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Abstract 

The problem of crack detection has been studied by many researchers, and many methods 

of approaching the problem have been developed. To quantify the crack extent, most methods 

follow the model updating approach. This approach treats the crack location and extent as 

model parameters, which are then identified by minimizing the discrepancy between the 

modeled and the measured dynamic responses. Most methods following this approach focus on 

the detection of single-crack or multi-crack in situations in which the number of cracks is 

known. The main objective of this paper is to address the crack detection problem in a general 

situation in which the number of cracks is not known in advance. 

The crack detection methodology proposed in this paper consists of two phases. In the first 

phase, different classes of models are employed to model the beam with different numbers of 

cracks, and the Bayesian model class selection method is then employed to identify the most 

plausible class of models based on the set of measured dynamic data in order to identify the 

number of cracks on the beam. In the second phase, the posterior (updated) probability density 

function (PDF) of the crack locations and the corresponding extents is calculated using the 

Bayesian statistical framework. As a result, the uncertainties that may have been introduced by 

measurement noise and modeling error can be explicitly dealt with. 

The methodology proposed herein has been verified by and demonstrated through a 

comprehensive series of numerical case studies, in which noisy data was generated by a 

Bernoulli-Euler beam with semi-rigid connections. The results of these studies show that the 

proposed methodology can correctly identify the number of cracks even when the crack extent 

is small. The effects of measurement noise, modeling error, and the complexity of the class of 

identification model on the crack detection results have also been studied and are discussed in 

this paper. 
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1 Introduction 

The problem of crack detection has been studied by many researchers, and many methods 

following different approaches and based on different assumptions have been developed. A 

comprehensive review of recent developments can be found in Sohn et al. (2004). Most of the 

crack detection methods in the literature have focused on single-crack cases (Cawley & Adams 

1979; Rizos et al. 1990; Liang et al. 1991; Narkis 1994; Nandwana & Maiti 1997). For methods 

that have addressed multi-crack situations, it has been assumed that the number of cracks was 

known in advance. Ostachowicz and Krawczuk (1991) studied the forward problem of a beam 

structure with two cracks. They expressed the changes in dynamic behavior as a function of 

crack location and extent. Ruotolo and Surace (1997) studied the inverse problem of the crack 

detection of beam structures utilizing natural frequencies and mode shapes. They formulated 

the crack detection process (estimating the location and extent of cracks) as an optimization 

problem, and solved it by genetic algorithm when the number of cracks was known. Similarly, 

Law and Lu (2005) proposed the use of measured time-domain responses in the detection of a 

given number of cracks on a beam structure through optimization algorithms. The difficulty 

with this method is that the number of cracks on a beam is generally not known before crack 

detection. 

Lam et al. (2005) studied the use of spatial wavelet transform in the detection of the crack 

location and extent of an obstructed beam using the Bayesian probabilistic framework in which 

there is only one crack on the structural member. One of the objectives of this paper is to extend 

the work of Lam et al. (2005) to the multi-crack cases in which the number of cracks is not 

known in advance. The crack detection methodology proposed here is divided into two phases. 

In the first phase, the Bayesian model class selection method (Beck & Yuen 2004) is employed 

to identify the number of cracks based on a given set of measured dynamic data. Once the 

number of cracks has been identified, the posterior probability density function (PDF) of the 

locations and extents of the cracks are then calculated using the Bayesian statistical framework 

(Beck & Katafygiotis 1998) in the second phase. Unlike the deterministic approach, which 

focuses on pinpointing crack locations and extents, the objective of the crack detection 

methodology proposed in this paper is to calculate the posterior (or updated) probability density 

function (PDF) of the crack locations and extents. The PDF conveys valuable information to 

engineers about the confidence level of the crack detection results. 

The organization of this paper is as follows. In Section 2, the proposed methodology is 
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presented and the related background theories, such as the modeling of the cracked beam, the 

Bayesian model class selection, and the Bayesian statistical framework, are reviewed. Section 3 

reports the results of a series of comprehensive numerical case studies, which verify and 

demonstrate the proposed crack detection methodology. The effects of measurement noise, 

modeling error, and the complexity of the class of identification model on the results of crack 

detection are then discussed, based on the results of these case studies. Conclusions are drawn 

at the end of the paper. 

2 Proposed Methodology and Background Theories 

The proposed crack detection methodology consists of two phases. The number of cracks is 

identified in the first phase and the PDF of crack location and extent is calculated in the second 

phase. 

The basic strategy in the first phase is to adopt different classes of models for beams with 

different numbers of cracks (see Figure 1) and to identify the “best” model class based on a set 

of dynamic measurement D  following the Bayesian model class selection method (Beck & 

Yuen 2004). In Figure 1, the model class jM  is employed in modeling a beam with j cracks for 

MNj ,,0  , where MN  is the maximum number of cracks to be considered in the crack 

detection process, and the parameters jl  and j  are used to describe the location and extent 

of the jth crack. 

It must be pointed out that the selection of the “best” model class based on a given set of 

data is not trivial. It is clear that the model class of a beam with more cracks consists of more 

model parameters (e.g., 2M  has two additional model parameters 2l  and 2  when 

compared to 1M  as shown in Figure 1). A model class with more parameters will always 

provide a better fit to the measurement when compared to a model class with fewer parameters. 

Consider a double-crack case as an example: in the presence of measurement noise, the optimal 

model in the 3-crack model class ( 3M ) will fit the measurement better than that in the 2-crack 

model class ( 2M ), as the additional parameters 3l  and 3  in 3M  can be used to compensate 

for the effect of measurement noise. In the extreme situation of selecting an 3M -model (i.e., a 

model in the model class 3M ) with 03   and other parameters the same as in those of the 

optimal 2M -model ( 3l  can take any value when 3  is equal to zero), this 3M -model can fit 
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the measurement as well as the optimal 2M -model. Therefore, the selection of model class 

based solely on the fitting between the modeled and the measured dynamic responses can be 

very misleading, as the most complex model class will always be selected. In this paper, the 

Bayesian model class selection method is employed in choosing the “best” class of models 

based on a given set of data for the purpose of identifying the number of cracks. A brief review 

of the Bayesian model class selection method is presented in Section 2.2. 

