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The Selection of Pattern Features for Structural Damage Detection 

Using an Extended Bayesian ANN Algorithm  

 

Heung Fai LAM1 and Ching Tai NG2 

 

Abstract 

Pattern recognition is a promising approach to the detection of structural damage using 

measured dynamic data. Many researches of pattern recognition have employed artificial neural 

networks (ANNs) as a systematic way of matching pattern features. When such methods are 

used, the ANN design becomes the most fundamental factor affecting the performance and 

effectiveness of the pattern recognition process. The Bayesian ANN design algorithm proposed 

in Lam et al. (2006) provides a mathematically rigorous way of determining the number of 

hidden neurons for a single-hidden-layer feedforward ANN. The first objective of this paper is 

to extend this Bayesian ANN design algorithm to cover the selection of activation (transfer) 

functions for neurons in the hidden layer. The proposed algorithm is found to be 

computationally efficient and is suitable for the real-time design of an ANN. As most existing 

ANN design techniques require the ANN model class to be known before the training process, a 

technique that can automatically select an “optimal” ANN model class is essential. As modal 

parameters and Ritz vectors are commonly used pattern features in the literature, the second 

objective of this paper is to compare the performance of these two pattern features in structural 

damage detection using pattern recognition. To make a fair judgment between the features, the 

IASC-ASCE benchmark structure is employed in a case study. The results show that the 

performance of ANNs trained by modal parameters is slightly better than that of ANNs trained 

by Ritz vectors. 
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1 Introduction 

Ensuring the safety of structural systems is an important and challenging mission for engineers 

and researchers. The collapse of structural systems is usually caused by the continuous 

accumulation of damage during the service life of the structure. To prevent disasters such as 

collapse, therefore, remedial works to damaged structures must be carried out as early as 

possible. Several structural damage detection methods (Lam et al. 1998; Beck and Katafygiotis 

1998; Papadimitriou 2004a; Papadimitriou 2004b; Ng 2007; Ng and Lam 2006; Lam et al. 2007) 

and sensor technologies have been developed to address this problem (see Sohn et al. 2004 for 

a comprehensive review), many of which are now sufficiently mature for real application in 

structural health monitoring projects. Indeed, instruments such as laser Doppler vibraometers 

and shearographs are capable of measuring the static and dynamic responses of structures to a 

very high degree of accuracy. However, although many methods for structural damage 

detection have been proposed by various researchers, none is at this stage sufficiently 

developed for real application. Pattern recognition is one of the most popular approaches to 

structural damage detection. Artificial neural networks (ANNs) are commonly adopted in 

pattern recognition to match pattern features, mainly because of their outstanding pattern 

generalisation capabilities (Wu et al. 1992; Elkordy et al. 1994; Lam et al. 2006). The basic 

idea of applying ANNs in structural damage detection is to treat the calculated pattern features 

from the structural model as inputs and the corresponding damage scenarios as targets in the 

ANN training process. The trained ANN is then able to estimate the damage scenario by fitting 

the measured pattern features to the inputs. 

Wu et al. (1992) attempted to use Fourier spectra as pattern features to detect structural 

damage in a three-storey building model with the help of an ANN, but concluded that Fourier 

spectra are unsuitable features for damage detection. Elkordy et al. (1994) proposed an 

ANN-based damage detection method that used displacement and strain mode shapes as pattern 

features, and obtained encouraging numerical and experimental results. Lam et al. (2006) 

proposed the use of damage-induced Ritz vector changes as ANN inputs to identify damage 

location and severity. Yuen and Lam (2006) proposed a two-stage ANN-based damage 

detection methodology. In the first stage, the damage signature (Lam et al. 1998; Lam 1994) is 

employed as the pattern feature to identify damage locations, and in the second stage, the 

severity of the damage is estimated using another ANN that is trained by using changes in the 
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modal parameters as the pattern features.  

The design of the ANN is the critical factor that affects the success of all ANN-based 

methods. The Bayesian ANN design algorithm proposed in Lam et al. (2006) and Yuen and 

Lam (2006) provides a mathematically rigorous and systematic way of determining the number 

of hidden neurons in a single-hidden-layer feedforward ANN. The first objective of this paper 

is to extend this Bayesian ANN design algorithm to cover the design of the activation (transfer) 

function, which is one of the main elements in the ANN structure. The proposed algorithm is 

computationally efficient and is suitable for the real-time design of an ANN. This technique 

should prove extremely useful for most ‘two-step’ ANN-based structural damage detection 

methods, in which the location of damage location is identified by a pre-trained ANN in the first 

step and the extent of the damage is detected by another ANN in the second step, because the 

number of output nodes in the second ANN depends on the results from the first step, which 

necessitates a real-time ANN design method. 

The selection of a damage-sensitive and noise-insensitive pattern feature is important for 

all structural damage detection methods. Modal parameters and Ritz vectors (Cao & 

Zimmerman 1997; Sohn & Law 2001) are commonly used features in the literature, and thus 

the second objective of this paper is to compare the performance of these two pattern features in 

structural damage detection using pattern recognition. To make a fair judgment, the 

IASC-ASCE Phase I Structural Health Monitoring (SHM) benchmark is employed in a case 

study to demonstrate the proposed method and to compare the performance of the modal 

parameters and Ritz vectors in structural damage detection. The IASC-ASCE Phase I SHM 

benchmark study has been comprehensively documented in a special section of the Journal of 

Engineering Mechanics (Bernal & Beck 2004). In the case study, damage-induced changes in 

modal parameters and Ritz vectors are separately employed as pattern features to train two 

ANNs. The proposed Bayesian ANN design method is then employed to identify the “most 

suitable” class of ANN models so that the ad hoc assumptions and subjective decisions of ANN 

designers can be avoided. Very encouraging results are obtained. In addition, the damage 

detection results show that the performance of ANNs trained by modal parameters is slightly 

better than that of ANNs trained by Ritz vectors. 
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2 Methodology and Theoretical Background 

2.1 Pattern Features 

It was reported by Lam et al. (2006) and Yuen and Lam (2006) that if modal parameters and 

Ritz vectors are directly employed in structural damage detection, then the results will be very 

sensitive to modelling error. However, if the damage-induced changes in the measured 

quantities are employed, then the influence of modelling error on the damage detection results 

can be significantly reduced. Thus, the damage-induced changes in the modal parameters and 

Ritz vectors are separately employed in this paper as pattern features.  

