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The Furuta pendulum, or rotational inverted pendulum, is a system found in many control labs. It provides a compact yet
impressive platform for control demonstrations and draws the attention of the control community as a platform for the
development of nonlinear control laws. Despite the popularity of the platform, there are very few papers which employ the correct
dynamics and only one that derives the full system dynamics. In this paper, the full dynamics of the Furuta pendulum are derived
using two methods: a Lagrangian formulation and an iterative Newton-Euler formulation. Approximations are made to the full
dynamics which converge to the more commonly presented expressions. The system dynamics are then linearised using a Jacobian.
To illustrate the influence the commonly neglected inertia terms have on the system dynamics, a brief example is offered.

1. Introduction

The Furuta pendulum consists of a driven arm which rotates
in the horizontal plane and a pendulum attached to that
arm which is free to rotate in the vertical plane (Figure 1).
The system is underactuated and extremely nonlinear due
to the gravitational forces and the coupling arising from the
Coriolis and centripetal forces.

The pendulum was first developed at the Tokyo Institute
of Technology by Furuta and his colleagues [1–4]. Since then,
dozens, possibly hundreds of papers and theses have used
the system to demonstrate linear and nonlinear control laws
[5, 6]. The system has also been the subject of two texts [7, 8].
Despite the great deal of attention the system has received,
very few publications successfully derive (or use) the full
dynamics. Many authors [3, 7] have only considered the
rotational inertia of the pendulum for a single principal axis
(or neglected it altogether [8]). In other words, the inertia
tensor only has a single nonzero element (or none), and the
remaining two diagonal terms are zero. It is possible to find a
pendulum system where the moment of inertia in one of the
three principal axes is approximately zero, but not two.

A few authors [2, 4, 5, 9–11] have considered slender
symmetric pendulums where the moments of inertia for two

of the principal axes are equal and the remaining moment
of inertia is zero. Of the dozens of publications surveyed for
this paper, only a single conference paper [12] and journal
paper [13] were found to include all three principal inertial
terms of the pendulum. Both papers used a Lagrangian
formulation, but each contained minor errors (presumably
typographical).

In a hope of ensuring that future papers on the Furuta
pendulum use the correct dynamics, this paper presents a
definitive study of the system. The system dynamics for
a pendulum with a full inertia tensor using a Lagrangian
formulation are presented, and then an alternative derivation
using an iterative Newton-Euler approach is presented,
which to the authors’ knowledge is the first correct derivation
using either of these techniques. Following on from this,
approximations are made to the governing equations for
long slender pendulums which lead to a more compact form
(which are commonly incorrectly presented in the literature).
Finally, the linearised state equations for the mechanical sys-
tem and the coupled electromechanical system are presented.

It should be noted that in the derivations that follow, the
Symbolic Toolbox in Matlab was used. The final expressions
were also independently validated using kinematical models
using the SimMechanics Toolbox (in Simulink).
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Figure 1: Schematic of the single rotary inverted pendulum system.

2. Fundamentals

2.1. Definitions. Consider the rotational inverted pendulum
mounted to a DC motor as shown in Figure 1. The DC motor
is used to apply a torque τ1 to Arm 1. The link between Arm
1 and Arm 2 is not actuated but free to rotate. The two arms
have lengths L1 and L2. The arms have masses m1 and m2

which are located at l1 and l2, respectively, which are the
lengths from the point of rotation of the arm to its center
of mass. The arms have inertia tensors J1 and J2 (about the
centre of mass of the arm). Each rotational joint is viscously
damped with damping coefficients b1 and b2, where b1 is
the damping provided by the motor bearings, and b2 is the
damping arising from the pin coupling between Arm 1 and
Arm 2.

A right hand coordinate system has been used to define
the inputs, states, and the Cartesian coordinate systems 1 and
2. The coordinate axes of Arm 1 and Arm 2 are the principal
axes, such that the inertia tensors are diagonal of the form

J1 =

⎡
⎢⎢⎢⎣

J1xx 0 0

0 J1yy 0

0 0 J1zz

⎤
⎥⎥⎥⎦,

J2 =

⎡
⎢⎢⎢⎣

J2xx 0 0

0 J2yy 0

0 0 J2zz

⎤
⎥⎥⎥⎦.