In the second phase of the methodology, the posterior PDF of the crack locations and the 

corresponding extents are calculated following the Bayesian statistical framework (Beck & 

Katafygiotis 1998), which is briefly reviewed in Section 2.3. The following section covers 

details concerning the modeling of a beam with multiple cracks. 

2.1 Modeling and parameterization of cracked beams 

For an Bernoulli-Euler beam, the governing equation of motion under free vibration is: 

 
   4 2

4 2

, ,
0

y x t y x t
EI m

x t

 
 

 
 (1) 

where EI  is the flexural rigidity; m  is the mass density (mass per unit length); and y  is the 

transverse deflection of the beam. By separation of variables ( , ) ( ) ( )y x t x z t , the 

displacement ( , )y x t  can be separate as the modal amplitude ( )z t  and the mode shape 

function ( )x . Thus, the mode shape function is: 

 
 

 
4

4

4
0

d x
x

dx


    (2) 

where 4 2 /m EI  ; and   is the angular natural frequency of the system in radians per 

second.  

Figure 2 

Figure 2 shows the model of a beam with CN  cracks. The beam is divided into 1CN   

segments, each with length il , for i = 1, …, 1CN  , where Ll
CN

i i 




1

1
. The segments are 

connected at the crack locations through mass-less rotational springs. The general solution of 

the   function for each segment can be expressed as: 

          sin sinh cos coshi i i i i i i i i ix A x B x C x D x         (3) 

where 1, , 1Ci N  ; iA , iB , iC and iD are unknown coefficients to be calculated from 

boundary and continuity conditions. The four boundary conditions are: 
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where LK  and RK  are the stiffness coefficients of the rotational springs at the left and right 

ends of the beam respectively. The rotational springs model the semi-rigid behavior of the beam 

end connections (Chen & Kishi 1989). At the general ith segment of the beam, the following 

four continuity conditions must be satisfied: 
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 (5) 

where 1,..., Ci N ; i  is the non-dimensional flexibility parameter to characterize the extent 

of the ith crack. The relationship between the crack extent i  and the crack depth ratio 

/i ia h   can be found in Ostachowicz et al. (1991) as: 

  26i i i

h
f

L
 

 
   

 
 (6) 

where h  is the beam depth; ia  is the depth of the ith crack (see  

Figure 2Figure 2); and the function  if   is given by: 

   2 3 4 5 60.6384 1.035 3.7201 5.1773 7.553 7.332 2.4909i i i i i i if                (7) 

By equations (6) and (7), a crack extent ( i ) of values 0.03 and 0.05 correspond to crack depth 

of 33% and 41%, respectively, of the overall depth of the beam section h. 

A characteristic equation is obtained by equations (3), (4), and (5). An infinite number of 

solutions can then be calculated and denoted by k  for  .,1k . For each k , the natural 

frequencies k  and mode shape k  of the system can be computed, and the overall response 

of the beam can be expressed as: 

      
1

, k k

k

y x t x z t




  (8) 

where ( )k x  is the mode shape function of the kth mode; ( )kz t  is the kth modal amplitude. By 
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assuming that all modes are uncoupled, and the damping ratio of the kth mode is k , the modal 

amplitude of the kth mode ( )kz t  can be calculated as: 

        tPtztztz kkkkkkk  22    (9) 

where ( )kP t  is the excitation of the kth mode. The time-domain responses of the beam can then 

be calculated by the method of modal superposition. 

According to Katafygiotis et al. (2000), the uncertainties associated with the stiffness of 

the rotational spring, which is employed to model the semi-rigid connection, are much larger 

than those associated with other model parameters, such as the modulus of elasticity and the 

mass density of the structural member. Therefore, it is proposed here that the rotational 

stiffnesses be included as uncertain parameters in the Bayesian statistical framework. It must be 

pointed out that an increase in uncertainties associated with the crack detection results is the 

tradeoff for including additional uncertain parameters without increasing the number of 

measured data points in D. The effects of including the rotational stiffnesses as uncertain 

parameters are illustrated in the numerical case study. 

The numerical values of the rotational stiffnesses are of a different order of magnitude to 

other uncertain parameters, such as the damage locations and extents. In order to prevent a 

numerical problem, it is proposed here that the rotational stiffness be normalized by the bending 

rigidity of the beam as: 

 L R
L R

K K
K and K

EI EI
   (10) 

where LK
~

 and RK
~

 are the normalized rotational stiffnesses at the left and right ends of the 

beam respectively. 

The reference system (healthy status) is represented by the model class 0M  ( 0j ), in 

which the vector of uncertain model parameters is 0 { , , }T

L RK K a , where the subscript of a  

represents the number of cracks. Because the bending rigidity ( EI ) and the mass density (  ) 

can usually be measured or calculated with a high degree of accuracy, they are not included as 

uncertain parameters in the numerical case study. In general, the uncertain parameter vector for 

the class of models with j cracks, jM , is: 

  1 2 1 2, , , , , , , , ,
T

j L R j jK K l l l   a  (11) 

The total number of uncertain parameters is 32 j . It is assumed that the damping ratios for all 

modes are the same and equal to   in order to reduce the number of uncertain parameters in 
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the Bayesian statistical framework. 

