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SUMMARY 

 
Elastic fibres are important components of the extracellular matrices, being composed 

of an elastin core and fibrillin-microfibrils around the periphery. Elastic fibre formation is a 

complex developmentally regulated process whereby fibrillin-microfibrils act as templates 

for the deposition of elastin. Additional matrix macromolecules, including fibulin-4, fibulin-5 

and as yet unidentified heparan sulphate proteoglycans (HSPGs), have also been identified as 

playing important roles in this process.  

 Fibrillins-1, -2, -3 and latent transforming growth factor-β binding protein (LTBP)-1, 

-2, -3, -4, associated components of fibrillin-microfibrils, make up a superfamily of 

extracellular matrix proteins. Fibrillins and LTBPs share a high degree of structural similarity 

since they both have rod-like structures of tandem EGF-like 6-cysteine repeats interspersed 

with unique 8-cysteine motifs. LTBP-1, -3 and -4 covalently bind TGF-β and target and store 

the latent growth factor in the matrix. Unlike the other LTBPs, LTBP-2 does not bind latent 

TGF-β and its function is poorly understood. LTBP-2 has been shown to bind fibulin-5, an 

elastin-binding protein and through this interaction it may target tropoelastin-fibulin-5 

complexes on to fibrillin-1-microfibrils during elastic fibre assembly. In order to understand 

more about the role of LTBP-2 in the assembly of elastic fibres and to identify other novel 

functions, this study involved screening for potential molecular interactions of LTBP-2 with 

other matrix components, particularly heparin/HSPGs. In elastic tissues HSPGs are found on 

cell surfaces as syndecans and glypicans and in basement membranes as perlecan. 

 Full length human recombinant LTBP-2 (rLTBP-2) was expressed in 293 EBNA cells 

using a modified pCEP-4 vector and purified by nickel affinity chromatography. Upon 

validation of the purified protein using western blots, solid phase binding assays were used to 

screen for interaction between rLTBP-2 and heparin. Heparin serves as a useful model for 

heparan sulphate; due to the lack of adherence of heparin to microtitre plates heparin-BSA 

conjugate was synthesised and purified for the binding assays. Recombinant LTBP-2 was 

found to interact with heparin-BSA conjugates using an established solid phase binding assay. 

The binding was blocked by the addition of heparin (but not chondroitin sulphate) to the 

liquid phase, confirming the specificity of the interaction. Furthermore, the binding was 

blocked by the addition of 5mM EDTA and 5mM EGTA, showing that the interaction was 

cation (calcium) dependent. An apparent Kd of 14.5±3.7nM was calculated from non-linear 

regression analysis of the LTBP-2-heparin binding curve, indicating a strong affinity. To 

identify the location of the heparin binding site(s) on LTBP-2, expression constructs were 

produced encoding three fragments of LTBP-2, i.e. rLTBP-2NT(H), rLTBP-2C(H) and 

rLTBP-2CT(H), corresponding to the N-terminal, central and C-terminal regions of the 
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molecule. Good yields of rLTBP-2C(H) were obtained using the pCEP4-293-EBNA system, 

and rLTBP-2CT(H) was previously expressed and purified by members of the Gibson 

laboratory. However, difficulties were encountered with the rLTBP-2NT(H) expression 

construct and no LTBP-2NT(H) was available during the candidature. The central fragment 

LTBP-2C(H), (but not the C-terminal fragment  LTBP-2CT(H)), was found to bind heparin. 

However, the apparent Kd of 52.2±6.9nM was significantly higher than that for full length 

LTBP-2, indicating that LTBP-2C(H) had relatively lower heparin-binding affinity. This 

result suggested that an additional heparin binding site(s) is present in the N-terminal region 

of the molecule. 

It was considered that the true tissue ligand(s) for LTBP-2 would be a HSPG rather 

than heparin. Therefore, LTBP-2 was screened for interaction with HSPGs, recombinant 

syndecans-2 and -4, and endothelial cell-derived perlecan. Interestingly, LTBP-2 bound 

strongly to r-syndecan-4 but not r-syndecan-2 even though both molecules were produced in 

the same mammalian cell system and had been screened for binding to HS-binding growth 

factor, fibroblast growth factor-2. This finding indicates that LTBP-2 does not interact with 

all HS and must recognise specific microstructures within the heparan sulphate chains. It 

appears that syndecan-4 is now a strong candidate as mediator of LTBP-2-cell signalling. 

LTBP-2 was also found to specifically interact with perlecan in a cation-dependent, heparin-

inhibitable manner. Confocal immunohistochemical studies using foetal human aorta showed 

that LTBP-2 and perlecan generally had distinct distribution patterns within the medial layer, 

located on fibrillin-microfibrils and basement membranes respectively. However, there were 

small but widespread regions of LTBP-2-perlecan colocalisation which showed a similar 

pattern to the fibrillin-1-perlecan colocalisation. Thus it would appear that LTBP-2 is present 

at microfibril-basement membrane interfaces and may be involved in stabilising the 

interaction between these two structural elements of the matrix. This concept needs to be 

confirmed at the ultrastructural level. The interaction of LTBP-2 with perlecan during 

embryonic development is also worthy of investigation. 

 In parallel studies, a proteomic approach was used to identify other matrix binding 

proteins for LTBP-2. This was carried out in parallel with another matrix protein of poorly 

defined function, transforming growth factor-beta-inducible gene-h3 (βig-h3). Recombinant 

LTBP-2 and βig-h3 coupled to sepharose were used as bait proteins to screen complex 

mixtures of matrix proteins from the elastic tissue nuchal ligament and basement membrane 

preparation Matrigel. Initial studies showed that non-specific background binding to these 

proteins was a major problem. In efforts to overcome this difficulty, binding conditions were 

varied with limited success. A two-dimensional gel approach was used to fractionate and 

compare proteins binding to LTBP-2 with those binding to βig-h3. The differentially-
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displayed protein spots were to be identified by mass spectrometry. However, complications 

in comparing the patterns on two separate gels made identification of candidate spots 

challenging. Finally, CyDye DIGE fluor dyes were used to fractionate proteins binding to 

LTBP-2 and βig-h3 on the same gel, but unfortunately this work could not be completed in 

the time frame of the candidature.  
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CHAPTER 1 

INTRODUCTION 

 
1.1 Extracellular Matrix 

The extracellular matrix (ECM) is a complex structural entity that surrounds and 

supports cells that are found within tissues. This ECM is composed of collagens (Wess, 2005), 

elastin (Mithieux and Weiss, 2005), proteoglycans (PGs) (Hocking et al., 1998) and 

glycoproteins (Mark, 2002) that include fibrillins, fibronectin, laminins, as well as 

thrombospondin, tenascin and vitronectin. These components are organised into a meshwork 

that provides mechanical strength and elasticity to mammalian tissues and also creates a 

structural framework for cell adhesion and migration. In addition, there are also specialised 

extracellular matrices that can create barriers for cell penetration and also filtration of 

macromolecules (Hocking et al., 1998). The ECM is not an inert structure; it is an 

environment in which there is extensive interplay between the resident cells, structural 

proteins, growth factors and cytokines and numerous cell surface receptors. It has been shown 

that there is signalling of one form or another that operates in a bi-directional manner in the 

ECM and examples of this occur in both normal and disease processes (Hocking et al., 1998). 

 

1.1.1 Collagens 

Collagens are major components of the ECM, and the most abundant proteins found in 

the body. There are at least 26 different types of collagens described in vertebrates thus far 

that have distinct properties in the matrix. Structurally, collagens are triple helical structures 

formed by three extended protein chains that wrap around one another. The sequence of these 

protein chains consists predominately of repeats of G-X-Y (Ottani et al., 2002), where the 

first position of the repeat is glycine, and the second and third positions of the repeat can be 

any residues but are frequently proline and hydroxyproline (Kielty, 2002).  

Fibrous collagens are synthesised as precursor proteins called procollagens. The 

procollagen begins to assemble in the endoplasmic reticulum and golgi complexes of 

fibroblasts cells and some epithelial cells, where they undergo numerous modifications. For 

example, the specific proline residues in the procollagen molecule are hydroxylated by prolyl-

4-hydroxylase and prolyl-3-hydroxylase, and the specific lysine residues are hydroxylated by 

lysyl hydroxylase. Glycosylation of the hydroxylysine residues within the triple helix also 

occurs by two enzymes in the rough endoplasmic reticulum (Kielty, 2002).
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Following the completion of this process, the procollagens are secreted into the 

extracellular space where they undergo further modification before the collagen molecules 

polymerise to form collagen fibrils (Kielty, 2002). 

Collagens are major components of skin, ligament, bone, cartilage, tendon, lung and 

teeth. The most distinctive characteristic feature of collagen is the formation of rigid 

structures to withstand mechanical force. In the matrix, the distribution and the orientation of 

collagen reflects the function of the tissue in which it is found. For example, collagen 

transmits tension in the tendon by running parallel to the axis, lends structural support in skin 

by forming interlaced and branched structures, while in bone it mineralises to provide tensile 

strength and in the arteries it limits the expansion of the walls. Alterations in the stability of 

the triple helical structure of collagens resulting from missense mutations can lead to a range 

of heritable connective tissue disorders. For example, osteogenesis imperfecta results from 

mutations in type I collagen, Ehlers-Danlos syndrome type IV from mutations in type III 

collagen, Alport syndrome from mutations in type IV collagen, and Dystrophic epidermolysis 

bullosa from mutations in type VII collagen (Masse et al., 2005). However, instability of the 

collagen structures is not the only way that collagens contribute to the pathogenesis of 

connective tissue disorders. There is evidence that mRNA levels of collagen I and collagen II 

are increased during progression of osteoarthritis, suggesting the involvement of both 

collagens in the development of osteoarthritis (Miosge et al., 2004). In addition, structural 

remodelling of the left atrial tissue due to increased concentration of collagen I and III has 

been shown to be responsible in part for the pathogenesis of human arterial fibrillation (Boldt 

et al., 2004). 

 

1.1.2 Elastin and Elastic fibres 

In tissues such as large arteries and lung parenchyma where both strength and 

extensibility are necessary for proper functioning, collagen fibres are accompanied by elastic 

fibres in the ECM. This allows the tissue to stretch and recoil without damage (Mecham, 

1994). The elastic fibres are composed of two distinct parts, one being an abundant 

amorphous core component, elastin, which is surrounded by a sheet of fibrillin-rich 

microfibrils (Cleary, 1996; Kielty et al., 2002; Robb et al., 1999). Elastin in turn is 

synthesised as a soluble precursor tropoelastin. The tropoelastin molecule is composed of two 

main domain types; hydrophilic and hydrophobic domains (Miao et al., 2005; Mithieux and 

Weiss, 2005). The hydrophobic domains are rich in the non-polar residues glycine, valine and 

proline, which typically occur in repeating motifs. There have been suggestions that these 

domains are responsible for the self-assembly properties of elastin and for its elastomeric 

properties (Miao et al., 2003; Miao et al., 2005). Alternating with these domains are 
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hydrophilic regions which are rich in alanine and contain lysine residues which are destined 

to be involved in formation of covalent cross-links. Cross-linking is initiated by the 

extracellular enzymes lysyl oxidase which catalyses the oxidative deamination of lysyl ε-

amino groups. This allows the modified groups in the tropoelastin molecule to participate in 

covalent linkages that form the functional polymer. The cross-linking of tropoelastin is 

essential for stability and insolubility of the protein.  

Tropoelastin is initially secreted primarily from vascular smooth muscle cells and 

fibroblasts and it has been proposed that tropoelastin is chaperoned to the cell surface by 

elastin binding protein (Hinek et al., 2004). Secreted tropoelastin monomers then self-

aggregate via coacervation, a process that aligns and concentrates the protein into quantised 

spheres prior to cross-linking (Clarke et al., 2006; Vrhovski et al., 1997). Coacervation is an 

important prerequisite for cross-linking (Narayanan et al., 1978). The coacervate package 

remains attached to the cell surface possibly by binding to integrins, glycosaminoglycans 

(GAG) on cell surfaces, and non-integrin proteins (Broekelmann et al., 2005), which are then 

released on to the preformed fibrillin-microfibrils. Finally, lysyl oxidase promotes covalent 

cross-links of tropoelastin molecules to form mature elastic fibres. 

Elastogenesis in tissues involves a far more complex biochemical mechanism. This 

process involves the association of multiple extracellular proteins including fibulin-5, for 

directing elastin onto the microfibrils (Hirai et al., 2007; Nakamura et al., 2002; Yanagisawa 

et al., 2002; Zheng et al., 2007) and fibulin-4 which is important for the cross-linking of 

elastin by lysyl oxidase (McLaughlin et al., 2006). Recent studies have demonstrated that 

fibulin-4 interaction with lysyl oxidase enhances formation of a ternary complex with 

tropoelastin (Choudhury et al., 2009). The ability of microfibrillar-associated glycoprotein 

(MAGP)-1 to interact with tropoelastin (Brown-Augsburger et al., 1994; Jensen et al., 2001) 

and fibrillin-1 (Brown-Augsburger et al., 1994; Trask et al., 2000a), suggests that MAGP-1 

may serve as a bridging molecule between the two elastic fibre components during the 

assembly of elastic fibres. However, the involvement of MAGP-1 is not crucial for elastic 

fibre assembly as elastic fibre assembly is normal in mice lacking MAGP-1 (Wagenseil and 

Mecham, 2007).  

Several models have been proposed for the assembly of elastic fibres. One such 

model involves the self-aggregated tropoelastin on the cell surface interacting with fibulin-4 

to aid in the cross-linking of these aggregates by lysyl oxidase (McLaughlin et al., 2006). The 

aggregates stay attached to the surface of cells long enough for newly secreted tropoelastin to 

be added to the aggregates. The larger aggregates collected by cells are then transferred onto 

pre-existing fibrillin-microfibrils. The deposition of elastin aggregates on microfibrils is 

facilitated by fibulin-5, which is present on the microfibrils. The elastin aggregates on the 



 

  - 4 - 

microfibrils come together to form larger structures and are further cross-linked by lysyl 

oxidase to form mature elastic fibre (Choudhury et al., 2009; Hirai et al., 2007; Wagenseil 

and Mecham, 2007).  

It has long been assumed that microfibrils provide a scaffold for elastin assembly 

before it is displaced to the periphery of the growing fibre (Cleary and Gibson, 1983; 

Mecham, 1994; Midwood and Schwarzbauer, 2002). Microfibrils are complex structures 

composed primarily of fibrillins, described in more detail in section 1.2.2.1. 

Mutations within the elastin gene cause several elastinopathies in humans. An 

example is the autosomal dominant cutis laxa (OMIM# 123700), characterised by lax skin 

due to markedly reduced elastin content of the dermis (Milewicz et al., 2000). The majority 

of elastin mutations associated with this disease are single nucleotide deletions near the 3’end 

of the gene (Urban et al., 2005; Zhang et al., 1999). These mutations result in a missense 

sequence that leads to alterations at the C-terminus of the tropoelastin molecule and thus 

interferes with deposition of normal elastin in dominant negative fashion (Milewicz et al., 

2000). In contrast to the dominant negative mutation typical of cutis laxa, supravalvular 

aortic stenosis (OMIM# 185500) results from a loss of function mutation that produces 

haploinsufficiency of the ELN gene. Supravalvular aortic stenosis is characterised by 

narrowing of the ascending aorta and other blood vessels (Dridi et al., 2005). Supravalvular 

aortic stenosis occurs sporadically or as a familial condition with autosomal dominant traits 

(Curran et al., 1993; Eisenberg et al., 1964; Ewart et al., 1993; Olson et al., 1993). There 

have been more than 50 different mutations identified which lead to supravalvular aortic 

stenosis (Ewart et al., 1994; Ewart et al., 1993; Li et al., 1997; Metcalfe et al., 2000; Urban et 

al., 2000; Urban et al., 2001). It has been reported that abnormal deposition of elastin in 

arterial walls of patients with supravalvular aortic stenosis leads to increased proliferation of 

arterial smooth muscle cells which results in the formation of hyperplastic intimal lesions. 

This is in accordance with studies of mice hemizygous for the elastin gene, which showed 

50% thinner elastic lamellae, with additional lamellar units in the aortae of hemizygous mice 

compared to wildtype mice (Li et al., 1998b). These findings indicate that reduced levels of 

elastin mRNA result in the formation of abnormal elastic fibres which in turn lead to an 

increase in the number of individual lamellae deposited in the aortae during development (Li 

et al., 1998b). These hemizygous mice also display altered aging processes in the aorta, 

signalling that the early elastin arrangement determines the way the vessel evolves (Pezet et 

al., 2008). 

