only cultures, which is consistent with our results.

However, we remark that in the liver in vivo the ratio is approximately 20:1, and thus if considerations

other than promoting swift aggregation are taken into account (e.g. optimising the functionality of the

spheroids produced) there may be good reasons to opt for a higher ratio. At present, experimental

evidence on how the numbers of stellates within a spheroid affects its functionality or viability is

limited. Riccalton-Banks compared the functionality of hepatocyte-only and hepatocyte-stellate (2:1

ratio) spheroids (Riccalton-Banks, 2002) and found that the co-cultured spheroids remained func-

tional (in terms of albumin secretion and cytochrome P-450 enzyme activity) for nearly two months,

compared to just over one month for the hepatocyte-only spheroids. Krause et al. (2009) reported im-

proved functionality (measured by phosphoenolpyruvate carboxykinase (PCK) activity) in short-term

(48 hours) 2D co-cultures. The improvement was greatest when the culture arrangements allowed

for physical contact between the two cell types, and a hepatocyte : stellate ratio of 1:4 was used.

Although differences in culture protocols (e.g. 3D versus 2D, different measures of functionality) make

it difficult to compare these studies, their evidence suggests that the presence of the stellate cells has a

positive impact on the functionality of the engineered tissue, and we thus recommend that the effects

on aggregation of culturing hepatocytes and stellates at higher ratios be tested experimentally.

Based on the currently available data, we are unable to distinguish between the two hypotheses,

as the cells are initially intermixed and seeded in a spatially uniform way. However, our model results

suggest how initial conditions in which the two cell types are seeded in distinct clumps might be used

to discriminate between the two hypotheses, since they can produce different behaviours.

25



The results we have obtained here are only qualitative, and a great deal of further experimental data

is required before quantitative model predictions can be obtained. In particular, the correct functional

forms for the kernel functions describing the interactions between cells need to be determined. This

could be achieved by measuring the forces acting between two cells, and utilising the connection

between the individual cell- and continuum-level descriptions discussed in §1. Another interesting

approach would be to compare the results of our continuum model with those of an individual-based

model similar to that described in (Mogilner et al., 2003). The latter might provide better agreement

with the experimental results,. The most obvious improvement to the model would be to extend it to

more physically realistic two- and three-dimensional geometries and determine the types of patterns

which may arise in such cases. We might also relax the assumption that the strength of cell-cell

repulsion (and in hypothesis 2, cell-cell attraction) is the same for the two cell types. In fact, this may

not be so due to one cell type being physically smaller, or more strongly adhered to the substrate.

The effects of cell proliferation and death, and nutrient availability, could also be considered.

From a mathematical viewpoint, a number of questions remain to be investigated. For

example, integro-PDE models can display interesting behaviour on an exponentially long

timescale (see e.g. Mogilner and Edelstein-Keshet (1999)). In our numerical simulations,

we simulate until the solution changes extremely slowly; we have not yet considered

how it might evolve on a much longer timescale. We justify this by noting that such

long timescales would be beyond the biologically relevant regime of our model, since we

would expect cell proliferation and death to become important. Similarly, we have not

proven that steady state solutions of the model equations exist. Since interest in non-

local models, with a variety of biological applications, is increasing - see e.g. (Armstrong

et al., 2006; Gerisch and Chaplain, 2008; Szymanska et al., 2009) - placing these models

on a more secure theoretical footing will be an important avenue for future research.

Some work has already been undertaken in this direction: e.g. a recent paper Sherratt

et al. (2008) has addressed the question of boundedness of the solution for a similar

single cell population integro-PDE model. However, for two cell populations models,

these questions remain open.
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A Numerical methods

Given a timestep ∆t we compute a numerical solution of the governing equations (2.5) at times

tj = j∆t, j = 1, 2, 3, . . .. We use the following notation for the solution for n, m, c1, c2 at time tj:

n(j)(x) = n(x, tj), m(j)(x) = m(x, tj), c
(j)
1 (x) = c1(x, tj), c

(j)
2 (x) = c2(x, tj).