2.2 Identification of the number of cracks by Bayesian model class 
selection  

As shown in Figure 1, jM  is the class of models of beams with j crack for MNj ,,0  , 

where 0M  corresponds to a beam with no crack; and MN  is the maximum number of cracks 

to be considered in the crack detection process. In the first phase of the proposed methodology, 

the goal is to use the set of measured dynamic data D  to select the “best” class of models from 

among 1MN  prescribed classes of models. From equation (11),   jN

jj RS  aa is the 

vector of uncertain model parameters, such as the crack locations and extents, to be identified 

following the Bayesian statistical framework, where jN  is the dimension of ja . By following 

the Bayes’ theorem, the posterior (or updated) probability density function (PDF) 

 jj MDp ,|a  for a given set of measurement D and model class jM  can be expressed as: 

      jjjjjjj MDpMpcMDp ,||,| aaa   (12) 

where jc  is a normalizing constant, and    jjj Mp aa |  is the prior PDF of the set of 

uncertain model parameters ja , which allows the judgment about the relative plausibility of 

the values of the uncertain parameters to be incorporated. A uniform prior PDF, such that the 

posterior PDF depends solely on the data, can always be chosen;  jj MDp ,| a  is the 

likelihood of the data given ja  of model class jM , which, under the assumption of 

independent Gaussian prediction errors, is given by: 

  
 

 











 jj

j

O

NN

j

jj MDJ
NN

MDp
O

,|
2

exp
2

1
,|

2
aa


 (13) 

where j  is the standard deviation of the target error; N is the total number of measured data 

points at one observed degree of freedom (DOF); and ON  is the number of observed DOFs. 

The function  jj MDJ ,|a  in equation (13) is the contribution of the measured dynamic data, 

and is given by (Beck & Katafygiotis 1998): 

      



N

n

jjO

O

jj Mnn
NN

MDJ
1

2

,;ˆ
1

,| aqya  (14) 

where  jjO Mn ,;aq  is the vector of calculated response (at the observed DOFs) at the nth 

time step for a given model ja  in jM ;  nŷ  is the vector of measured response, both 
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 ; ,O j jn Mq a  and  nŷ  are of dimensions oN  by 1; and .  denotes the Euclidean norm of 

a vector. A smaller value of  jj MDJ ,|a  in equation (14) implies a better fit to the 

measurement by the corresponding model ja . The “optimal” (or “best”) model ja  in a given 

model class jM for a given set of data D can be identified by maximizing the posterior PDF 

 jj MDp ,|a  in equation (12). When a uniform prior PDF (non-informative prior) is chosen in 

equation (12), this is equivalent to maximizing the likelihood  jj MDp ,| a  in equation (13) or 

minimizing the  jj MDJ ,|a  function in equation (14). 

According to Cox (1961), probability can be interpreted as a measure of plausibility based 

on specified information. In other words, the probability of a class of models conditional on the 

set of dynamic data D is required in order to determine the most plausible model class. This 

conditional probability can be formulated by again following the Bayes’ theorem as (Beck & 

Yuen 2004): 

  
   

 

| , |
| ,

|

j j

j

p D M U P M U
P M D U

p D U
   for  0,..., Mj N  (15) 

where       


MN

j jj UMpUMDpUDp
0

|,||  by the theorem of total probability (Beck & 

Yuen 2004), and  UDp |1  can be treated as a normalizing constant; U  expresses the user’s 

judgment on the initial plausibility of the model classes;  UMP j |  is the prior probability of 

the model class jM  based on the judgment of engineers, where   1|
0

 

MN

j j UMP . Unless 

there is prior information about the number of cracks on the beam, the prior probability 

( | )jP M U  can be taken as 1 ( 1)MN  . The most important term in equation (15) is the 

evidence ( | , )jp D M U  for the model class jM  provided by the data D. The class of models 

to be used is obviously the one that maximizes the probability ( | , )jP M D U  and this is in 

general equivalent to the one that maximizes the evidence ( | , )jp D M U  with respect to jM . 

It must be pointed out that U  is irrelevant in ( | , )jp D M U  and so it can be dropped hereafter 

in the notations because it is assumed that jM  alone specifies the PDF for the data. 

For a globally identifiable case, the evidence can be calculated based on an asymptotic 

approximation (Papadimitriou et al. 1997): 

          2

1

2 ˆ|ˆ2,ˆ||


 jjjj

N

jjj MpMDpMDp
j

aHaa    for  MNj ,,0   (16) 
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where ˆ
ja  denotes the optimal model in the model class jM  (the set of optimal model 

parameters ja ). ˆ
ja  can be obtained by maximizing the posterior PDF  jj MDp ,|a  in 

equation (12); jN  is the number of uncertain model parameters in jâ ; ˆ( )j jH a  is the Hessian 

of the function ( )jg a  evaluated at the optimal model jâ , where ( )jg a  is given by: 

       jjjjj MDpMpg ,||ln aaa   (17) 

For unidentifiable cases, the evidence ( | )jp D M  can be calculated by using an extension 

of the asymptotic expansion used in equation (16) (Beck and Katafygiotis 1998; Katafygiotis et 

al. 1998). The discussion here will focus on globally identifiable cases. The interested reader is 

directed to references (Beck and Katafygiotis 1998; Katafygiotis et al. 1998; Katafygiotis et al. 

2000) and (Katafygiotis et al. 2000; Katafygiotis and Lam 2002) for, respectively, details about 

the classification of identifiable and unidentifiable problems and the approximation of the 

likelihood  jj MDp ,| a  in equation (12) in the general unidentifiable problem.  

The evidence ( | )jp D M  in equation (16) consists of two factors. The first factor 

ˆ( | , )j jp D Ma  is the likelihood factor. This will be larger for those model classes that make the 

probability of the data D higher, that is, those that give a better “fit” to the data, which favors 

model classes with more parameters (model classes with higher complexity). The second factor 

2 1 2ˆ ˆ(2 ) ( | ) | ( ) |jN

j j j jp M 
a H a  is called the Ockham factor (Gull 1988). Beck and Yuen 

(2004) showed that the value of the Ockham factor decreases as the number of uncertain 

parameters in the model class increases and, therefore, it provides a mathematically rigorous 

and robust penalty against parameterization. The combination of these two factors allows to 

select a model class that, on one hand, is complex enough to provide a “good fit” to the 

measurement but, on the other hand, is not so complex that it “over fits” the data.  