Several methods have been developed for calculating Ritz vectors, such as those of Cao 

and Zimmerman (1997) and Sohn and Law (2001). In this paper, the method proposed by Sohn 

and Law (2001) is adopted. As the limited space in this paper prevents us from going into detail 

about the calculation of Ritz vector based on a set of measured natural frequencies and mode 

shapes, interested readers are referred to (Sohn and Law 2001) for a fuller account. 

Two pattern features are employed in this paper: the damage-induced changes in modal 

parameters (denoted as PF I) and the damage-induced changes in Ritz vectors (denoted as PF II). 

Based on computer simulation, the PF I for different damage scenarios can be calculated by  

 
1 1 1 1 1( ) ( ), , ( ), ( ),..., ( ) (0), , (0), (0),..., (0)

F F F F

T T
T T T T

N N N Nk k k k k           P Φ Φ Φ Φ  (1) 

where 1,...,k N  is the index that represents a particular damage scenario and 0k   stands 

for the undamaged scenario (healthy state), FN  is the number of identified modes, and ( )q k  

and ( )q kΦ  are the natural frequency and mode shape of the q-th mode and the k-th damage 

scenario, respectively. The k-th damage scenario is represented by the damage index vector 

( )kE , which is considered in the proposed method to be the ANN target in the proposed method, 

as follows. 

    1 2, , , , ,
D

T

r Nk E E E EE   (2) 

where DN  is the total number of possible damage locations and rE  is the damage severity at 

the r-th possible damage location. In the proposed method, the value of rE  varies from 0 to 

100 and represents the percentage reduction in stiffness at the corresponding damage location 

(e.g., 3 40E   refers to a 40% reduction in stiffness at the 3rd location). The ANN that uses PF 

I as the pattern feature is trained by a set of input-target pairs that are calculated from equations 
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(1) and (2). After training, the ANN can “estimate” the damage index vector 
1Ê , thus showing 

the estimated damage scenarios of the structure, by fitting the measured damage-induced modal 

parameter changes 
1

ˆP  to its input. 
1

ˆP  is defined as 

 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,..., , , , ,...,

F F F F

T T
T T T T

DS DS N DS DS N US US N US US N        
   

P Φ Φ Φ Φ  (3) 

where the subscripts US  and DS  stand for the undamaged and damaged states, respectively.  

The damage-induced Ritz vector change, or PF II, is defined as  

 
2 1 1( ) ( ), , ( ) (0), , (0)

R R

T T
T T T T

N Nk k k        P r r r r  (4) 

where ir  is the i-th Ritz vector and RN  is the number of Ritz vectors to be employed in the 

damage detection process. This ANN, which uses PF II as the pattern feature, is trained by a set 

of input-target pairs that are calculated from equations (2) and (4). For PF II, the measured Ritz 

vector changes 2
ˆP  can be calculated as follows 

 
2 1 1

ˆ ˆ ˆ ˆ ˆ, , , ,
R R

T T
T T T T

DS DS N US US N
        P r r r r  (5) 

The “estimated” damage index vector 2Ê  can then be obtained as the ANN outputs by fitting 

the measured Ritz vector changes 2
ˆP  to the ANN input. 

2.2 Bayesian Artificial Neural Network design algorithm 

The basic mechanism of pattern recognition is first to calculate the pattern features of a selected 

list of possible damage scenarios by computer simulation, and then to match the measured 

pattern features from the possibly damaged structure with all the calculated pattern features one 

by one. The damage scenario that corresponds to the “best fit” calculated pattern feature is then 

considered to be the “true” damage scenario for the structure. Because of its pattern matching 

ability, ANN is adopted in the proposed method as a systematic tool for matching the measured 

pattern features to the calculated pattern features. As with all existing ANN-based structural 

damage detection methods, the success of the proposed method depends heavily on the design 

of the ANN, which involves the selection of an ANN model class and the training of the ANN 

(i.e., the selection of the “best” model in the selected model class). 

The multi-layer feedforward type of ANN is adopted in the proposed Bayesian ANN 

design algorithm. This type of ANN is commonly used in ANN-based structural damage 

detection methods in the literature (Sohn et al. 2004), and was proved by Cybenko (1989) to 
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require only one single hidden layer to be able to approximate any functional relationship 

between inputs and outputs. However, the ANN does need more hidden neurons to simulate a 

more complicated functional relationship. Without any loss of generality, the proposed 

Bayesian ANN design algorithm focuses on the design of a single-hidden-layer feedforward 

ANN, as shown in Figure 1, in which IN  and ON  are the numbers of neurons in the input and 

output layers, respectively, and n  is the number of neurons in the hidden layer. With this 

arrangement, the design of the ANN involves the selection of 1) the number of hidden neuron in 

the hidden layer and 2) the activation function for all of the neurons in the hidden layer (note 

that a linear function is always employed as the activation function in the output layer). 

The number of hidden neurons ( n ) has a significant effect on the performance of the 

trained ANN. If n  is too small, then the ANN may not be able to capture the behaviour of the 

training data, which will result in poor performance. It is clear that the larger the value of n , the 

better the performance (i.e., the smaller the discrepancy between the ANN output and the 

target). However, if n  is too large, then the trained ANN may produce outputs that will 

fluctuate in the region between the training data points. If performance (the discrepancy 

between the ANN output and the target) is employed as the only criterion for designing n , then 

the largest possible value of n  will always be selected.  

In addition to the number of neurons, the type of activation function adopted in the hidden 

layer is also an important factor in ANN design, and in particular the nonlinearity of the 

activation function, because this affects the capability of the ANN to generalise. In the case 

study, the ability of the proposed ANN design algorithm to design both the number of hidden 

neurons and the activation function are demonstrated. 

