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Abstract 19 
 20 
Reefs and subtidal rocky habitats are sites of high biodiversity and productivity which  21 

harbour commercially important fish and invertebrate species. Although the 22 

conservation management of reef associated species has been informed using species 23 

distribution models (SDM) and community based approaches, to date their use has 24 

been constrained to specific regions where the locality and spatial extent of reefs is 25 

well known. Much of the world’s subtidal habitats remain either undiscovered or 26 

unmapped, including coasts of intense human use. Consequently, to facilitate   a 27 

stronger understanding of species-environmental relationships there is an urgent need 28 

for a cost and time effective standard method to map reefs at fine spatial resolutions 29 

across broad geographical extents. We used bathymetric data (~ 250 m resolution) to 30 

calculate the local slope and curvature of the seabed. We then constructed artificial 31 

neural networks (ANNs) to forecast the probability of reef occurrence within grid 32 

cells as a function of bathymetric and slope variables. Testing over an independent 33 

data set not used in training showed that ANNs were able to accurately predict the 34 

location of reefs for 86% of all grid cells (Kappa = 0.63) without over fitting. The 35 

ANN with greatest support, combining bathymetric values of the target grid cell with 36 

the slope of adjacent grid cells, was used to map inshore reef locations around the 37 

Southern Australian coastline (~ 250 m resolution). Broadly, our results show that 38 

reefs are identifiable from coarse-scale bathymetry data of the seabed. We expect that 39 

our research technique will strengthen systematic conservation planning tools in many 40 

regions of the world, by enabling identification of rocky substrate and mapping in 41 

localities that remain poorly surveyed due to logistics or monetary constraints. 42 

43 
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Introduction  44 
 45 
Some of the most diverse marine ecosystems are founded on subtidal rock or corals 46 

that fringe the world’s coasts or occur as isolated reefs.  Such subtidal habitats are 47 

generally known as ‘subtidal rocky habitats’, ‘rocky reefs’ or simply ‘reefs’ (hereafter 48 

referred to as reefs).  Identifying the presence and extent of reefs is fundamental if we 49 

are to quantify their contribution to biological and socio-economic productivity 50 

through fisheries production, biological diversity and economic value in marine 51 

ecosystems (Connell and Gillanders, 2007).   52 

 53 

Species distribution models (SDM; see review by Guisan and Thuiller (2002)) have 54 

been used to predict the distribution of some marine and reef biota (Robinson et al., 55 

2010), informing conservation management (Mellin et al., 2010a). These models have 56 

for example investigated the environmental and spatial predictors of the diversity and 57 

abundance of coral reef fish (Mellin et al., 2010a); and have been used to map habitat 58 

suitability and range extents of marine invertebrates living in reef environments, for 59 

example, Galparsoro (2009).    60 

 61 

Unfortunately, the use of SDMs for mapping the habitat suitability and range extent of 62 

reef species, and marine species in general, is often limited by a dearth of spatial data, 63 

including the location of suitable habitat. While fine-scale, remotely sensed maps of 64 

reef distributions are readily available for iconic and well-studied regions (e.g. Great 65 

Barrier Reef, Australia; U.S. Virgin Islands), in most parts of the world the location 66 

and extent of reefs is unknown, and therefore, the fundamental basis for considering 67 

their biological and economic importance is missing. Whilst the acoustic 68 
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classification of habitats provides information to scales of 0.1 m (Cochrane and 69 

Lafferty, 2002), the cost and time involved in acquiring such information with side-70 

scan sonar across large tracts of coast (e.g. > 2000 kilometres of coast in Southern 71 

Australia) hampers even the most basic exploration for such habitats. We developed a 72 

method based on artificial neural networks (ANNs) that used coarse-scale bathymetric 73 

data to predict the location and extent of reefs off the southern coast of Australia.  74 

 75 

Artificial neural networks (ANNs) are a useful technique for modelling problems that 76 

involve complex but unknown processes (Crick, 1989; Haykin, 1994; Reed and 77 

Marks, 1999; Tarassenko, 1998). They have many advantages over statistically based 78 

techniques (Kasabov, 1996) because they can learn from existing data and therefore 79 

do not require an a priori model. If over fitting is avoided ANN can also generalise 80 

well, in other words, they can accurately classify data they have not been trained on. 81 