Elastin null mice generated by Li et al., (1998a) have highlighted the importance of 

elastin in development and provided a possible mechanism by which absent or damaged 

elastin may contribute to the pathogenesis of not only the inheritable disorders, but the more 
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common disorders such as atherosclerosis. Elastin deficient mice have been shown to be 

viable, but die within the first week after birth, due to subendothelial accumulation of 

proliferating smooth muscle cells that eventually obliterate the vascular lumen (Li et al., 

1998a). Similar reduction in luminal diameter in the systemic and pulmonary arteries of 

elastin null mice has also been detected. The results of the null mice studies therefore 

suggested that cell proliferation is promoted by the absence of elastin, raising the possibility 

that disruption of elastin by endothelial injury, thrombosis, or inflammation may contribute to 

obstructive arterial pathology by altering the proliferation rate of vascular cells at the site of 

injury (Dietz and Mecham, 2000). 

In addition to hereditary defects of elastin, uncontrolled protease activity causing 

destruction of elastin has been implicated in the manifestation of several disease states 

including emphysema, rheumatoid 

arthritis, cystic fibrosis, and aortic 

rupture (Hu et al., 2006).  

 

1.1.3 Proteoglycans 

Proteoglycans (PGs) are 

synthesised by most cells and are 

abundant components of the ECM, 

basement membrane (BM) and cell 

surfaces (Gallagher, 1989; Perrimon 

and Bernfield, 2001; Staprans et al., 

1986). They are primarily composed 

of a protein core to which GAGs 

chains are covalently attached 

(figure 1.1). GAG chains are 

negatively charged, long, 

unbranched polysaccharides 

containing repeating disaccharide 

units of either of two modified 

sugars, N-acetylgalactosamine 

(GalNAc) or N-acetylglucosamine 

(GlcNAc), and an uronic acid, 

glucuronate or iduronate (figure 

1.1). The specific GAGs of physiological significance are hyaluronic acid, dermatan sulphate, 

chondroitin sulphate (CS), heparin, heparan sulphate (HS) and keratan sulphate. HS, CS and 

Figure 1.1. Structure of glycosaminoglycans 
(GAGs) and proteoglycans (PGs). Heparan 
sulphate (HS), chondroitin sulphate (CS) and 
dermatan sulphate GAG side chains are linked to 
a protein core via a serine residue. Hyaluronic 
acid is not covalently linked to a PG, but 
synthesised directly into the extracellular space. 
HS, CS and DS are assembled via a serine residue 
to a PG backbone. Diagram taken from Taylor and 
Gallo (2006).       
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dermatan sulphate are assembled via a serine residue to the protein cores, defining them as 

PGs. Due to the differences in the basic carbohydrate backbone of the GAG chain, the length 

of the chains and the subsequent modifications in sulphation pattern, deacetylation and 

epimerisation of the chains, great diversity in GAG chains can be achieved. These 

modifications are also the factors that provide for the specific activities of the PG molecules 

(Taylor and Gallo, 2006). In particular in HS, CS and dermatan sulphate sulphation plays an 

important role in the GAG chain activity. The exception is hyaluronic acid, which is not 

sulphated and is not attached to a core protein. GAGs play important roles in biological 

processes such as in cell signalling and development (Hacker et al., 2005; Lin, 2004), 

angiogenesis (Iozzo and San Antonio, 2001), axonal growth (Chung et al., 2000), tumour 

progression (Breborowicz et al., 1996; Breborowicz et al., 1998), metastasis (Breborowicz et 

al., 1998; Teder et al., 2002) and anti-coagulation (Haslinger et al., 2001; McKee et al., 

1996). Heparin and heparan sulphate proteoglycans (HSPGs) have recently been shown to be 

critical for fibrillin-microfibril assembly (Ritty et al., 2003a; Tiedemann et al., 2001). 

However, their precise roles are as yet not clear. HS is composed of a repeated disaccharide 

structure (-4-glucuronic acid-β1-4-N-acetylglucosamine-α1-)n, which is modified in varying 

degrees by N-deacetylation and N-sulphation of the glucosamine, epimerisation of the D-

glucuronic acid to L-iduronic acid, and also by additional O-sulphation on both sugars 

(Sasisekharan et al., 2006). Structurally, what makes heparin distinct from HS is that heparin 

is more heavily modified (table 1.1), although HS can contain heparin-like regions (Taylor 

and Gallo, 2006). Heparin is less abundant in vivo, and is synthesised by, and stored 

primarily in, mast cells (Forsberg et al., 1999; Humphries et al., 1999; Rose and Page, 2004). 

HS, on the other hand, is more ubiquitously found on cell surfaces and in the ECM as part of 

a PG.  

There are essentially three broad classes of HSPGs: (1) those that are secreted by cells 

and located in the ECM, e.g. perlecan, agrin, collagen type XVIII, (2) those associated with 

the cell membrane, such as glypicans, a family of six HSPGs, which are linked to the cell 

surface via glycosylphosphatidyl inositol anchors and (3) the transmembrane HSPGs, e.g. the 

syndecan family, consisting of four members (Beauvais and Rapraeger, 2004). A component 

of this project is to further define the role of HS-side chains of HSPGs in the assembly of 

elastic fibres, as well as to verify potential roles independent of elastic fibres for the 

candidate HSPGs in elastic tissues. Two of the HSPGs, and possible candidates, are 

discussed in more detail in section 1.1.3.1 and 1.1.3.2. 
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Table 1.1. Key differences between heparan sulphate and heparin. Table taken and modified 
from Gandhi and Ricardo, (2008). 

 

1.1.3.1 Perlecan 

Perlecan is one of the major components of BM together with collagen IV, laminin 

and nidogen (Timpl and Brown, 1996). BMs are thin amorphous sheets of specialised ECM 

that form a close association with adjacent cells and can affect their survival, migration, 

proliferation and differentiation. They compartmentalise tissues, providing a barrier that 

allows the filtration of macromolecules while preserving tissue architecture (Miner et al., 

2004; Yurchenco et al., 2004). BMs are the first ECM made during embryogenesis, first 

occurring at embryonic day (E)-3. 

The complete sequence of perlecan was determined from a human colon cDNA 

library (Cohen et al., 1993; Dodge et al., 1991) and is encoded by the HSPG2 gene 

(Arikawa-Hirasawa et al., 2002; Cohen et al., 1993). Perlecan is a large HSPG (figure 1.2) 

with a mature core protein of approximately 467 kDa. When including the numerous post 

translational modifications, such as six potential GAG side chains of approximately 30 kDa 

each, and large number of potential glycosylations (Iozzo et al., 1994), the complete PG 

could reach the size of 850 kDa (Murdoch et al., 1994). The perlecan core protein contains 

five distinct domains (figure 1.2): domain I, a globular amino terminal domain containing 

three HS attachment sites; domain II, with four copies of sequences similar to the low-density 

lipoprotein (LDL) receptor ligand binding repeats; a central domain III, resembling the short 

arm of laminin chains with three globules and four regions of cysteine rich repeats; domain 

IV containing immunoglobulin (Ig) repeats; and domain V, a large globular carboxyl-

terminal domain resembling a part of the G domain of the laminin A chain where an 

additional GAG attachment site is present (Kallunki and Tryggvason, 1992).  
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Figure 1.2. Schematic molecular structure of human perlecan. Illustrating the various 
domains (Roman numerals) and the abbreviations for each module (top). LA, LDL receptor 
type A. L4, Laminin type IV domain. LE, Laminin EGF-like. Ig, Immunoglobulin 
superfamily. LG, Laminin type-G domain. The figure was taken from Whitelock et al., (2008) 
and modified.  

 

Perlecan protein binds to a number of ECM proteins including fibronectin (Hopf et al., 

1999; Hopf et al., 2001), laminin (Friedrich et al., 1999), collagen type IV (Battaglia et al., 

1992; Hopf et al., 1999), and fibulin-2 (Heremans et al., 1990; Hopf et al., 1999). Perlecan 

also binds to cell surface receptors such as α-dystroglycan (Peng et al., 1999) and integrins 

α2β1, β1 and β3 (Bix et al., 2004; Hayashi et al., 1992). Furthermore, perlecan binds to 

various growth factors such as platelet derived growth factors (Gohring et al., 1998), 

fibroblast growth factor -7, and -2 (Govindraj et al., 2006; Mongiat et al., 2000; Smith et al., 

2007). Some of these interactions are heparin/HS dependent, some are heparin influenced, 

and still others are with the core protein that occur independently of heparin/HS. Perlecan’s 

ability to interact with such a wide spectrum of matrix proteins suggests that perlecan is 

involved in matrix organisation and stabilisation, cell-matrix interaction, and in modulating 

growth factor signalling for cell growth and differentiation (Farach-Carson and Carson, 2007; 

Iozzo, 2005; Iozzo et al., 1994; Melrose et al., 2008; Timpl and Brown, 1996). Furthermore, 

perlecan has been shown to promote mitogenesis and angiogenesis through its interaction 

with fibroblast growth factor-2 (Aviezer et al., 1994; Iozzo and San Antonio, 2001), and to 

play key roles in the development of blood vessels and cartilage (Arikawa-Hirasawa et al., 

1999; Costell et al., 1999). 

Tiedemann et al., (2005) demonstrated the interaction of perlecan with fibrillin-1 

microfibrils in vitro, as well as the colocalisation of the two proteins close to BM zones in 

human skin, blood vessels and eyes. The functional relevance of this interaction was also 

studied through analysis of microfibrils in perlecan knockout mice (Tiedemann et al., 2005). 

The significant reduction of fibrillin-1-microfibrils at the dermal-epidermal junction 
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suggested the involvement of perlecan in microfibril assembly (Tiedemann et al., 2005). The 

combined results of Tiedemann et al., (2005), was used as one of the reasons for selecting 

perlecan as a potential candidate HSPG for investigation in this project. 

Beside tissue development, perlecan plays an important role in embryogenesis. Early 

studies have shown perlecan expression in pre-implanted embryos prior to the formation of a 

BM (Dziadek et al., 1985). Perlecan has not only been detected in the blastocyst interior, but 

perlecan epitopes have been detected on the outer surface of the trophectoderm cells at the 

time of implantation. The obtained expression pattern of perlecan in developing embryos 

suggested the potential participation of this HSPGs in blastocyst attachment (Carson et al., 

1998; Carson et al., 1993; Smith et al., 1997). These findings supported previous reports of 

initial embryo attachment to the uterine epithelial surface being via a HS-dependent 

interaction with its various binding ligands such as laminin and fibronectin (Farach et al., 

1987). Aside from the embryo, expression of perlecan has also been detected in uterine 

tissues of mice during pregnancy (San Martin et al., 2004), thus preparing the uterine 

microenvironment for embryo attachment (San Martin et al., 2004).  
 Costell et al., (1999) have demonstrated that almost half of mice lacking the perlecan 

gene die as embryos around E-11.5 due to either cardiac system failure caused by 

intrapericardial haemorrhage, or failure of the neural system to develop. Studies of perlecan 

knockout mice hence highlighted the importance of perlecan in the development of the 

embryo itself. 

 

1.1.3.2 Syndecans 

Syndecans are cell surface HSPGs composed of an extracellular ectodomain specific 

for each syndecan, a conserved transmembrane domain and a short cytoplasmic domain 

(Beauvais and Rapraeger, 2004; Couchman, 2003) (figure 1.3). The divergent ectodomains 

share conserved attachment sites for GAGs, predominantly HS (Couchman, 2003). 

Syndecans interact with matrix proteins (David, 1993), growth factors including vascular 

endothelial growth factor and basic fibroblast growth factors (Chen et al., 2004; Chernousov 

and Carey, 1993; Rapraeger, 2000), and possibly growth factor receptors (Mundhenke et al., 

2002) via the HS-side chains. The ectodomains can be shed from cells by proteolytic 

cleavage (Fears et al., 2006; Fitzgerald et al., 2000). Once released from the cell surface, 

ectodomains can sequester soluble factors and compete for cell surface binding (Bellin et al., 

2002; Kato et al., 1998). The cytoplasmic domain contains a region unique to each syndecan 

(Couchman, 2003). In syndecan-1 the region regulates cell spreading, and actin and fascin 

bundling (Chakravarti et al., 2005). In syndecan-2, this region has been implicated in matrix 

assembly in fibroblasts (Klass et al., 2000), and left-right asymmetry in Xenopus (Kramer et 
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al., 2002; Kramer and Yost, 2002). The function of this region in syndecan-3 has not been 

described, while in syndecan-4 this unique region has been implicated in signal transduction 

and activation of protein kinase Cα (Horowitz et al., 2002; Lim et al., 2003). 

Syndecan-1 is primarily expressed in epithelial (Hinkes et al., 1993) and plasma cells 

(Seftalioglu and Karakus, 2003), and can also contain CS-GAGs in addition to HS-GAGs 

(Rapraeger et al., 1985). Syndecan-2 is highly expressed in fibroblasts and endothelial cells 

(Couchman, 2003; Fears et al., 2006) and is involved in cell adhesion, proliferation, 

angiogenesis and matrix assembly (Fears et al., 2006; Han et al., 2004; Klass et al., 2000). In 

addition a role for syndecan-2 has been shown in cell motility (Fears et al., 2006). Syndecan-

2 is also expressed in rat hippocampal neurons and interacts with the receptor tyrosine kinase, 

EphB2, to mediate dendritic spine formation in mice (Ethell et al., 2001). Syndecan-3 is the 

least investigated syndecan, and similar to syndecan-1 it can contain CS-GAG chains in 

addition to HS-GAGs (Tkachenko et al., 2005). It has been suggested that syndecan-3 is 

involved in mediating the formation of neuronal connections during development 

(Goutebroze et al., 2003), and acts as a receptor for the axonal growth factor, pleiotrophin 

(Raulo et al., 1994). Syndecan-4 is involved in focal adhesions; in vitro binding studies 

demonstrated that syndecan-4 interacts with cytoskeletal protein, α-actinin (Alexopoulou et 

al., 2007; Greene et al., 2003). Over-expression of syndecan-4 in the presence of 

phosphatidylinositol 4, 5 bisphosphate can activate protein kinase Cα and downstream 

signalling that promotes the formation of focal adhesions and cytoskeletal stress fibres (Oh et 

al., 1997).  
 

 
 

Figure 1.3. Cell surface HSPGs syndecans. Potential and identified GAG attachment sites 
are indicated by red lines. The homologous transmembrane domain (dark blue) and 
intracellular domain (stipple) with conserved tyrosines (dots), as well as the Threonine, 
Serine, and Proline rich domain of syndecan-3 (crosshatch) are indicated. The image is a 
modified version of Lopes et al., (2006). 
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1.1.4 Glycoproteins  

Glycoproteins in the ECM generally have structural and adhesive properties. 

Numerous extracellular glycoproteins have been isolated and characterised as cellular 

effectors in the matrix which have specific adhesive affinities on one hand for the cell surface 

and on the other hand for other molecules of the matrix (Mark, 2002). A number of 

glycoproteins in the matrix are large molecules which are able to mediate cellular activities, 

both directly through interaction with cell surface receptors such as integrins, and indirectly 

by structuring a defined 3-dimentional ECM which is required by most cells to express their 

tissue specific features. Some of these glycoproteins with adhesive properties are fibronectins, 

laminins, tenascins, vitronectin, thrombospondin, and fibrillins (Mark, 2002).  

Fibronectin occurs as a soluble dimer with molecular weight of 540 kDa in plasma or 

as a fibrillar form in tissue extracellular matrices. Fibronectin has a wide range of biological 

activities which have been identified through in vitro and in vivo studies (George et al., 1993; 

Giancotti and Ruoslahti, 1999; Pearlstein et al., 1980). The importance of fibronectin has 

been demonstrated by the embryonic lethal effect of the fibronectin knockout in mice. Mice 

lacking fibronectin die near E-8.5 due to severe defects in embryonic development (George et 

al., 1993). Morphologically, the foetuses of fibronectin null mice display abnormalities in the 

heart and vasculature, and have a deformed neural tube. They also lack somites and 

notochords (Mark, 2002). In humans, mutations in the fibronectin gene have been linked to 

glomerulopathy with fibronectin deposits (Castelletti et al., 2008). Glomerulopathy with 

fibronectin deposits is a hereditary kidney disease (OMIM# 601894) which is characterised 

by proteinuria, microscopic hematuria, and hypertension, that results in end-stage renal 

failure between second to sixth decade of life (Castelletti et al., 2008).  

Structurally, fibronectin is a dimer of two similar polypeptide chains, with each chain 

being 60-70nm long, 2-3nm thick and having a molecular weight of 220-250 kDa. The two 

chains are held together by two disulphide bonds near the C-terminal region (Schwarzbauer, 

1991; Sottile and Mosher, 1993). There are at least 20 different fibronectin chains that arise 

from alternative RNA splicing of the primary transcript from the single fibronectin gene 

(Gutman and Kornblihtt, 1987; Kornblihtt et al., 1984; Schwarzbauer et al., 1987; 

Schwarzbauer et al., 1983).  