A key element of the proposed ANN design method is the Bayesian model class selection 

method (Beck and Yuen 2004; Lam et al 2007) that is employed, which is briefly reviewed as 

follows. Let D  denote the set of input-target training pairs. The objective here is to use D  to 

select the ‘best’ ANN model class from NM model classes jM , for 1,2, , Mj N . Let 

jN

j θ  denote the vector of the ANN parameters, which includes the weights and biases of 

the ANN in the model class jM . The ANN training can be treated as a process of selecting an 

ANN model jθ  from the model class jM  such that the ANN can simulate the input-target 

relationship specified by the set of training data D and jN  is the dimension of jθ  and is equal 

to the number of ANN parameters in jM . Following Bayes’ theorem, the updated probability 
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density function (PDF) ( | , )j jp D Mθ  based on the set of training data D can be expressed as 

(Beck & Katafygiotis 1998) 

      | , | | ,j j j j j j jp D M c p M p D Mθ θ θ  (6) 

where jc  is a normalising constant and ( | )j jp Mθ  is the prior (initial) PDF of the uncertain 

parameters jθ , which allows the judgment of the relative plausibility of the values of jθ . In 

general, ANN designers have no knowledge of the value of the weights and biases of an ANN, 

and therefore a non-informative prior (a uniform distribution) is recommended. The most 

important term in equation (6) is ( | , )j jp D Mθ , which is called the likelihood and is obtained 

from the set of input-target training data. Under the assumption of independent Gaussian 

prediction errors, the likelihood can be expressed as  

    
 2

 | , 
2

| , 2

O
j j

O

NN
J D MNN

j jp D M e 





θ

θ  for 1, , Mj N  (7) 

where N  is the total number of input-target training pairs; ON  is the number of output 

neurons of the ANN, which is equal to the number of possible damage locations DN ; and 

(  | ,  )j jJ D Mθ  is the contribution of the training data to the likelihood, which is given by  

      
2

1

1 ˆ | ,  ; ,
N

j j j j

kO

J D M k M k
NN 

  θ θ  for 1, , Mj N  (8) 

where ( ; , )j jk M θ  is the ANN output that corresponds to the k-th input for a given set of 

ANN parameters jθ  of the ANN class jM , ˆ ( )k  is the target corresponding to the k-th 

input, and    denotes the Euclidean norm of a vector. (  | ,  )j jJ D Mθ  in equation (8) shows 

the performance of the ANN, and demonstrates that the smaller the value of (  | ,  )j jJ D Mθ , 

the better the performance, as the ANN outputs are closer to the targets specified in the training 

data D. It is clear that the trained ANN model can be obtained by minimising (  | ,  )j jJ D Mθ . 

To select the ‘best’ ANN model class, the probability of a model class jM  conditional on 

the set of input-target training data D is required. This can be obtained by following Bayes’ 

theorem again (Beck & Yuen 2004). 

  
   

 

 | , | 
| ,

 | 

j j

j

p D M U p M U
p M D U

p D U
  for 1, , Mj N  (9) 

where (  | , )jp D M U  is the most important part in equation (9), known as the evidence for the 
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ANN model class 
jM , and is obtained from the set of training data D . U  expresses the 

user’s judgment of the initial plausibility of the ANN classes, which is expressed as a prior 

probability ( | )jp M U  on the ANN classes jM , such that  

  
1

| 1
MN

j

j

p M U


  (10) 

In general, there is no preference for any ANN model class, and the prior probability 

( | )jp M U  can therefore be taken as 1/NM for all model classes. The ANN class to be used is 

obviously that which maximises the probability ( | , )jp M D U  given in equation (9). As U  is 

irrelevant in (  | , )jp D M U  and jM  alone specifies the PDF for the data, U  can be dropped 

in the notation. This means that maximising ( | , )jp M D U  is equivalent to maximising the 

evidence  
jMDp |  with respect to j . 

Based on an asymptotic approximation (Papdimitriou et al. 1997), the evidence can be 

calculated as follows (Beck & Yuen 2004) 

          
1

2
2 ˆ ˆ ˆ | 2  |  | ,

jN

j j j j j j jp D M p M p D M


 θ θ H θ  for 1, , Mj N  (11) 

where the optimal ANN parameter ˆ
jθ  is the most probable value obtained by maximising the 

posterior PDF ( | , )j jp D Mθ  in equation (6), and ˆ( )j jH θ  is the Hessian matrix of the 

function ( )jg θ  evaluated at the optimal parameters ˆ
jθ  and is given by  

      j jln |  | ,j j jg p M p D M  
 

θ θ θ  for 1, , Mj N  (12) 

The factor 1 2ˆ| ( ) |j j


H θ  in equation (11) provides a way of quantifying the complexity of 

the ANN model class jM . An ANN model class that is not sensitive to the parameter values 

corresponds to a large value of 1 2ˆ| ( ) |j j


H θ . In other words, the factor 1 2ˆ| ( ) |j j


H θ  serves as a 

natural penalty factor for the complexity of a model class, and negates the need for ad hoc 

assumptions. 

With the help of the Bayesian model class selection method, the “optimal” model class can 

be selected from among a given number of model classes based on the calculated evidence of 

each model class. A computationally efficient numerical algorithm can then be developed for 

ANN design that considers the different activation functions and the number of hidden neurons. 
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Consider the general case in which there are NA activation functions available. The 

objective of the algorithm is to identify the ‘best’ activation function among them and the 

corresponding ‘optimal’ (or ‘best’) number of hidden neurons. The algorithm (as shown in 

Figure 2) consists of two loops. The outer loop with counter a is used to identify the ‘best’ 

activation function, and the inner iteration loop with counter n identifies the ‘best’ number of 

hidden neurons for the a-th activation function in the list. The outer loop will be repeated NA 

times (a = 1, , NA). For a given value of a, the algorithm consists of a series of iterative steps. 

In the general n-th iteration step, the algorithm compares the evidence of the ANN with n 

hidden neurons, e(a,n) with the evidence of the ANN with n + 1 hidden neurons, e(a,n+1). If 

e(a,n+1) is larger, then the iteration will continue by increasing the value of n by 1 (n = n + 1). 

Otherwise, the ‘best’ number of hidden neurons for the a-th activation function is obtained. If a 

is equal to 1 (the first activation function on the list), then the algorithm will assign the current 

activation function as the ‘best’ function (i.e., abest in Figure 2), and record the ‘best’ number of 

hidden neurons (nbest in Figure 2) and the corresponding evidence (i.e., emax in Figure 2). If the 

current value of a is not equal to NA, then the loop for a will continue. At the a-th step (where a 

is larger than 1), the algorithm will compare the ‘optimal’ evidence of the current step, e(a,n) 

with the recorded maximum evidence, emax. The values of emax, abest and nbest will then be 

replaced by those in the current step if e(a,n) is larger than emax. After repeating the outer loop 

NA times, the ‘best’ activation function, the ‘best’ number of neurons and the corresponding 

value of the evidence can be obtained. 

