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A NOTE ON NOMENCLATURE 

Relevant nomenclature guidelines were taken into account when referring to 

genes and gene products throughout this thesis. To unambiguously refer to mouse (Mus 

musculus) genes and gene products, and to distinguish these from mammalian 

nomenclature, the following conventions were adhered to. Mouse gene names are 

italicized and in lower case, whereas gene products are non-italicized and the first letter is 

capitalized. Human gene names are italicized and all capitalized, whereas proteins are 

non-italicized and all capitalized. In addition, reference may be given to Drosophila genes 

and gene products. To differentiate these from mouse and/or human genes and gene 

products Drosophila genes are italicized and the protein are non-italicized and in lower 

case. Additionally, when referring to both the gene and protein, the protein name is given. 

Species Gene (abbreviation) Protein (abbreviation) 

Mouse 
 

Sox3 Sox3 or mSox3 

Human 
 

SOX3 SOX3 or hSOX3 

Drosophila 
 

sox3 sox3 

With reference to the Sox3 knock-out, transgenic and reporter mice, these will be 

referred within this thesis as follows:  

Mouse Line Nomenclature within thesis 

Sox3-null 
 

Sox3-null 

Sox3-transgenic 
(Sox3iRES-eGFP) 
 

Extra-Sox3 

Sox3-GFP reporter 
 

Green-Sox3 

 

With reference to the novel dwarf mouse line described herein, we have given this 

mouse line the name Tukkuburko. The name is the Kaurna Aboriginal word referring to 

“small mouse”. The Kaurna Indigenous people are the custodians of the greater Adelaide 

region and their cultural and heritage beliefs are still important to the living Kaurna people 

today. 
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ABSTRACT 

Congenital dysfunction of the hypothalamic-pituitary (HP) axis occurs in 

approximately one birth per 2,200 and is associated with a broad range of common disease 

states including impaired growth (short stature), infertility, hypogonadism poor responses 

to stress and slow metabolism (Pescovitz and Eugster, 2004). Although, a number of genes 

have been linked to diseases of the HP axis, the genetic cause in many patients remains 

unknown.  

This thesis examines two aspects of HP axis development and function. The first 

aim was to identify Sox3 targets by examining gene expression differences between three 

mouse lines: Sox3-null (mice lacking Sox3; loss of function), Extra-Sox3 (mice over-

expressing Sox3; gain of function) and wild-type, by genome wide profiling using the 

Illumina BeadChip microarray platform. The second aim was to characterize the 

downstream effects relative to HP development in a novel recessive dwarf mouse model 

with pituitary hypoplasia and growth hormone (GH) deficiency, generated by N-ethyl-N-

nitrosourea (ENU) mutagenesis that produces a point mutation in the gene for the enzyme 

tryptophanyl-tRNA synthetase (WARS).  

The first project (project 1) examined Sox3, the causative gene associated with X-

linked hypopituitarism (XH), in wild-type and transgenic mice. SOX3 is a member of the 

SOX (SRY-related HMG box) gene family of transcription factors that is expressed in 

progenitor cells of the mouse embryonic central nervous system (CNS) including the 

developing and postnatal hypothalamus (Rizzoti et al., 2004). It is the only member of the 

SOXB1 subfamily positioned on the X chromosome (Collignon et al., 1996; Stevanovic, 

2003). Appropriate dose- and time-dependent expression of Sox3 in the developing 

hypothalamus is required for normal neuroendocrine function, particularly related to 

growth and growth hormone (GH). Changes associated with a loss-of-function and/or 

gain-of-function of Sox3 may contribute to a better understanding of other important 

genes, currently not known, involved in XH and/or X-linked mental retardation. At this 

point, however, the mechanisms linking SOX3 to its direct targets and their interplay 

within other downstream signaling cascades regulating HP axis development remain 

unknown. In order to identify Sox3-dependent genes, in mice, I performed microarray 

analysis of RNA extracted from embryonic mouse heads at 10.5 days post coitum (dpc) and 

compared RNA from wild-type, loss-of-function (Sox3-null) and gain-of-function (Extra-

Sox3) mice. Several emergent candidate genes were further tested by quantitative mRNA 

expression analysis (qPCR). One of these was Neurogenin-3 (Ngn3), which showed a 2.5-
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fold decrease (P<0.001) in expression by microarray in Sox3-null (n=6), compared with 

wild-type (WT; n=6) mice and 1.8-fold decrease (P<0.001) by qPCR between Sox3-null 