Fibrillins are another family of glycoproteins found in the matrix which form 

polymers that are the backbone structure of microfibrils. Fibrillin-microfibrils support the 

mature functional integrity of a particular organ by providing organs with a tissue specific 

architectural framework. Fibrillin-microfibrils also play a role in targeting growth factors to 

the right location in the ECM of organs (Charbonneau et al., 2004; Sengle et al., 2008). The 

importance of fibrillins in vivo has been highlighted by the development of inheritable 
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connective tissue disorders as a result of mutations in the fibrillin genes (Kielty et al., 2002; 

Ramirez and Dietz, 2007). Fibrillins will be discussed in more detail in section 1.2.2. 

 
1.2 Microfibrillar structures of the matrix  

Fibrillins and collagen VI are two matrix proteins present in a wide range of tissues 

that form distinct microfibrils (Cleary and Gibson, 1983; Finnis and Gibson, 1997). These 

microfibril-forming proteins have been well documented and have been shown to be 

structurally unrelated. In early studies the structure of these microfibrils and their 

composition was extensively studied using immuno-electron microscopy techniques and 

molecular approaches such as tissue extraction and cell culture (Engvall et al., 1986; 

Furthmayr et al., 1983; Kielty and Shuttleworth, 1995; Prosser et al., 1984). The structure 

and composition of these microfibrils are described in further detail in section 1.2.1 and 1.2.2. 

 
1.2.1 Collagen VI microfibrils 

Type VI collagen microfibrils are 3-5nm in diameter and are present as an extensive 

network in virtually all types of connective tissues where they are found in loose association 

with collagen fibres, BMs and cells (Timpl, 1994). Various molecules that specifically 

associate with type VI collagen include integrins (Pfaff et al., 1993), transforming growth 

factor-β-inducible gene-h3 (βig-h3) (Gibson et al., 1997; Hanssen et al., 2003) and matrix 

PGs including biglycan (Wiberg et al., 2002) and decorin (Nareyeck et al., 2004). Biglycan 

and decorin interact with matrilins in both native and reconstituted microfillar assemblies. 

Complexes between matrilin-1 and biglycan/decorin are found bound to native collagen VI 

microfibrils, mediating binding of type VI collagen to major constituents of ECM (Wiberg et 

al., 2003). Collagen VI microfibrils are involved in ECM signalling and cell-matrix stability, 

which makes them important components of the matrix (Alexopoulos et al., 2005; Guilak et 

al., 2006; Poole, 1997). 

 
1.2.1.1CollagenVI 

1.2.1.1.1 Structure 

Collagen VI monomers have relatively short triple-helical regions that are 60nm long 

separated by globular domains of 40nm long (Furthmayr et al., 1983; Kuo et al., 1989; 

Spissinger and Engel, 1995). The collagen VI monomers are comprised of three different 

polypeptide chains α1 (VI), α2 (VI), and α3 (VI), which have a triple helix flanked with the 

N-and C-terminal globular domains at each end (figure 1.4). Furthermore, the collagen VI 

polypeptide chains α1 (VI) and α2 (VI) have a molecular mass of 140,000 kDa, and α3 (VI) 
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has a molecular mass of 260,000-280,000 kDa (Colombatti et al., 1987; Kielty and 

Shuttleworth, 1997). The stabilisation of these monomers is made possible by both intrachain 

and interchain disulphide bonds present within the monomers (Odermatt et al., 1983). 

Type VI collagen dimers are formed by lateral aggregation of two antiparallel 

monomers with their helical rods overlapped by about 75nm (figure 1.4b). Tetramers, the 

basic unit of type VI collagen filaments, are formed by the aggregation of two dimers in a 

parallel fashion, with their ends in register (figure 1.4b) (Kuo et al., 1989). Their assembly 

into tetramers occurs intracellularly, before being secreted into the ECM. The evidence for 

this was first provided by biosynthetic studies on type VI collagen in fibroblast cultures 

(Engvall et al., 1986). It is possible that the initial associations for the formation of tetramers 

are guided by the specific interaction of the inner carboxyl globular domain with a binding 

site within the triple helix, or perhaps specific interactions between the helical domains. 

Intramolecular disulphide bonds are responsible for further stabilising the dimers and 

tetramers of type VI collagen (Engel et al., 1985; Odermatt et al., 1983). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.4. Domain organisation and assembly of the alpha chains from collagen VI. a, A 
diagram showing the organisation of domains in α1, α2, and α3 chains of collagen VI. The 
blue and red rectangle represents the N- and C-terminal domains structurally. The 
collagenous region is shown in black as a molecular structure. b, Diagram showing the 
assembly of collagen VI microfibrils from three α chains. The formation of monomers, 
dimers and tetramers occurs intracellularly while the microfibril assembly occurs in the 
extracellular space. This diagram is taken from Baldock et al., (2003). 

 

Microfibril assembly occurs by end to end overlapping of the outer amino-terminal 

domains of the tetramers at, or close to, the cell surface (figure 1.4), through non-covalent 

interactions (Bruns et al., 1986; Furthmayr et al., 1983). Several studies have supported these 

non-covalent interactions of tetramers by showing the ready dissociation of collagen VI 

microfibrils into tetrameric subunits by treatment with a chaotropic agent (Kuo et al., 1989) 

or low pH (Spissinger and Engel, 1995). Adjacent microfibrils have been shown in some 
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tissues, such as the human placenta at term and the rat lung (Reale et al., 2001), to associate 

laterally to form extensive networks that interact with collagen fibrils, other matrix molecules, 

and cells (Bruns et al., 1986; Hanssen et al., 2003; Kielty et al., 1998; Reale et al., 2001). 

 

1.2.1.1.2 Function and distribution of Collagen VI 

The microfibrillar type VI collagen is one of the major collagenous components of 

neonatal and foetal skin, where it was first identified beneath the dermal-epidermal junction, 

the subcutis, and to lesser extent in the dermis, at 6-weeks estimated gestational age (Smith, 

1994). As the gestation stages progress, collagen VI was observed to have overlapping 

distribution with other dermal collagens such as collagen type I, III and V in the dermal and 

subcutaneous connective tissue of developing skin (Smith, 1994). In the same study by Smith 

(1994), cell culture experiments showed the deposition of collagen type VI in the matrix 

precedes the matrix deposition of type I and II collagen. Thus one of the functions proposed 

for collagen VI from the study was that collagen VI networks provide the framework for 

assembly of collagen I and III in the matrix.  

Collagen VI microfibrils are also found in various other tissues (table 1.2). They are a 

significant component of the hyaline articular cartilage matrix (Ayad et al., 1984; Eyre et al., 

1987; Hagiwara et al., 1993; Keene et al., 1988; Poole et al., 1988; Wu et al., 1987) and are 

localised within the pericellular microenvironment around chondrocytes in adult canine 

articular cartilage. The results thus suggested that collagen VI coordinates cell-matrix and 

matrix-matrix interactions and maintains the pericellular microenvironment surrounding 

articular cartilage chondrocytes (Chang et al., 1997). Type VI collagen is also present in the 

sub-endothelium, the media and adventitia of the arteries, and in different areas of venous 

walls where it has been shown to associate with laminins. 

In the cornea, collagen VI is the second major collagen present, making up 

approximately 17% of the total collagen, after collagen I which makes up more than 80% of 

the collagen in this tissue (Michelacci, 2003; Zimmermann et al., 1986). Indirect 

immunofluorescence analysis has demonstrated that distribution of collagen VI occurs 

throughout the corneal stroma and in the Bowman’s layer, but not in the epithelium and 

endothelium cell layers or in the BM (Zimmermann et al., 1986). Therefore, collagen VI 

appears to be playing an important role in the architecture of the corneal tissue (Michelacci, 

2003). 

Disruption of the Col6α1 gene in mice results in significant musculoskeletal changes 

such as muscle weakness and wasting and contractures of multiple joints (Bertini et al., 2002). 

Mice lacking collagen VI show signs of accelerated development of hip osteoarthritis, 

delayed secondary ossification process and reduced bone mineral density (Alexopoulos et al., 
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2009). Furthermore, the stiffness of the articular cartilage pericellular microenvironment is 

significantly reduced in collagen VI knockout mice (Alexopoulos et al., 2009). Therefore 

collagen VI plays a vital role in the mechanical environment of chondrocytes and in 

modulating chondrocytes and mesenchymal cell differentiation and proliferation activities 

(Alexopoulos et al., 2009). The skeletal muscles of both homozygous and heterozygous 

mutant mice showed histological signs of myopathy (Bonaldo et al., 1998). In particular, the 

myopathy of collagen VI knockout mice had features in common with the human autosomal 

dominant inherited muscular dystrophy, Bethlem myopathy. Therefore, the Col6α1 mutant 

mice was considered as an animal model of Bethlem myopathy (Bonaldo et al., 1998). 

 

Table 1.2. Tissue distribution of type VI collagen using immunofluorescence. Table taken 
from Keene et al., (1988). 
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Figure 1.5. Model for supramolecular assembly 
in the ECM of connective tissue. Collagen VI 
filaments interact with collagen II or aggrecan 
networks via a complex formed by the small 
proteoglycans biglycan and decorin with 
matrillin-1. MATN-1, matrilin-1; BGN, biglycan; 
DCN, decorin. Diagram modified from Wiberg et 
al., (2003).  

In humans, Hambach et al., (1998) observed an increased amount of type VI collagen 

in the middle and deep layers of cartilage with moderate osteoarthritis. Horikawa et al., 

(2004), also reported an increase in the volume of the pericellular microenvironment in which 

collagen VI is very specifically localised, as well as an increase in the pericellular 

microenvironment to chondrocyte ratio as cartilage degeneration progressed. From this 

evidence it was concluded that type VI collagen may be playing an essential role in 

protecting the chondrocytes from mechanical stress, which occurs in association with the 

progress of osteoarthritis, by enlarging the volume of the pericellular microenvironment.  

 

1.2.1.1.3 Interaction of collagen VI with other matrix components 

Collagen VI has been shown to interact via its triple helical domain with the BM 

perlecan (Kielty et al., 1991; McDevitt et al., 1991), and with collagen XIV isolated from 

human placenta (McDevitt et al., 1991). In addition, collagen VI has recently been shown to 

covalently interact with βig-h3 (Hanssen et al., 2003). 

Collagen VI has also been 

shown to have a high-affinity, 

specific interaction with decorin 

(Bidanset et al., 1992). Furthermore, 

this interaction has been 

demonstrated to be inhibited by PGs 

with related leucine-rich repeat 

modules such as biglycan and 

fibromodulin, suggesting that a 

common structural motif is 

recognised by collagen VI (Bidanset 

et al., 1992). Wiberg et al., (2001) 

have further characterised the 

interaction of both decorin and 

biglycan as being within a domain 

localised close to the N-terminal part 

of the triple helical region of collagen 

VI. Moreover, a role for these small 

leucine-rich repeat PGs in the modification of collagen VI supramolecular structure and 

function has been suggested (Wiberg et al., 2001). An important role of biglycan and decorin 

is to serve as an adaptor protein connecting collagen VI to the major constituents of the ECM 

cartilage, collagen II and aggrecan, as well as to a number of procollagen molecules (Wiberg 
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et al., 2003) (figure 1.5). These may represent immobilised nucleation centres for collagen II 

fibril assembly. Thus collagen VI microfibrils act as a scaffold for the formation of the 

fibrillar collagen network, as well as presenting fibrillogenesis modulators, including decorin 

and biglycan, in proximity to the growing fibrils (Wiberg et al., 2003).  

Ultrastructurally, collagen VI microfibrils are often in close proximity to thicker 

fibrillin-microfibrils in a wide range of tissues (Wu et al., 1996), suggestive of molecular 

interaction between the two structures (Finnis and Gibson, 1997). In vitro binding studies of 

MAGP-1 and -2 with native and pepsin-treated collagen VI revealed that MAGP-1, but not 

MAGP-2, interacts with a site close to the triple helix region of the α3 (VI) chain specifically. 

This result provided biochemical evidence that fibrillin-microfibrils may indirectly link 

elastic fibres to collagen fibres via interaction of MAGP-1 with type VI collagen (Finnis and 

Gibson, 1997). 

Collagen VI binds cell surface receptors such as integrin, α1β1 (Loeser, 1997), and 

α2β1 (Pfaff et al., 1993). Integrins are αβ heterodimeric transmembrane receptors that 

mediate cell adhesion to the ECM, usually through a Arg-Gly-Asp (RGD) motif, and have 

widespread essential functions in development, tissue organisation, and the immune system 

(Roberts and Critchley, 2009). In addition, NG2, a PG widely expressed on numerous cell 

surfaces, has been shown through solid phase binding assays to interact with type VI collagen 

(Burg et al., 1996). Kuo et al., (1997) also demonstrated the interaction of intact native 

collagen type VI with type IV collagen, a major component of BMs, which is of significance 

as it provides a plausible explanation (section 1.2.1.1.4) for the Bethlem myopathy phenotype, 

a genetic disease caused by mutation in type VI collagen (Kuo et al., 1997). In addition, an 

interaction of intact type VI collagen with hyaluronan has been identified though Enzyme-

linked Immuno-Sorbent Assay (McDevitt et al., 1991), and a recombinant N-terminal region 

of human collagen VI has been shown to interact with both heparin and hyaluronic acid 

(Specks et al., 1992).  

 

1.2.1.1.4 Heritable disorders of collagen VI 

Three COL6A genes encode 3 subunits of collagen VI, α-1, α-2 and α-3, respectively. 

The COL6A1 and COL6A2 genes form a cluster on chromosome 21q22.3, whereas the 

COL6A3 gene is situated on chromosome 2q37. Deficiency of collagen VI in humans caused 

by mutations of COL6A genes leads to two main congenital muscular dystrophies; Bethlem 

myopathy (OMIM# 158810) and Ullrich Congenital Muscular Dystrophy (UCMD) (OMIM # 

254090) (Lampe and Bushby, 2005).  

Bethlem myopathy is an autosomal dominant form of slowly-progressive muscular 

dystrophy, and mutations can affect any of the subunits (Mercuri et al., 2005). Mutations in 
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any of the subunits may interrupt the assembly of collagen VI, and subsequently its 

anchorage to other ECM, resulting in Bethlem myopathy. The majority of these mutations 

result in amino-acid substitution, notably glycine, in the triple helix region (Jobsis et al., 1996; 

Sasaki et al., 2000; Scacheri et al., 2002). This disorder shows mild clinical features with 

proximal muscle weakness and early contractures predominantly in the fingers. The onset is 

usually in early childhood or sometimes at birth and occasionally patients become 

wheelchair-bound after 25 to 40 years of age (Jobsis et al., 1999). 

A complete loss or reduction of collagen VI due to mutations in any one of the three 

collagen VI genes has been associated with UCMD (Brockington et al., 2004; Camacho and 

Vajda, 2001; Ishikawa et al., 2004). UCMD is a more severe congenital muscular dystrophy, 

characterised by early onset with patients usually presenting with UCMD at birth or within 

the first six months of life. UCMD is characterised by generalised and rapid progression of 

muscle wasting and weakness, proximal joint contractures and distal joint hyperflexibility. 

UCMD patients usually have an early death due to respiratory failure caused by the rapid 

progression of the clinical symptoms (Camacho Vanegas et al., 2001; Demir et al., 2002). 

Other features such as foot deformities, rigidity of the spine, high arched palate, and tendency 

to have early respiratory failure have also been reported. Immunohistochemical studies have 

demonstrated a decrease or absence of collage VI in skeletal muscle (Higuchi et al., 2001; 

Ishikawa et al., 2004), foetal muscles and chorionic villus samples (Brockington et al., 2004) 

and skin biopsies of patients with Ullrich disease (Higuchi et al., 2001). In addition, through 

electron microscopy Ishikawa et al., (2004) showed that the absence of collagen VI results in 

the loss of anchoring between the basal lamina and the interstitium of skeletal muscles in 

these patients. 

 

1.2.1.2 Transforming growth factor-β-inducible gene-h3 (βig-h3)  

Transforming growth factor-β-inducible gene-h3 (βig-h3) is expressed as a 68 kDa 

protein in humans and is associated with collagen VI. Initially, βig-h3 was identified as two 

polypeptides in reductive saline extracts of bovine nuchal ligament and named microfibrillar 

protein (MP78/70) (Gibson et al., 1989). At the time, βig-h3 was assumed to be associated 

with fibrillin-microfibrils. However, subsequent immuno-electron microscopy studies in a 

range of tissues showed βig-h3 to be associated with collagen VI microfibrils rather than 

fibrillin-microfibrils (Gibson et al., 1997). 

In humans, Skonier et al., (1992) identified βig-h3 by differential screening of a 

cDNA library made from A549 human lung adenocarcinoma cells after stimulation with 

transforming growth factor-β (TGF-β)-1, so as to identify biological markers of TGF-β 

activity. Amino acid sequencing of this gene showed that βig-h3 is 93% identical to RGD-
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CAP, which was isolated from a fibre-rich fraction of pig cartilage (Hashimoto et al., 1997), 

thus suggesting that RGD-CAP/βig-h3 are orthologs. Furthermore, βigh3 has also been found 

to have similarities with the rat osteoblast-specific factor-2 (Takeshita et al., 1993), and 

Drosophila fasciclin-1 (Zinn et al., 1988). The high degree of homology between these 

species therefore suggests the importance of conserved sequences for the function of βig-h3. 