Additionally, ANNs can learn from noisy data (Kasabov, 1996) and model systems 82 

that involve multiple dependent variables and complex non-linear relationships 83 

between variables and outcomes. In ecological studies where ANNs have been 84 

compared to traditional statistical models, the ANNs have consistently out-performed 85 

the statistical models with respect to prediction accuracy (Brosse et al., 1999a; Ibarra 86 

et al., 2003; Jeong et al., 2006; Laë et al., 1999; Lek et al., 1996; Manel et al., 1999; 87 

Mastrorillo et al., 1997; Soltic et al., 2004; Wagner et al., 2000; Wagner et al., 2006). 88 

 89 

While ANNs have been previously applied to classifying reefs from video images 90 

(Marcos et al., 2005) and classifying sediments on the seafloor (Zhou and Chen, 91 

2005), we hereby provide the first evidence that ANNs can be used to identify the 92 

presence of reefs from coarse-scale bathymetric data.   As a first attempt at addressing 93 
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this problem with ANN, the goal of this paper was not to exhaustively test the myriad 94 

ANN architectures and training algorithms available (Reed and Marks, 1999) to get 95 

the absolute best model possible. Rather, the goal was to determine whether ANN are 96 

applicable to the generic problem of detecting reefs. 97 

  98 

 We were able to create a model of sufficient accuracy to provide the basis for 99 

modelling the spatial abundance patterns of two commercially significant Abalone 100 

species (Haliotis rubra and H. laevigata) inhabiting inshore rocky reefs of Southern 101 

Australia (Mellin et al., 2010b).  102 

 103 

Method 104 
 105 

We present a map of the study area, from which we sourced the data for this study, in 107 

Figure 1. Two sets of data were combined for this study: (1)  bathymetric 108 

measurements at a 250 m resolution, with a depth precision of six metres (Geoscience 109 

Australia, 2009); (2) point sample data that specified the location of observed reefs 110 

around South Australia at a bathymetric depth of less than 30 m. These sample points 111 

were acquired by visual surveys. There were 121 sample points that corresponded to 112 

reefs and 56 sample points that corresponded to non-reef seafloor. Also included were 113 

297 randomly selected points that were known to be on land: the purpose of these 114 

samples were so that the ANNs could learn to distinguish between reefs that reached 115 

or breached the waterline and on-land features that were present in the on-land coastal 116 

buffer region. A second set of sample points (n=317, presence=126, absence=191), 117 

from a different survey, was the validation data set, or independent test set which used 118 

to test the generalisation accuracy of the ANNs. 147 points were randomly removed 119 

Data 106 
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from the on-land data set and added to the validation data set, as this data set did not 120 

include any on-land survey points. Two of the sample points in the training set were 121 

unusable, as they appeared in the same cells as other sample points and therefore were 122 

redundant. There were thus a total of 325 vectors in the training set and 464 vectors in 123 

the validation set. Additional out-of-area validation data, that is, data from a region 124 

other than that used to train the ANNs, was sourced for the southern coastline of 125 

Victoria. This data set had 222 presences but no absences were available. A schematic 126 

of the way in which these data sets were combined is presented in Figure 2. 127 

 128 

 130 

Data Preparation 129 

We used ArcGIS v9.2 to calculate the slope (°) and curvature (unit-less) of the seabed 131 

from the bathymetric data. We excluded areas known to be on-land, although a two-132 

cell (i.e. 500 m) landwards buffer was included. This was because the spatial 133 

resolution of the bathymetric data was such that strictly following the shoreline as a 134 

cut-off would have excluded known inshore reefs. Seabed areas that were deeper than 135 

30 m, were also excluded, as there were no reef samples taken from deeper than 30 m.  136 

 137 

A sliding window method was used to extract the slope data of grid cells surrounding 138 

each cell of the bathymetric grid, thus defining the input vectors for the artificial 139 

neural network (ANN). The sliding window conversion involved moving a sliding 140 

window of the specified size over the source matrix, as shown by the hypothetical 141 

example illustrated in Figure 3. Here, a three-by-three window starts centred on cell 142 