(1)

The angular rotation of Arm 1, θ1, is measured in the
horizontal plane where a counterclockwise direction (when
viewed from above) is positive. The angular rotation of
Arm 2, θ2, is measured in the vertical plane where a

counterclockwise direction (when viewed from the front)
is positive, when Arm 2 is hanging down in the stable
equilibrium position θ2 = 0.

The torque the servomotor applies to Arm 1, τ1, is
positive in a counterclockwise direction (when viewed from
above). A disturbance torque, τ2, is experienced by Arm 2,
where a counterclockwise direction (when viewed from the
front) is positive.

2.2. Assumptions. Before deriving the dynamics of the sys-
tem, a number of assumptions must be made. These are

(i) the motor shaft and Arm 1 are assumed to be rigidly
coupled and infinitely stiff;

(ii) Arm 2 is assumed to be infinitely stiff;

(iii) the coordinate axes of Arm 1 and Arm 2 are
the principal axes such that the inertia tensors are
diagonal;

(iv) the motor rotor inertia is assumed to be negligible.
However, this term may be easily added to the
moment of inertia of Arm 1;

(v) only viscous damping is considered. All other forms
of damping (such as Coulomb) have been neglected;
however, it is a simple exercise to add this to the final
governing DE;

3. Lagrangian Formulation Using Tensors

A Lagrangian formulation of the system dynamics of the
mechanical system is now presented using a tensor notation,
which makes for an elegant and compact solution.
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3.1. Rotation Matrices. First, define two rotation matrices
which are used in both the Lagrange and Newton-Euler
formulations. The rotation matrix from the base to Arm 1 is

R1 =

⎡
⎢⎢⎢⎣

cos(θ1) sin(θ1) 0

− sin(θ1) cos(θ1) 0

0 0 1

⎤
⎥⎥⎥⎦. (2)

The rotation matrix from Arm 1 to Arm 2 is derived by
initially applying a (diagonal) matrix to that maps the frame
1 to frame 2, followed by a rotation matrix for θ2, given by

R2 =

⎡
⎢⎢⎢⎣

cos(θ2) sin(θ2) 0

− sin(θ2) cos(θ2) 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 0 −1

0 1 0

1 0 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 sin(θ2) − cos(θ2)

0 cos(θ2) sin(θ2)

1 0 0

⎤
⎥⎥⎥⎦.

(3)

3.2. Velocities. The angular velocity of Arm 1 is given by

ω1 =
[

0 0 θ̇1

]T
. (4)

Let the velocity of the base frame be at rest, such that the joint
between the frame and Arm 1 is also at rest, that is,

v1 =
[

0 0 0
]T

. (5)

The total linear velocity of the centre of mass of Arm 1 is
given by

v1c = v1 + ω1 ×
[
l1 0 0

]T =
[

0 θ̇1l1 0
]T

. (6)

The angular velocity of Arm 2 is given by

ω2 = R2ω1 +
[

0 0 θ̇2

]T

=
[
− cos(θ2)θ̇1 sin(θ2)θ̇1 θ̇2

]T
.

(7)

The velocity of the joint between Arm 1 and Arm 2 in
reference frame 1 is

ω1 ×
[
L1 0 0

]T
, (8)

which in reference frame 2 (that of Arm 2) gives

v2 = R2

(
ω1 ×

[
L1 0 0

]T) =

⎡
⎢⎢⎢⎣

θ̇1L1 sin(θ2)

θ̇1L1 cos(θ2)

0

⎤
⎥⎥⎥⎦. (9)

The total linear velocity of the centre of mass of Arm 2 is
given by

v2c = v2 + ω2 ×
[
l2 0 0

]T

=

⎡
⎢⎢⎢⎣

θ̇1L1 sin(θ2)

θ̇1L1 cos(θ2) + θ̇2l2

−θ̇1l2 sin(θ2)

⎤
⎥⎥⎥⎦.

(10)

3.3. Energies. The potential energy of Arm 1 is

Ep1 = 0, (11)

and the kinetic energy is

Ek1 = 1
2

(
v1c

Tm1v1c + ω1
TJ1ω1

)
= 1

2
θ̇2

1

(
m1l

2
1 + J1zz

)
. (12)

The potential energy of Arm 2 is

Ep2 = gm2l2(1− cos(θ2)), (13)

and the kinetic energy is

Ek2 = 1
2

(
v2c

Tm2v2c + ω2
TJ2ω2

)

= 1
2
θ̇2

1

(
m2L

2
2 +

(
m2l

2
2 + J2yy

)
sin2(θ2) + J2xxcos2(θ2)

)

+
1
2
θ̇ 2

2

(
J2zz + m2l

2
2

)
+ m2L1l2 cos(θ2)θ̇1θ̇2.