 

1.2.1.2.1 Structure of βig-h3 

The predicted 683-amino acid sequence of secreted βig-h3 contains the following 

important features: 1) a signal peptide sequence at the amino-terminus (residues 1-23), 

therefore indicating the protein is secreted; 2) an RGD sequence in the carboxyl-terminal 

domain that can bind integrins (Hynes, 1992) and 3) four repeat domains of 140 residues 

each that are homologous to the Drosophila fasciclin-I, an intercellular adhesion molecule 

(figure 1.6) (Zinn et al., 1988). All the repeats of βig-h3 contain two short regions, H1 and 

H2 which are highly conserved across species. The H1 and H2 regions are composed of 

hydrophobic amino acids forming a β-sheet-like structure (Hashimoto et al., 1997), and they 

may interact with other macromolecules. Evidence suggests that the βig-h3 molecule appears 

to undergo posttranslational modifications at the carboxyl terminus, to yield a 68-70 kDa 

isoform (Skonier et al., 1994; Anserson et al., 2004). 

 

 

 

 peptide (S), the cysteine-rich region (C), the four repeated fasciclin like-domains (I-IV), 
and the RGD sequence. The photograph is modified from Hanssen et al., (2003).  

 

1.2.1.2.2 Possible function of βig-h3 and its interaction with other matrix proteins  

A possible physiological function for βig-h3 is to serve as a bifunctional linker 

protein, interconnecting different matrix components with each other and resident cells 

(Billings et al., 2000; Billings et al., 2002; Gibson et al., 1997). It has been shown through 

quantitative binding assays using purified recombinant (r) full length βig-h3 (rβig-h3) and 

human bladder fibroblast cells that βig-h3 functions as an adhesion molecule (Billings et al., 

2002). The presence of actin stress fibres within the seeded cells further suggests that βig-h3 

supports attachment and spreading of cells (Billings et al., 2002). Stress fibre formation as a 

result of actin polymerisation is one response of cells following adhesion to the ECM. βig-h3 

 

Figure 1.6. Schematic diagram of the domain structure of βig-h3 molecule. The signal 
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mediates the adhesion of several other cell types (Kim et al., 2002) including dermal 

fibroblast cells (LeBaron et al., 1995), corneal epithelial cells (Kim et al., 2000), bronchial 

smooth muscle cells (Billings et al., 2000) and human astrocyte cells (Kim et al., 2002). The 

mechanisms through which βig-h3 mediates cell adhesion and spreading have also been 

investigated. Blocking experiments using various antibodies to integrin subunits have 

suggested the involvement of α6β4 integrin in βig-h3 mediated adhesion of astrocyte cells 

(Kim et al., 2002). Also a report by Ohno et al (1997), suggested that βig-h3 enhanced the 

spreading of fibroblasts via integrin α1β1 and that its RGD motif was not necessary for 

mediating cell spreading. Similar conclusions on the role of βig-h3 in mediating cell 

adhesions were reached from other studies. For example, Kim et al., (2000) demonstrated 

that two conserved amino acids, aspartic acid and isolucine, near H2 in the second and fourth 

repeated domains of βig-h3, were necessary for mediating human corneal epithelial cell 

adhesion by binding to α3β1. Kim et al., (2002) demonstrated βig-h3 motifs containing 

tyrosine and histidine and many leucine/isoleucine amino acid residues flanking the tyrosine 

and histidine are part of the αvβ5 integrin binding motif in βig-h3, promoting human lung 

fibroblast cell adhesion. Other studies have shown that βig-h3 can interconnect with other 

matrix proteins. For example, solid phase binding studies showed the stable binding of βig-h3 

to collagen I and fibronectin, which are abundant glycoproteins of the ECM (Billings et al., 

2000; Billings et al., 2002). Overall, these results verify the proposition that βig-h3 is capable 

of interacting with a range of matrix proteins and integrins.  

βig-h3 is a collagen VI-associated protein, as βig-h3 has been demonstrated to co-

purify with collagen VI microfibrils extracted from foetal nuchal ligament, even under 

denaturing conditions. The analysis of the molecular composition of the microfibrils by SDS-

PAGE and immunoblotting showed that βig-h3 was covalently bound to collagen VI by 

intermolecular reducible cross-links (Hanssen et al., 2003). Furthermore, ultrastructural 

analysis of the purified collagen VI microfibrils revealed that βig-h3 was predominantly 

associated with at least some of the microfibrils from nuchal ligament, and immunogold 

labelling localised the covalent binding site of βig-h3 to the N-terminal region of the collagen 

VI molecule. The demonstrated interaction of collagen VI and βig-h3 in vivo suggests that 

they are likely to be important for the normal development and morphology of a range of 

tissues including the cornea. 

In vitro binding assays using rβig-h3 protein found that it bound native and pepsin-

treated collagen VI, and the binding site was identified to be at the N-terminal end of the 

triple helix (Hanssen et al., 2003). Further analysis showed that the binding characteristics 

between rβig-h3 and collagen VI were those of a strong but reversible non-covalent 

interaction. These findings indicated that βig-h3 possesses both covalent and non-covalent 
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binding activities with collagen VI suggesting that βig-h3 may play an important role in 

collagen VI biology in developing tissues. These roles of βig-h3 therefore may be in cell-

microfibril interactions, and in the organisation and modulation of different collagen VI 

architectures to suit particular tissue environments (Hanssen et al., 2003). The important 

physiological functions of βig-h3 are being increasingly realised. In order to further define 

the role of this protein in living organisms, the interactions of βig-h3 with a wider spectrum 

of matrix proteins will be investigated as part of my project. 

 

1.2.1.2.3 Expression and tissue distribution of βig-h3 

Investigations through northern blot analysis have demonstrated that βig-h3 is widely 

distributed in various tissues such as the lung, heart, spleen, kidney, liver, adrenal glands and 

in the growth plate of new born pigs (Hashimoto et al., 1997). Furthermore, βig-h3 

expression has been identified in a variety of human and mouse tissues. During mouse 

development, βig-h3 expression is first detected during E-15.5 and is sustained until E-18.5 

with localisation in the corneal epithelium and stroma (Ferguson et al., 2003). The highest 

expression levels were found in the human corneal epithelium (Escribano et al., 1994), adult 

human skin (LeBaron et al., 1995) and in uterine tissue of both species. In addition, moderate 

mRNA levels of βig-h3 were found in the heart, breast, prostate, skeletal muscle, testes, 

thyroid, kidney, liver and stomach tissues of humans (Skonier et al., 1994). However, the 

expression of βig-h3 was absent from the brain (Escribano et al., 1994), spleen, and 

parathyloid tissues of humans (Skonier et al., 1994). 

At the protein level, the distribution of βig-h3 was examined in foetal bovine tissues 

(Gibson et al., 1997). Analysis showed βig-h3 had extensive co-distribution with type VI 

collagen in developing nuchal ligament, aorta, lung and mature cornea (Gibson et al., 1997). 

Immunoreactive material was also present in capsule and tubule BMs of developing kidneys, 

and reticular fibres in foetal spleen. The study thus revealed βig-h3 to be a widely-expressed 

component of the ECM in a number of organ systems where it associates with other matrix 

macromolecules. In normal adult skin, βig-h3 is abundant in the epidermis and the dermis, 

and it has been suggested that this protein may play a role in wound healing (LeBaron et al., 

1995). In fact, Cha et al., (2008), demonstrated fibroblasts from chronic wounds show 

decreased differential expression of βig-h3 using differential display analysis.  

 

1.2.1.2.4 Diseases associated with βig-h3 

Mutations in the coding region of the βig-h3 gene is linked to human autosomal 

dominant corneal dystrophies (Fujiki et al., 1998; Munier et al., 1997). More than 20 

mutations in the βig-h3 gene have been identified, and these have been shown to cause 
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distinct phenotypic characteristics (Klintworth, 2003). The most common mutation identified 

in βig-h3 (R124C) is on the N-terminal side of its first fasciclin domain (Munier et al., 2002; 

Nakamura et al., 2002), but others are in the third (P501T) (Ha et al., 2000) and fourth 

(L518P) fasciclin domains (Hirano et al., 2000; Yamamoto et al., 1998). These mutations are 

believed to cause the βig-h3 protein to denature, and result in the formation of amyloidogenic 

intermediates that eventually precipitate in the cornea (Munier et al., 1997). This condition 

results in a progressive loss of vision, which can ultimately lead to blindness. Similar corneal 

opacity has been identified in transgenic mice in which human βig-h3 was over expressed 

(Kim et al., 2007). From these findings it was concluded that βig-h3 needs to be properly 

expressed for normal development of the anterior segment of the eye (Kim et al., 2007). The 

anterior segment of the eye in vertebrates is structurally defined by the cornea, iris, ciliary 

body and the lens (Pei and Rhodin, 1970). Therefore, βig-h3 plays a vital role in the 

corneolenticular adhesion and the normal development of the cornea during ocular 

morphogenesis, and specific changes in its primary protein sequence could alter its functional 

role in the corneal ECM (Billings et al., 2000; Kim et al., 2007). 

Furthermore, a complex relationship between βig-h3 and cancer has been established 

(Sasaki et al., 2002). βig-h3 has been shown to be up-regulated in colorectal carcinoma when 

compared with the normal colonic mucosa (Kitahara et al., 2001). Also, βig-h3 gene 

expression has been found to be increased in most of the highly invasive breast cancer cell 

lines, but not in the weakly invasive cell lines (Zajchowski et al., 2001), and in lung cancer as 

well (Sasaki et al., 2002). 

 

1.2.2 Fibrillin-microfibrils 

Fibrillin-microfibrils are individually 10-12nm in diameter (Rosenbloom et al., 1993) 

and are found in association with elastin in elastic fibres present in some tissues (Kielty et al., 

2005). These tissues include the lungs, skin and large blood vessels as mentioned previously. 

They also occur as elastin-free bundles in tissues such as kidney, ocular zonule, and spleen 

(Ashworth et al., 2000; Cleary and Gibson, 1983; Gibson and Cleary, 1987; Henderson et al., 

1996; Keene et al., 1991; Kielty et al., 2002). In contrast to type VI collagen microfibrils, 

fibrillin-microfibrils appear to be complex structures that may contain or be closely 

associated with a number of glycoproteins in a tissue-specific manner (Kielty, 2006) 

including MAGPs (Gibson et al., 1996; Gibson et al., 1991; Trask et al., 2000b), latent 

transforming growth factor-β binding proteins (LTBPs) (Dallas et al., 2000; Dallas et al., 

1995; Isogai et al., 2003; Sakai et al., 1986), Emilins (Bressan et al., 1993; Colombatti et al., 

2000), fibulins (Reinhardt et al., 1996b; Roark et al., 1995), and PGs (Kielty et al., 1996; 

Tiedemann et al., 2005; Unsold et al., 2001). However, fibrillin molecules are the primary 
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components that assemble to form the scaffold of fibrillin microfibrils, and to date three 

fibrillins, namely fibrillins-1, -2 and -3, have been identified (Charbonneau et al., 2003; 

Corson et al., 1993; Nagase et al., 2001; Sakai et al., 1986; Zhang et al., 2005). 

 Microfibril assembly is a multi-step cell-associated process with one of its initial steps 

involving N- to C-terminal self interactions of fibrillins (Hubmacher et al., 2008; Marson et 

al., 2005; Reinhardt et al., 1996a). In addition to linear N-to-C terminal interactions, lateral 

homotypic interactions in various regions of fibrillin-1 may be crucial for the stabilisation of 

the initial multimers or the lateral associations of individual microfibrils (Marson et al., 2005; 

Trask et al., 1999).  

 

1.2.2.1 Fibrillins 

1.2.2.1.1 Structure of fibrillins 

 Structurally, fibrillins are large 350 kDa rod-like glycoproteins that are calcium 

binding. All three fibrillins have very similar complex multidomain molecular structures that 

are dominated by calcium binding epidermal growth factor (cbEGF)-like domains. As 

expected these cbEGF-like domains bind calcium and it has been shown through 

ultrastructural and X-ray diffraction studies that binding of calcium profoundly influences the 

packing and periodicity of isolated microfibrils and hydrated microfibril arrays (Cardy and 

Handford, 1998). Calcium binding is also necessary for fibrillin interaction with other 

proteins and for protection from proteolysis (Downing et al., 1996; Reinhardt et al., 1997a; 

Reinhardt et al., 1997b). Mutations in the cbEGF-like domains in fibrillin-1 have been 

claimed to introduce protease-sensitive sites into the molecule, causing significant structural 

changes (Cardy and Handford, 1998; McGettrick et al., 2000). The EGF-like domains of 

fibrillins are interspersed by an 8-cysteine (8-cys) domain (Hubmacher et al., 2006) (figure 

1.7). Furthermore, fibrillins contain two hybrid domains which are composed of 8-cysteine 

modules and cbEGF-like domains (Ramirez and Sakai). The N- and C-terminal regions are 

homologous with the respective segments of LTBPs and fibulins (Giltay et al., 1999; 

Ramirez and Sakai). All three fibrillins also have cleavage sites of furin-type proprotein 

convertases at their N- and C-termini, and processing at these sites may be important steps in 

regulating fibrillin assembly (Raghunath et al., 1999; Ritty et al., 1999). It has been widely 

considered that microfibrils assemble pericellularly, following furin processing, through high 

affinity N- and C-terminal interactions (Hubmacher et al., 2006; Kielty, 2006). 

The major differences between the fibrillins are in the unique hydrophobic region 

towards the N-terminal that may act as a hinge region, the number of intergrin-binding RGD 

sequences they contain and in the number of glycosylation sites (Hubmacher et al., 2006; 

Kielty et al., 2005; Ramirez et al., 2007). The predicted hinge region, which is a 58 amino 
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acid region, is rich in proline in fibrillin-1, while the corresponding region in fibrillin-2 is 

rich in glycine. In fibrillin-3 however both glycine and proline are equally present in this 

region. It has been speculated that the hinge region is the flexible region of the protein which 

allows bending of the fibrillin molecule (Baldock et al., 2001; Baldock et al., 2006). While 

fibrillin-1 has only one RGD putative cell recognition site, there are two RGD cell 

recognition sites in fibrillin-2 and -3. Furthermore, there are 15, 12 and 10 potential N-

glycosylation sites in fibrillin-1, -2 and -3 respectively (Corson et al., 1993; Corson et al., 

2004). 
 

Figure 1.7. Schematic representation of the three fibrillins, showing high homology between 
them with some distinct differences. Fibrillin-3 lacks one of the EGF-like domains near the 
N-terminal region. The diagram for fibrillin-1 and -2 is generously given by Dr. Mark Gibson. 

 

1.2.2.1 2 Tissue distribution of Fibrillins  

 All three fibrillins are expressed during human development, but fibrillin-1 is by far 

the most abundant isoform in adult tissue (Charbonneau et al., 2003; Corson et al., 2004; 

Quondamatteo et al., 2002). Moreover, investigators have documented the overlapping but 

distinct distribution pattern of fibrillins in various tissues. Quondamatteo et al., (2002) 

showed, using immuno-labelling techniques, that the localisation patterns of fibrillins-1 and -

2 were overlapping in embryonic and early foetal human tissues such as in the skin, central 

nervous system anlagen, ganglia, aorta, lung, and heart. However there were differences in 

other human tissues such as kidneys, and notochords. Fibrillin-3 has a similar pattern of 

expression to the other two fibrillins in most human foetal tissues except in the kidney and 

lung, where it appeared to be absent from glomerular and tubular regions of the kidney and 
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from the blood vessels of the lungs (Corson et al., 2004). The distribution of fibrillins has 

also been studied in canine flexor digitorum profundus tendons. Fibrillin-1 is present in the 

outer-most cell layer of tenocytes, while fibrillin-2 is detected in the pericellular matrix of 

linearly-arrayed internal tendon cells (Ritty et al., 2002; Ritty et al., 2003b). 

The gene expression patterns of fibrillins have also been studied through northern 

blotting in embryonic and early human foetal tissues. Generally fibrillin-2 is expressed 

during organ development and it decreases rapidly thereafter (Zhang et al., 1995). In adults 

fibrillin-2 is found in limited elastic tissues such as cartilage (Zhang et al., 1995). In contrast 

fibrillin-1 expression increases at a gradual rate during development and fibrillin-1 continues 

to be expressed throughout postnatal growth and in adults (Kelleher et al., 2004). Studies by 

Quondamatteo et al., (2002) have demonstrated fibrillin-1 gene expression in human 

embryos as early as the time of gastrulation and all the way through to postnatal life. Similar 

to fibrillin-2, fibrillin-3 is mainly expressed in foetal tissues associated with microfibrils 

close to amorphous elastin (Corson et al., 2004).  