‘g’ (that is, the ANN will predict the presence of a reef in cell ‘g’). The first vector 143 

produced is therefore composed of the contents of cells a, b, c, f, g, h, k, l and m. The 144 



 7 

second vector is produced by sliding the window one cell to the right so that the 145 

window is centred on cell ‘h’ (that is, the ANN will predict the presence of a reef in 146 

cell ‘h’). This vector is therefore composed of the contents of cells b, c, d, g, h, i, l, m 147 

and n. As this method only predicts for the centre cell of the window, the cells on the 148 

periphery of the matrix (a, b, c, d, e, f, j, k, o, p, t, u, v, w, x and y) do not have 149 

corresponding predictions of reef presence. 150 

 151 

A window was not included in the final data set if it contained any missing data, that 152 

is, if part or the entire window were on land. The purpose of this process was to 153 

provide the context of the target cell (the middle of the sliding window) to the ANN. 154 

That is, rather than classifying from the value of the target cell, the classification 155 

decision was made from the cell and its context. The central assumption in this work 156 

is that reefs exist in similar contexts in the seabed, that is, the area of seabed 157 

surrounding a reef has similar characteristics to the area surrounding other reefs. We 158 

utilised a window size of 5 x 5 matrix elements to ensure that sufficient 159 

geomorphological context was presented to the ANN. There were 8 004 860 vectors 160 

extracted for this window. 161 

 162 

We assigned output values to the vectors according to whether the target cell 163 

contained a point known to be either a reef or not a reef. Vectors that did not have a 164 

corresponding reef sample point (that is, where it was not known from survey data 165 

whether or not there was a reef in the corresponding target cell) were not included in 166 

the ANN training sets, but were retained for later use to generate the final map as 167 

described below in the subsection “ANN Model Application”.  168 

 169 
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Bathymetric and curvature data were linearly rescaled according to the following 170 

formula: 171 

 172 

𝑥𝑛 = 𝑥−𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

  173 

 174 

where 𝑥𝑛 is the rescaled value of 𝑥, 𝑥𝑚𝑎𝑥 is the maximum value of variable 𝑥, and 175 

𝑥𝑚𝑖𝑛 is the minimum value of 𝑥. The rescaling used the maximum and minimum 176 

possible values for these variables: for example, a depth of zero is the absolute 177 

minimum possible for bathymetric data, while the maximum was the 30 m cut-off 178 

depth used in the seabed data processing. The slope data was not linearly rescaled, 179 

because values were either zero or greater than 89. This data was rescaled by the 180 

simple process of subtracting 89 from any value that was not zero. 181 

 182 

 184 

ANN Algorithms 183 

The ANNs we used were three-neuron layer multi-layer perceptrons (MLP). These 185 

networks consisted of an input neuron layer, a single hidden neuron layer, and an 186 

output neuron layer. Each neuron layer was fully connected, that is, every neuron in a 187 

layer was connected to every neuron in the preceding neuron layer. The training 188 

algorithm used was unmodified backpropagation of errors with momentum 189 

(Rumelhart et al., 1986). This algorithm has been widely used in  applications in 190 

ecology (Brosse et al., 2007; Brosse et al., 1999b; Bryant and Shreeve, 2002; Cocu et 191 

al., 2005; Dedecker et al., 2004; Dimopoulos et al., 1999; Fedor et al., 2008; Francl, 192 

2004; Gutiérrez-Estrada and Bilton, 2010; Joy and Death, 2002, 2004; Paul and 193 

Munkvold, 2005)  and elsewhere (Bourland and Wellekens, 1987; Chandonia and 194 
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Karplus, 1995; Diederichs et al., 1998; Franzini, 1988; Haskey and Datta, 1998; 195 

Lippmann, 1989; Qian and Sejnowski, 1988; Rost, 1996) and is in many ways the de 196 

facto standard for training MLP. An advantage of MLP is that their outputs can be 197 

interpreted as probabilities (Kasabov, 1996). 198 

 199 

 201 

ANN Training and Evaluation 200 

We used ten-fold cross-validation to select the topology and training parameters of the 202 