The use of the proposed Bayesian ANN design algorithm avoids the problems of 

under-fitting (the ANN being insufficiently complex to fit the data), over-fitting (the ANN 

being overly complex) and fluctuation between the training points. As has been stated, the 

single-hidden-layer feedforward type of ANN is the most commonly used type among 

structural engineers, yet in the literature it is usually designed using ad hoc rules of thumb and 

the subjective judgment of engineers. The Bayesian ANN design algorithm proposed in this 

paper provides a systematic, mathematically rigorous and practical method for the design of 

this type of ANN, which is particular important when the ANN must be trained in real time. 
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3 IASC-ASCE SHM Benchmark Study 

3.1 Benchmark study description 

A brief description of the Phase I IASC-ASCE SHM Benchmark study is given here for 

completeness, but more detail can be found in Johnson et al. (2004). The benchmark structure is 

a four-storey, two-bay by two-bay steel frame. In this paper, only the first five cases of the 

benchmark problem are considered. Depending on the case, the 12-DOF or the 120-DOF model 

is used to simulate the dynamic responses of the benchmark structure (see Table 1). In all cases, 

a 12-DOF shear building model is employed as the identification model, and thus the effect of 

modelling error is considered for cases with the dynamic responses generated by the 120-DOF 

model. Both the symmetric and asymmetric mass distributions of the structure are considered. 

The characteristics of the five cases investigated are summarised in Table 1, the six damage 

patterns (DP) considered in the benchmark study are summarised in Table 2 and the 

corresponding percentage reductions in the horizontal stiffness are summarised in Table 3. 

3.2 Identification of modal parameters and Ritz vectors from the 

dynamics data in the benchmark study 

MODE-ID (Beck 1978; Beck et al. 1994) is employed to identify the modal parameters (natural 

frequencies and mode shapes) of the first four translation modes (two in the x-direction and two 

in the y-direction) from the first 40 sec of noisy floor acceleration time histories with a time step 

of t = 0.001 sec. It is assumed that the excitation is not measured for all of the cases examined. 

The identified natural frequencies of Cases 1 to 5 are summarised in Table 4, in which the labels 

“1x” and “2x” represent the first and second modes in the x-direction, respectively, and “1y” 

and “2y” represent the first and second modes in the y-direction, respectively. The identified 

natural frequencies in Table 4 are close to the values given in the benchmark study (Johnson et 

al. 2004). The identified natural frequencies and mode shapes are employed to calculate the 

first two Ritz vectors following the procedure in Sohn and Law (2001). The order of modes 

before and after damage may be different, and thus the modal assurance criteria (MAC) 

(Allemang & Brown 1982) is used to calculate the damage-induced changes in the modal 

parameters to ensure that the correct modes are matched. 
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3.3 Bayesian ANN design for structural damage detection 

Four ANNs are designed, two of which adopt damage-induced modal parameter changes (PF I) 

and two of which adopt damage-induced Ritz vector changes as the ANN inputs. The ANNs are 

named ANNx1 (x-direction, PF I), ANNy1 (y-direction, PF I), ANNx2 (x-direction, PF II) and 

ANNy2 (y-direction, PF II). The last two characters of the ANN identity represent the direction 

of interest (“x” or “y”) and the type of pattern feature (where “1” represents damage-induced 

modal parameter changes and “2” represents damage-induced Ritz vector changes). Only the 

first two modes are employed to calculate the pattern features 
1P  and 

2P  (i.e., only two 

modes are used for damage detection). Thus, the four ANNs are designed by following the 

proposed ANN design algorithm based on four sets of input-target training data (i.e., PF I and 

PF II for both x- and y-direction). 

In the benchmark study, damage is interpreted as the reduction in the stiffness of the 

horizontal storey of the steel frame. A 12-DOF shear building model (as specified in the 

benchmark study) is employed to generate the pattern features of a series of damage scenarios 

for each ANN. In the benchmark structure, there are four possible damage locations in either 

the x- or y-direction, that is, the interstorey stiffness at the first to fourth stories. Only five 

damage levels are considered in this study: a 0%, 20%, 40%, 60% and 80% reduction in 

stiffness. In addition, only two out of the four simultaneous types of damage are considered in 

generating the training data, and thus the total number of damage patterns considered is 113. 

None of the damage patterns in the benchmark study is included in the set of the training data. 

The design of ANNs that use PF I as the ANN input is discussed in detail as follows.. As 

the damage-induced changes in the modal parameters (PF I) of the first two modes are 

employed as the ANN input, the number of input neurons is equal to ten ( IN = 10). The number 

of output neurons is four, because there are four possible damage locations in each direction 

( ON = 4). To demonstrate the ability of the proposed ANN design algorithm to deign activation 

functions, two activation functions, the hyperbolic tangent sigmoid (tansig) and saturating 

linear transfer functions (satlin), are included in the ANN design process (i.e., NA = 2). The 

functional relationship between the input inx  and output outx  of tansig and satlin are shown in 

equations (13) and (14), respectively. 
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For ANNy1, the proposed algorithm starts by considering the tansig activation function 

( 1a  ) with two hidden neurons (n = 2). When the number of hidden neurons is small, say 2, 

the value of the evidence is small, because the performance of the ANN is poor. Figure 3 shows 

the logarithm of the evidence, log(e(a,n)) for a = 1, for different numbers of hidden neurons. 

When the number of hidden neurons increases, the value of the evidence increases until n = 17, 

after which it drops. According to the proposed Bayesian ANN design algorithm then, n = 17 is 

the ‘optimal’ number of hidden neurons for an ANN with tansig as the activation function (a = 

1). The proposed algorithm records the ‘best’ activation function (abest = 1) and the 

corresponding number of ‘best’ hidden neurons (nbest = 17) and the logarithm of the maximum 

evidence (log(emax) = 1575.67). Note that the logarithm of the evidence is recorded to prevent 

numerical difficulties, as the value of evidence is very large. The algorithm then continues by 

increasing the value of a  by one (i.e., by considering the second considered activation 

function, satlin). The algorithm again calculates the optimal number of hidden neurons (n = 21) 

and the corresponding logarithm of evidence (log(e(2,21) = 801.59) for the satlin activation 

function (a = 2). The algorithm compares the value of e(2,21) with the recorded emax (= 

1575.67). As the emax is larger, the algorithm ends with abest = 1 and nbest = 17. Therefore, tansig 

is selected as the ‘best’ activation function, with an ‘optimal’ number of hidden neurons of 17. 