 

1.2.2.1.3 Functions of fibrillins 

Mouse models are providing powerful tools for unravelling the biological roles of 

fibrillins (Dietz and Mecham, 2000). Pereira et al., (1997) created fibrillin-1 gene-targeted 

mouse models, giving rise to a mutant allele (mg∆) that resulted in a ten-fold reduction in 

fibrillin-1 expression. The heterozygous fibrillin-1 mutant mice expressed very low levels of 

mutant protein and were morphologically and histologically indistinguishable from wild type 

mice. Homozygous mutant mice which produced only small amounts of mutant fibrillin-1, 

appeared normal at birth but died of vascular complications prior to weaning (Arteaga-Solis 

et al., 2001). Some mice showed thinning of the proximal aortic wall, which suggested that 

they experienced aneurismal dilatation of the aorta as in human marfan syndrome (section 

1.2.2.1.5). Substantially reduced extracellular fibrillin-1 staining but normal elastin staining 

suggested that organised elastic fibres can accumulate in the absence of normal fibrillin-1-

rich microfibrils.  

Mutant mouse models have been used to demonstrate the role of fibrillins in 

controlling TGF-β signalling in the ECM. A deficiency of fibrillin-1 gene expression in mice 

leads to TGF-β-mediated failure of distal alveolar septation (Neptune et al., 2003). The 

mechanism by which fibrillin-1 targets TGF-β and regulates its activation is through 

interacting with LTBPs (Dallas et al., 1995; Isogai et al., 2003; Rifkin, 2005). The interaction 

of TGF-β with LTBPs is discussed in more detail in section 1.2.2.2. 

 Fibrillin-microfibrils are involved in sequestration of another of the TGF-β-related 

growth factors, bone morphogenetic proteins (BMPs) (Gregory et al., 2005; Sampath et al., 
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1990). However, the mechanisms that modulate extracellular control of BMP bioavailability 

differ from those of TGF-β. Unlike TGF-β, BMPs are directly targeted to microfibrils by 

non-covalent association between the pro-domain of BMP-7 and the N-terminal of fibrillins 

(figure 1.8) (Sengle et al., 2008). It appears that through the interaction with the pro-domain 

of BMP-7, fibrillins target and modulate the activity of this growth factor in the matrix 

(Gregory et al., 2005; Sengle et al., 2008). Mice with fibrillin-2 mutations demonstrate this 

biological role of fibrillin-microfibrils. Fibrillin-2 knockout mice display auditory defects and 

limb-patterning defects, which include fusion of third and fourth phalanges that are not 

observed in fibrillin-1 null mice (Arteaga-Solis et al., 2001; Chaudhry et al., 2001; Penner et 

al., 2002). Digit formation is the combined result of chondrogenic outgrowth and interdigital 

cell death. This process is under the control of several signalling molecules, some of which 

are BMPs (Dahn and Fallon, 2000). Therefore, it has been hypothesised that the defects 

observed in the outer extremities are due to either aberrant fibrillin-2-rich microfibrils in the 

cartilaginous limb skeleton, or impaired commitment of mesenchymal cells in the prospective 

interdigital tissue to undergo apoptosis due to failed activation of BMP-induced cell death 

(Arteaga-Solis et al., 2001). 

 Mice lacking both fibrillins (fib-1-/-; fib-2-/-) die in the middle of gestation (E1-4.5), 

which is significantly earlier than in both fibrillin-1 (fib-1-/-) and fibrillin-2 (fib-2-/-) mutant 

mice (Carta et al., 2006). Histologically, the aortic media of these double mutant mice is 

poorly developed, due to impaired or delayed elastogenesis (Carta et al., 2006). The 

heterozygous fib-1-/-; fib-2+/- mutant mice survive through neonatal and early postnatal life, 

while 50% of heterozygous fib-1+/-; fib-2-/- mutant mice die as embryos (Carta et al., 2006). 

The findings from the analysis of the double mutant mouse models indicated that fibrillin-1 

compensates for the absence of fibrillin-2 during embryonic development (Carta et al., 2006). 

Collectively these mouse models demonstrate the importance of fibrillins in organ formation 

and tissue homeostasis.  

 

1.2.2.1.4 Interaction of fibrillins with other matrix components 

 One of the first functions suggested for microfibrils in the extracellular space was to 

provide a molecular scaffold for the deposition and alignment of tropoelastin molecules 

(Kielty et al., 2005; Kielty et al., 2002; Mecham, 1994). This alignment presumably allows 

for proper cross-linking and maturation of the elastic fibre as previously mentioned (section 

1.1.2). The prevalence of fibrillins within microfibrils made them candidates for the binding 

and alignment of tropoelastin molecules. Trask et al., (2000b) has showed that recombinant 

and purified tropoelastin binds to recombinantly expressed N-terminal fragments of fibrillin-

1 (figure 1.8) and fibrillin-2. Using solid phase binding assays and co-immunoprecipitation 
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experiments the site of interaction on fibrillin-2 was localised to a region encompassing the 

glycine-rich region down-stream EGF-like domains and most of the second 8-cys domain. 

From the results the authors concluded that both fibrillins could be playing a role in the 

organisation of the elastic matrix. Following from this, Rock et al., (2004), demonstrated 

with the use of in vitro binding assays additional tropoelastin binding sites on fibrillin-1 

(figure 1.8). It is possible that the ability of tropoelastin to bind to both fibrillins may be an 

advantage that ensures that elastin can assemble on any microfibrillar bed. 

Other matrix components that have been identified as binding ligands for fibrillin-1 

include three of the five members of the fibulin family, fibulin-2, -4 and -5 (figure 1.8) 

(Choudhury et al., 2009; El-Hallous et al., 2007; Freeman et al., 2005). All three fibulins 

have been shown to not just interact with fibrillin-1, but to associate with microfibrils (El-

Hallous et al., 2007). Indirect immunofluorescence was used to demonstrate the 

colocalisation of endogenously-produced fibulin-2 and exogenously-produced fibulin-4 and -

5 with immature and mature microfibrils. Thus fibulin-2, -4 and -5 can associate with 

microfibrils at different stages of maturity (El-Hallous et al., 2007). The interaction of 

fibrillin-1 with fibulin-2, -4 and -5 has been suggested to be important in the assembly of 

elastic fibres (El-Hallous et al., 2007; Freeman et al., 2005). Choudhury et al., (2009) further 

defined the roles of fibulin-4 and -5 in biogenesis of elastic fibres, and respectively suggested 

an important role in regulating elastin cross-linking and elastin deposition on microfibrils for 

these two.  

 

 

 
 

Figure 1.8. The schematic illustration of the binding sites of various ECM components 
on fibrillin-1. 
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Fibrillin-microfibril assembly itself is a poorly understood process. Recent cell 

culture and RNA interference studies have demonstrated the deposition of microfibrillar 

arrays is dependent on the assembly of fibronectin (Kinsey et al., 2008; Sabatier et al., 2009). 

The knockdown of fibronectin in human dermal fibroblasts using RNA interference resulted 

in severe reduction in both fibronectin and fibrillin-microfibril deposition. Furthermore, 

specific antibodies to integrins α5 and β1 were shown to inhibit fibronectin assembly and, as 

a consequence, fibrillin-microfibril assembly. Therefore, α5β1 integrin is also critical for the 

deposition of fibrillin-1 microfibrils (Kinsey et al., 2008). 

It is becoming increasingly clear that fibrillin-1 is a major heparin/HS binding 

molecule (Cain et al., 2005; Ritty et al., 2003a; Tiedemann et al., 2001) (figure 1.8). Based 

on inhibition of fibrillin-1 assembly by heparin/HS, it has been hypothesised that interaction 

of fibrillin-1 with HSPGs is necessary for mediating fibrillin-1 assembly (Ritty et al., 2003a; 

Tiedemann et al., 2001). A study by Cain et al., (2005), demonstrated that heparin has no 

effect on the homotypic fibrillin-1 (N- and C- terminal) interaction using solid phase 

inhibition assays. However, the same group show that heparin does compete with both 

MAGP-1 and tropoelastin for binding to fibrillin-1. These findings showed the potential 

regulatory role of heparin 1) on deposition of elastin on fibrillin-1 microfibrils and 2) on the 

association of MAGP-1 with the fibrilln-1 microfibrils. Since HS occurs in two main sites in 

vivo, on cell surfaces and in BMs in the matrix, interaction of fibrillin-1 with HS at both sites 

was considered important (Cain et al., 2005). For instance, HS on cell surfaces may be 

involved in alignment and multimerisation of fibrillin-1 molecules (Cain et al., 2005). 

Therefore, HSPGs are major players in elastic fibre organisation. 

Recently double immunofluorescence studies demonstrated the colocalisation of 

fibrillin-1 and perlecan in fibroblast cultures as well as in dermal and ocular tissues 

(Tiedemann et al., 2005). Furthermore, double immunogold labelling confirmed the 

colocalisation of perlecan to microfibrils in various tissues at ultrastructural level. A detailed 

study of the interactive regions by solid phase binding assays revealed that perlecan binds to 

the central region of fibrillin-1 (figure 1.8). This result suggested that the interaction between 

perlecan and fibrillin-1 is important to anchor the microfibrils to the BM (Tiedemann et al., 

2005). Another PG, decorin, has been shown to interact with the N-terminal region of 

fibrillin-1 near the proline rich region through immunoprecipitation studies (Kielty et al., 

1996; Trask et al., 2000a). This interaction is important for fibrillin formation as treating 

purified microfibrils with chondroitinase ABC disrupts the beaded microfibrillar architecture. 

The significance of fibrillins interacting with decorin in elastic fibre assembly or function is 

not yet known. However, decorin has been shown to influence collagen fibril assembly both 

in vitro and in vivo (Danielson et al., 1997) by regulating fibre diameter and interfibrillar 
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spacing. Thus decorin may play a similar role in regulating the assembly of microfibrils. 

Isogai et al., (2002), also revealed that versican has the ability to bind centrally to the 

fibrillin-1 molecule. However, its non-periodic association with microfibrils indicates that 

versican is probably not an integral structural component. Instead because of the ability of 

versican to bind hyaluronan, it has been suggested that it connects microfibrils to a 

hyaluronan-rich matrix (Isogai et al., 2002). 

Fibrillins can communicate with neighbouring cells through their RGD sequence by 

interacting with cell surface integrin receptors (Lee et al., 2004). Several studies using 

rfibrillin-1 fragments demonstrated integrins αvβ3 and α5β1 to be major receptors mediating 

adhesion to fibrillin-1 peptides (Bax et al., 2003; Pfaff et al., 1996), which in turn influence 

cell shape, migration and ECM deposition. Fibrillin-1 has further been shown to mediate cell 

adhesion through αvβ6 (Jovanovic et al., 2007). Integrin αvβ6 is expressed at low levels in 

adult tissues and is up-regulated in response to injury, inflammation and wound healing, as 

well as during development (Jovanovic et al., 2007). Therefore, fibrillin-1 acts as a linker 

molecule between cells and their micro-environment and may play a role in regulating cell 

behaviour in connective tissue. 

 

1.2.2.1.5 Congenital disorders related to fibrillins 

 Human disorders caused by mutations in fibrillins include marfan syndrome and 

congenital contractural arachnodactyly (CCA) (Pyeritz, 2000; Ramos Arroyo et al., 1985). 

Marfan syndrome (OMIM # 154700) is an autosomal dominant disorder that occurs as a 

result of mutations in the fibrillin-1 gene located on the long arm of chromosome 15 

(Milewicz et al., 2000). The majority of these mutations are missense or nonsense point 

mutations (Dietz and Pyeritz, 1995; Eldadah et al., 1995; Milewicz et al., 2000; Zhao et al., 

2009). However, exon deletions in fibrillin-1 have also been reported in children with severe 

marfan syndrome (Blyth et al., 2008). Marfan syndrome is characterised by cardiovascular, 

ocular and skeletal defects (Whiteman and Handford, 2003). The skeletal abnormalities of 

marfan syndrome are the most striking features. The skeletal complications typical of 

marfran syndrome patients include arachnodactyly, dolichostenomelia, pectus deformities 

and kyphoscoliosis. The most life threatening aspect of this disease is the cardiovascular 

complications (Whiteman and Handford, 2003). The most common cardiovascular 

abnormalities caused in marfan syndrome patients are mitral valve prolapse and more 

importantly dilation of the ascending aorta owing to cystic medionecrosis. The major ocular 

complications seen in marfan syndrome patients are ectopia lentis and myopia. Additional 

manifestations seen in a number of individuals with marfan syndrome include congenital 

pulmonary emphysema (Hennekam, 2005).  
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The underlying pathogenesis of these conditions was originally considered to be due 

to the loss of fibrillin-1 as a structural component that prevented proper assembly of elastic 

fibres (Ng et al., 2004). Therefore, marfan syndrome patients were thought to lack functional 

elastic fibres starting from late foetal development. However, the structural and functional 

integrity of normal vessel walls is maintained by elastic lamina anchored to the intima and 

smooth muscle cells through connecting filaments of fibrillin-1. Consequently, the loss of 

these filaments subsequently initiates vascular smooth muscle cells to over-produce matrix 

elements and elastin proteases including matrix metalloproteinases -2 and -9, resulting in 

medial degeneration. Therefore, the marfan vascular phenotype develops gradually 

throughout life rather than developing from prenatal defect. 

As mentioned in section 1.2.2.1.3, fibrillin-microfibrils are involved in sequestration 

and proper activation of TGF-β. There has been an important discovery that the dysregulated 

TGF-β signalling is linked to the clinical severity of marfan syndrome (Neptune et al., 2003). 

Subsequently, the association of fibrillin-1 mutations and dysregulation of TGF-β signalling 

have been linked to the progression of mitral valve prolapse, muscle hypoplasia and aortic 

aneurysm (Habashi et al., 2006; Ng et al., 2004). 

The fibrillin-2 gene has been mapped to chromosome 5q23-31 through in situ 

hybridisation (Lee et al., 1991; Putnam et al., 1995). Mutations in this gene have been shown 

to cause CCA (OMIM # 612907) which is an autosomal dominant condition that is clinically 

related to marfan syndrome (Chaudhry et al., 2001). CCA patients present with similar 

skeletal features to marfan patients e.g. they have tall, slender bodies with long limbs. CCA is 

also characterised by a crumpled appearance to the pinna of the external ear. The major 

difference between the two disorders is that CCA patients do not typically present with the 

ocular and life threatening cardiovascular complications associated with marfan syndrome 

(Whiteman and Handford, 2003).  

 

1.2.2.2 Latent transforming growth factor-β binding proteins 

LTBPs and fibrillins constitute a family of large extracellular glycoproteins. LTBPs 

have molecular masses between 120-220 kDa, so they are considerably smaller than fibrillins. 

LTBPs are mainly composed of repeated structures of EGF-like domains and conserved 8-

cys domains. There are four human LTBP genes (Oklu and Hesketh, 2000; Saharinen et al., 

1999; Shipley et al., 2000) (figure 1.9) that have been isolated and characterised. All LTBPs 

except LTBP-2 covalently bind latent-TGF-ß intracellularly, and play a central role in 

modulating tissue levels of this potent cytokine through regulation of its secretion, 

localisation and activation (Annes et al., 2003; Koli et al., 2001; Mangasser-Stephan and 

Gressner, 1999).  
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As mentioned previously, TGF-ßs are multifunctional cytokines that modulate growth, 

differentiation and apoptosis of mammalian cells (Hyytiainen et al., 2004). TGF-β is secreted 

primarily as a latent complex consisting of the TGF-β homodimer, the TGF-β pro-peptides 

latency-associated peptide and the LTBP. The mature TGF-β remains associated with 

latency-associated peptide by non-covalent interactions that block TGF-β from binding to its 

receptor. Complex formation between latency-associated peptide and LTBP is mediated by 

an intramolecular disulfide exchange between the third 8-cys domain of LTBP with a pair of 

cysteine residues in latency-associated peptide, this complex is called the large latent 

complex. The release of TGF-β from inhibition by latency-associated peptide can be 

mediated by several different molecules including proteases, thrombospondin-1, and the 

integrins αvβ6 and αvβ8 (Annes et al., 2003).  

 

 
 
Figure 1.9. Schematic representation of human LTBPs 1-4. The small (s) isoforms of LTBP-

1 and -4 are illustrated. Photograph taken and modified from (Saharinen and Keski-Oja, 

2000). 