On timestep j we discretise equations (2.5) in time as follows:

n(j) − n(j−1)

∆t

+
∂

∂x

(

n(j) ∂c
(j)
1

∂x

)

+ χ2
∂

∂x

(

n(j) ∂c
(j)
2

∂x

)

+

∂

∂x
[n(j)(Kn ∗ n(j−1)) + n(j)(Knm ∗ m(j−1))] = Dn

∂2n(j)

∂x2
, (A.1a)

m(j) − m(j−1)

∆t

+ φ
∂

∂x

(

m(j) ∂c
(j)
1

∂x

)

+

∂

∂x
[m(j)(Km ∗ m(j−1)) + m(j)(Kmn ∗ n(j−1))] = Dm

∂2m(j)

∂x2
, (A.1b)

∂2c
(j)
1

∂x2
+ n(j) − c

(j)
1 = 0, (A.1c)

∂2c
(j)
2

∂x2
+ m(j) − γ2c

(j)
2 = 0, (A.1d)

i.e. the time derivatives are approximated using a finite difference over the interval tj−1 < t < tj, and

all other terms are approximated at time tj with the exception of the kernels. We justify this choice

of time discretisation later in this section.

27



The discretised system above is solved using the continuous Galerkin finite element method: see,

for example, (Eriksson et al., 1996). We set ǫ = 0.1, giving a spatial domain −10 ≤ x ≤ 10. In all

simulations 1000 equally sized elements were used to cover this domain, and linear basis functions

were used for each dependent variable on each element. A timestep of 0.001 was used. The resulting

system of non-linear equations was solved using Newton’s method.

We evaluate as many terms as possible at time tj to aid numerical stability. However, the ker-

nels are evaluated at time tj−1 - where the solution is known - to preserve sparsity of the Jacobian

matrix computed using Newton’s method. Evaluating these quantities at different times introduces a

discretisation error of O(∆t), which is the same order as that already introduced by discretising the

time derivatives.

The code was verified in two different ways. First, we compared the growth rates of the numerical

solution for short times (up to t = 0.1) with those predicted by the linear stability analysis for a

number of test cases. Excellent agreement was found in each case (data not shown). In addition, for

all simulations shown in this paper, we repeated the simulations using twice as many elements and

half the timestep specified above, and verified that the plots shown were indistinguishable.
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Figure 1: Snapshots from time-lapse video of an hepatocyte-stellate cell co-culture during aggregation.
The hepatocytes appear yellow, and have a rounded morphology. Stellates appear grey, but their long
cellular processes are clearly distinguishable. The images show an area approx 1000 µm × 700
µm and were taken at approximately 5-hourly intervals (total time elapsed: approx. 21
hours). (Images courtesy of Robert Thomas, Tissue Engineering Group. Similar images,
including later timepoints, are shown in (Thomas et al., 2006). Timelapse video footage
is also available at: www.ecmjournal.org/journal/papers/vol011/vol011a03.php )
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F1 F2

Figure 2: Forces F1 and F2 acting on a cell at x0 due to attraction to cells at x1 and x2 respectively.
When the cells are evenly spaced (x0−x1 = x2−x0), the magnitudes of the forces are equal (F1 = F2).
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Figure 3: Sketches of the kernel functions used to describe repulsive and attractive cell-cell interactions
respectively. (a) Repulsion kernel K∗

R(x) with R∗ = r∗ = 1 - see equation (2.3b). (b) Hepatocyte-
stellate attraction kernel K∗