(14)

The total potential and kinetic energies are given, respec-
tively, by

Ep = Ep1 + Ep2,

Ek = Ek1 + Ek2.
(15)

3.4. Lagrangian. The Lagrangian is the difference in kinetic
and potential energies,

L = Ek − Ep. (16)

From this, we obtain the Euler-Lagrange equation

d

dt

(
∂L

∂q̇i

)
+ biq̇i − ∂L

∂qi
= Qi, (17)

where qi = [θ1, θ2]T is the generalised coordinate, bi =
[b1, b2]T is a generalised viscous damping coefficient, and
Qi = [τ1, τ2]T is the generalised force (torque).
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Evaluating the terms of the Euler-Lagrange equation for
both qi = θ1 and θ2 gives

d

dt

(
∂L

∂θ̇1

)
= θ̈1

(
J1zz + m1l

2
1 + m2L

2
1

+
(
m2l

2
2 + J2yy

)
sin2(θ2) + J2xxcos2(θ2)

)

+ m2L1l2 cos(θ2)θ̈2 −m2L1l2 sin(θ2)θ̇ 2
2

+ θ̇1θ̇2 sin(2θ2)
(
m2l

2
2 + J2yy − J2xx

)
,

d

dt

(
∂L

∂θ̇2

)
= θ̈1m2L1l2 cos(θ2) + θ̈2

(
J2zz + m2l

2
2

)

− θ̇1θ̇2m2L1l2 sin(θ2),

− ∂L

∂θ1
= 0,

− ∂L

∂θ2
= −1

2
θ̇2

1 sin(2θ2)
(
m2l

2
2 + J2yy − J2xx

)

+ θ̇1θ̇2m2L1l2 sin(θ2) + gm2l2 sin(θ2).
(18)

3.5. Equations of Motion. Substituting the previous terms
into the Euler-Lagrange equation, the following simultane-
ous differential equations are obtained:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ̈1

(
J1zz + m1l

2
1 + m2L

2
1 +

(
J2yy + m2l

2
2

)

×sin2(θ2) + J2xxcos2(θ2)
)

+ θ̈2m2L1l2 cos(θ2)

−m2L1l2 sin(θ2)θ̇ 2
2 + θ̇1θ̇2 sin(2θ2)

×
(
m2l

2
2 + J2yy − J2xx

)
+ b1θ̇1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

θ̈1m2L1l2 cos(θ2) + θ̈2
(
m2l

2
2 + J2zz

)

+
1
2
θ̇2

1 sin(2θ2)
(
−m2l

2
2 − J2yy + J2xx

)

+b2θ̇2 + gm2l2 sin(θ2)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣τ1

τ2

⎤
⎦,

(19)

which is very similar to the expressions derived by Atwar
et al. [12, 13], once the different reference frame for Arm 2
is accounted for. The only obvious difference is that in (11)
and (12) in [13] the signs of the terms θ̈2m2L1l2 cos(θ2) −
m2L1l2 sin(θ2)θ̇ 2

2 and θ̈1m2L1l2 cos(θ2) + gm2l2 sin(θ2) are
opposite to those presented here. Their subsequent expres-
sion (14) in terms of α is also incorrect with a minus sign
instead of a multiplication sign. Their expression (15) is
correct.

4. Iterative Newton-Euler Formulation to
the System Dynamics

In this section, an iterative Newton-Euler approach is used to
derive the plant dynamics. There are many texts that describe

this method. The formulation presented in Craig [14] has
been adopted here.

4.1. Outward Iteration. First, the position, velocity, and
acceleration of the centre of mass of Arm 1 and Arm 2 are
calculated. From this, the forces and moments acting at the
centre of the masses may be calculated.

4.1.1. Outward Iteration for Arm 1. The angular velocity and
acceleration of Arm 1 are given by ω1 = [ 0 0 θ̇1 ]T and ω̇1 =
[ 0 0 θ̈1 ]T , respectively.