 

1.2.2.2.1 Structure and function of LTBPs 

 The overall structure of all known LTBPs is similar and it can be divided into four 

regions; the N-terminal region, the adjacent hinge domain, a central cluster of EGF-like 

domains and the C-terminal TGF-β binding region (Olofsson et al., 1995; Saharinen et al., 
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1996). The N-terminal region of LTBPs does not contain the repetitive structures of EGF-like 

or 8-cys domains. However there are cysteine residues present in this region that may be 

involved in disulfide binding of LTBPs with the ECM structures on which they are deposited 

(Nunes et al., 1997; Saharinen et al., 1999). LTBPs (except LTBP-3) contain a RGD 

sequence for putative cell adhesion (figure 1.9). Moreover, all LTBPs contain numerous 

glycosylation sites. The hinge domain has the highest degree of sequence diversity. The 

hinge sequence of LTBP-1 and -2 are sensitive to proteolytic cleavage which, at least for 

LTBP-1, may be for the release of TGF-B from the matrix (Hyytiainen et al., 1998; Taipale 

et al., 1995) (figure 1.9), while the hinge sequences of LTBP-3 and -4 are not (Penttinen et 

al., 2002).  

In LTBP-1 the N-terminus contains transglutaminase substrate motifs which are 

required for the proteins’ incorporation into the matrix (Nunes et al., 1997). The importance 

of the N-termini of LTBPs in binding ECM is highlighted by the observation that soluble 

LTBP-1 from platelets is lacking the N-terminal region, possibly due to proteolytic events in 

the regulated secretary pathway in the megakaryocytes (Miyazono et al., 1991). In addition, 

Unsold et al., (2001) demonstrated the association of LTBP-1 with fibroblast ECM through 

its N-terminal region and suggested the first interactions with the ECM may involve this very 

region.  

The central part of all LTBPs is composed of EGF-like domains (figure 1.9), which 

are suggested to form a rod-like structure found in similar regions of fibrillins (Downing et 

al., 1996). The EGF-like domains are found in many extracellular proteins, functioning as 

structural components and also mediating protein-protein interactions. However, how they 

mediate this interaction is not well understood. This region is resistant to proteolysis 

(Saharinen et al., 1998; Taipale et al., 1995) and the majority of the EGF-like domains in 

LTBPs, as in the fibrillins, are of the calcium binding type (Rosenbloom et al., 1993; Sakai et 

al., 1986; Zhang et al., 1994).  

 The 8-cys domains are found only in LTBPs and fibrillins, thus characterizing the two 

glycoprotein groups as one superfamily (Oklu and Hesketh, 2000; Saharinen et al., 1999). All 

of the cysteine residues in the 8-cys domains are involved in intradomain disulphide bonding. 

Although the third 8-cys domain in LTBPs binds latent TGF-β as mentioned previously, the 

binding affinity for the growth factor varies amongst the LTBP family members. LTBP-1 and 

-3 readily form disulphide bonds with TGF-β propeptide latency-associated peptide (Gleizes 

et al., 1996; Saharinen et al., 1999; Saharinen et al., 1996), while the 8-cys3 domain in 

LTBP-4 is less efficient in binding with latency-associated peptide (Saharinen and Keski-Oja, 

2000). Nuclear magnetic resonance studies have shown that the initial interaction of LTBPs 

with latency-associated peptide is facilitated by a region of negative electrostatic surface 
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potential, created by acidic amino acid residues surrounding the 2-6 cysteine pair disulphide 

bond, which has been identified in the exchange of disulphide bonds with latency-associated 

peptide (Lack et al., 2003). The eight cysteine residues in 8-cys3 bind in a 1-3, 2-6, 4-7, 5-8 

pattern for stabilisation of the domain’s conformation (Lack et al., 2003). In the same study, 

comparison of 8-cys3 structure in LTBP-1 and-4 revealed a ring of five negatively charged 

amino acid residues surrounding the 2-6 disulphide bind in LTBP-1, whereas the same site in 

LTBP-4 is surrounded by only three negatively charged amino acid residues, explaining 

poorer LTBP- latency-associated peptide complex formation (Lack et al., 2003). 

 Various isoforms of all LTBPs can be produced by alternative promoters (Moren et 

al., 1994). It has been shown that in human LTBP-1 and -4, there is more than one alternative 

N-terminal region (Olofsson et al., 1995; Saharinen et al., 1998). Through northern blots, two 

mRNA sequences coding for two different N-terminal variants of LTBP-1 were detected 

(Moren et al., 1994). In LTBP-1, the mRNA sequences coding for a shorter LTBP-1S lack a 

346 amino acid extension which was found to be present in the long LTBP-1L isoform 

(Kanzaki et al., 1990; Noguera et al., 2003; Tsuji et al., 1990). The longer form has been 

found to interact more efficiently with the ECM (Olofsson et al., 1995), further supporting 

the importance of the N-termini of the LTBP in the ECM association. Moreover, different 

distribution patterns have been observed for LTBP-1S and LTBP-1L. High LTBP-1L 

expression has been detected in  the heart, kidney, lung, testes and placenta, while a broader 

distribution has been observed for LTBP-1S (Noguera et al., 2003). In LTBP-4 at least three 

different N-terminal regions have been identified at the cDNA level (Saharinen et al., 1998). 

Since the N-terminal region of LTBPs is thought to be important for interacting with the 

ECM structures (Dallas et al., 1995), the variation in the N-terminal region of these 

glycoproteins could result in them having different affinities with various ECM components. 

There are also reports of alternative splicing of the hinge region of LTBP-1, and -3 (Oklu et 

al., 1998; Yin et al., 1998), and also in the long stretches of EGF-like repeats in LTBP-1, -3 

and -4 (Oklu and Hesketh, 2000). 

 The full spectrum of the biological roles of LTBPs is still uncertain. Mouse models 

have aided in understanding the in vivo functions of LTBPs. Null (loss of function) or 

hypomorphic (partially functional) mutations in Ltbp-1L, Ltbp-3 and Ltbp-4 genes causes 

abnormalities in the development of the heart, bones and lungs respectively (Dabovic et al., 

2002a; Dabovic et al., 2002b; Sterner-Kock et al., 2002; Todorovic et al., 2007). For 

example, severely reduced expression of LTBP-4 in mice leads to the development of severe 

pulmonary emphysema, cardiomyopathy and colorectal cancer (Sterner-Kock et al., 2002), 

associated with fragmented and disintegrated elastic fibres, and with an improper deposition 

of TGF-β in the matrix (Sterner-Kock et al., 2002). In contrast, mice deficient in LTBP-3 
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suffer from premature obliteration of synchondroses, osteosclerosis and osteoarthritis 

(Dabovic et al., 2002a) that is associated with impaired TGF-β signalling on bone physiology. 

Studies by Todorovic et al., (2007) demonstrated the congenital heart defects present in mice 

lacking Ltbp-1L genes are caused by a decrease in TGF-β activity. Overall, the mouse models 

described here highlight LTBPs as crucial components of the matrix that regulates TGF-β 

bioavailability during development. In addition to regulating TGF-β signalling, a second role 

as a structural component of elastic fibres has been suggested for LTBP-4 (Sterner-Kock et 

al., 2002). 

 A study by Dallas et al., (2005) has shown that fibronectin is critical for the 

incorporation of LTBP-1 and TGF-ß into the ECM of osteoblasts and fibroblasts. Through 

immunolocalisation studies it was suggested that fibronectin provides an initial scaffold that 

precedes the deposition of LTBP-1. This initial template has been suggested to be later lost as 

both fibronectin and LTBP-1 localise in separate fibrillar networks. To further support the 

hypothesis, Dallas et al., (2005) showed that the absence of fibronectin impaired the 

incorporation of LTBP-1 and TGF- ß into the ECM. Furthermore, LTBP-1 failed to assemble 

in embryonic fibroblasts that lacked the gene for fibronectin, and the addition of full length 

fibronectin rescued the assembly of LTBP-1. Fibronectin is also essential for fibrillin-1 

microfibril assembly (Sabatier et al., 2009). 

From the members of LTBP family, LTBP-2 is the only member that is not involved 

in the targeting of TGF-β as well as in regulating its activity. Structurally, LTBP-2 is similar 

to LTBP-1 except that LTBP-2 has 13 copies of consecutive EGF-like domains in the middle 

of the molecule compared to LTBP-1 which has 11 copies (Saharinen and Keski-Oja, 2000).  

Alternative splicing of the N-terminal region of LTBP-2 mRNA results in different 

isoforms of LTBP-2 protein. In humans, LTBP-2 occurs as a protein of 240 kDa under 

reducing conditions which is larger than LTBP-1 (190-200 kDa) (Miyazono et al., 1991; 

Moren et al., 1994), whereas the size of LTBP-2 protein found in bovine cell cultures and in 

tissue extracts appeared even larger (260-310 kDa) (Gibson et al., 1995). In addition, similar 

to LTBP-1, LTBP-2 was found to be released from the matrix by direct processing of the N-

terminal region of LTBP-2 with elastase and plasmin (Hyytiainen et al., 1998). 

 

1.2.2.2.2 Tissue distribution of LTBP-2 

The mRNA expression levels of LTBP-2 in various tissues have been investigated 

and compared with the expression of other LTBP family members. It has been established 

that LTBPs have only partial overlap of expression patterns. In situ hybridisation and 

immunohistochemical studies have shown LTBP-2 expression mainly in the lung, heart, 

placenta, skeletal muscle, liver and the aorta (Hirani et al., 2007; Moren et al., 1994). LTBP-
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1 expression is also detected in the same tissues as LTBP-2, except for the liver, and in 

additional tissues including the kidney, prostate, testis, aorta and the ovary (Hirani et al., 

2007; Olofsson et al., 1995). Meanwhile, LTBP-3 and -4 are predominantly expressed in the 

aorta, heart, small intestine and ovaries (Giltay et al., 1997; Saharinen et al., 1999). The 

expression levels of LTBP-3 and -4 are significantly lower in foetal tissues than in adult.  

The temporal and spatial pattern of LTBP-2 expression has also been determined in 

developing mouse and rat in order to gain insight into the likely function of LTBP-2 in 

development. The expression of LTBP-2 by in situ hybridisation was revealed to be largely 

parallel to tropoelastin expression (Giltay et al., 1997). Both proteins were expressed at 

embryonic day E-13.5 in the perichondrium surrounding developing vertebrae, at E-15.5 in 

the snout, lung, and dermis, and at E-17.5 both proteins were primarily detected in the aorta 

and other large vessels. In the rat tissue, LTBP-2 and tropoelastin were co-expressed in the 

lung, pericardium, epicardium and heart valves (Shipley et al., 2000). In the young adult 

mouse, both proteins were expressed in the capsule of the spleen and ubiquitously throughout 

the mesenchyme of the lung (Shipley et al., 2000). Additionally, there were tissues where 

LTBP-2 was differentially expressed to tropoelastin. For example, in the testes tropoelastin 

expression was weak and only observable in cells lining the outside of spermatic ducts 

(Shipley et al., 2000). In contrast there was intense LTBP-2 expression observed in cells 

within the lumen of the epididymis (Shipley et al., 2000). More recently, it has been shown 

using in situ hybridisation analysis that LTBP-2 expression is highly restricted in the brain 

(Dobolyi and Palkovits, 2008). 

 

1.2.2.2.3 Possible function of LTBP-2 

 Knockout studies in mice revealed LTBP-1, -3 and -4 have specific functions in 

targeting of TGF-β as well as in the regulation of its activity (Dabovic et al., 2002a; Sterner-

Kock et al., 2002; Todorovic et al., 2007). However, the function of LTB-2 is less clear. 

Knockout mouse studies carried out by Shipley et al., (2000) demonstrated the vital 

importance of LTBP-2 during development. Distinct from heterozygous mice with a 

disrupted LTBP-2 gene which were phenotypically normal in all aspects, the complete 

knockout of the LTBP-2 gene resulted in an embryonic lethal phenotype. More detailed 

experiments determined that the homozygous mutant affected implantation of the blastocysts, 

implying that LTBP-2 may play an essential developmental role during implantation (Shipley 

et al., 2000). Using genome-wide linkage scan, LTBP-2 was identified as a candidate gene 

for contributing to bone mineral variation in the hip and fracture etiology (Cheung et al., 

2008). In a cell culture study by Goessler et al., (2005), the expression of LTBP-2 during 

chondrogenic differentiation of mesenchymal stem cell and chondrocytes was found to be up-
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regulated during dedifferentiation and down-regulation during chondrocyte differentiation. In 

addition, LTBP-2 expression level in the joint varied between patients and controls with 

osteoarthritis (Appleton et al., 2007) and in the synovium of patients with systemic lupus 

erythematosus arthritis (Nzeusseu Toukap et al., 2007). Based on these findings, it has been 

proposed that LTBP-2 may be involved in osteoblast differentiation and matrix homeostasis 

(Appleton et al., 2007; Nzeusseu Toukap et al., 2007).  

 Cell interaction with ECM components is important for events during development as 

well as later stages of life (Gumbiner, 1996). Cells adhere to the ECM through the interaction 

of cell surface receptors with integrin receptors, non-integrin receptors and RGD recognition 

sequences of ECM proteins (Ruoslahti, 1996). Since LTBP-2 contains a RGD sequence in 

vitro binding assays implicated a role for it in the modulation of cell adhesion (Hyytiainen 

and Keski-Oja, 2003; Vehvilainen et al., 2003). Further experiments demonstrated that 

melanoma cell adhesion to LTBP-2 could be mediated at least by the α3β1 integrin receptor. 

Recently in vitro binding assays have demonstrated that LTBP-2 competes with LTBP-1 for 

binding to fibrillin-1 in the developing aorta (Hirani et al., 2007) (figure 1.8). This suggests 

that LTBP-2 may be playing a role in modulating the storage of TGF-β on microfibrils in-

directly. Moreover, examination of LTBP-2 and fibrillin expression in cultured cell lines and 

their distribution in the matrix resulted in the conclusion that fibrillin-1 is necessary for 

efficient assembly of LTBP-2 (Vehvilainen et al., 2009). Suppression of fibrillin-1 resulted in 

the inability of LTBP-2 to deposit in the matrix (Vehvilainen et al., 2009). Furthermore, 

using a cell culture system of human skin fibroblasts, LTBP-2 was demonstrated to regulate 

assembly of elastic fibres by binding to fibulin-5 promoting its deposition on fibrillin-1 

microfibrils, and thus promoting elastogenesis preferably onto fibrillin-1 microfibrils (Hirai 

et al., 2007). From these findings a potential involvement in elastic fibre assembly can be 

elucidated for LTBP-2. 

 

1.2.2.2.4 Diseases associated with the LTBP-2 

 Recently null mutations in LTBP-2 have been reported to be the cause of primary 

congenital glaucoma in a number of consanguineous families (Ali et al., 2009). Primary 

congenital glaucoma is a rare cause of glaucoma that is inherited as an autosomal recessive 

condition in most families. Primary congenital glaucoma usually manifests within the first 

year of life and it is characterised by high intraocular pressure causing irreversible damage to 

the optic nerve (Anderson, 1981; Kupfer and Kaiser-Kupfer, 1979). This in turn leads to 

permanent loss of vision if it is left untreated. Affected patients usually present with tearing, 

photophobia, corneal clouding and enlargement of the cornea (Ho and Walton, 2004). 
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Aims of the present study 

 The components of the matrix have an influencing role in normal development of 

mammalian organs and homeostasis of mammalian tissues. The matrix components interact 

with various other structural proteins in the matrix to link the matrix together, as well as with 

resident cells via cell surface receptors or integrins to control and regulate cascade of events 

during embryo and organogenesis and later stages of life (Gumbiner, 1996). In addition, 

components of the matrix have the potential to interact with growth factors to store these 

cytokines in tissues and subsequently regulate their activation. For proper functioning of the 

connective tissue appropriate assembly of the matrix is required. Genetic studies have 

demonstrated the correlation between proper construction of the matrix and its function. For 

instance, generated LTBP-2 null mutant mice do not survive past E-6.5, prior to implantation. 

 LTBP-2, a matrix protein well documented to be associated with elastic fibres in 

humans, mouse and bovine tissues, has been demonstrated to bind to fibrillin-1 and to 

colocalise with fibrillin-1-microfibrils in human foetal aorta and bovine nuchal ligaments. 

LTBP-2 interacts with other microfibrillar/elastic fibre-associated proteins such as fibulin-5. 

Through these interactions it has been proposed that LTBP-2 plays a regulatory role in the 

deposition of elastin on fibrillin-1 microfibrils. Previously, Hirani et al., (2007) demonstrated 

the lack of interaction between recombinantly expressed LTBP-2 and fibrillin-2, MAGP-1 

and -2, tropoelastin and the small CS/dermatan sulphate-PGs, decorin and biglycan, using 

solid phase binding assays. With the emerging data on the involvement of HSPGs in elastic 

fibre biology, as yet studies have not been conducted to analyse the consequence of the 

interaction between LTBP-2 and HSPGs on assembly of elastic fibres. 