A(x) with A∗
2 = a∗2 = 1, r∗ = 0.1 - see equation (2.4d)
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Figure 4: A plot of the function Ψ(x) (see equation (3.12)).
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Figure 5: A plot of the stability regions for Hypothesis 1 (see Table 1), with R = 0. Black (white)
denotes regions for which the spatially homogeneous steady state is linearly stable (unstable) to
perturbations of all (certain) wavenumbers. Parameter values: R = 0, Dn = Dm = 0.5, φ = 0.5,
γ2 = 1, m0 = 1 − n0.
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Figure 6: A plot of the stability regions for Hypothesis 1 (see Table 1). In black regions both roots of
ω are real and negative for all q, whilst dark grey denotes regions where complex conjugate roots can
exist, but have negative real part. Hence in both the spatially homogeneous steady state is linearly
stable to perturbations of all wavenumbers. In white regions the roots can be real and of differing sign
(so the homogeneous state is linearly unstable to perturbations of certain wavenumbers). Parameter
values: R = 100, r = 0.1, Dn = Dm = 0.1, φ = 0.1, γ2 = 1, m0 = 1 − n0.
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Figure 7: Plots showing how the stability regions change with varying φ for Hypothesis 1 (see Table
1), with R > 0. In white regions, the roots of ω can be real and of differing sign (spatially homogeneous
steady state is linearly unstable to perturbations of some wavenumbers). In black regions both roots
are real and negative for all q (linearly stable). Dark grey denotes regions where complex conjugate
roots can exist, but have negative real part (linearly stable), while light grey denotes regions where
complex conjugate roots with positive real part can exist (linearly unstable). Parameter values: (a)
R = 20, r = 0.1, Dn = Dm = 0.1, φ = 2, γ2 = 1, m0 = 1 − n0; (b) for (a), with φ = 0.1.
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Figure 8: The dependence of maximum growth rate (max{ℜ(ω(q))}) on the cell seeding density, n0 for
Hypothesis 1 (see Table 1), with m0 = 1 − n0. Parameter values: χ2 = φ = 0.5 (solid), χ2 = φ = 2
(dot), χ2 = φ = 5 (dash), χ2 = φ = 10 (dot-dash) with γ2 = 1, R = 20, r = 0.1 Dn = Dm = 0.1 in all
cases.
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Figure 9: Plots showing how the stability regions change as Dn = Dm varies for Hypothesis 2 (see
Table 1). In black (white) the spatially homogeneous steady state is linearly stable (unstable).
Parameter values: (a) R = 100, r = 0.1, Dn = Dm = 0.4, a2 = 1, m0 = 1 − n0 (b) as for (a), with
Dn = Dm = 0.1.
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Figure 10: Numerical solution for cell densities n (a) and m (b) under Hypothesis 1 (see Table 1).
Times shown: t = 0 (dash), t = 50 (dot-dash), t = 100 (dot) and t = 150 (solid). Parameter values:
χ2 = 1, φ = 0.1, γ2 = 1, Dn = Dm = 0.1, R = 20, r = 0.1.
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Figure 11: Numerical solution for cell densities n (a) and m (b) under Hypothesis 1 (see Table 1).
Times shown: t = 0 (dash), t = 50 (dot-dash), t = 100 (dot) and t = 150 (solid). Parameter values:
χ2 = 5, φ = 5, γ2 = 1, Dn = Dm = 0.1, R = 20, r = 0.1.
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Figure 12: Numerical solution for cell densities n (a) and m (b) under Hypothesis 1 (see Table 1).
Times shown: t = 0 (dash), t = 50 (dot-dash), t = 100 (dot) and t = 150 (solid). Parameter values:
χ2 = 5, φ = 1, γ2 = 1, Dn = Dm = 0.1, R = 20, r = 0.1.
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Figure 13: Numerical solution for cell densities n (a) and m (b) under Hypothesis 1 (see Table 1).
Times shown: t = 0 (dash), t = 10 (dot-dash), t = 30 (dot) and t = 50 (solid). Parameter values:
χ2 = 5, φ = 1, γ2 = 1, Dn = Dm = 0.1, R = 20, r = 0.1.

44



−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

n

x

(a)

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

m

x

(b)

Figure 14: Numerical solution for cell densities n (a) and m (b) under Hypothesis 2 (see Table 1).
Times shown: t = 0 (dash), t = 300 (solid)) and t = 400 (dot-dash). Parameter values: A2 = 5,
a2 = 1, Dn = Dm = 0.1, R = 100, r = 0.1.
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Figure 15: Sections through hepatocyte-stellate cell spheroids (reproduced from (Thomas et al., 2006)).
Stellate cells appear green.
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Assumption
Parameter / Kernel Hypothesis 1 Hypothesis 2

χ2 > 0 0

φ > 0 0

Kn KR KR

Km KR KR

Knm KR KR + KA

Kmn KR KR + KA

Table 1: Summary of how the assumptions associated with the two hypotheses influence the system
parameters and the functional forms of the kernels (see equations (2.5) and (2.7)).
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