(n=6) and WT (n=6) mice. To evaluate the relationship between Ngn3 and Sox3 at a cellular 

level immunohistochemistry was performed on 10.5 dpc and 12.5 dpc brains. In WT mice 

at 10.5 dpc and 12.5 dpc Ngn3 and Sox3 expression overlapped in a subset of cells across 

the ventral-midline of the developing hypothalamus. In addition and in contrast to WT 

mice, in Sox3-null mice, there were few Ngn3 positive cells, localized to the arcuate 

hypothalamic nucleus. Neurogenin-3 (Ngn3) is a member of the Neurogenin gene family of 

proneural basic helix-loop-helix proteins. Although previous data show the importance of 

Ngn3 during pancreatic development, there is no information on the mechanisms and 

actions of Ngn3 or a relationship between NGN3 action and SOX3 during hypothalamic 

development. These results suggest Ngn3 is a downstream target of Sox3 that is 

contributing to appropriate development of the hypothalamic-pituitary axis.  

The second study (project 2) aimed to characterize and further examine a novel 

recessive ENU mouse mutant, called Tukku1, exhibiting HP axis dysfunction resulting in 

dwarfism, pituitary hypoplasia and GH deficiency. Adult Tukku mice are 30-40% smaller 

than their WT littermates. The primary focus was to characterize the dwarfism phenotype 

in relation to the somatotropic axis and to identify the causative gene. The mutation was 

identified as a leucine to proline substitution in tryptophanyl-tRNA synthetase (WARS), a 

member of the aminoacyl-tRNA synthetase (AARS) enzyme family that link amino acids to 

their specific tRNAs. For proper function of this enzyme the specific recognition of 

substrates is critical for the fidelity of protein synthesis. The Wars mutation is contained 

within the N-terminal WHEP domain, from residue 16-69, and likely causes the disruption 

of the alpha helical structure. The N-terminal WHEP domain has only been found in 

eukaryote Wars enzyme. Importantly, AARS have been linked to regulating the 

noncanonical activity of angiogenesis (Otani et al., 2002; Wakasugi, 2010; Wakasugi and 

Schimmel, 1999; Wakasugi et al., 2002b). Along with pituitary hypoplasia, Tukku mice 

show a significant reduction in pituitary GH and serum levels of IGF-1, suggesting the 

defect leading to pituitary hypoplasia involves brain regions implicated in growth of the 

anterior pituitary. The reduction in pituitary GH levels may also involve delivery of GH-

releasing hormone (GHRH) to GH-secreting cells since preliminary data also indicate that 

WARS is expressed within blood vessels of the pituitary and hypothalamus. To assess this, 

quantitative mRNA expression analysis (qPCR) of GHRH and somatostatin (Sst) was 

                                                             

1 Tukku, meaning ‘small’ in Kaurna Aboriginal language. 
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performed. qPCR revealed a decrease in both GHRH and Sst (fold change >2) indicating 

that the defect is likely to be within the hypothalamic hypophysial vasculature that extends 

and makes a connection with the pituitary. To evaluate the relationship between Wars and 

pituitary vasculature, immunohistochemistry was performed on pituitaries at 8-weeks 

postnatal. Pituitary sections were co-stained with antibodies against platelet endothelial 

cell adhesion molecule (PECAM) + Wars or vascular-endothelial cadherin (VE-Cadherin; 

an endothelial specific, transmembrane protein, which clusters at adheren junctions where 

it promotes homotypic cell-cell adhesion) + Wars. Wars immunostaining was expressed 

within the endothelial cells of the pituitary vasculature, both in the anterior and posterior 

pituitary. Both PECAM and Wars appeared co-expressed within the vascular wall. VE-

Cadherin was expressed in vessels together with Wars.  

Overall, the data gathered from these projects highlight important insights into 

the identification of Ngn3 as a likely Sox3 target gene (project 1) and have identified a novel 

dwarf mouse model with a genetic determinant of HP axis function (project 2). These 

results have application to the study of HP axis development, to the study of vascular 

development during embryology and postnatally, and to possible avenues of genetic 

screen testing and development of new treatments related to GH deficiencies. 
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ACRONYMS AND ABBREVIATIONS 

3'UTR    3' untranslated region  

ACTH Adrenocorticotropic hormone 

ADH antidiuretic hormone (same as AVP) 

AGRF Australian Genome Research Facility 

AH anterior hypothalamus 

ARC arcuate nucleus 

AVP arginine vasopressin (same as ADH) 