The effect of the gravity on the arms is simply included by
setting the acceleration of the base frame to g in the opposite
direction as the gravity vector. In other words, the base is
accelerating upwards at exactly 1 g which has the same effect
as gravity. The linear acceleration due to gravity acting on the
joint of Arm 1 is given by

v̇1 = R1

[
0 0 g

]T =
[

0 0 g
]T

, (20)

where g is the gravitational acceleration.
The total linear acceleration of the centre of mass of Arm

1 is given by

v̇1c = ω̇1 ×
[
l1 0 0

]T
+ ω1 ×

(
ω1 ×

[
l1 0 0

]T)
+ v̇1

=
[
−l1θ̇2

1 l1θ̈1 g
]T

,

(21)

where the first term is a centripetal acceleration, the second
is simply due to the rotational acceleration of the arm, and
the third term is due to gravity.

Therefore, the force vector acting on the centre of mass
of Arm 1 is given by

F1 = m1v̇1c = m1

[
−l1θ̇2

1 l1θ̈1 g
]T

. (22)

The moment vector is given by

N1 = J1ω̇1 + ω1 × J1 × ω1 =
[

0 0 θ̈1I1zz

]T
. (23)

4.1.2. Outward Iteration for Arm 2. The process is now
repeated for Arm 2. The angular velocity of Arm 2 is given
by

ω2 = R2ω1 +
[

0 0 θ̇2

]T

=
[
− cos(θ2)θ̇1 sin(θ2)θ̇1 θ̇2

]T
.

(24)

The angular acceleration of Arm 2 is given by

ω̇2 = R2ω̇1 + R2ω1 ×
[

0 0 θ̇2

]T
+
[

0 0 θ̈2

]T

=

⎡
⎢⎢⎢⎣

− cos(θ2)θ̈1 + sin(θ2)θ̇1θ̇2

sin(θ2)θ̈1 + cos(θ2)θ̇1θ̇2

θ̈2

⎤
⎥⎥⎥⎦.

(25)
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The linear acceleration at the joint of Arm 2 is given by

v̇2 = R2

(
ω̇1 ×

[
L1 0 0

]T

+ω1 ×
(
ω1 ×

[
L1 0 0

]T)
+ v̇1

)

=

⎡
⎢⎢⎢⎣

sin(θ2)θ̈1L1 − cos(θ2)g

cos(θ2)θ̈1L1 + sin(θ2)g

θ̇2
1L1

⎤
⎥⎥⎥⎦.

(26)

The total linear acceleration of the centre of mass of Arm 2 is
given by

v̇2c = ω̇2 ×
[
l2 0 0

]T
+ ω2 ×

(
ω2 ×

[
l2 0 0

]T)
+ v̇2

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−θ̇2
1sin2(θ2)l2 − θ̇ 2

2 l2 + θ̈1 sin(θ2)L1 − cos(θ2)g

θ̈2l2 − 1
2
θ̇2

1 l2 sin(2θ2) + cos(θ2)θ̈1L1 + sin(θ2)g

−l2 sin(θ2)θ̈1 − 2θ̇1θ̇2l2 cos(θ2)− θ̇2
1L1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(27)

The expressions become considerably more complicated
from this point and are no longer expanded.

The force vector acting on the centre of mass of Arm 2 is
given by F2 = m2v̇2c. The moment vector on Arm 2 is given
by N2 = J2ω̇2 + ω2 × J2 × ω2.

4.2. Inward Iteration. Now, that all the forces and moments
acting on the centres of masses of the two arms have been
calculated, the forces and moments that the arms exert on
each other may be derived.

4.2.1. Inward Iteration for Arm 2. The force and moment that
Arm 2 exerts on Arm 1 is given by f2 = F2 and n2 = N2 +
[ l2 0 0 ]T × F2, respectively, where the first term is the direct
moment on Arm 2, and the second term is the moment on
Arm 1 due to the coupling force exerted by Arm 2.

4.2.2. Inward Iteration for Arm 1. The force that Arm 1 exerts
on the base is given by f1 = R2

T f2 + F1 where the first term
is the force applied by Arm 2 onto Arm 1, and then rotated
to the based frame coordinate system. The second term is the
force experienced by the mass of Arm 1. The moment that
Arm 1 exerts on the base is given by

n1 = N1 + R2
Tn2 +

[
l1 0 0

]T × F1 +
[
L1 0 0

]T × R2
T f2,

(28)

where the first term is the moment experienced by the
mass of Arm 1, the second term is the moment of Arm 2
transferred to Arm 1 rotated in to the appropriate frame, the
third term is the moment arising from the force experienced
at the centre of mass of Arm 1, and the fourth term is the
moment acting from the coupling force between Arm 1 and
Arm 2.