MLP. That is, the training data set was randomly divided into ten equally sized 203 

subsets. One testing subset was held out and a MLP with randomly initialised 204 

connection weights trained over the remaining nine (the training fold). The trained 205 

MLP was recalled and its accuracy assessed over the training fold (giving the training 206 

accuracy) and the held-out testing set (the testing accuracy). The process was repeated 207 

ten times, with a different subset held out as the testing set each time. This gave an 208 

estimate of the generalisation accuracy of the MLP over the entire data set, and is not 209 

only widely recommended in the ANN literature (Flexer, 1996; Prechelt, 1996; 210 

Zhang, 2007) but has also been previously applied to ecological applications of ANN 211 

(Joy and Death, 2002, 2004).  212 

 213 

The combinations of input variables we investigated were: slope of all cells in the 214 

window and bathymetric value of the target cell; curvature of all cells in the window 215 

and bathymetric value of the target cell; bathymetric values of the target cell with 216 

curvature and slope values of all cells in the window; bathymetric values of all cells in 217 

the window with curvature and slope of all cells in the window.  218 

 219 
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We investigated a number of different MLP topologies (number of hidden-layer 220 

neurons) and training parameters (learning rate, momentum, and training epochs) 221 

which were selected heuristically using expert knowledge. The mean generalisation 222 

accuracy (that is, the accuracy over the cross-validation testing subsets that the MLP 223 

were not trained on) of the MLP was used to select the combination of input variables 224 

and MLP parameters that gave the best accuracy. 225 

 226 

Accuracy was measured firstly using Cohen's Kappa statistic (Cohen, 1960). A kappa 227 

of less than 0.2 is considered poor accuracy, 0.2 to 0.4 fair, 0.4 to 0.6 moderate, 0.6 to 228 

0.8 good and over 0.8 very good, with 1 being perfect accuracy. Kappa was used 229 

because it is a simple and well-known statistic (Manel et al., 2001) that is not biased 230 

by different proportions of presences or absences, and gives results that are 231 

qualitatively similar to more complex measures such as area under the receiver 232 

operating characteristic curve (Elith et al., 2006; Graham et al., 2008). The formula 233 

for kappa is: 234 

𝜅 =
Pr(𝑎) − Pr (𝑒)

1 − Pr (𝑒)
 

where 𝜅 is the Kappa statistic, Pr(𝑎) is the observed agreement between the predicted 235 

and actual data, and Pr (𝑒) is the probability of chance agreement between the 236 

predicted and actual data. 237 

 238 

The second accuracy measure used was percentages of data sets correctly classified. 239 

The first percentage measured was the percentage of examples out of each data set 240 

that were correctly classified, which while easily interpreted can also be biased by 241 

uneven proportions of classes in the data set, that is, an uneven number of presence 242 

and absence examples. To address this, the true positive and true negative percentage 243 
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accuracies were also measured. The true positive percentage is the percentage of 244 

positive examples that are correctly classified as positive, while the true negative 245 

percentage is the percentage of negative examples that are correctly classified as 246 

negative. While the final output of the MLP was the probability of each cell 247 

containing a reef, a threshold value of 0.5 was applied when calculating accuracies. 248 

That is, an output below 0.5 was considered to be negative, while an output above 0.5 249 

was considered to be positive. This threshold is reasonable given the interpretation of 250 

MLP outputs as probabilities. Also, the MLP output values for this problem (results 251 

not shown) consistently followed a U-shaped distribution, with most outputs close to 252 

either zero or unity. 253 

 254 

The training parameters that yielded the best accuracies are presented in Table 1. In 255 

this work, the ‘best accuracies’ means that the networks had the best balance between 256 

learning the training data and being able to generalise to unseen data. 257 

 258 

 260 

ANN Model Application 259 

The parameters that gave the best cross-validated results were used to train MLP over 261 

the entire training set. As the random initialisation of connection weights in MLP can 262 

cause variations in the final accuracy of the trained networks, 100 MLP were trained. 263 