BAC Bacterial Artificial Chromosome 

BCIP 5-Bromo-4-Chloro-3-Indolyl phosphate 

BM basement membrane 

BMP bone morphogenic protein 

bp  base pair 

BSA  bovine serum albumin 

C-terminal   carboxyterminal  

cAMP cyclic adenosine mono phosphate 

cDNA complimentary deoxyribonucleic acid 

CH congenital hypopituitarism 

ChIP  chromatin immunoprecipitation  

CNS Central nervous system 

CoIP   co-immunoprecipitation  

DEPC    diethylpyrocarbonate 

DIG digoxigenin 

DMEM Dubelcco's Modified Eagle Medium 

DMN dorsal-medial nucleus 

DMSO   dimethylsulfoxide  

DNA Deoxyribonucleic acid 

dpc days post coitum 

E Embryonic day 

E. coli Escherichia coli 

ECM extracellular matrix 

EDTA   ethylene diaminetetra acetic acid  

EGF epidermal growth factor 

eGFP enhanced green fluorescent protein 

EGTA   ethylenglycolbis-(2-aminoethyl)-tetraacetic 
acid 

ENU N-ethyl-N-nitrosurea 

FACS  fluorescence activated cell sorting 

FCS fetal calf serum  

FSC forward scatter 

FSH Follicle Stimulating Hormone 

G1 First Generation 

gDNA genomic DNA 

GFP green fluorescent protein 

GFP+ GFP-positive 

GH Growth hormone 

GHRH Growth-hormone-releasing hormone 

GHRHR growth hormone-releasing hormone 
receptor 

h  hour 

H2O water 

HEPES N-[2-hydroxyethyl]-piperazin-N'-[2-
ethansulfonic acid] 

HISS heat-inactivated horse serum 

HMG high mobility group 

HP hypothalamo-pituitary 

IGF insulin-like growth factor 

IGHD isolated growth hormone deficiency 

IP    immunoprecipitation 

IPTG     isopropylthiogalactosid 

IRES internal ribosome entry site 

kb kilobase pair = 1000bp 

kDa  Kilo Dalton 

KO Knockout 

LH Luteinizing hormone 

M   Molar 

m mouse 

MAPK mitogen-activated protein kinase  

ME median eminence 

min   minute 

ml millilitre 

mM   millimolar 

MQ-H2O milliQ H2O 

mRNA messenger ribonucleic acid 

mRNA    messenger RNA 
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NBT 4-nitroblue tetrazolium chloride 

N-terminal   aminoterminal 

ng nanograms 

NGN/Ngn neurogenin 

NGN3/Ngn3 neurogenin-3 

nM  nanomolar 

ORF Open reading frame 

OT oxytocin 

P postnatal day 

PAGE   polyacrylamide-gel electrophoresis 

PBS Phosphate buffered saline 

PCR Polymerase Chain Reaction 

PDGF platelet-derived growth factor 

PFA paraformaldehyde  

PI propidium Iodide 

PKA protein kinase A 

PKC protein kinase C 

POA preoptic area;  

POMC Pro-opiomelanocortin 

PVN paraventricular nucleus;  

qPCR quantitative real-time polymerase chain 
reaction 

qRT-PCR quantitative real-time polymerase chain 
reaction 

r rat 

RE restriction emzyme 

RIN RNA integrity number 

RNA ribonucleic acid 

rpm    revolutions per minute  

rRNA ribosomal RNA 

RT reverse transcription 

rt     room temperature 

RT-PCR reverse transcriptase-polymerase chain 
reaction 

SCN supra-chiasmatic nucleus; 

SDS     sodium dodecyl sulfate 

SHH sonic hedgehog 

SOCM Sox consensus motif 

SON supra-optic nucleus;  

SOX Sry-related HMG box containing 

SSC Salt Sodium Citrate 

Sst somatostatin 

TE     Tris-EDTA 

tg transgenic 

TGFβ transforming growth factor-beta 

TRH Thyrotropin-releasing hormone  

TRIS   Tris-(hydroxymethyl)-aminomethan 

TrpRS tryptophan-tRNA synthetase (see also 
WARS) 

TSH Thyroid-stimulating hormone 

U units 

UTR untranslated region 

VEGF vascular endothelial growth factor 

VMN Ventro-medial nucleus;  

WARS see also TrpRS 

WT wild-type 

XH X-linked hypopituitarism 

zf zebrafish 

µg microgram 

µM  micromolar 
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