4.3. The Equations of Motion. The equations of motion of
coupled system are therefore given by the moment balance

acting on the two arms, that is,
[

n1•ẑ1

n2•ẑ2

]
+
[
b1θ̇1

b2θ̇2

]
= [ τ1

τ2

]
, where

ẑi is the unit vector in the direction of the z-axis for each
coordinate frame. When evaluated the above expression gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ̈1

(
J1zz + m1l

2
1 + m2L

2
1 +

(
J2yy + m2l

2
2

)

×sin2(θ2) + J2xxcos2(θ2)
)

+θ̈2m2L1l2 cos(θ2)−m2L1l2 sin(θ2)θ̇ 2
2

+θ̇1θ̇2 sin(2θ2)
(
m2l

2
2 + J2yy − J2xx

)
+ b1θ̇1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

θ̈1m2L1l2 cos(θ2) + θ̈2
(
m2l

2
2 + J2zz

)

+
1
2
θ̇2

1 sin(2θ2)
(
−m2l

2
2 − J2yy + J2xx

)

+b2θ̇2 + gm2l2 sin(θ2)

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣τ1

τ2

⎤
⎦,

(29)

which is the same as that derived previously.

5. Simplifications

Most Furuta pendulums tend to have long slender arms, such
that the moment of inertia along the axis of the arms is
negligible. In addition, most arms have rotational symmetry,
such that the moments of inertia in two of the principal axes
are equal. Thus, the inertia tensors may be approximated as
follows:

J1 =

⎡
⎢⎢⎢⎣

J1xx 0 0

0 J1yy 0

0 0 J1zz

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

0 0 0

0 J1 0

0 0 J1

⎤
⎥⎥⎥⎦,

J2 =

⎡
⎢⎢⎢⎣

J2xx 0 0

0 J2yy 0

0 0 J2zz

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

0 0 0

0 J2 0

0 0 J2

⎤
⎥⎥⎥⎦.

(30)

Further simplifications are obtained by making the following
substitutions. The total moment of inertia of Arm 1 about
the pivot point (using the parallel axis theorem) is Ĵ1 =
J1 + m1l

2
1. The total moment of inertia of Arm 2 about its

pivot point is Ĵ2 = J2 +m2l
2
2. Finally, define the total moment

of inertia the motor rotor experiences when the pendulum
(Arm 2) is in its equilibrium position (hanging vertically
down), Ĵ0 = Ĵ1 + m2L

2
1 = J1 + m1l

2
1 + m2L

2
1.

Substituting the previous definitions into the governing
DEs gives the more compact form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝

θ̈1

(
Ĵ0 + Ĵ2sin2(θ2)

)
+ θ̈2m2L1l2 cos(θ2)

−m2L1l2 sin(θ2)θ̇ 2
2 + θ̇1θ̇2 Ĵ2 sin(2θ2) + b1θ̇1

⎞
⎟⎠

⎛
⎜⎝
θ̈1m2L1l2 cos(θ2) + θ̈2 Ĵ2 − 1

2
θ̇2

1 Ĵ2 sin(2θ2)

+b2θ̇2 + gm2l2 sin(θ2)

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣τ1

τ2

⎤
⎦.

(31)
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This expression is the same as that derived by Iwase et al. [4]
and almost identical to Åkesson and Åström [5], with the
exception of the damping terms and the disturbance torque
(which is neglected in their analysis). It should be noted that
in [4] the term J ′a is defined as the moment of inertia of Arm
1 with respect to the centre of gravity but this is incorrect
and should be with respect to its pivot. In [5], it is not clear
how the moments of inertia J and Jp are defined, but these
need to be with respect to the pivot points to be correct. The
simplified expression is also similar to that derived by Baba et
al. [11] (after accounting for the different reference frame),
with the exception of the sign of the term m2L1l2 sin(θ2)θ̇ 2

2

which is opposite (and incorrect). The simplified derivations
of [9, 10] differ because of an erroneous 1/2 term in the off-
diagonal elements of the mass matrix.