 This research project focused on the role of LTBP-2 in assembly of elastic fibres. In 

particular it aimed to establish if LTBP-2 interacts with HSPGs in the matrix or on cell 

surfaces and to further characterise the interaction if such an interaction was identified. It also 

aimed to determine if LTBP-2 and its HSPGs binding ligands have similar distributions in 

elastic tissues, the developing human foetal aorta, which is a major elastic tissue. In 

conjunction with studying the role of LTBP-2 within elastic fibre biology, through these aims 

we intend to find out if LTBP-2 has functions independent of elastic fibrillogenesis.  

 It is also an aim to elucidate clues for novel potential functions for LTBP-2 through 

isolating binding ligands for this matrix protein using a more systematic approach. Also using 

the same system, it is aimed to isolate binding partners for βig-h3, a matrix protein which is 

associated with collagen VI microfibrils, which can be used for comparing and verifying the 

specificity of the isolated binding partners by the two distinct matrix proteins. 
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Specific aims 

1. To define and characterise molecular interactions of LTBP-2 with heparin/HSPGs, in 

particular perlecan and syndecans using solid phase binding assays. 

 

2. To determine if LTBP-2 colocalises with these HSPGs within tissues. 

 

3. To identify novel molecular binding partners for LTBP-2 and βig-h3 using affinity 

binding and proteomics. 



 

  - 39 - 

CHAPTER 2  

MATERIALS AND METHODS 

 
2.1 General molecular biology protocols 

The following molecular biology protocols were adopted to facilitate cloning of 

human LTBP-2 fragments LTBP-2NT(H) and LTBP-2C(H) complementary (c) DNA 

sequences into mammalian expression vectors. 

 

2.1.1 Polymerase Chain Reaction (PCR) 

Polymerase chain reactions (PCR) were carried out using an Eppendorf mastercycler 

gradient PCR machine (Eppendorf, Hamburg, Germany) as previously described in Kitahama 

et al., (2000). Each PCR reaction mix contained 100ng of template DNA (BM40:LTBP-

2:his6 in pGEM-T-easy) (Hirani et al., 2007), 10µM of each primer pair (specific for the 

central or amino-terminal fragments) (appendix A), 0.2mM of each dNTP, PCR reaction 

buffer provided by Stratagene as a 10×stock (appendix B), and 2.5U of Pfu turbo DNA 

polymerase (Stratagene, La Jolla, CA). The final reaction volume of 50µl was made up using 

ddH2O. PCR cycles were conducted with a heated lid at 100˚C, and denaturation of template 

and activation of DNA polymerase was set at 94˚C for 3 min. This was followed by 25 cycles 

with denaturation temperature at 94˚C for 1 min, annealing temperature (at 57˚C for LTBP-

2NT(H) and 59˚C for LTBP-2C(H) fragments) for 1 min, extension temperature at 72˚C for 3 

min and a final extension step at 72˚C for 10 min. All completed reactions were chilled to 

4˚C prior to long term storage at -20˚C. 

 

2.1.2 DNA Purification by Agarose Gel Electrophoresis  

The PCR product (approximately 50-200ng of cDNA) was mixed with 6×DNA 

loading buffer (appendix B) to a final concentration of 1× and was loaded into wells of a 

0.8% (w/v) agarose gel (Invitrogen, Carlsbad, CA) dissolved in 1×TAE buffer (appendix B). 

Electrophoresis was carried out at 120V for 1 hr in 1×TAE buffer. Resolved DNA bands 

were stained with Ethidium bromide (2µg/ml) (Boehringer Mannheim GmbH, Mannheim, 

Germany) and they were visualised by an ultraviolet illuminator, wavelength= 254nm 

(Chromato-VUE Transilluminator, Model 0-62, Ultraviolet Products INC) and photographed 

using a Nikon COOLPIX-990 digital camera. Specific DNA bands were excised from the 

agarose gel using a clean scalpel blade and purified using the ultraclean gelspin filter kit 

(MoBio, Solana Beach, CA) exactly following the manufacturer’s instructions. cDNA yields 
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were approximately 20-40µg/ml. Concentration of purified cDNA was calculated from A260 

readings of 1:25 dilution of cDNA in ddH2O in a UV-1601 spectrophotometer (Shimadzu, 

Kyoto, Japan). The cDNA fragment was then “A”-tailed in preparation for ligation into 

pGEM-T-easy vector (Promega, Madison, WI). 

 

2.1.3 “A”-tailing and Ligation 

“A”-tailing of the LTBP-2NT(H) and LTBP-2C(H) cDNA fragments was carried out 

by incubating the PCR (section 2.1.3) insets with 5U of platinum taq DNA polymerase 

(Stratagene, La Jolla, CA), 1×platinum taq DNA polymerase buffer supplied by Stratagene as 

a 10×stock, 2.5mM MgCl2 and 0.2mM dATP in a total volume of 10µl. The volume was 

made up using ddH2O. Incubation was carried out in the Eppendorf mastercycler gradient 

PCR machine (Eppendorf, Hamburg, Germany) for 1 hr at 70˚C with the heated lid of 94˚C. 

Ligation of the cDNA PCR fragments was conducted using a 5:1 ratio of insert to 

vector. “A”-tailed PCR fragments of LTBP-2NT(H), 191ng, or LTBP-2C(H), 200ng, were 

incubated overnight at 4˚C with 50ng of pGEM-T-easy vector (Promega, Madison, WI), 3U 

of T4 DNA ligase and 1×ligation buffer (supplied by Promega as a 10×solution) in a total 

volume of 10µl.  

Ligated cDNA fragments were purified by ethanol precipitation. Briefly, 0.1 vol of 

3M sodium acetate (pH 5.2) and 2.5 vol of ice-cold 100% ethanol were incubated with the 

ligation reaction respectively for 30 min at -20˚C. Following incubation, the mixture was 

immediately centrifuged at 4˚C for 25 min at 17,500×g. The DNA pellet was washed with 

ice-cold 70% (v/v) ethanol and centrifuged at 17,500×g for 10 min before decanting the 

ethanol and air-drying the pellet. The DNA was resuspended in 10µl of ddH2O prior to use in 

transformation of JM109 competent cells (Promega, Madison, WI). 

 

2.1.4 Transformation of Competent Cells 

JM109 competent cells (107 colony forming units/µg), totalling of 100µl were 

incubated on ice for 20 min with 50ng of ligated and purified DNA in a volume of 10µl. 

Competent cells were heat shocked at exactly 42˚C in a water bath for 45 sec and were 

immediately returned to ice for a further 2 min. Cells were incubated in 900µl of SOC media 

(appendix B) for 1.5 hrs at 37˚C with agitation and pelleted by centrifugation at 2,000×g for 

5 min at RT. The pellet of transformed cells was resuspended in 100µl of SOC media before 

being spread onto solid agar plates containing luria broth (appendix B), 100µg/ml ampicillin, 

0.5mM IPTG and 40µg/ml X-Gal. The coated plates were incubated overnight at 37˚C. The 

X-Gal and IPTG allows for blue/white colony selection. White colonies indicate the 

transformation of JM109 competent cells with pGEM-T-easy vector containing the required 
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cDNA insert, while blue colonies indicate cells transformed with re-ligated, empty pGEM-T-

easy vector. The presence of a cDNA insert in the vector interrupts the transcription of the 

Lac-Z gene whose protein product metabolises X-Gal and IPTG into a blue compound. White 

colonies were selected and were sub-cloned onto solid agar plates containing Luria broth and 

100µg/ml ampicillin. The coated plates were incubated in a 37˚C incubator for 16 hrs, prior 

to propagation of the colonies in Luria broth (appendix B) containing 100µg/ml of ampicillin 

for plasmid DNA purification. The liquid cultures were incubated for 16 hours at 37˚C with 

agitation. Plasmid DNA was purified from 2ml of Luria broth culture using the high pure 

plasmid isolation kit (Roche Diagnostics GmbH, Mannheim, Germany), following 

manufacturer’s instructions. The DNA was eluted from the spin column using ddH2O and 

DNA yields were calculated at A260 using 1:25 dilutions of stock DNA in ddH2O. DNA 

yields in the range of 4.3-20µg/ml were generally obtained. The presence of a correct size 

insert was confirmed by PCR as described in section 2.1.2, using 100ng of the purified DNA 

as template. 

 

2.1.5 Restriction digests 

Restriction digests with HindIII restriction enzyme were carried out by incubating 

0.136-1µg of DNA with 5U of restriction enzyme HindIII (Promega, Madison, WI) in the 

presence of 1×buffer E (Promega, Madison, WI), and 2µg acetylated BSA in a volume of 

20µl made up using ddH2O. The mixture was incubated for 2 hrs at 37˚C.  

Digestion of the pCEP-4:BM40:LTBP-2C(H):his6 was carried out as follows; 1µg of 

purified plasmid was incubated at 37˚C for 3 hrs with 5U of restriction enzyme KpnI 

(Promega, Madison, WI), 2µg acetylated BSA and 1×buffer J (Promega, Madison, WI) in a 

volume 20µl. Digested DNA samples were analysed on a 0.8% agarose gel. 

 

2.1.6 DNA Sequence Analysis  

To ensure the integrity of the DNA and to confirm the orientation of cDNA inserts, 

DNA sequencing was conducted by incubating Big-Dye version 3.0 ready reaction mix (1µl) 

with 200ng of purified plasmid DNA, 1×Big Dye sequencing buffer (supplied Molecular 

Pathology sequencing, Institute of Medical and Veterinary Science, Adelaide as 5×stock) and 

5pmol sequencing primers (M13F or M13R (appendix A), in a reaction volume of 20µl 

made up with ddH2O. Sequencing was carried out using the PCR conditions of heating of the 

samples to 96˚C for 1 min, then 25 cycles of 96˚C for 10 sec, 50˚C for 10 sec, 60˚C for 4 min, 

followed by a final step of incubating samples at 25˚C for 10 sec before holding the reaction 

at 4˚C prior to DNA precipitation with isopropanol.  
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Sequencing reactions were precipitated by adding 80µl of 75% (v/v) isopropanol to 

the sequencing reaction and vigorously agitating it for a few seconds before incubating at RT 

for 20 min to precipitate PCR products. Samples were centrifuged for 20 min at 17,500×g 

and the isopropanol was carefully aspirated. To wash the pellet 250µl of 75% isopropanol 

was added, agitated briefly and centrifuged for 10 min at 17,500×g. The isopropanol was 

removed without disturbing the pellet and the pellet was air dried. The samples were then 

sent to the Molecular Pathology Sequencing Centre, Institute for Medical and Veterinary 

Science, Adelaide, Australia for automated sequence analysis using the 3700 DNA analyser 

(Applied Biosystems, Foster City, CA). Further sequencing was undertaken of the full length 

of LTBP-2C(H) cDNA insert using LTBP-R2 or HLTBP-F3 primers (appendix A) to select 

error-free clones. Cells containing error free clones were grown in luria broth sterile glycerol 

in a 7:3 ratio and the stocks were stored at -70˚C.  

 

2.1.7 Dephosphorylation 

After linearization, the modified pCEP-4 vector (pCEP-4:BM40:his6) (section 2.1.5), 

was dephosphorylated using Shrimp alkaline phosphatase (Boehringer Mannheim GmbH, 

Mannheim, Germany). For the 500ng of vector DNA, 20U of shrimp alkaline phosphatase 

with 1×dephosphorylation buffer supplied by Boehringer Mannheim GmbH as 10×stock was 

incubated in a volume of 100µl at 37˚C for 2 hrs. The enzyme was deactivated by incubation 

at 65˚C for 15 min and the dephosphorylated vector was recovered using ethanol 

precipitation (section 2.1.3). The recovered vector was resuspended in ddH2O to give 10ng/µl. 

DNA T4 ligase was used in conjunction with 4:1 ratio of insert to vector for ligation of 

LTBP-2C(H) into the dephosphorylated modified pCEP-4 vector.  

 

2.2 Production of human LTBP-2 fragments 

2.2.1 LTBP-2C(H) 

The central fragment (LTBP-2C(H)) cDNA was obtained by PCR amplification of 

bases (2758-5142) from full length human LTBP-2 clone (LTBP-2:BM40:his6:pCEP-4) 

constructed by Dr. E. Hanssen (see Hirani et al., 2007). Primers LTBP-2 Central Forward 

and LTBP-2 Central Reverse (appendix A) containing HindIII restriction site were used 

under the conditions described in section 2.1.1 to produce a PCR product of 2373 base pairs. 

The LTBP-2C(H) PCR product was purified from 0.8% (w/v) agarose gel and was “A”-tailed 

and ligated to pGEM-T-easy vector (section 2.1.2 & 2.1.3). The pGEM-T:LTBP-2C(H) 

construct was transformed into JM109 competent cells (section 2.1.4) and purified plasmid 

DNA from selected clones was sequenced to identify error-free clones (section 2.1.6). 
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The LTBP-2C(H) insert was excised from the pGEM-T-easy vector with HindIII 

restriction enzyme (section 2.1.5) for ligation into the dephosphorylated modified pCEP-4 

vector (section 2.1.7). The modified vector contained a BM40 signal peptide at the 5’end and 

a his6-tag at the 3’ end. 

For preparation of the pCEP-4:BM40:his6 modified vector, the full length LTBP-2 

insert was removed from the pCEP-4:LTBP-2 plasmid by HindIII restriction enzyme 

digestion (section 2.1.5). The pCEP-4:BM40:his6 vector and full length LTBP-2 cDNA insert 

were separated using agarose gel electrophoresis (section 2.1.2). The pCEP-4:BM40:his6 

vector band (approximately 10356bp) was purified from 0.8% agarose gel, a portion of it 

being ligated back to itself using T4 DNA ligase (section 2.1.7) and propagated in JM109 

cells (section 2.1.4). Glycerol stock of a clone was made for future use of the vector. The 

remaining portion was dephosphorylated (section 2.1.7) prior to ligation with the HindIII-

digested LTBP-2C(H) cDNA insert. JM109 cells were transformed with the ligated construct 

and plasmid DNA from individual colonies was purified (section 2.1.4). The desired pCEP-

4:LTBP-2C(H) clones in the correct orientation were identified using KpnI (Promega, 

Madison, WI) enzymatic digestion (section 2.1.5). Digestion of the modified pCEP-4 content 

in the correct orientation produces two fragments of approximately 728 base pairs and 12013 

base pairs. 

The recombinant pCEP-4:LTBP-2C(H) expression construct needed to be highly 

purified, and larger quantities of the plasmid were required for transfection into mammalian 

cells. Luria broth cultures of the selected clone were prepared (section 2.1.4) and plasmid 

DNA was purified using the QIAfilter® midi kit (Qiagen GmbH, Hilden, Germany), 

following the manufacturer’s instructions for low-copy number plasmids. Purification of 

plasmid DNA was carried out from 50ml of Luria broth cultures. A slight modification in the 

final elution step was made where eluted DNA (8ml) was aliquoted equally between 8 tubes 

with the manufacturer’s recommended amount of isopropanol (2.5ml) equally divided 

between them. The DNA was precipitated by centrifugation and the pellet in each individual 

tube was resuspended in ddH2O and then pooled together. The concentration of the purified 

plasmid DNA was found to be 0.5-1mg/ml from the absorbance reading (A260) using 1:25 

dilution of stock DNA in ddH2O.  

 

2.2.2 LTBP-2NT(H) 

A cDNA encoding the amino-terminal region of human LTBP-2, LTBP-2NT(H), 

corresponding to bases 2758-5142, was obtained by PCR amplification from a full length 

human LTBP-2 clone as described above using primers LTBP-2NT(H) Forward and Reverse 

(appendix A) (section 2.1.1). The PCR product of 2272 base pairs was analysed by 



 

  - 44 - 

electrophoresis on a 0.8% agarose gel, and the LTBP-2NT(H) cDNA was excised from the 

gel (section 2.1.2) and purified. The purified cDNA fragment was “A”-tailed and ligated into 

the pGEM-T-easy vector (section 2.1.3) and the pGEM-T-easy:LTBP-2NT(H) construct was 

transformed into JM109 competent cells (section 2.1.4). Purified plasmid DNA from selected 

clones was digested with a HindIII restriction enzyme to confirm the presence of the HindIII 

restriction sites (section 2.1.5) on the insert, prior to sequencing using pGEM-T-easy primers 

(pUC/M13 forward & reverse) (appendix A). However, only a low number of colonies in 

transformed JM109 cells were obtained and I was unable to identify any error-free clones. 

Time constraints prevented the repeat of the procedure. 