The detailed designs of the ANNs with two activation functions in the hidden layer are 

given in Table 5. The table shows the values of the J function in equation (8) and the 

corresponding logarithm of the evidence in equation (11) of ANNs with different numbers of 

hidden neurons for each activation function. It is clear from the table that the value of J 

decreases when the number of hidden neuron increases, and that if the value of J is the sole 

consideration in the ANN design, then the ANN model class with the largest number of hidden 

neurons will always be selected. It is therefore pointless to select the number of hidden neurons 

by solely comparing the values of the J function. Table 5 also shows that the logarithm of the 

evidence of the ANN with the tansig activation function (a = 1) and n = 17 is the highest for 

both ANNx1 and ANNy1. This means that the corresponding ‘optimal’ number of hidden 

neurons is 17 for both the x- and y- directions. This can be explained by the fact that both the 

number of input and output neurons and the number of training pairs are the same for both 

ANNs, and that the benchmark structure is symmetric in both directions. It is clear from Table 5 

that the proposed ANN design algorithm concludes that the optimal number of hidden neurons 
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is 17 and the ‘best’ activation function is tansig for both ANNx1 and ANNy1.  

When tansig is employed as the activation function, only 17 hidden neurons are required, 

but when satlin is used 21 hidden neurons are needed (see Table 5). This implies that tansig 

allows a less complex ANN model class to be employed for the benchmark problem. Due to 

space limitations, only the results of the ANNs with tansig as the activation function are 

included in the following discussion. 

One of the objectives of this study is to investigate the relative performance of modal 

parameters and Ritz vectors in structural damage detection using pattern recognition. To 

achieve this, another two ANNs (ANNx2 and ANNy2) are constructed by the proposed ANN 

design method using the damage-induced Ritz vector changes as the pattern features. Only the 

first two Ritz vectors are used to construct the calculated pattern feature 2P . The number of 

input neurons is equal to eight ( IN = 8) and the number of output neurons is four ( ON = 4). The 

design results are shown in Table 6. According to the proposed algorithm, the ‘best’ activation 

is tansig and the corresponding ‘optimal’ number of hidden neurons is 16. Table 7 summarises 

all of the ANNs employed in the case study and the number of hidden neurons in each of them. 

Note that the number of hidden neurons for the ANNs that use PF I is a little larger (more 

complex) than the number for those that use PF II. This can be explained by the fact that the 

number of input neurons for ANNs that use PF I is larger than the number for ANNs that use PF 

II. 

Consider a commonly used rule of thumb for the design of the hidden neuron number 

(Kermanshahi 1999) 

 
2

I ON N
n 


   (15) 

where   is taken to be 1 or 2 (according to the judgment of the designer). In the case study, 

IN  and ON  are equal to 10 and 4 for the PF I ANN, and 8 and 4 for the PF II ANN, 

respectively. The number of hidden neurons determined by this rule of thumb is thus 8 or 9 for 

the PF I ANN and 7 or 8 for the PF II ANN (as   can take the value of 1 or 2). These values 

are much smaller than those calculated by the proposed Bayesian ANN design algorithm, but 

the results generated by the algorithm are believed to be more reliable, as the quantity of 

training data is not considered in Kermanshahi’s rule of thumb. Another popular rule of thumb 

is (Ward Systems Group, Inc. 2000) 
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where DN  is the number of input-target training pairs, which is equal to 113 in this case study. 

Using this rule of thumb, the number of hidden neurons is 18 and 17 for the PF I ANN and PF 

ANN II, respectively. Although these values are considerably closer to those generated by the 

proposed ANN design method, the rule of thumb has no theoretical background and may not be 

generally applicable, whereas the proposed ANN design algorithm is based on the axioms of 

probability. 

3.4 Cases 1 to 3 

In Cases 1 to 3, the symmetrical mass distribution is considered. In Cases 1 and 2, the excitation 

is only applied in the y-direction and the mass distribution is symmetrical, and thus only 

stiffness changes in the y-direction are considered. ANNy1 and ANNy2 are therefore employed 

to identify the damage for Cases 1 to 2 in the y-direction. In Case 3, ANNx1, ANNy1, ANNx2 

and ANNy2 are employed to identify damage in both the x- and y-directions. Tables 9 and 10 

show the damage detection results generated by fitting the measured pattern features PF I and 

PF II, respectively, to the input layers of the corresponding trained ANNs. The values in 

brackets are the true percentage reductions in horizontal stiffness specified by the benchmark 

study (Johnson et al. 2004). In these tables, DP refers to the damage pattern. 

Table 8 shows the results for the ANN that use PF I (damage-induced modal parameter 

changes) as the pattern feature. For Case 1, the identified percentage reduction in horizontal 

stiffness at the damage locations (e.g., Storey 1 in the y-direction and DP 1) is very close to the 

true value shown in the brackets. For locations without any damage (e.g., Storey 2 in the 

x-direction and DP 1), the identified percentage reduction in stiffness is either zero or a very 

small number. The largest is 2.11 at Storey 4 in the y-direction and DP 2, which is a very small 

number compared with the percentage reduction at the damaged location. It can thus be 

concluded that the proposed structural damage detection method can successfully identify all of 

the damage scenarios in Case 1 by using PF I. 

Table 9 shows the results for the ANNs that use PF II (damage-induced changes in Ritz 

vector) as the pattern feature. In Case 1, the identified reduction in stiffness at locations with 

damage agrees with the true value given in the brackets. However, for undamaged locations, 

some of the identified stiffness reductions are not as small as those generated by the PF I ANNs 

(e.g., 5.36% at Storey 3 in the y-direction and DP 1). When the threshold value of 5% is 

employed to distinguish between the undamaged and damaged scenarios, one false alarm is 
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generated by the ANNs trained by PF II, whereas no such alarm arises with the ANNs trained 

by PF I. In this respect, ANNs trained by modal parameters have a relatively higher 

performance than those trained by Ritz vectors for Case 1. 

