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[1] Hydrological calibration and prediction using conceptual models is affected by forcing/
response data uncertainty and structural model error. The Bayesian Total Error Analysis
methodology uses a hierarchical representation of individual sources of uncertainty.
However, it is shown that standard multiblock “Metropolis‐within‐Gibbs” Markov chain
Monte Carlo (MCMC) samplers commonly used in Bayesian hierarchical inference are
exceedingly computationally expensive when applied to hydrologic models, which use
recursive numerical solutions of coupled nonlinear differential equations to describe the
evolution of catchment states such as soil and groundwater storages. This note develops
a “limited‐memory” algorithm for accelerating multiblock MCMC sampling from the
posterior distributions of such models using low‐dimensional jump distributions. The new
algorithm exploits the decaying memory of hydrological systems to provide accurate
tolerance‐based approximations of traditional “full‐memory”MCMCmethods and is orders
of magnitude more efficient than the latter.

Citation: Kuczera, G., D. Kavetski, B. Renard, and M. Thyer (2010), A limited‐memory acceleration strategy for MCMC
sampling in hierarchical Bayesian calibration of hydrological models, Water Resour. Res., 46, W07602,
doi:10.1029/2009WR008985.

1. Introduction

[2] Characterizing uncertainties in streamflow predicted
using conceptual rainfall‐runoff (CRR) models is a key
research and operational challenge [e.g., Clark et al., 2008;
Vrugt et al., 2005]. Bayesian total error analysis (BATEA)
explicitly characterizes forcing, response, and structural
errors using a hierarchical formulation [Kavetski et al., 2006;
Kuczera et al., 2006], which generally results in high‐
dimensional posterior distributions with hundreds or more
latent variables. More generally, very high dimensional
hierarchical models have been reported in hydrology and
elsewhere [Cressie et al., 2009; Reichert and Mieleitner,
2009].
[3] Hierarchical inferences are usually implemented using

Gibbs sampling or, more generally, multiblockMarkov chain
Monte Carlo (MCMC) samplers. However, many statistical
applications and software (e.g., BUGS [Gilks et al., 1994])
are not well suited to hydrologic models, which use recursive
numerical solutions of coupled nonlinear differential equa-
tions [e.g., Kavetski et al., 2003]. For such models, hierar-
chical (e.g., input‐error sensitive) Bayesian inference using
standard multiblock MCMC (e.g., “Metropolis‐within‐
Gibbs”) is computationally expensive even for moderate
calibration data lengths (e.g., a few years of daily data).
[4] This note shows why standard multiblock MCMC is

prohibitively inefficient for full Bayesian CRR model infer-
ence and presents a general solution strategy. Following an

outline of BATEA, we review multiblock samplers, empha-
sizing their computational cost given the recursive time‐
stepping nature of CRR models. A more efficient “limited‐
memory” MCMC algorithm is then designed and illustrated
using the common GR4J model [Perrin et al., 2003]. We
conclude with a comment on a hybrid strategy for efficient
MCMC‐based Bayesian hierarchical inference of CRR
models.

2. Outline of the BATEA Framework

2.1. Data Uncertainty

[5] Consider a time series of length Nt, X = {X(m); m = 1,..,
Nt}, where X(m) is the forcing at the mth time step. Next,
consider N epochs {(mi,mi+1 − 1); i = 1,.., N}, wheremi is the
time‐step index of the start of the ith epoch (e.g., storm or
daily [Thyer et al., 2009]). The observed forcing is ~X i =
{~X (m); m = mi,.., mi+1 − 1} and the true forcing is Xi, while ~Y i

and Yi are, respectively, the observed and true responses.
Also, let X1:i = {Xk; k = 1,.., i}.
[6] Let a function Xi = I (~X i∣8i) relate actual and observed

forcings, for example, Xi = 8i~X i for all steps of the ith epoch
[Kavetski et al., 2006], where 8i is an epoch‐dependent
multiplicative error, treated as a latent (unobservable) vari-
able with “hyperdistribution”

8i � p 8jFð Þ; ð1Þ

where the “hyperparameters” F describe, for example, the
mean and variance of 8.
[7] Also consider a streamflow error model [Thyer et al.,

2009],

~Y i � p ~Y jX� �
; ð2Þ
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where X characterize response errors (e.g., variance of rating
curve errors).