The proposed algorithm for identifying the number of cracks on the beam is summarized 

as follows: 

1. Initialize the index 0j , and calculate the evidence ( | )jp D M  for the beam without 

crack by equation (16). 

2. Increase the index j by 1 ( 1 jj ), and calculate the evidence ( | )jp D M  for the beam 

with single crack. 

3. Compare the evidence of  1| jMDp  with that of ( | )jp D M . If 

   jj MDpMDp || 1  , then 1jM  is the “best” class of models. Otherwise, increase the 
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index j by 1 ( 1 jj ) and repeat this step. 

By following this simple algorithm, the proposed methodology can identify the number of 

cracks, say CN , by calculating the evidence of the model classes 0M , 1M , …, 1CNM  . The 

maximum number of cracks to be considered MN  is equal to 1CN . It should be noted that 

during the calculation of the evidence ( | )jp D M , the uncertain model parameters are 

determined by optimizing equation (13). 

2.3 Identification of the updated PDF of crack locations and extents by 
Bayesian statistical framework 

After identifying the number of cracks CN , by the Bayesian model class selection method, 

the goal in the second phase is to calculate the posterior PDF  
CC NN MDp ,|a  of the set of 

uncertain model parameters 
CNa  in the model class 

CNM . This can be obtained from equation 

(12) by setting CNj  .  

For a globally identifiable case, Beck and Katafygiotis (1998) demonstrated that the 

posterior PDF  
CC NN MDp ,|a  is very peaked at a finite number of optimal models that 

globally minimize the  
CC NN MDJ ,|a  function in equation (14) (with CNj  ) within the 

bounded parameter space  
CNS a . By following the algorithm presented in Katafygiotis & 

Beck (1998), the finite set of optimal models  q

NC
â  for qNq ,,1  can be identified, where 

qN  is the total number of global optimal models in  
CNS a . 

The posterior PDF of the model parameters 
CNa  for the given set of dynamic 

measurement D and model class 
CNM  can then be approximated as a weighted sum of 

Gaussian distributions centered at the qN  optimal models, as in Beck and Katafygiotis (1998): 

        



q

CCCC

N

q

q

NN

q

NqNN AwMDp
1

1 ˆ,ˆ,| aaNa  (18) 

where ( , )N μ Σ  denotes a multivariate Gaussian distribution with mean μ  and covariance 

matrix Σ . The covariance matrix 
  q

NN C
A â

1  is the Hessian of the function 

 
CC NNJ MDJN ,|ln a  evaluated at 

 q

NC
â , where  

CC NN MDJ ,|a  is given by equation (14) 

and ( 1) 2J oN NN  . The weighting coefficients in equation (18) are given by: 
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







qN

q

q

q

q

w

w
w

1

 where       2

1

ˆˆ


 q

NN

q

Nq CC
Aw aa  (19) 

where   q

NC
â  is the prior PDF  

CC NN Mp |a  in equation (12) of the set of uncertain model 

parameters 
CNa  evaluated at  q

NC
â . 

Instead of pinpointing the crack locations and extents, the proposed crack detection 

methodology focuses on calculating the posterior PDF of the model parameters 
CNa . As a 

result, the level of the crack detection results can be quantified with confidence. This 

information is extremely important for engineers who are making judgments about remedial 

work. 

3 Numerical Case Study 

A Bernoulli-Euler beam with length 0.4 m is employed in the numerical case study 

presented here to verify the proposed crack detection methodology. Because there is no 

perfectly rigid or pin connection in a real situation, the beam end connections are considered to 

be semi-rigid and are modeled by rotational springs with constant stiffnesses. The nominal 

dimensions and material properties of the beam are summarized in Table 1. In the simulation of 

measured dynamic responses, the beam is assumed to be classically damped with a critical 

damping ratio of 1% for all modes ( 01.0 ). Measurement noise is considered by adding a 

5% white noise to the calculated dynamic responses in all cases. Only 0.4 sec of data with 1000 

Hz sampling frequency is employed in the crack detection process and, therefore, the number of 

measured data points N in equation (13) is 401. Four sensors are evenly installed on the beam 

for measuring the vertical vibration at 0.08 m, 0.16 m, 0.24 m, and 0.32 m from the left end of 

the beam. 

The results of six cases (Cases A to F) are presented in this paper. The case identification, 

true values of crack number, rotational stiffness, and crack parameters, together with the vector 

of uncertain parameters of the class of identification model for all cases, are summarized in 

Table 2. In the last column of the table, the index j represents the number of cracks considered 

in the class of identification models. Note that there is no jl  or j  in the list of uncertain 

parameters for 0M  (the model class of undamaged beam). For Cases A and C, they are 

 , ,j L RK K a  and  ,j K a , respectively. 
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In Cases A, B, and C, there is only one crack at 0.18 m from the left end of the beam 

( m18.01 l ) with crack extent 05.01   (the depth of the crack is 41% of the beam depth). 

The normalized rotational stiffnesses at the left and right ends of the beam are 0.1 and 0.2, 

respectively. Furthermore, the impact force is applied at the middle of the beam. Case A is used 

to illustrate the proposed crack detection methodology procedure. The main purpose of Cases B 

and C is to test the effects of model complexity and model error on the results of crack 

detection. 

In Case D, there are two cracks at 0.14 m and 0.18 m from the left end of the beam 

( m14.01 l  and m04.02 l measured from the location of the first crack) with crack extents 

05.01   and 03.02  , respectively (the depth of the crack is about 40% and 32%, 

respectively, of the beam depth). The purpose of Case D is to verify the use of the proposed 

methodology in situations in which there is more than one crack on the beam. Case E also has 

two cracks, but the crack extents are smaller than those in Case D ( 01.021  , equivalent 

to a crack depth of 19% of the beam depth). There are three cracks in Case F, which are at 0.14 

m, 0.18 m, and 0.26 m from the left end of the beam ( m14.01 l , m04.02 l , and 

m08.03 l ) with crack extents equal to 0.05, 0.03, and 0.04, respectively ( 05.01  , 

03.02  , and 04.03  ). These final two cases are used to test the proposed methodology in 

small crack and multi-crack situations. For Cases D, E, and F, the rotational stiffnesses of the 

left and right ends of the beam are 0.2 and 0.4, respectively, and the impact location is at one 

third of the beam. 