Accuracies were assessed over both the training data set (training accuracy) and the 264 

independent validation data set (giving the validation accuracy), that was sourced 265 

from a different survey as the training set. The final predictions of reef presence over 266 

the entire study region were generated using the MLP that had the highest accuracy 267 

over the validation data set (that is, that generalised the best). This gave the 268 
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probability that each cell contained a reef. As the validation data set was not used to 269 

select the topology or training parameters of the MLP, it remained independent. The 270 

process of selecting the optimal training parameters via ten-fold cross-validation, then 271 

further training over the complete training set and selecting the optimal MLP by 272 

validation error, is presented schematically in Figure 4. 273 

 274 

 276 
ANN Contribution Analysis 275 

Contribution analysis is a way of determining the relative importance of each input 277 

variable of the MLP with respect to the output. The method of contribution analysis 278 

used here was that of Olden and Jackson, (2002) which has been previously shown to 279 

be less biased in its assessment than other methods (Olden et al., 2004). This method 280 

yields unit-less values that show the relative positive or negative contribution of an 281 

input, where a positively contributing variable increases the activation of the output as 282 

the input variable increases and a negatively contributing variable decreases the 283 

activation as the variable increases. In the context of this application, a high value of a 284 

positively contributing variable is interpreted to be associated with the presence of a 285 

reef, while a high value of a negatively contributing variable is associated with the 286 

absence of a reef. 287 

Results 288 
 289 

The parameters that yielded the best mean cross-validated accuracies are presented in 290 

Table 1. These parameters yielded MLP that had the highest mean accuracies over the 291 

testing data sets, that is, they produced MLP that generalised to new data the best. The 292 

accuracies of the corresponding MLP are presented in Table 2. The input variables 293 
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that produced the highest test accuracies were the bathymetric value of the target cell, 294 

a 5 x 5 window of seafloor curvature and a 5 x 5 window of seafloor slope. For each 295 

combination of input variables, the cross-validated training accuracies were 296 

significantly higher (two-tailed t-test, p=0.001) than the cross-validated testing 297 

accuracies. This implies that all networks over-trained to some extent; although the 298 

over-training was not severe in any case as the mean test kappas were all moderate to 299 

good. The true-positive and true negative percentage accuracies were similar, 300 

however, for both training and testing across all input data sets, which indicates that 301 

the cross validation data set was not badly unbalanced. 302 

 303 

The parameters that produced the best cross-validated results were used to train MLP 304 

over the entire training set for each combination of variables. There were no 305 

significant differences between the cross-validated training accuracies and the 306 

accuracies over the complete training sets (two-tailed t-test, p=0.001). The trained 307 

networks were assessed over the South Australian validation data set. The 308 

performance for all networks over the validation data set were poor, and in all cases 309 

the true positive percentage was low, indicating that the networks found it difficult to 310 

identify reefs in the South Australian validation data set. The exception to this was 311 

those trained with the bathymetric value of the target cell and a 5 x 5 window of 312 

slope, which was able to detect more than half of the reefs present. The best of these 313 

networks gave the validation accuracies presented in Table 4, which is a good kappa 314 

score and true positive detection rate of over 68%, with an overall accuracy of 315 

85.99%. As this network had the highest validation accuracy, that is, it classified 316 

unseen data the most accurately, it was used to create the final prediction map. The 317 

map generated by this MLP is displayed in Figure 5. Assessing this network over the 318 
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Victorian validation set gave a prediction accuracy of 52.25%, that is, the network 319 

correctly classified 52.25% of the reef cells. 320 

 321 

The results of the MLP input contribution analysis of this network are presented in 322 

Figure 6. This shows that a high value of slope in the cells neighbouring the target cell 323 

contribute strongly to a prediction of a reef being present, and that a high bathymetric 324 

value contributes strongly to a prediction of a reef being absent. 325 

 326 

Discussion 327 
 328 

The need for a cost-effective standard method to map reefs across broad scales is 329 

likely to become an issue of increasing urgency as the world’s coasts continue to bear 330 

the burden of the ecological costs of increasing human activity.  South Australia 331 

presented one such locality in which this study sought to provide leadership in raising 332 

the challenges and solutions to what to date has been an intractable problem. In doing 333 

so we show that ANN provide a cost effective method for broadly mapping the 334 

probability of reef occurrence as a function of bathymetric and slope variables. 335 