2.2. CRR Models and Their Recursive Structure

[8] The CRR model H maps the forcings into simulated
responses Ŷ i. The majority of CRR models are based on
numerical solutions of initial‐value differential equations
(DEs) describing time changes in conceptual stores S such as
groundwater, soil, and stream, connected via hypothesized
fluxes g [e.g., Kavetski et al., 2003]

Ŷ i ¼ H X 1:i;l1:i; qð Þ ð3aÞ

dS
dt

¼ g X ;l; q; Sð Þ ) Siþ1 ¼ f X i;li; q; Sið Þ ð3bÞ

Ŷ iþ1 ¼ h X i;li; q; Sið Þ ð3cÞ

Equation (3) is formulated deterministically to conserve mass
in each store [Kuczera et al., 2006]. Here, q are the time‐
invariant CRR parameters and li are epoch‐specific CRR
parameters,

li � p ljLð Þ; ð4Þ

where L are the CRR hyperparameters (e.g., means and
variances of stochastic parameters).
[9] A key feature of virtually all CRR models is their

recursive structure illustrated in equation (3). When applied
to such models, BATEA is atypical of standard Bayesian
hierarchical formulations [e.g., Gelman et al., 2004; Gilks
et al., 1994] because the simulated response Ŷ i depends on
earlier epochs. For example, effects of a large rainfall error
will persist because the induced storage errors affect stream-
flow over many subsequent steps.

2.3. BATEA Posterior Distribution

[10] BATEA infers the CRR parameters q, latent variables
{88, l}, and hyperparameters {F, L, X} given observed
forcing‐response data {~X , ~Y}, hypothesized error models and
any prior information. To simplify the notation, define the
complete set of N epoch‐dependent latent variables w1:N =
{881:N, l1:N}, and the corresponding hyperparameters W =
{F, L}. The BATEA posterior distribution is then

p q;w1:N ;W;Xj~X ; ~Y
� �/ p ~Y jq;w1:N ;X; ~X

� �
p w1:N jWð Þp Wð Þp Xð Þp qð Þ;

ð5Þ

where p (~Y ∣q, w1:N, X, ~X ) is the likelihood function,
p(w1:N∣W) is the hyperdistribution of w1:N, and p(W), p(X),
and p(q) are priors [Kuczera et al., 2006].

3. MCMC Methods for Hierarchical Bayesian
Inference

3.1. General Metropolis‐Hastings Sampler

[11] The Metropolis‐Hastings (MH) algorithm is a general
MCMC method for sampling from multivariate distributions
[Gelman et al., 2004]. If p(y) is the target distribution [e.g.,
posterior (5)], the MH method samples a proposal y*(k+1)

from a jump distribution J(y∣y(k)) at the kth iteration. It
accepts y(k+1) = y*(k+1) with probability given by the jump
ratio r (y*(k+1) ∣ y(k)) below, otherwise y(k+1) = y(k),

r y* kþ1ð Þjy kð Þ
� �

¼
p y* kþ1ð Þ
� �

J y kð Þjy* kþ1ð Þ
� �

p y kð Þð ÞJ y* kþ1ð Þjy kð Þ
� � : ð6Þ

When the jump distribution J is symmetric (e.g., Gaussian
centered on the current sample), the MCMC algorithm is
referred to as a “Metropolis” scheme [Gelman et al., 2004].

3.2. Multiblock MCMC Sampler

[12] The blocking of sampled variables considerably
affects the efficiency of MCMC sampling [e.g., Fu and
Gomez‐Hernandez, 2009]. Sampling inferred quantities
“all‐at‐once” leads to “single‐block” schemes. However, since
deriving and adapting efficient jump distributions for high‐
dimensional posteriors such as (5) is challenging, Bayesian
literature and software tend to favor multiblock schemes using
a sequence of low‐dimensional jump distributions [Gelman
et al., 2004; Gilks et al., 1994]. For BATEA, the following
three‐block sampler is natural:
[13] Block 1: Sample the hyperparameters W(k+1) from

their conditional posterior

p Wjw kð Þ
1:N ; q

kð Þ;X kð Þ; ~X ; ~Y
� �

/ p w kð Þ
1:N jW

� �
p Wð Þ: ð7Þ

When conjugate hyperdistributions and priors are used, the
conditional posterior (7) can be sampled analytically (“Gibbs
sampling”) [Gelman et al., 2004].More generally, however, a
Metropolis acceptance‐rejection step (section 2.1) is used to
sample from the probability density function (pdf) in eqn (7).
[14] Block 2: Sample the latent variables w1:N