Both measurement noise and modelling error are considered in Case 2, and it is thus a 

more difficult case than Case 1. Table 8 shows (Case 2, y-direction, DP 1 and 2) that the damage 

scenarios identified by the ANNs trained by PF I are very close to the true result given in the 

brackets. At the undamaged locations, the identified reduction in stiffness is either zero or equal 

to a very small value, say 1.63% at Storey 2 of Case 2 in the y-direction and DP 1. It is therefore 

reasonable to conclude that the proposed method can successfully identify the damage 

scenarios in Case 2 by using model parameters. 

Table 9 (Case 2, y-direction, DP 1 and 2) shows that the results from the ANNs trained by 

PF II are not as good as those from the ANNs trained by PF I, as the identified reduction in 

stiffness at the first storey of DP 1 is 78.56%, which is not close to the true value of 71.03%. 

This indicates that ANNs trained by Ritz vectors are not as good as those trained by modal 

parameters for Case 2. 

The results for Case 3 (see Table 8) show that the ANNs trained by PF I successfully 

identify the stiffness reductions in both the x- and y-directions for all of the damage patterns. 

For storeys without damage, the estimated stiffness reductions are either zero or a very small 

number (less than 2%). Although similar results are obtained by the ANNs trained by PF II (see 

Case 3 in Table 9), the performance of the ANNs trained by Ritz vectors is clearly poorer than 

that of the ANNs trained by modal parameters. 

3.5 Cases 4 and 5 

In Cases 4 and 5 the asymmetric mass distribution is considered. As the 12-DOF identification 

model has a symmetric mass distribution, there is modelling error in both cases. In addition to 

the error in mass distribution, the dynamic responses in Case 5 are generated by the 120-DOF 

system, which also gives rise to modelling error in the stiffness distribution. The measurement 

noise is also considered in both cases. 

The results for the detection of structural damage with ANNx1, ANNy1, ANNx2 and 

ANNy2 are summarised in Tables 10 and 11 for the ANNs trained by PF I and II, respectively.  

The results for Case 4 in Tables 10 (PF I) and 11 (PF II) show that the identified stiffness 

reductions are very close to the true values, with the performance of the ANNs trained by PF I 
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being slightly better than that of the ANNs trained by PF II.  

DP 6 corresponds to a 1/3 loss in stiffness of a brace at the first storey. Due to the small 

reduction in stiffness, DP 6 is the most difficult damage pattern. The results for DP 6 in Case 4 

(Tables 10 and 11) show that the identified stiffness reduction in the y-direction at the first 

storey is 7.43% for the ANNs trained by PF I and 8.35% for the ANNs trained by PF II. Both of 

these results are significantly close to the true value 5.92% shown in the brackets. The 

estimated percentage stiffness reductions for the undamaged locations are very small in both 

Tables 10 and 11. It can thus be concluded that the performance of the proposed method is 

reasonably good even for DP 6 when the extent of the damage is very small. 

Because of the relatively large modelling error in Case 5, the results (Tables 10 and 11) are 

not as good as those for Case 4. However, the identified stiffness reductions generated by the 

ANNs trained by PF I and by PF II still have an acceptable accuracy. Although some of the 

identified stiffness reductions at damage locations are not very close to the true values, they are 

sufficiently large to indicate the existence of damage. Equally, although some of the identified 

stiffness reductions at the undamaged locations are not equal to zero, they are relatively small 

compared with those at the damaged locations. If a 5% stiffness reduction is considered as the 

threshold value for damage, then 1 and 4 false indicators out of 48 indicators are generated by 

the ANNs trained by PF I and by PF II, respectively. As the method does not “miss” any 

damage, the damage detection results are safe. 

It must be pointed out that only five damage levels (a 0%, 20%, 40%, 60% and 80% 

reduction in stiffness) are considered in generating the training data. It is believed that the 

damage detection of the trained ANNs could be further improved by considering a finer 

division of damage levels. 

4 Concluding Remarks 

In this paper, a pattern recognition approach to structural damage detection is presented 

that uses an ANN as a systematic and efficient tool for matching the measured and calculated 

pattern features. An extended Bayesian ANN design algorithm is proposed for the real-time 

design of ANNs that considers both the optimal number of hidden neurons and the activation 

function in the hidden layer. The proposed algorithm ensures that the trained ANN is on the one 

hand sufficiently complex to provide good performance, and on the other hand sufficiently 

simple to avoid the overfitting of the data and the fluctuation in output between the training data 
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points. The results of the case study suggest that tansig is a better activation function in the 

hidden layer than satlin in terms of damage detection in the benchmark structure. The ANN 

design algorithm can also be applied to the design of general-purpose ANNs. 

The proposed ANN design and structural damage detection methods are verified using the 

first five cases of the Phase I IASC-ASCE SHM benchmark study. By using the benchmark 

study as a fair platform for comparison, the relative performance of ANNs that adopt modal 

parameters and those that adopt Ritz vectors in structural damage detection using the pattern 

recognition approach is examined. Four ANNs are constructed to address the Phase I 

IASC-ASCE benchmark problem, two of which are trained by damage-induced modal 

parameter changes and two of which are trained by damage-induced Ritz vector changes. The 

results are very encouraging. Most of the stiffness reductions identified by the trained ANNs 

are very close to the true values given in the benchmark study. Although the identified stiffness 

reductions at several locations in Case 5 (which has a large modelling error and measurement 

noise) are not as accurate as those in other cases, they are good enough to indicate the existence 

of damage. The results also show that the performance of ANNs trained by modal parameters is 

slightly better than that of ANNs trained by Ritz vectors. 
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Figure 1: Structure of the single-hidden-layer feedforward ANN. 
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Figure 2 : Proposed Bayesian ANN design algorithm for selecting the ‘optimal’ number of 

hidden neurons and the ‘best’ activation function. 
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Figure 3: Iteration history of the selection of the optimal number of hidden neurons for 
ANNy1 with tansig as the activation function (a = 1). 