3.1 Case A 

Case A is a simple case to demonstrate the procedures of the proposed methodology when 

there are only one crack on the beam. In this case, the left and right normalized rotational 

stiffnesses ( LK
~

 and RK
~

), together with the damping ratio ( ), are considered as uncertain 

parameters in the class of identification models. 

The proposed crack detection methodology begins by calculating the logarithm of the 

evidence in equation (16) for 0M  and 1M , which are the model classes for beams with zero 

and single crack, respectively. The logarithm is used because the numerical values of the 

evidence are usually very large, which may cause computational problems. The calculated 

results are summarized in Table 3. It is clear from the table that the logarithm of the evidence of 
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1M  (12837) is larger than that of 0M  (8282) and, therefore, it can be concluded that the beam 

is cracked and the undamaged hypothesis can be ruled out. The evidence of the class of models 

2M  (beams with two cracks) is then calculated and summarized in Table 3. As the logarithm of 

the evidence of 2M  (12831) is smaller than that of 1M  (12837), it is concluded that there is 

only one crack on the beam, and it is not necessary to test other classes of models corresponding 

to three or more cracks. The proposed methodology successfully identifies the true number of 

cracks ( 1CN ) in this case. Table 3 also shows the logarithms of the likelihood and Ockham 

factors of the evidence. As discussed in Section 2.2, the likelihood factor is increasing and the 

Ockham factor is decreasing (i.e., its logarithm becomes more negative) as the model class 

becomes more complex (i.e., there are more model parameters). It must be pointed out that if a 

class of models is selected based solely on the ability of the model class to fit the measurement 

(i.e., the likelihood factor alone), the most complex model class will always be chosen. 

Based on the proposed crack detection method, the optimal model 1â  and the updated 

PDF of the set of model parameters 1a  can be calculated. The normalized marginal PDF of the 

crack location and extent for the crack ( 1l  vs. 1 ) are plotted in Figure 3. Because there is only 

one optimal model within the domain of interest, there is only one peak in the marginal PDF 

plot. The figures also show that the PDF value drops significantly when one moves away from 

the optimal model 1â  in any direction. This is the typical characteristic of an identifiable case 

(Katafygiotis & Lam 2002) in model updating or structural health monitoring. The marginal 

cumulative distributions of all crack parameters are then calculated and plotted in Figures 4 and 

5. These figures provide detailed information about the uncertainties associated with the two 

crack parameters. For purpose of discussion, the coefficients of variation (COVs) for all 

uncertain parameters are calculated based on the updated PDFs and summarized together with 

the optimal parameters in Table 9. From the first row of the table (Case A), the identified crack 

location and extent are 0.1797 m and 0.0520 m, respectively. These are very close to the true 

values. The identified normalized rotational stiffnesses of the left and right ends of the beam are 

0.0981 and 0.2449, respectively. Although the identified value of the rotational stiffness of the 

right spring is not as accurate as that for other parameters, this can be explained by the relatively 

large COV (26.65%). The results show that the uncertainties associated with the rotational 

stiffnesses are much higher than those of other parameters. This result is consistent with the 

findings of Katafygiotis et al. (2000). The identified damping is close to the true value and the 

corresponding COV is small. The low uncertainty of the damping ratio is due to the fact that 
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both the simulated and the modeled dynamic responses are assumed to be classically damped. 

In the absence of model error in damping, the low uncertainty in the identified damping ratio is 

expected. 

3.2 Case B 

As mentioned in Section 2.1, the number of uncertain parameters has a significant effect 

on the uncertainties associated with the identification results. In order to demonstrate this effect, 

Case B assumes that the rotational stiffnesses of the left and right rotational springs together 

with the damping ratio are given. Although the exact values of these parameters would be 

impossible to obtain in a real situation, a comparison between Cases A and B helps in an 

understanding of the effect and importance of model class complexity on the result of crack 

detection (or system identification). 

Because there are no uncertain parameters in 0M , it is meaningless to calculate the 

evidence of this model class. If there is no crack on the beam, the calculated responses from the 

model in 0M  must be very similar to those from the measurement. Figure 6 shows the 

measured response and the calculated response by the model in 0M . Because the responses are 

very different, it is impossible for 0M  to be the true class of models, and it can therefore be 

concluded that there must be “some cracks” on the beam. In order to identify the number of 

cracks, the logarithms of the evidence for the model classes 1M  and 2M  are calculated and 

summarized in Table 4. It is clear from the table that 1M  is the most probable class of models 

and, therefore, it can be concluded that there is only one crack on the beam. 

The optimal parameters, together with the updated PDF, can then be calculated. The 

marginal cumulative distributions of the crack location and extent are plotted in Figures 7 and 8, 

respectively. Note that Figures 7 and 4 are plotted in the same scale and, therefore, they can be 

directly compared. By comparing these two figures, it becomes clear that the uncertainty of the 

identified crack location in Case A is much higher than that in Case B. A very similar 

conclusion can be drawn from comparing Figures 5 and 8 for the uncertainties associated with 

the identified crack extents in Cases A and B. The COVs are then calculated and summarized in 

the brackets of Table 9. As expected, the identified crack location and extent are close to their 

true values. A comparison of the COVs in Cases A and B shows that the uncertainties of the 

identified crack parameters in Case A are much higher than those in Case B, as suggested by the 

marginal cumulative distributions in Figures 4, 5, 7, and 8. Because the only difference between 
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Cases A and B is the number of uncertain parameters, the reduction in uncertainties from Case 

A to Case B must be caused by the decrease in model complexity. 