(k+1) from their
conditional posterior

p w1:N jq kð Þ;W kþ1ð Þ;X kð Þ; ~X ; ~Y
� �

/ p ~Y jq kð Þ;w1:N ;X kð Þ; ~X
� �

p w1:N jW kþ1ð Þ
� �

: ð8Þ

The implementation of this step lies at the focus of this note
and is detailed in the next section.
[15] Block 3: Sample the time‐invariant CRR parameters

and the output error parameters (q(k+1), X(k+1)) from their
conditional posterior

p q;Xjw kþ1ð Þ
1:N ;W kþ1ð Þ; ~X ; ~Y

� �
/ p ~Y jq;w kþ1ð Þ

1:N ;X; ~X
� �

p qð Þp Xð Þ
ð9Þ

Again, while conjugate probability models permit direct
Gibbs sampling, in general sampling from (9) is implemented
using a Metropolis iteration.

3.3. Epoch‐by‐Epoch MCMC Sampler

[16] Since direct sampling of w1:N
(k+1) from its conditional

posterior in Block 2 is usually impossible, MH sampling is
used. The temporal structure of latent variables w suggests
epoch‐by‐epoch sampling. For the jth epoch within the kth
iteration, we sample wj

(k+1) from the conditional posterior
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p(wj∣w1:j−1
(k+1), wj+1:N

(k) , q(k), W(k+1), X(k), ~X , ~Y ), with the MH
jump ratio

Such algorithms are often referred to as “Metropolis‐within‐
Gibbs” [e.g., Reichert and Mieleitner, 2009; Roberts and
Rosenthal, 2009].

3.4. The Likelihood Ratio: A Computational Bottleneck

[17] The evaluation of the likelihood ratio in (10),

�
kþ1ð Þ
j ¼

p ~Y jw kþ1ð Þ
1:j�1 ;w

* kþ1ð Þ
j ;w kð Þ

jþ1:N ; q
kð Þ;X kð Þ; ~X

� �

p ~Y jw kþ1ð Þ
1:j�1 ;w

kð Þ
j ;w kð Þ

jþ1:N ; q
kð Þ;X kð Þ; ~X

� � ð11Þ

dominates the CPU cost of MCMC methods for physically
motivated models H commonly used in environmental
engineering contexts, because it requires the numerical
solution of the (usually coupled nonlinear) differential
equations underlying the model H, which is far costlier
than evaluating the hyperdistributions [e.g., Fu and Gomez‐
Hernandez, 2009].
[18] Ratio (11) can be expanded with respect to the epoch

index j as

where, for convenience, we define q(~Y ∣w1:j−1, wj, wj+1:N) =
p(~Y ∣w1:j−1, wj, wj+1:N, q(k), X(k), ~X ).
[19] The “past relative to j” term drops out because epochs

1:j − 1 are causally independent from wj. However, the last
term in (12) does not cancel out because changes in storages
propagate into future epochs due to the recursive model
structure (3),

s* kþ1ð Þ
jþ1 :¼ f ~X j;w

* kþ1ð Þ
j ; q kð Þ; sj

� �
6¼ s kð Þ

jþ1 :¼ f ~X j;w
kð Þ
j ; q kð Þ; sj

� �
:

ð13Þ

These memory effects critically impact on the computational
efficiency of multiblock MCMC.