 336 

There were significant differences between the cross-validated training and testing 337 

accuracies for all combinations of input variables investigated; however the mean 338 

testing kappa scores were all moderate to good, which shows that the ANN did not 339 

badly over-train. The similarity between the true negative and true positive accuracies 340 

for both training and testing indicate that the cross-validation data set was not badly 341 

unbalanced in terms of positive and negative examples. There were no significant 342 

differences between the cross-validated training accuracies and the training accuracies 343 
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over the complete data set. This was expected, as the purpose of cross-validated 344 

training was to approximate the optimal training parameters. The poor performance 345 

over the South Australian validation data was the result of under-prediction of reef 346 

presences by the networks. Although the networks trained on bathymetric value, slope 347 

and curvature had the highest accuracies over the cross-validated testing sets, they 348 

exhibited poor performance at detecting reefs in the validation set. Conversely, the 349 

networks trained on bathymetric value and slope, while scoring the lowest accuracies 350 

over the cross-validated testing accuracies, achieved the highest accuracies over the 351 

validation data set. 352 

 353 

It is likely that over-training was a major contributing factor to the under-prediction of 354 

reefs from the networks trained on a combination of bathymetric value, slope and 355 

curvature. It is well-known that a larger number of input features makes over-training 356 

of ANN more likely (Kasabov, 1996). This reinforces the importance of using an 357 

independent validation data set to verify the performance of any classifier, but 358 

especially so for data-driven models such as ANN. 359 

 360 

Model performance over the spatially disparate Victorian validation set was lower 361 

(52.25% accuracy), indicating that a level of caution should be shown when using the 362 

MLP to extrapolate outside the region for which it was not trained. This is also likely 363 

to be a contributing reason that the performance over the South Australian validation 364 

set was slightly lower, as the points for this set also came from a slightly different 365 

area to the cross-validation training set. Validation using data sets that fall outside the 366 

area from which the model was trained are a stringent test of model performance, 367 

often resulting in a reduction in model performance (Barry and Elith, 2006). 368 
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However, it is possible that the lower performance index for Victoria could be the 369 

result of a difference in the geological context of reefs in South Australian compared 370 

to Victorian waters. To overcome problems with extrapolating outside the model 371 

region, future work should concentrate on the construction of region-specific 372 

classifiers wherever possible to account for this. 373 

 374 

The results of the input contribution analysis show that the most important variables 375 

for the detection of reefs were the slope of the cells next to the target cell. A high 376 

slope value next to the target cell indicates the presence of a reef, while a high slope 377 

value in the target cell itself indicates the absence of a reef. This is reasonable, as a 378 

reef is likely to have a greater slope on its side than on its top. A high value of the 379 

bathymetric variable for the target cell indicated the absence of a reef, while a low 380 

value indicated reef presence. This also is reasonable, as a reef is an outcropping from 381 

the sea floor: reefs can therefore be expected to have a low bathymetric value, that is, 382 

they will not be as deep as cells without reefs. Of course, bathymetric depth alone is 383 

not enough to identify reefs, because of the range of depths at which reefs occur. 384 

 385 

Although ANN were able to predict the location of reefs from bathymetric data (at 386 

least at depths less than 30 m) and measures of the slope of the seafloor, as data-387 

driven methods, ANN are strongly affected by the quality of the data. There are two 388 

issues with the method used to prepare the data. The first is that the windowing 389 

technique excludes cells around the edges of the matrix, with the number of cells 390 

excluded being equal to half the window size. It also excludes cells that are less than 391 

half the window size from any area of no data, such as those that are close to areas 392 

deeper than 30 m, including those near to the continental shelf. Thus, a window size 393 
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of five will miss any reef within 500 m of the continental shelf. The second issue is 394 

that the resolution of the bathymetric data was 250 m. Therefore, this will miss any 395 

reefs smaller than 250 m. The coarse resolution of the data also caused problems with 396 

the placement of reef sample points. Some grid squares had two reef samples located 397 

within them. While for some grid squares this was the same reef, for others they were 398 

different reefs. Other grid squares had reefs in the same grid square as the coastline. 399 

Such data issues will cause problems for any classification algorithm (Kasabov, 400 