It should be noted that the above differential equation
differs slightly with that derived by almost all others includ-
ing Furuta et al., as well as the texts by Fantoni and Lozano
[7] and by Egeland and Gravdahl [8], because of the full
inertia tensor employed here. The upper equation has the
additional terms J2(θ̇1θ̇2 sin(2θ2) + θ̈1sin2(θ2)). The second
equation has the extra term −(1/2)θ̇2

1J2sin2(θ2). Fortunately,
the form of the equations is still the same, and consequently
the nonlinear control laws derived by previous authors are
still valid, although their simulated results may not be.

These two simultaneous equations can be solved in terms
of the angular acceleration of Arm 1 and Arm 2, as given by
[
θ̈1

θ̈2

]

=
⎡
⎣ Ĵ0 + Ĵ2sin2(θ2) m2L1l2 cos(θ2)

m2L1l2 cos(θ2) Ĵ2

⎤
⎦
−1

×

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
b1 +

1
2
θ̇2 Ĵ2 sin(2θ2)

1
2
θ̇2 Ĵ2 sin(2θ2)−m2L1l2 sin(θ2)θ̇2

−1
2
θ̇1 Ĵ2 sin(2θ2) b2

⎤
⎥⎥⎥⎦

×
⎡
⎣θ̇1

θ̇2

⎤
⎦−

⎡
⎣ 0

gm2l2 sin(θ2)

⎤
⎦ +

⎡
⎣τ1

τ2

⎤
⎦

⎞
⎟⎟⎠.

(32)

With some manipulation, the final expressions for the two
angular accelerations are

θ̈1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ĵ2b1

m2L1l2 cos(θ2)b2

−Ĵ 2
2 sin(2θ2)

−(1/2)Ĵ2m2L1l2 cos(θ2) sin(2θ2)

Ĵ2m2L1l2 sin(θ2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2

θ̇1θ̇2

θ̇2
1

θ̇ 2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

Ĵ2
−m2L1l2 cos(θ2)

(1/2)m 2
2l

2
2L1 sin(2θ2)

⎤
⎥⎥⎦

T⎡
⎣
τ1
τ2
g

⎤
⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
Ĵ0 Ĵ2 + Ĵ 2

2 sin2(θ2)−m 2
2L

2
1l

2
2cos2(θ2)

) , (33)

θ̈2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2L1l2 cos(θ2)b1

−b2

(
Ĵ0 + Ĵ2sin2(θ2)

)

m2L1l2 Ĵ2 cos(θ2) sin(2θ2)

−(1/2) sin(2θ2)
[
Ĵ0 Ĵ2 + Ĵ 2

2 sin2(θ2)
]

−(1/2)m 2
2L

2
1l

2
2 sin(2θ2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2

θ̇1θ̇2

θ̇2
1

θ̇ 2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

−m2L1l2 cos(θ2)

Ĵ0 + Ĵ2sin2(θ2)

−m2l2 sin(θ2)
(
Ĵ0 + Ĵ2sin2(θ2)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎣

τ1
τ2
g

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
Ĵ0 Ĵ2 + Ĵ 2

2 sin2(θ2)−m 2
2L

2
1l

2
2 cos2(θ2)

) .

(34)

6. Linearised State Equations for
Simplified System

The linearised equations of motion for the simplified system
are now derived for the two equilibrium positions: upright
and downward.

6.1. Upright Position. Linearising the simplified expressions
about the upright equilibrium position

θ1e = 0,

θ2e = π,

θ̇1e = 0,

θ̇2e = 0,

(35)

using a Jacobian linearisation, the following linearised state
equations about the upright position are obtained:

⎡
⎢⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2

θ̈1

θ̈2

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

A31 A32 A33 A34

A41 A42 A43 A44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1

θ2

θ̇1

θ̇2

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

B31 B32

B41 B42

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣τ1

τ2

⎤
⎦,

(36)

where

A31 = 0,

A32 = gm 2
2l

2
2L1(

Ĵ0 Ĵ2 −m 2
2L

2
1l

2
2

) ,

A33 = −b1 Ĵ2(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,

A34 = −b2m2l2L1(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,
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A41 = 0,

A42 = gm2l2 Ĵ0(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,

A43 = −b1m2l2L1(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,

A44 = −b2 Ĵ0(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,

B31 = Ĵ2(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,

B41 = m2L1l2(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,

B32 = m2L1l2(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) ,

B41 = Ĵ0(
Ĵ0 Ĵ2 −m 2

2L
2
1l

2
2

) .