 



 
25 

List of Tables 

 

Table 1: First five cases of the IASC-ASCE SHM benchmark study. ................................. 26 

Table 2: The six damage patterns considered in the SHM benchmark study. ...................... 26 

Table 3: Percentage reduction in stiffness for all damage patterns extracted from Table 4 of 

Johnson et al. (2006) .................................................................................................... 26 

Table 4: Identified natural frequencies (Hz) for Cases 1 to 5 .............................................. 27 

Table 5: ANN model class selection for ANNx1 and ANNy1 trained by PF I .................... 28 

Table 6: ANN model class selection for ANNx2 and ANNy2 trained by PF II ................... 28 

Table 7: List of ANNs applied to the IASC-ASCE SHM benchmark study ........................ 28 

Table 8: Percentage reduction in stiffness identified by the ANNs trained by PF I in Cases 

1 to 3 ............................................................................................................................. 29 

Table 9: Percentage reduction in stiffness identified by the ANNs trained by PF II in Cases 

1 to 3 ............................................................................................................................. 29 

Table 10: Percentage reduction in stiffness identified by the ANNs trained by PF I in Cases 

4 and 5 .......................................................................................................................... 30 

Table 11: Percentage reduction in stiffness identified by the ANNs trained by PF II in 

Cases 4 and 5 ................................................................................................................ 31 



 
26 

 

Case Data generation model Mass distribution Excitation Damage patterns 

1 12 DOF Symmetric Ambient 1,2 

2 120 DOF Symmetric Ambient 1,2 

3 12 DOF Symmetric Shaker on roof 1,2 

4 12 DOF Asymmetric Shaker on roof 1- 4 & 6 

5 120 DOF Asymmetric Shaker on roof 1-6 

Table 1: First five cases of the IASC-ASCE SHM benchmark study. 
 

Damage Pattern Description 

1 All braces in the first storey are removed. 

2 All braces in the first and third storeys are removed. 

3 One brace in the first storey is removed. 

4 Two braces, one in the first and one in the third storey, are removed 

5 The same as damage pattern 4 but with one additional damage that is 

one beam-column connection at the first floor is lessened. 

6 1/3 stiffness loss in one brace, which is the same brace damaged in 

damage pattern 3. 

Table 2: The six damage patterns considered in the SHM benchmark study. 
 

Direction DP 
Storey 

1 2 3 4 

x-dir. 1 45.24 0.00 0.00 0.00 

 2 45.24 0.00 45.24 0.00 

 3 0.00 0.00 0.00 0.00 

 4 0.00 0.00 11.31 0.00 

 5 0.00 0.00 11.31 0.00 

 6 0.00 0.00 0.00 0.00 

      

y-dir. 1 71.03 0.00 0.00 0.00 

 2 71.03 0.00 71.03 0.00 

 3 17.76 0.00 0.00 0.00 

 4 17.76 0.00 0.00 0.00 

 5 17.76 0.00 0.00 0.00 

 6 5.92 0.00 0.00 0.00 

Table 3: Percentage reduction in stiffness for all damage patterns extracted from Table 4 of 
Johnson et al. (2006) 
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Case DP 
Mode 

1y 2y 1x 2x 

1 0 9.40 25.35 --- --- 

 1 6.26 21.48 --- --- 

 2 5.82 14.89 --- --- 

      

2 0 8.61 23.46 --- --- 

 1 5.48 19.37 --- --- 

 2 4.97 12.37 --- --- 

      

3 0 9.43 25.47 11.79 31.95 

 1 6.27 21.50 9.88 28.90 

 2 5.82 14.90 9.50 24.79 

      

4 0 9.33 25.32 11.65 31.65 

 1 6.16 21.26 9.81 28.47 

 2 5.78 14.79 9.41 24.60 

 3 8.84 24.50 11.65 31.65 

 4 8.84 24.50 11.44 30.67 

 6 9.15 24.95 11.65 31.65 

      

5 0 8.47 23.10 9.04 25.56 

 1 5.45 18.99 7.29 22.52 

 2 4.86 12.37 6.63 17.77 

 3 8.02 22.22 9.04 25.56 

 4 8.01 22.20 8.85 24.62 

 5 7.92 22.17 8.85 24.62 

 6 8.36 22.88 9.04 25.56 

Table 4: Identified natural frequencies (Hz) for Cases 1 to 5 
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a  n 
 ANNx1   ANNy1  

J  log ( | )jp D M  J  log ( | )jp D M  

 

1  

(tansig) 

16 75.17 10  1467.02 74.72 10  1508.54 

17 72.51 10  1588.67 72.91 10  1575.67 

18 71.32 10  1391.60 71.92 10  1371.61 

19 71.01 10  1348.45 71.09 10  1341.95 

 

2  

(satlin) 

20 56.68 10  760.46 55.09 10  736.42 

21 52.43 10  775.44 52.25 10  801.59 

22 52.18 10  699.16 51.78 10  718.48 

23 51.17 10  677.60 51.43 10  638.27 

Table 5: ANN model class selection for ANNx1 and ANNy1 trained by PF I 
 

 

n 
 ANNx2   ANNy2  

J  log ( | )jp D M  J  log ( | )jp D M  

15 54.72 10  999.04 55.35 10  1017.13 

16 53.49 10  1029.94 53.91 10  1058.31 

17 52.80 10  986.81 53.23 10  994.75 

18 52.46 10  927.12 52.66 10  938.43 

Table 6: ANN model class selection for ANNx2 and ANNy2 trained by PF II 
 

ANN ID Pattern feature Mass distribution 
Applied to Cases 

(direction) 
n 

ANNx1 1P  Symmetric 1 to 5 (x) 17 

ANNy1 1P  Symmetric 1 to 5 (y) 17 

     

ANNx2 2P  Symmetric 1 to 5 (x) 16 

ANNy2 2P  Symmetric 1 to 5 (y) 16 

Table 7: List of ANNs applied to the IASC-ASCE SHM benchmark study 
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Case Dir. DP 
Storey 

1 2 3 4 

1 y 1 68.99 (71.03) 0.00 (0.00) 2.38 (0.00) 0.00 (0.00) 

  2 71.09 (71.03) 1.13 (0.00) 70.30 (71.03) 2.11 (0.00) 

           

2 y 1 73.13 (71.03) 1.63 (0.00) 0.00 (0.00) 0.00 (0.00) 

  2 72.07 (71.03) 1.65 (0.00) 73.79 (71.03) 0.00 (0.00) 

           