When the evidence of 1M  in Case A (12837 in Table 3) is compared with that in Case B 

(12850 in Table 4), it can be concluded that the 1M  model class in Case B is “better” than that 

in Case A. This is obvious, because the exact values of rotational stiffnesses and damping ratio 

are employed in Case B. 

3.3 Case C 

Case C is the same as Case A except that the two rotational springs in Case C are assumed 

to be the same and are parameterized by a parameter K
~

 in the class of identification models. 

This arrangement, on the one hand, reduces the number of uncertain parameters, but, on the 

other hand, introduces model error because the rotational stiffnesses of the real structure are 

different at the two ends. 

The evidence for the classes of models 0M  (8348), 1M  (12838), and 2M  (12833) are 

calculated and shown in Table 5. The proposed methodology selects 1M  to be the “best” 

model class, and this is the correct answer. The identified optimal parameters and the 

corresponding COVs are summarized in the third row of Table 9. As the PDFs are similar to 

those in the previous cases, they are not shown. Once again, the identified crack parameters are 

very close to the true values. Note that the identified normalized rotational stiffness is 0.1884, 

which is in between the simulated values at the left (0.1) and right (0.2) ends of the beam. 

The COVs for crack location and extent in Case C are close to those in Case A, but much 

larger than those in Case B. On one hand, the reduction in model complexity from Case A to 

Case C reduces the uncertainties associated with the identification result, but, on the other hand, 

the introduced model error increases those uncertainties. As a result, the uncertainties of the 

identification results for Cases A and C are very similar. 

The study of Cases A to C shows also the effect of model complexity in the required 

computational cost. Firstly, the computational time required for calculating the time-domain 

responses of a more complex model class is longer. Secondly, a model class with more 

uncertain parameters will result in a larger number of minimization variables in the 

minimization of the J function in equation (14). This in terms will lead to a larger number of 

iteration steps in the numerical optimization process, and therefore, a longer computational 

time. However, the computational time required for analyzing a beam is very short even in Case 
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A (the most complex model class among the three cases). 

When the evidence of 1M  in Case A (12837 in Table 3) is compared with that in Case C 

(12838 in Table 5), it is clear that 1M  in Case C is slightly “better” than that in Case A. 

However, the difference between the logarithms of the evidence in the two cases is so small that 

the two model classes can be considered of similar quality each other. 

3.4 Case D 

This case is used to test the proposed methodology in a situation in which there is more 

than one crack on the beam. The proposed crack detection methodology starts by calculating 

the logarithm of the evidence in equation (16) for 0M  and 1M . From Table 6, it is clear that 

the logarithm of the evidence of 1M  (12996) is larger than that of 0M  (8389) and, therefore, 

it can be concluded that the beam is cracked. The evidence of the class of models 2M  (beams 

with two cracks) is then calculated and is equal to 13001 (see Table 6). As the logarithm of the 

evidence of 2M  is larger than that of 1M , it is concluded that there is more than one crack on 

the beam. The algorithm continues to calculate the logarithm of the evidence of 3M , which is 

equal to 12995 and is smaller than that of 2M . Therefore, it can be concluded that there are 

only two cracks on the beam. The proposed methodology successfully identifies the true 

number of cracks ( 2CN ) in this case. The fourth row of Table 9 (Case D) shows that the 

identified locations of the first and second cracks are 0.1412 m and 0.0349 m, respectively. 

These are close to the true values (0.14 m and 0.04 m). The identified extents of the first and 

second cracks are 0.0490 and 0.0283, respectively, which are again very close to the true values 

(0.05 and 0.03). The proposed methodology successfully identifies the crack parameters in this 

case. 

3.5 Case E 

Case E tests the proposed methodology in situations in which the crack extent is small 

(18% of the overall depth of the beam). Table 7 shows the logarithms of the evidence of 0M  

(12935), 1M  (13135), 2M  (13149), and 3M  (13144) in Case E. It is clear from the table that 

there are only two cracks on the beam. The optimal parameters and the corresponding COVs 

are calculated and summarized in the fifth row of Table 9. The identified crack location and 

extent are again very close to the true values. The proposed crack detection methodology has no 
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problem in identifying the simulated cracks even when the crack depths are small. When the 

COVs of the identified parameters in Case E are compared with those in Case D, it appears that 

the uncertainties associated with the crack parameters are relatively higher when the crack 

extent is small. 

3.6 Case F 

Unlike all of the previous cases, Case F presents a situation in which there are three cracks 

with different crack depths. The logarithms of the evidence of the classes of models with zero to 

four cracks are calculated and summarized in Table 8. The logarithm of evidence increases 

from 0M  to 3M  (from 8303 to 12956) and decreases from 3M  to 4M  (from 12956 to 

12948), demonstrating that the correct number of cracks is three. The last row of Table 9 shows 

that the identified crack locations and the corresponding extents are very close to the true values 

as shown in Table 2. Therefore, it can be concluded that the proposed methodology successfully 

identifies the damage in this case. 

4 Concluding Remarks 

This paper addresses the problem of crack detection in beams utilizing a set of measured 

dynamic data. Unlike other crack detection methods in the literature, the proposed methodology 

is applicable to multi-crack cases even when the number of cracks is not known in advance. The 

proposed methodology relies on the Bayesian model class selection method to identify the 

number of cracks based on the set of dynamic measurements. The updated PDF of the crack 

location, extent, and other uncertain model parameters, such as the rotational stiffness for 

modeling the semi-rigid behavior of the beam end connections and the damping ratio, is 

calculated by the Bayesian statistical framework. 

A Bernoulli-Euler beam with semi-rigid connections at both ends is employed to verify the 

proposed methodology in a numerical case study. The results show that the proposed crack 

detection methodology can successfully identify the simulated cracks in the presence of 

measurement noise and/or modeling error. It must be pointed out that the effect of modeling 

error may increase when field test data is used instead of computer simulated data. Under such 

situation the Timoshenko beam model can be employed as the model classes of cracked beams 

in order to reduce the effect of modeling error in the results of crack detection. 