3.5. Implications for Hydrological Modeling

[20] Evaluation of (12) requires N − j + 1 epoch evalua-
tions. Since the number of epochs is roughly proportional to
the number of time steps,N/Nt, the computational cost for a
fixed number of multiblock MCMC samples isO(Nt

2), that is,
is approximately quadratic (Figure 1). Standard multiblock
MCMC hence quickly becomes very expensive even for
moderate‐length calibrations. Even the GR4J model [Perrin
et al., 2003], used operationally in French forecasting sys-
tems, with typical individual runtimes below 1 s for a few
years of data, would require days or weeks to calibrate using
input‐error sensitive approaches. For distributed models,
the cost is even more staggering (e.g., a single SWAT model
run simulating soil moisture may require several minutes
in operational settings [Tolson and Shoemaker, 2007]).
Expected runtimes of standard multiblock MCMC analysis
could then exceed months! Given the growing interest in
using CRR models to gain insights into catchment dynamics
and structural model errors [Clark et al., 2008], which
requires calibration of multiple model configurations in
multiple catchments while accounting for input errors, such

a computational burden is a serious practical impediment and
is discouraging to a practitioner.

3.6. A Limited‐Memory MCMC Sampler

[21] Reducing the computational cost of the inference re-
quires addressing the storage memory issue. Simply ignoring
it cuts the computational cost up to by a factor of N:

�
kþ1ð Þ
j ¼

q ~Y jjw kþ1ð Þ
1:j�1 ;w

* kþ1ð Þ
j

� �

q ~Y jjw kþ1ð Þ
1:j�1 ;w

kð Þ
j

� � : ð14Þ

r w* kþ1ð Þ
j jw kð Þ

j

� �
¼

p w* kþ1ð Þ
j jw kþ1ð Þ

1:j�1 ;w
kð Þ
jþ1:N ; q

kð Þ;W kþ1ð Þ;X kð Þ; ~Y ; ~X
� �

p w kð Þ
j jw kþ1ð Þ

1:j�1 ;w
kð Þ
jþ1:N ; q

kð Þ;W kþ1ð Þ;X kð Þ; ~Y ; ~X
� � �

J w kð Þ
j jw* kþ1ð Þ

j

� �

J w* kþ1ð Þ
j jw kð Þ

j

� �

¼
p ~Y jw kþ1ð Þ

1:j�1 ;w
* kþ1ð Þ
j ;w kð Þ

jþ1:N ; q
kð Þ;X kð Þ; ~X

� �

p ~Y jw kþ1ð Þ
1:j�1 ;w

kð Þ
j ;w kð Þ

jþ1:N ; q
kð Þ;X kð Þ; ~X

� � �
p w* kþ1ð Þ

j jW kþ1ð Þ
� �

p w kð Þ
j jW kþ1ð Þ

� � �
J w kð Þ

j jw* kþ1ð Þ
j

� �

J w* kþ1ð Þ
j jw kð Þ

j

� � :

ð10Þ

�
kþ1ð Þ
j ¼ QN

i¼1

q ~Y ijw kþ1ð Þ
1:j�1 ;w

* kþ1ð Þ
j ;w kð Þ

jþ1:N

� �

q ~Y ijw kþ1ð Þ
1:j�1 ;w

kð Þ
j ;w kð Þ

jþ1:N

� �

¼
Yj�1

i¼1

q ~Y ijw kþ1ð Þ
1:i

� �

q ~Y ijw kþ1ð Þ
1:i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

past relative to j

�
q ~Y jjw kþ1ð Þ

1:j�1 ;w
* kþ1ð Þ
j

� �

q ~Y jjw kþ1ð Þ
1:j�1 ;w

kð Þ
j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

present j

�
YN�j

i¼1

q ~Y jþijw kþ1ð Þ
1:j�1 ;w

* kþ1ð Þ
j ;w kð Þ

jþi:N

� �

q ~Y jþijw kþ1ð Þ
1:j�1 ;w

kð Þ
j ;w kð Þ

jþi:N

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

future relative to j

¼
q ~Y jjw kþ1ð Þ

1:j�1 ;w
* kþ1ð Þ
j

� �

q ~Y jjw kþ1ð Þ
1:j�1 ;w

kð Þ
j

� � �
YN�j

i¼1

q ~Y jþijw kþ1ð Þ
1:j�1 ;w

* kþ1ð Þ
j ;w kð Þ

jþi:N

� �

q ~Y jþijw kþ1ð Þ
1:j�1 ;w

kð Þ
j ;w kð Þ

jþi:N

� � ;