3 x 1 43.42 (45.24) 0.00 (0.00) 2.29 (0.00) 1.22 (0.00) 

  2 44.99 (45.24) 1.22 (0.00) 45.59 (45.24) 1.43 (0.00) 

 y 1 70.00 (71.03) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  2 72.08 (71.03) 0.00 (0.00) 70.99 (71.03) 0.00 (0.00) 

Table 8: Percentage reduction in stiffness identified by the ANNs trained by PF I in Cases 1 
to 3 

 

  

Case Dir. DP 
Storey 

1 2 3 4 

1 y 1 71.08 (71.03) 0.00 (0.00) 5.36 (0.00) 3.42 (0.00) 

  2 71.60 (71.03) 2.58 (0.00) 72.24 (71.03) 1.54 (0.00) 

           

2 y 1 78.56 (71.03) 0.00 (0.00) 3.01 (0.00) 0.00 (0.00) 

  2 73.55 (71.03) 8.96 (0.00) 73.24 (71.03) 0.00 (0.00) 

           

3 x 1 45.70 (45.24) 5.19 (0.00) 4.76 (0.00) 3.03 (0.00) 

  2 43.59 (45.24) 0.00 (0.00) 43.82 (45.24) 0.00 (0.00) 

 y 1 72.65 (71.03) 4.88 (0.00) 7.86 (0.00) 5.06 (0.00) 

  2 73.20 (71.03) 2.92 (0.00) 73.96 (71.03) 0.94 (0.00) 

Table 9: Percentage reduction in stiffness identified by the ANNs trained by PF II in Cases 1 
to 3 
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Case Dir. DP 
Storey 

1 2 3 4 

4 x 1 45.89 (45.24) 0.00 (0.00) 2.42 (0.00) 0.00 (0.00) 

  2 45.29 (45.24) 1.10 (0.00) 44.78 (45.24) 0.00 (0.00) 

  3 0.00 (0.00) 0.04 (0.00) 0.00 (0.00) 0.20 (0.00) 

  4 0.40 (0.00) 1.50 (0.00) 11.11 (11.31) 2.93 (0.00) 

  6 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.17 (0.00) 

           

 y 1 72.77 (71.03) 0.04 (0.00) 0.59 (0.00) 0.27 (0.00) 

  2 71.93 (71.03) 0.00 (0.00) 70.43 (71.03) 0.00 (0.00) 

  3 18.59 (17.76) 0.00 (0.00) 0.04 (0.00) 0.00 (0.00) 

  4 18.53 (17.76) 0.00 (0.00) 0.11 (0.00) 0.00 (0.00) 

  6 7.43 (5.92) 1.67 (0.00) 0.00 (0.00) 1.22 (0.00) 

           

5 x 1 56.94 (45.24) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  2 42.74 (45.24) 7.57 (0.00) 59.35 (45.24) 0.00 (0.00) 

  3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.05 (0.00) 

  4 0.00 (0.00) 2.71 (0.00) 12.19 (11.31) 0.63 (0.00) 

  5 0.00 (0.00) 2.71 (0.00) 12.20 (11.31) 0.64 (0.00) 

  6 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.04 (0.00) 

           

 y 1 74.91 (71.03) 3.59 (0.00) 0.00 (0.00) 0.00 (0.00) 

  2 74.37 (71.03) 0.00 (0.00) 71.88 (71.03) 0.00 (0.00) 

  3 19.43 (17.76) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  4 19.35 (17.76) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

  5 21.16 (17.76) 2.62 (0.00) 0.00 (0.00) 0.00 (0.00) 

  6 5.77 (5.92) 2.01 (0.00) 0.00 (0.00) 0.00 (0.00) 

Table 10: Percentage reduction in stiffness identified by the ANNs trained by PF I in Cases 4 
and 5 
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Case Dir. DP 
Storey 

1 2 3 4 

4 x 1 45.40 (45.24) 4.02 (0.00) 5.20 (0.00) 2.11 (0.00) 

  2 43.99 (45.24) 0.00 (0.00) 43.83 (45.24) 0.00 (0.00) 

  3 3.09 (0.00) 2.90 (0.00) 3.89 (0.00) 4.19 (0.00) 

  4 1.73 (0.00) 4.46 (0.00) 13.94 (11.31) 5.71 (0.00) 

  6 3.11 (0.00) 2.84 (0.00) 3.84 (0.00) 4.25 (0.00) 

           

 y 1 71.95 (71.03) 0.00 (0.00) 4.98 (0.00) 3.38 (0.00) 

  2 71.92 (71.03) 0.00 (0.00) 72.19 (71.03) 0.00 (0.00) 

  3 22.33 (17.76) 0.00 (0.00) 1.79 (0.00) 0.00 (0.00) 

  4 22.45 (17.76) 0.00 (0.00) 1.77 (0.00) 0.05 (0.00) 

  6 8.35 (5.92) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

           

5 x 1 51.90 (45.24) 6.00 (0.00) 4.90 (0.00) 0.00 (0.00) 

  2 45.15 (45.24) 0.36 (0.00) 45.56 (45.24) 0.00 (0.00) 

  3 3.44 (0.00) 3.06 (0.00) 3.96 (0.00) 4.82 (0.00) 

  4 2.73 (0.00) 1.70 (0.00) 14.07 (11.31) 5.00 (0.00) 

  5 2.73 (0.00) 1.71 (0.00) 14.08 (11.31) 5.00 (0.00) 

  6 3.46 (0.00) 2.81 (0.00) 3.80 (0.00) 4.96 (0.00) 

           

 y 1 81.03 (71.03) 0.00 (0.00) 2.42 (0.00) 0.00 (0.00) 

  2 72.01 (71.03) 8.73 (0.00) 73.81 (71.03) 0.00 (0.00) 

  3 22.26 (17.76) 0.00 (0.00) 0.82 (0.00) 0.00 (0.00) 

  4 22.32 (17.76) 0.00 (0.00) 0.74 (0.00) 0.00 (0.00) 

  5 21.62 (17.76) 0.00 (0.00) 1.02 (0.00) 0.00 (0.00) 

  6 7.92 (5.92) 0.66 (0.00) 0.80 (0.00) 0.00 (0.00) 

Table 11: Percentage reduction in stiffness identified by the ANNs trained by PF II in Cases 
4 and 5 

 