The effects of the complexity of model class on the uncertainties of the crack detection 
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results are also considered in the case study. In the absence of model error, the higher the model 

complexity (more model parameters), the higher the uncertainties associated with the 

identification results will be. When there is model error, the increase in model complexity may 

help in reducing it, and thus decreasing the uncertainties in the results of crack detection. 

Although the overall effect differs from case to case, the Bayesian statistical framework 

provides a robust measure to quantify this uncertainty. 

5 Acknowledgements 

The work described in this paper was fully supported by a grant from the Research Grants 

Council of the Hong Kong Special Administrative Region, China (Project No. CityU 

1190/04E). 

6 References 

[1] Beck, J.L. and Katafygiotis, L.S. 1998. Updating models and their uncertainties I: 

Bayesian statistical framework, Journal of Engineering Mechanics, ASCE, 124(4), pp. 

455-461. 

[2] Beck, J.L. and Yuen, K.V. 2004. Model selection using response measurement: A 

Bayesian probabilistic approach, Journal of Engineering Mechanics, ASCE, 130(2), pp. 

192-203. 

[3] Cawley, P. and Adams, R.D. 1979. The location of defects in structures from 

measurements of natural frequencies, Journal of Strain Analysis, 14(2), pp. 49-57. 

[4] Chen, W.F. and Kishi, N. 1989. Semirigid steel beam-to-column connections: data base 

and modeling, Journal of Structural Engineering, 116(1), pp. 105-119. 

[5] Cox, R.T. 1961. The algebra of probable inference, The Johns Hopkins University 

Press, Baltimore. 

[6] Gull, S.F. 1988. Bayesian inductive inference and maximum entropy, maximum 

entropy and Bayesian methods (Ed. J. Skilling), Kluwer Academic Publisher, Boston, 

pp. 53-74. 

[7] Katafygiotis, L.S. and Beck, J.L. 1998. Updating models and their uncertainties II: 

model identifiability, Journal of Engineering Mechanics, ASCE, 124(4), pp. 463-467. 

[8] Katafygiotis, L.S. and Lam, H.F. 2002. Tangential-projection algorithm for manifold 



 20 

representation in unidentifiable model updating problems, Earthquake Engineering & 

Structural Dynamics, 31 (4), pp. 791-812. 

[9] Katafygiotis, L.S., Lam, H.F., and Papadimitriou, C. 2000. Treatment of 

unidentifiability in structural model updating, Advances in Structural Engineering, 

3(1), pp. 19-39. 

[10] Katafygiotis, L.S., Papadimitriou, C., and Lam, H.F. 1998. A probabilistic approach to 

structural model updating, Soil Dynamics and Earthquake Engineering, 17(7-8), pp. 

495-507. 

[11] Lam, H.F., Lee, Y.Y., Sun, H.Y., Cheng, G.F., and Guo, X. 2005. Application of the 

spatial wavelet transform and Bayesian approach to the crack detection of a partially 

obstructed beam, Thin-Walled Structures, 43, pp. 1-12. 

[12] Law, S.S. and Lu, Z.R. 2005. Crack identification in beam from dynamic responses, 

Journal of Sound and Vibration, 285(4-5), pp. 967-987. 

[13] Liang, R.Y., Choy, F.K., and Hu, J. 1991. Detection of cracks in beam structures using 

measurements of natural frequencies, Journal of the Franklin Institute, 328(4), pp. 

505-518. 

[14] Nandwana, B.P. and Maiti, S.K. 1997. Modeling of vibration of beam in presence of 

inclined edge or internal crack for its possible detection based on frequency 

measurements, Engineering Fracture Mechanics, 58(3), pp. 193-205. 

[15] Narkis, Y. 1994. Identification of crack location in vibrating simply supported beams, 

Journal of Sound and Vibration, 172(4), pp. 549-558. 

[16] Ostachowicz, W.M. and Krawczuk, M. 1991. Analysis of the effect of cracks on the 

natural frequencies of a cantilever beam, Journal of Sound and Vibration, 150(2), pp. 

191-201. 

[17] Papadimitriou, C., Beck, J.L., and Katafygiotis, L.S. 1997. Asymptotic expansions for 

reliability and moments of uncertain systems, Journal of Engineering Mechanics, 

ASCE, 123(12), pp. 1219-1229. 

[18] Rizos P.F., Aspragathos N., and Dimarogonas, A.D. 1990. Identification of crack 

location and magnitude in a cantilever beam from the vibration modes, Journal of 

Sound and Vibration, 138(3), pp. 381-388. 

[19] Ruotolo, R. and Surace, C. 1997. Damage assessment of multiple cracked beams: 

Numerical results and experimental validation, Journal of Sound and Vibration, 206(4), 

pp. 567-588. 

[20] Sohn, H., Farrar, C.R., Hernez, F.M., Czarnecki, J.J., Shunk, D.D., Stinemates, D.W., 



 21 

and Nadler, B.R. 2004. A review of structural health monitoring literature: 1996 – 2001, 

Los Alamos National Laboratory Report, LA-13976-MS. 

 



 22 

 

 

Figure List 

 

Figure 1: Schematic diagram illustrating the basic strategy for identifying the number of 

cracks ............................................................................................................................ 23 

Figure 2: The model of a cracked beam with semi-rigid connections at both ends ............. 24 

Figure 3: Normalized marginal PDF of the crack location ( 1l ) and extent ( 1 ) in Case A . 25 

Figure 4: Marginal cumulative distribution of the crack location ( 1l ) in Case A................. 26 

Figure 5: Marginal cumulative distribution of the crack extent ( 1 ) in Case A .................. 27 

Figure 6: Measured response vs. calculated response of the model in 0M  in Case B 

(sensor at 0.16 m from the left end of the beam) ......................................................... 28 

Figure 7 : Marginal cumulative distribution of the crack location ( 1l ) in Case B................ 29 

Figure 8: Marginal cumulative distribution of the crack extent ( 1 ) in Case B .................. 30 

 



 23 

 

1l  
LK  RK  

1  

1l  
LK  RK  

1  2  

2l  

1l  
LK  RK  

jl  

1

 

…… 
j  

MN  

…… 

. . . . 