ð12Þ
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However, applying (14) to a recursive model (3) can seriously
alter its posterior distribution, degrading the quality of the
inference. Fortunately, a much better alternative is possible.
[22] Note that the memory effect (13) decays over time

because the CRR model “forgets” differences in the initial
conditions at the jth epoch expressed by (13). The likelihood
ratio can then be approximated by marching forward from
epoch j and terminating afterMj

(k+1) (t)�N epochs, when the
likelihood ratio converges to within a prespecified numerical
tolerance t. Convergence can be tested as follows,

�
kþ1ð Þ
j �ð Þ ¼

q ~Y jjw kþ1ð Þ
1:j�1 ;w

* kþ1ð Þ
j

� �

q ~Y jjw kþ1ð Þ
1:j�1 ;w

kð Þ
j

� �

�
YM kþ1ð Þ
j �ð Þ

i¼1

q ~Y jþijw kþ1ð Þ
1:j�1 ;w

* kþ1ð Þ
j ;w kð Þ

jþ1:jþi

� �

q ~Y jþijw kþ1ð Þ
1:j�1 ;w

kð Þ
j ;w kð Þ

jþ1:jþi

� � ; ð15Þ

M kþ1ð Þ
j �ð Þ

:¼ min i½ � such that log
q ~Y jþijw kþ1ð Þ

1:j�1 ;w
* kþ1ð Þ
j ;w kð Þ

jþ1:jþi

� �

q ~Y jþijw kþ1ð Þ
1:j�1 ;w

kð Þ
j ;w kð Þ

jþ1:jþi

� �
0
@

1
A

������

������ � �:

ð16Þ

This approach exploits the decaying memory of CRR models
and any other model based on (stable) initial‐value DEs
such as (3): the influence of initial conditions vanishes over
time.
[23] We refer to algorithm (15) as the “limited‐memory”

MCMC sampler. The naming is inspired by “limited‐
memory” quasi‐Newton methods for large‐scale optimization

[Nocedal and Wright, 1999], which also exploit the decaying
memory of convergent recursive relations.

4. Empirical Assessment

4.1. Experimental Setup

[24] We now compare four MCMC samplers for CRR
model inference, including three multiblock samplers dif-
fering in model memory treatment: (i) “full‐memory” (12),
(ii) “no‐memory” (14), and (iii) limited‐memory (15) with
t = 10−3. For consistency, all multiblock schemes sample one
variable at a time using univariate Gaussian jump pdfs. A
single‐block Metropolis with a multivariate Gaussian jump
pdf is used to independently confirm the accuracy of the
samplers and to motivate an efficient hybrid MCMC strategy.
Since the single‐block Metropolis was pretuned over a series
of trial runs, its practical computational cost is notably higher
than may appear solely from the reported CPU time for
generating the output samples.
[25] Note that the important topic of adaption of jump

distributions [e.g., Roberts and Rosenthal, 2009; Vrugt et al.,
2009] lies largely outside the scope of this technical note,
which focuses strictly on accelerating the evaluation of the
jump ratio. The multiblock samplers were tuned based on
jump rates [Gelman et al., 2004], while the single‐block
Metropolis was preoptimized using the results of the multi-
block sampler. The same statistical models and assumptions
were employed in all MCMC methods, ensuring that differ-
ences between the multiblock samplers are dominated by the
treatment of model memory.
[26] The accuracy and efficiency of the samplers were

stringently verified using a synthetic case study. The “true”
inputs comprised 6 years of observed daily rainfall and
potential evapotranspiration for the 129 km2 Yzeron catch-
ment (France). The GR4J model [Perrin et al., 2003]
simulated the “true” daily streamflow using known “true”
parameters. The “observed” streamflow was corrupted with
10% heteroscedastic Gaussian errors, while the “observed”
rainfall was corrupted with log‐normal multiplicative errors,
loge 8 ∼ N(0.0, 0.252).