1996). 401 

 402 

Our future work will focus on improving the accuracy of the predictions. One way of 403 

doing this would be to use ensembles of ANNs (Sharkey, 1996), which is where the 404 

predictions of several ANNs are combined to make one final prediction. In this 405 

approach, the individual ANN would be trained over particular geographic areas, and 406 

would thus be highly specialised. This has been shown to yield superior accuracies in 407 

other applications (Sharkey and Sharkey, 1997). While this would imply that the 408 

individual ANN were over-fitted to their target region, such diversity among members 409 

has been shown to be beneficial to ensembles (Brown, 2004; Minku et al., 2010). We 410 

will also investigate identifying specific types of reefs (steep, flat, etc.) based on 411 

structure and form. Whereas the work reported in this paper focussed on detecting 412 

reefs in general, the morphologies of different reef types may be different enough that 413 

specialising ANN on reef types may lead to better predictions overall. We will also 414 

investigate other ANN training algorithms, such as Levenberg-Marquardt (Masters, 415 

1995), resilient backpropagation (Riedmiller and Braun, 1993), and evolutionary 416 

programming (Fogel et al., 1997). Finally, there are several methods of variable 417 

selection (Abarbanel, 1993; Fernando et al., 2009; Gutiérrez-Estrada and Bilton, 418 
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2010; Sharma, 2000) that can be applied to the data set before constructing the ANN, 419 

which may yield improved ANN performance by reducing the number of variables to 420 

be modelled. The prevalence of reefs and unbalanced data sets is such that problems 421 

are likely to arise in modelling (Mouton et al., 2010). Boostrapped training may help 422 

mitigate the effects of low prevalence and unbalanced training sets. Setting output 423 

thresholds using Bayesian statistics (Tarassenko, 1998) is also a possibility. 424 

 425 

In conclusion, we have demonstrated a novel, but simple tool that may be used to 426 

uncover the location and extent of subtidal reefs and rocky habitats.  While side-scan 427 

sonar is often used to establish fine scale information of habitat types, much of the 428 

world’s reefs are yet to be identified at spatial extents that are sufficiently useful for 429 

ecologists and natural resource managers.  This lack of fundamental information 430 

represents a critical gap in knowledge for basic predictions about the ubiquity of 431 

subtidal ecosystems and their contribution to the world’s coastal ecology and 432 

economy.  The knowledge gap persists because large parts of the world’s coasts are 433 

inaccessible to traditional methods of mapping; i.e. SCUBA diving in seas of low 434 

visibility or high exposure to physical injury by the elements and wildlife and acoustic 435 

mapping is expensive and time consuming.   Consequently, the methods developed 436 

here removes one of the largest obstacles to allowing marine biologists and resource 437 

managers to uncover the location and extent of some of the most diverse and 438 

productive marine ecosystems of the globe.   439 
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 622 
 623 
Inputs Hidden Neurons Epochs Eta Alpha 
Bathy-1 Curva 16 14000 0.25 0.15 

Bathy-1 Curva Slope 15 10000 0.3 0.1 

Bathy-1 Slope 17 15000 0.15 0.15 

Bathy Curva Slope 15 10000 0.3 0.1 

 624 
Table 1 – training parameters for best performing MLP. ‘Bathy’ is a window of bathymetric values; ‘Bathy-625 
1’ is the bathymetric value of the target cell; ‘Curva’ is the curvature of the seabed; ‘Slope’ is the slope of 626 
the sea bed. ‘Eta’ is the backpropagation learning rate parameters. ‘Alpha’ is the backpropagation 627 
momentum parameter. 628 
  629 
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 630 
 631 
 Bathy-1 Curva Bathy-1 Curva Slope Bathy-1 Slope Bathy Curva Slope 
Train K 0.88±0.01 0.93±0.02 0.77±0.04 0.90±0.07 