(37)

6.2. Downward Position. Linearising the expressions about
the downward position,

θ̂1e = 0,

θ̂2e = 0,

˙̂
θ1e = 0,

˙̂
θ2e = 0,

then

Â34 = −A34,

Â42 = −A42,

Â43 = −A43,

B̂32 = −B32,

B̂41 = −B41,

(38)

where the hat symbol indicates the downward position. All
other terms of the state equation are the same as for the
upright position.

7. Linearised State Equations for Coupled
Mechanical and Electrical System

The Furuta pendulum is almost always driven via a DC
servomotor. The coupled linear differential equation for the
mechanical pendulum system and the DC motor will now
be derived. Let V be the voltage applied to the servomotor
and i the current flowing through the servomotor, Rm the
electrical resistance of the servomotor, Km the electromotive
torque constant of the servomotor (and is equal to the back
emf constant for SI units), and Lm the electrical inductance
of the servomotor.

The differential equation describing the electrical subsys-
tem for a DC motor may be found using Kirchhoff ’s law

Lmi̇ + Rmi + Kmθ̇1 = V , (39)

which may be arranged in terms of the derivative of the
current i̇ = (V − Rmi− Kmθ̇1)/Lm.

The torque produced by the DC motor is

τ = Kmi. (40)

Merging the previous linear state equations for the upright
position and the above differential equation governing the
DC motor gives the coupled electromechanical linear state
equation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇1

θ̇2

θ̈1

θ̈2

i̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 0 1 0

A31 A32 A33 A34 B31Km

A41 A42 A43 A44 B41Km

0 0
−Km

Lm
0

−Rm

Lm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1

θ2

θ̇1

θ̇2

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1
Lm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

B32

B42

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

τ2.

(41)

8. Numerical Example

Consider the parameters of a Furuta pendulum within the
School of Mechanical Engineering at The University of
Adelaide, given by L1 = 0.278 m, L2 = 0.300 m, l1 =
0.150 m, l2 = 0.148 m, m1 = 0.300 kg, m2 = 0.075 kg,
J1 = 2.48 × 10−2 kg·m2, J2 = 3.86 × 10−3 kg·m2, b1 =
1.00 × 10−4 Nms, b2 = 2.80 × 10−4 Nms, L = 0.005 H,
R = 7.80Ω, and Km = 0.090 Nm/A. Figure 2 provides a
comparison between the nonlinear response of the system
when including the full inertia tensor (J2yy = J2zz = J2)
and when neglecting the moment of inertia about the y-
axis (J2zz = J2 and J2yy = 0) such as that found in [7, 8].
Both systems are driven by an input of 10 V to the motor.
As expected, the model in which the additional inertia is
neglected exhibits a slightly faster horizontal rotation rate
(θ̇1). What is surprising is the influence the additional
inertia has on the pendulum itself. With J2yy = J2zz = J2,
the centrifugal acceleration on the pendulum arm drives
the arm horizontal (θ2 = 1.57 rad) very quickly as soon
as the angular velocity of Arm 1 (θ̇1) becomes nonzero.
The other noticeable difference between the results from
the two models is that the natural frequency of Arm 2
is considerably higher with the additional inertial term.
Although at first counterintuitive (as typically an increase
in inertia results in a decrease in natural frequency), in this
case, the additional inertia creates significant (centrifugal)
radial forces on Arm 2, which act to drive the arm horizontal.
This strong restorative force increases the natural frequency
(with increasing θ̇1). This simple example illustrates the
importance the additional inertia term has, in particular, on
aggressive swing-up controllers.
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Figure 2: Response of the single rotary inverted pendulum system
to a 10 V step input. Solid line represents the plant with the full
inertia tensor J2yy = J2zz = J2; the dashed line represents the plant
only considering J2zz (J2yy = 0).

9. Conclusion

In this paper, the full nonlinear dynamics of the Furuta
pendulum have been derived using two alternative methods:
the Euler-Lagrange and iterative Newton-Euler. It is shown
that although the derived dynamics differ from all previous
works, they all have the same general form which implies that
previously published nonlinear control laws are still valid

for this system. However, caution is needed when neglecting
certain inertial terms when employing aggressive controllers.
Linearised expressions for both the upright and downward
positions have been presented, as well as the coupled motor-
pendulum equations.
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