4.2. Results and Discussion

[27] Figure 1 reports the CPU time to generate 10,000
MCMC samples and its dependence on the calibration data
length, while Figure 2 shows the posterior distributions
estimated from 1 year of data (86 epochs). Figure 1 lucidly
illustrates the rapid CPU cost growth of the full‐memory
sampler with increasing calibration periods. As expected
from algorithmic considerations (section 2.5), CPU time
increases approximately quadratically with Nt, prohibiting
the use of long calibration data sets. However, while the
no‐memory algorithm drastically cuts the CPU time, it pro-
vides a very poor approximation of the actual posterior. Even
allowing a one‐epoch memory [M = 1 in equation (15)]
results in a significantly misspecified mode and a markedly
overestimated posterior uncertainty, while the no‐memory
approximation was off the charts. This confirms that un-
controllably modifying the model to discard its history is
unacceptable.
[28] In contrast, the limited‐memory algorithm provides a

very close approximation to the distributions obtained using
the full‐memory and single‐block schemes. This confirms the

Figure 1. CPU time to generate 10,000 MCMC samples
from the BATEA posterior of GR4J, as a function of the cal-
ibration data length. A 2.0 GHz laptop CPU with 1 GB of
RAM was used.
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robustness of the convergence test (16), which ensures that
the jump ratio of the limited‐memory algorithm is within a
tolerance of the jump ratio of the full‐memory method. Note
that while both the full‐memory and single‐block methods
converge to the target posterior (5), for a finite number of
samples they inevitably exhibit minor discrepancies due to
(1) different autocorrelation structure of “epoch‐by‐epoch”
versus “all‐at‐once” sampling and (2) histogram smoothing
to estimate the underlying probability densities. Since in
practice MCMC methods are seldom run to perfect con-
vergence (nor is this even feasible in most cases), the dis-
crepancies in Figure 2 are withinMCMC sampling variability
and other approximation errors. Importantly, tightening the
tolerance t forces a progressively closer agreement between
the limited‐memory method and its full‐memory counterpart.
[29] The CPU cost of the limited‐memory sampler is near

linear with respect to calibration length. In particular, it
was only 2–4 times slower than the no‐memory sampler.
In general, the computational acceleration of the limited‐
memory approximation depends on the calibration data and
its epochs, the catchment response time, the CRR model, and
the limited‐memory tolerance t. In this study, Figure 1 sug-
gests an acceleration by a factor of 20 for the GR4J model
applied to 6 years of daily data (463 epochs) with memory
tolerance t = 10−3.
[30] Finally, the single‐block (“all‐at‐once”) sampler with

pretuned jump distributions is generally more efficient than
multiblock schemes because it requires only a single CRR
model run per sample. However, in the absence of tuning it
can be very inefficient and slowly convergent because a
poorly selected high‐dimensional jump distribution can lead
to particularly poor mixing of the MCMC chains (e.g., see Fu
and Gomez‐Hernandez [2009] for an analysis of the effect of
block‐size on MCMC convergence). Moreover, adapting a
high‐dimensional jump distribution creates a considerable
overhead not reported in this technical note because it is case
specific and depends on the MCMC initialization and adap-
tion strategies.

[31] Given the difficulty in tuning high‐dimensional jump
distributions, a hybrid MCMC strategy that exploits the
limited‐memory multiblock sampler to estimate a good jump
distribution for a single‐block Metropolis sampler can be
advantageous. Since the multiblock sampler uses simple
univariate Gaussian distributions in all blocks, their variances
can be readily estimated and tuned. Once sufficient sam-
ples have been obtained, the entire covariance matrix can be
estimated and kept fixed in a single‐block Metropolis sam-
pler. The design and evaluation of the hybridMCMC strategy
will be detailed in a separate study.

5. Concluding Remarks

[32] Hierarchical methods such as BATEA hold consid-
erable promise for environmental modeling (seeCressie et al.
[2009] for a state‐of‐the‐art discussion). However, standard
multiblockMCMC samplers (e.g., Metropolis‐within‐Gibbs)
commonly used in the Bayesian hierarchical literature are
computationally infeasible for recursive hydrological models
simulating time‐evolving storages (e.g., soil and ground-
water). A careful “limited‐memory” implementation of the
jump ratio in the multiblock MCMC algorithm, exploiting
the decaying memory of hydrological systems, overcomes
the computational inefficiency, while controlling the accu-
racy using a numerical tolerance. We stress the broad appli-
cability of the limited‐memory acceleration strategy detailed
in this note: it can be exploited by other hierarchical Bayesian
MCMC formulations [Cressie et al., 2009], and, more gen-
erally, it can be used for other computationally expensive
recursive models with decaying memory.
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