Train overall % 94.70±0.52 96.65±0.89 89.10±1.83 95.49±2.97 

Train true pos. % 85.95±1.37 95.49±1.94 92.94±2.70 91.46±8.32 

Train true neg. % 99.89±0.23 97.34±0.92 86.84±2.84 97.82±0.83 

Test K 0.70±0.12 0.77±0.06 0.51±0.13 0.71±0.09 

Test overall % 86.77±6.16 89.54±2.91 76.91±5.48 87.37±3.46 

Test true pos. % 66.67±11.60 85.45±9.57 72.90±11.48 73.73±11.56 

Test true neg. % 99.00±2.11 93.47±6.18 79.08±7.70 95.84±3.27 

Complete K 0.87±0.03 0.91±0.04 0.72±0.09 0.92±0.03 

Complete overall % 94.03±1.46 95.76±1.69 82.3±14.03 96.32±1.58 

Complete true pos. % 85.48±3.81 93.60±3.42 89.65±5.72 94.66±3.73 

Complete true neg. % 99.10±2.97 97.04±2.19 86.9±3.55 97.31±1.74 

Validate K 0.0±0.0 0.17±0.12 0.46±0.10 0.0±0.02 

Validate overall % 72.84±0.0 73.8±3.55 79.91±3.18 72.08±1.27 

Validate true pos. % 0.0±0.0 19.59±9.70 53.25±10.50 2.17±1.17 

Validate true neg. % 100.0±0.0 94.04±3.88 89.85±2.89 98.15±1.86 

Table 2 – accuracies of MLP trained on 5 x 5 windows. Column labels describe the input variables of the 632 
networks: ‘Bathy’ is a window of bathymetric values; ‘Bathy-1’ is the bathymetric value of the target cell; 633 
‘Curva’ is the curvature of the seabed. Rows labelled ‘Train’ are the accuracies over the training data sets. 634 
Rows labelled ‘Test’ are accuracies over the test sets, that is, the data sets that the MLP have not been 635 
trained on. Rows labelled ‘Complete’ are accuracies over the complete, combined training and testing set, 636 
that is, the training accuracies of the MLP over which the validation accuracies were assessed. Rows 637 
labelled ‘Validate’ are the accuracies over the independent validation data set. ‘K’ denotes Cohen’s kappa 638 
and ‘%' 639 

 640 

  641 
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 642 
Kappa 0.63 

Overall % 85.99 

True Positive % 68.25 

True Negative % 92.60 

Table 3 – accuracies over independent validation set of MLP used to generate final prediction maps. Row 643 
and column heading are as for Tables 2 and 3. 644 
  645 
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 646 

 647 
Figure 1 –map of the study area, the South Australian coastline and Kangaroo Island. The insert is a zoomed-in view of the central study area within the Spencer Gulf and the Gulf 648 
St Vincent. The study area goes from latitude -38 to -31 degrees, and longitude  129 to 141 degrees. 649 
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 650 

 651 
Figure 2 – combining source data sets to create ANN training data sets. The arrows show the flow of data from one set to another.652 
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 653 
Figure 3 - encoding and prediction process for a 3-by-3 window of slope data and a single cell for 654 
bathymetric data. Two example vectors are being produced here. For the first, the target cell is cell ‘g’. For 655 
the second, the target cell is cell ‘h’. The cross-hatching in the prediction matrix shows the cells that are 656 
excluded from the predictions by the windowing process. Note that not all input neurons of the multi-layer 657 
perceptron (MLP) are shown 658 

 659 
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 661 

 662 
 663 
Figure 4 – schematic of cross-validation selection of training parameters, training over complete training 664 
set, selection of most accurate network and production of reef predictions.665 



 30 

 666 

 667 
Figure 5 - Map of South Australian reefs generated by MLP trained on 5x5 input windows. Brighter colours are equal to higher probabilities of reef presences. Land masses are 668 
white and delimited by lines. The inserts are zoomed-in views of two areas on the South Australian coast and the Eyre  peninsula. Areas deeper than 30 m have been masked out, as 669 
have areas on land.  670 
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 671 

 672 
Figure 6 - Results of MLP input contribution for bathymetric value of target cell and a 5x5 window of 673 
seabed slope. In (a) the values of each variable are charted, with the variable corresponding to the 674 
bathymetric and slope variables labelled. In (b) the contributions of the slope variables are gridded 675 
according to their position in the sliding window and shaded according to their contribution, with the most 676 
positive contributions being white and the most negative contributions black. 677 
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