1M  

2M  

jM

 

LK  RK  

0M  

. . . . 

. . . . 
. . . . 

1l  
LK  RK  

1

 

…… …… 

…… …… 
MNl  

MNM

 

…… 

…… 

Model Class 

 

Figure 1: Schematic diagram illustrating the basic strategy for identifying the number of cracks 
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Figure 3: Normalized marginal PDF of the crack location ( 1l ) and extent ( 1 ) in Case A 
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Figure 4: Marginal cumulative distribution of the crack location ( 1l ) in Case A 
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Figure 5: Marginal cumulative distribution of the crack extent ( 1 ) in Case A 
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Figure 6: Measured response vs. calculated response of the model in 0M  in Case B (sensor at 

0.16 m from the left end of the beam) 
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Figure 7 : Marginal cumulative distribution of the crack location ( 1l ) in Case B 
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Figure 8: Marginal cumulative distribution of the crack extent ( 1 ) in Case B 
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Property Value 

Length ( L ) 0.4 m 

Depth of beam (h) 0.01 m 

Width of beam (b) 0.01 m 

Young’s modulus ( E ) 200 GPa 

Mass per unit length ( m ) 0.79 kg/m 

Table 1: Member properties of the beam used in the numerical case study 
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Case CN  ( LK
~

, RK
~

) Crack Information 
Uncertain parameters of the class 

of identification model jM  

A 1 (0.1, 0.2) 1l  0.18, 
1  0.05  1 1, , , , , , ,j L R j jK K l l  a  

B 1 (0.1, 0.2) 1l  0.18, 1  0.05  1 1, , , ,j j jl l  a  

C 1 (0.1, 0.2) 1l  0.18, 1  0.05  1 1, , , , , ,j j jK l l  a  

D 2 (0.2, 0.4) 
1l  0.14, 1  0.05 

2l  0.04, 2  0.03 
 1 1, , , , , , ,j L R j jK K l l  a  

E 2 (0.2, 0.4) 
1l  0.14, 1  0.01 

2l  0.04, 2  0.01 
 1 1, , , , , , ,j L R j jK K l l  a  

F 3 (0.2, 0.4) 

1l  0.14, 1  0.05 

2l  0.04, 2  0.03 

3l 0.08, 3 0.04 

 1 1, , , , , , ,j L R j jK K l l  a  

Table 2: Summary of all cases in the numerical case study 
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Class of 

models 

Logarithm of the 

Evidence 

Logarithm of the 

Likelihood factor 

Logarithm of the 

Ockham factor 

0M  8282 8303 -21 

1M  12837 12881 -44 

2M  12831 12883 -52 

Table 3: Evidence of different classes of models in Case A 
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Class of 

models 

Logarithm of the 

Evidence 

Logarithm of the 

Likelihood factor 

Logarithm of the 

Ockham factor 

0M  --- --- --- 

1M  12850 12880 -30 

2M  12843 12881 -38 

Table 4: Evidence of different classes of models in Case B 
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Class of 

models 

Logarithm of the 

Evidence 

Logarithm of the 

Likelihood factor 

Logarithm of the 

Ockham factor 

0M  8348 8367 -19 

1M  12838 12880 -42 

2M  12833 12882 -49 

Table 5: Evidence of different classes of models in Case C 
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Class of 

models 

Logarithm of the 

Evidence 

Logarithm of the 

Likelihood factor 

Logarithm of the 

Ockham factor 

0M  8389 8409 -20 

1M  12996 13042 -46 

2M  13001 13057 -56 

3M  12995 13059 -64 

Table 6: Evidence of different classes of models in Case D 
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Class of 

models 

Logarithm of the 

Evidence 

Logarithm of the 

Likelihood factor 

Logarithm of the 

Ockham factor 

0M  12935 12967 -32 

1M  13135 13180 -45 

2M  13149 13202 -53 

3M  13144 13205 -61 

Table 7: Evidence of different classes of models in Case E 
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Class of 

models 

Logarithm of the 

Evidence 

Logarithm of the 

Likelihood factor 

Logarithm of the 

Ockham factor 

0M  8303 8322 -19 

1M  12366 12409 -43 

2M  12864 12923 -59 

3M  12956 13020 -64 

4M  12948 13023 -75 

Table 8: Evidence of different classes of models in Case F 
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Case 
Crack location jl  

(COV %) 

Crack extent j  

(COV %) 

Normalized spring 

stiffness (COV %) 
Damping 

Ratio   

(COV %) LK  
RK  

A 1l : 0.1797 (1.02) 
1 : 0.0520 (5.87) 

0.0981 

(100.76) 

0.2449 

(26.65) 
0.01 (0.18) 

B 1l : 0.1809 (0.35) 1 : 0.0499 (0.15) --- --- --- 

C 1l : 0.1786 (0.73) 
1 : 0.0539 (4.43) K : 0.1884 (12.39) 0.01 (0.18) 

D 
1l : 0.1412 (0.69) 

2l : 0.0349 (1.33) 

1 : 0.0490 (4.16) 

2 : 0.0283 (14.75) 

0.2040 

(40.03) 

0.3437 

(15.87) 
0.01 (0.20) 

E 
1l : 0.1429 (2.87) 

2l : 0.0367 (7.22) 

1 : 0.0112 (35.06) 

2 : 0.0102 (37.64) 

0.2060 

(55.47) 

0.4269 

(14.96) 
0.01 (0.20) 

F 

1l : 0.1406 (5.78) 

2l : 0.0393 (1.33) 

3l : 0.0802 (1.66) 

1 : 0.0494 (17.95) 

2 : 0.0248 (89.22) 

3 : 0.0401 (13.72) 

0.2145 

(97.11) 

0.2815 

(79.77) 
0.01 (0.25) 

Table 9: Optimal parameters and the corresponding COV in all cases 

 