 

2.3 Expression of recombinant LTBP-2C(H) 

For expression of rLTBP-2C(H), 293 EBNA human embryo kidney (HEK) cells 

(Invitrogen, Carlsbad, CA) were grown in Dulbecco’s Modification of Eagles Medium 

(DMEM) to confluency at 37˚C and in the presence of 0.5% CO2. The medium was 

reconstituted from powder following the manufacturer’s instructions (Gibco, Carlsbad, CA) 

(appendix B) and it was supplemented with 1×non-essential amino acids (NEAA) (Thermo 

electron, Australia), 10% (v/v) heat deactivated (∆) foetal calf serum (FCS) and 250mg/L 

geneticin (for selection of EBNA-1 containing cells) (Gibco, Carlsbad, CA). Cells were 

counted with trypan blue stain, using a 1:1 ratio of trypan blue to cell solution and were 

plated at 2×105 cells/ml. Transfection of the plated cells was carried out with 2µg/ml of 

plasmid DNA and 4µg/ml of lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA). The 

DNA was substituted with ddH2O in one set of control wells, while the second set of control 

wells lacked both Lipofectamin 2000 and DNA.  

24 hrs after transfection the medium was removed from the cells and the cells were 

gently washed with Dulbecco’s PBS (appendix B) to remove the entire transfection reagent. 

Dulbecco’s PBS was used to remove cells from the surface of the wells by agitation and these 

were washed in 5ml of DMEM (no supplement). The cells were pelleted by centrifugation for 

5 min at 260×g, gently resuspended in 25ml DMEM/10% (v/v) ∆FCS/ 1×NEAA/ geneticin 

(250mg/L) and then divided equally into 10 fresh wells. Only two fresh wells were plated for 

each control. 

48 hours after transfection, the medium was changed to a fresh medium (DMEM, 

10% (v/v) ∆FCS, 1×NEAA, geneticin (250mg/L), hygromycin (250mg/L)). This medium had 

the addition of hygromycin (Roche Diagnostics GmbH, Mannheim, Germany) which is the 

selective antibiotic for the pCEP-4:LTBP-2C(H) plasmid. Selection continued until the 

control cells in the selection medium had died, which was suggestive that the remaining 

viable cells in the transfection wells contained the selected recombinant plasmid. 
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Prior to full scale protein production, individual clones were tested for expression of 

the recombinant protein using small scale Nickel Chelate chromatography (section 2.4). The 

colony expressing the highest level of the specific recombinant protein was chosen for 

propagation. When the hygromycin-selected cells had reached confluency, the cells were 

washed with Dulbecco’s PBS, removed with agitation and pelleted (centrifuged 260×g for 5 

min). Cells from each well of 9.6cm2 were divided in two 80cm2 propagation flasks with 

10ml of culture medium (DMEM, 10% (v/v) ∆FCS, 1×NEAA, geneticin (250mg/L), and 

hygromycin (250mg/L)) and grown until the cells were confluent. One of the confluent flasks 

was used for recombinant protein expression described below, while the other was used for 

continued propagation of transfected cells. 

Full Length human LTBP-2 cDNA and βig-h3 cDNA expression constructs were 

prepared as previously described (Hanssen et al., 2003; Hirani et al., 2007), and the 

recombinant proteins were expressed and purified as described below.  

 

2.4 Purification of recombinant full length LTBL-2, βig-h3 and LTBP-2C(H)  

fragment 

Standard practice was to use 12×175cm2 flasks of propagating cells; 11 were placed 

into a serum-free medium for production of recombinant protein and a flask was passaged 

into 4 flasks and then 12 flasks for continuation of cell propagation. Confluent cells were 

washed with 3×Dulbecco’s PBS (appendix B) prior to incubation with serum-free DMEM 

supplemented with 1×NEAA, geneticin (250mg/L) and hygromycin (250mg/L) for 3 days 

prior to harvest. 

To maximise the quantity of recombinant protein harvested from the 11 flasks, the 

cells were re-incubated with DMEM supplemented with heat deactivated new born calf 

serum (∆NBCS) (Invitrogen, Carlsbad, CA) (∆FCS was substituted with ∆NBCS during 

protein production) overnight followed by a second round of serum free-medium for an 

additional three days. 

The serum-free conditioned medium was centrifuged at 260×g for 5 min to remove 

the cells and then centrifuged at 50,000×g for 30 min at 4˚C in a Heraeus Biofuge stratos 

centrifuge (Kendro laboratory products GmbH, Hanau, Germany) to remove any residual cell 

debris that may have not been previously removed. The medium was then filtered through a 

0.45µm bell filter (Pall Corporation, Pensacola, FL) to remove further cell debris. To prepare 

the medium for Ni-Chelate chromatography, the medium was adjusted to contain a final 

concentration of 20mM NaH2PO4 and 10mM imidazole using 8×phosphate buffer and 2M 

imidazole (BDH Chemicals, Carle Place, NY) (appendix B). The addition of a low 

concentration of imidazole to the medium prior to incubation with Ni-sepharose resin had 
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been found to reduce the amount of non-specific binding of proteins without competing with 

the his6-tagged protein. 

Recombinant proteins were purified using a His-trap sepharose column, following the 

manufacturer’s instructions (Pharmacia Biotech, Uppsala, Sweden). Briefly, for every 100ml 

of serum-free media, 1ml of Ni-sepharose for rLTBP-2 and rLTBP-2CH and 400µl of Ni-

sepharose for rβig-h3 was used. Preparation of the sepharose was carried out as follows: the 

ethanol storage solution was washed from the beads with 5 column (col) vol of ddH2O, then 

1.5 col vol of NiSO4 (0.1M) (appendix B) was added and incubated with the sepharose beads 

for 5 min. The nickel solution was then drained and the sepharose was washed with 5 col vol 

of ddH2O prior to equilibration with 10 col vol of 10mM imidazole buffer (appendix B). 

Successfully charged sepharose beads appeared blue in colour.  

The Ni-sepharose beads were incubated with the serum-free medium on a rotator 

wheel for 3 hrs at RT, or overnight at 4˚C. Beads were collected by centrifuging at 260×g for 

2 min and were then transferred to a 2ml Econo column. The media was drained and further 

unbound proteins were eluted with 5 col vol of 10mM imidazole buffer the first three col vol 

of washes were combined with the drained medium and were stored at 4˚C for re-application 

to a fresh Ni-sepharose column to recover further recombinant protein. Three rounds of 

purification were performed per batch of serum-free medium to recover all of the 

recombinant protein. Bound recombinant protein was eluted with 10 col vol of 500mM 

imidazole buffer (appendix B) and 10 fractions were collected, each corresponding to one 

col vol. It is the high concentration of imidazole that displaces the his6-tag protein from the 

Ni-sepharose. After collection of recombinant protein from the Ni-sepharose, the column was 

washed with 10 col vol of 10mM imidazole buffer in preparation for a second round 

purification of recombinant protein.  

When the final round of purification was completed, Ni-ions were stripped from the 

chelating-sepharose beads using 10 col vol of 0.05M EDTA solution (appendix B). Removal 

of any precipitated proteins in the column was then carried out by incubation of the nickel 

stripped sepharose with 0.1M NaOH solution (from a 1M NaOH solution, appendix B) for at 

least 2 hrs at RT, followed by extensive washing of the beads with ddH2O. The Ni-sepharose 

beads were to be either charged with nickel to use for the next batch or stored in 20% (v/v) 

ethanol at RT. The purification and authenticity of recombinant proteins was checked by 

SDS-PAGE and western blot analysis (section 2.6). Concentrations of purified proteins were 

determined from a SDS-PAGE resolved sample using the public domain NIH Image program 

version 1.63 (developed at the U.S. National Institutes of Health and available on the Internet 

at http://rsb.info.nih.gov/nih-image/). 



 

  - 47 - 

The first two fractions of 500mM imidazole elution for full length rLTBP-2 were 

generally found to contain the highest concentration of recombinant proteins. These fractions 

were pooled and dialysed into TBS containing 0.5M NaCl (TBS/0.5M NaCl) (appendix B). 

The addition of salt was to prevent the precipitation of purified recombinant protein from the 

solution. The removal of 500mM imidazole from purified protein was essential as it was 

found to interfere with assays where anti-(his6-tag) antibodies were used for protein detection. 

Dialysis was carried out in Spectrapor membrane with a pore size of 6-8000Da (Spectrum 

Laboratories, Inc., Rancho Dominguez, CA), overnight at 4˚C or for 3 hrs at RT with several 

changes of buffer at least 100 times the volume of the sample. Dialysed protein was aliquoted 

and stored at -20˚C. For longer storage the aliquots were stored at -80˚C. 

A similar eluting pattern was observed for rLTBP-2C(H) where the highest 

concentration of the recombinant protein was found in the first two collected fractions. 

However, in contrast to this result, only fraction two of the full length rβig-h3 was found to 

have a majority of the recombinant protein. Fractions containing recombinant proteins were 

pooled, dialysed and stored similarly as described for full length rLTBP-2. The exception is 

the storage of rβig-h3 at 4˚C since freezing of the protein causes precipitation.  

 

2.5 Freezing and Thawing of recombinant protein expressing cells.  

Cells at 5×106/ml were rinsed with Dulbecco’s PBS and were collected in a 10ml tube 

with 5ml of Dulbecco’s PBS with the 10ml made up with DMEM. The cells were pelleted 

(centrifuged 260×g for 5 min) and once the supernatant was removed the pellet was 

resuspended in 5ml of freezing solution A (appendix B). Freezing solution B (5ml) 

(appendix B) was then added drop wise with shaking prior to preparation of 1ml aliquots in 

cryovials. The cryovials were stored at -70˚C overnight prior to storage in liquid nitrogen. 

The frozen vials (5×106/vial) of transfected cells were thawed by placing the vial into 

a 37˚C water bath until almost thawed, then 10ml of DMEM (no supplements) was added to 

the cells at RT and it was incubated for 5 min, before centrifuging at 260×g for 5 min. The 

cells were then resuspended in 1ml of DMEM and transferred into a 80cm2 flask with 10mls 

of culture medium (DMEM, 10% (v/v) ∆FCS, 1×NEAA, geneticin (250mg/L), and 

hygromycin (250mg/L). 

 

2.6 SDS-PAGE Coomassie Blue staining and western immunoblotting 

Purified proteins were analysed using microslab SDS-PAGE, and the discontinuous 

buffer system of Laemmli (Laemmli, 1970). The separating gel ranged from 6.5-15% (v/v) 

acrylamide and stacking gel concentration of 3% (v/v) acrylamide (Sigma-Aldrich, St. Louis, 

MO) (appendix B). Protein samples were precipitated with 10 vol of ice-cold 90% (v/v) 
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acetone at -20˚C for 20 min. This was followed by pelleting of the precipitated protein by 

centrifugation at 17,500×g for 10 min. The supernatant was removed carefully and discarded 

and the pellet was washed with 90% (v/v) acetone for 10 min, at 17,500×g. Acetone was 

carefully removed, the pellet was resuspended in protein sample loading buffer (appendix B) 

containing 2% (v/v) β-mercaptoethanol (Sigma-Aldrich, St Louis, MO) and boiled for 2 min. 

The samples were loaded into individual wells of a polyacrylamide gel and resolved at 150V 

in the chamber buffer (appendix B) until the dye front was a few millimetres from the 

bottom of the gel. Broad range molecular weight protein standards (Bio-Rad Laboratories, 

Hercules, CA) at 0.5µg/protein band were run simultaneously. 

For visualisation and quantitation of protein bands, SDS-PAGE gels were stained 

with fresh Coomassie Blue (appendix B) for 15 min with gentle agitation. The gels were 

destained by rinsing and then incubated in 40% (v/v) methanol/acetic acid solution 

(appendix B) for 5 min. This was followed by incubation of the gel with 7.5% (v/v) 

methanol/acetic acid solution (appendix B) for a minimum of 30 min or until sufficient 

destaining of the gel was achieved. The gel was washed in ddH2O prior to drying overnight 

between cellophane sheets. Protein quantitation was performed on a Macintosh computer 

using the NIH Image program version 1.63 (developed at the U.S. National Institutes of 

Health and available on the Internet at http://rsb.info.nih.gov/nih-image/). 

For western immunoblotting, SDS-PAGE gels were used as above but the proteins 

were transferred onto polyvinylidene difluoride (PVDF) membrane as follows. The gel was 

washed twice in a Tris/Glycine buffer (appendix B) for 10-15 min, while the Bio-trace 

PVDF membrane (0.45µm) (Pall Corporation, Pensacola, FL) was activated by rinsing in 

100% (v/v) methanol for 1 min, followed by rinsing in ddH2O for 5 min and Tris/Glycine 

buffer for 10 min. The gel was sandwiched between the smooth side of the PVDF membrane 

and Whatman paper (3mm grade, Whatman International Ltd, Maidstone, England) prior to 

placing it into the wet transfer apparatus. Protein bands were transferred onto PVDF 

membrane using 60V in a negative to positive direction for 90 min with gentle stirring of the 

Tris/Glycine buffer using a magnetic stirrer. After transfer, the lane containing the Bio-Rad 

standard proteins was cut off and stained with Coomassie Blue. The remainder of the 

membrane was washed 2×5-10 min in TBS (appendix B) and incubated into a blocking 

solution (appendix B) for 1 hr at RT with gentle shaking. 

The primary antibody at the designated concentration (appendix C) was incubated 

with the blot for 2.5 hrs at RT or at 4˚C overnight in antibody solution (appendix B). The 

PVDF membrane was washed 2×5 min in Tris/Tween-20/Triton X-100 solution (appendix B) 

followed by 5 min in TBS with gentle agitation. Diluted secondary antibody conjugated with 

alkaline phosphatase (Bio-Rad Laboratories, Hercules, CA) in the antibody solution was 
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incubated with the membrane for 1.5 hrs at RT with gentle agitation. The membrane was then 

washed in Tris/Tween-20/Triton X-100 solution (appendix B) for 3×5 min with gentle 

shaking, rinsed with substrate buffer (appendix B) and developed with developing solution 

(appendix B). When sufficient development of the protein bands was achieved, colour 

development was stopped by rinsing the membrane in ddH2O prior to air drying of the 

membrane. 

 

2.7 Silver staining 

The silver staining method used at first to detect protein bands separated by SDS-

PAGE was adopted from Cheng et al., (1994). Upon separation of protein samples under 

reduced conditions (section 2.6), the proteins were fixed by incubating the gel with 25% (v/v) 

isopropanol, 10% (v/v) acidic acid for 30 min, followed by 2× 10min washes with 10% (v/v) 

isopropanol 5% (v/v) acetic acid. Sensitisation of the gels was carried out by incubating in 

5µg/ml (w/v) of dithiothreitol for 15 min, prior to staining with 0.1% (w/v) silver nitrate for 

15 min. The gels were then rapidly rinsed in ddH2O once and then twice with the developing 

solution (0.5% (v/v) paraformaldehyde, 3% (w/v) sodium carbonate). The gels were exposed 

to the developing solution until protein bands were developed satisfactorily, when further 

development was terminated by rinsing the gels in 1% (v/v) acetic acid. The gels were 

washed in ddH2O and then dried overnight between cellophane sheets. 

The second silver staining protocol used for protein detection was a method obtained 

from Dr. Wilson, R. of Murdoch Children’s Research Institute and Department of Paediatrics, 

University of Melbourne, Australia, a modified version being described in (Gromova, 2006). 

Briefly, protein samples were separated under reduced conditions using SDS-PAGE. Each 

gel was fixed in 50% (v/v) methanol, 12% (v/v) acetic acid, and 0.05% (v/v) formalin with 

gentle shaking for 30 min. The gel was then washed in 35% (v/v) ethanol for 3×10 min, 

sensitised with 0.02% (w/v) sodium thiosulphate for 2 min and rinsed quickly in ddH2O. The 

gel was stained in ddH2O containing 0.2% (w/v) AgNO3, 0.076% (v/v) formalin for 20 min 

and rinsed with ddH2O. The gel was rinsed quickly and then stained with developer (5% (w/v) 

NaCO3, 0.05% (v/v) formalin, and 0.008% (w/v) Na2S2O3) until the desired level of protein 

staining was reached. Development was stopped with 50% (v/v) methanol, 12% (v/v) acetic 

acid solution and the gel was washed in ddH2O for 5 min before drying overnight between 

cellophane sheets.  

 

2.8 Determining the molecular weight of unknown proteins 

Protein samples of unknown size were electrophoresed under denaturing or non-

denaturing conditions along side standard proteins of known size (section 2.6) prior to 
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Coomassie Blue staining. The unknown molecular weights were determined by preparing a 

standard curve of relative mobility (Rf) of the standard proteins versus the log of the 

molecular weight of each standard protein. Briefly, the distance from the top of the resolving 

gel to the top of each standard protein band in SDS-PAGE was measured in millimetres. The 

distance from the top of the resolving gel to the top of the dye front was also obtained. The Rf 

of each protein standard was calculated using the equation Rf= distance of protein migration/ 

distance of the dye front. The log of the molecular weight was plotted against the Rf value of 

the standard proteins and the line of best fit was drawn through the data points. The 

molecular weights of other proteins run on the same gel was determined by measuring the 

migration distance of the band, calculating the Rf value and then using the standard curve to 

read the log of the molecular weight from the graph. 

 

2.9 Mass spectrometric analysis 

For verification of the rLTBP-2C(H) mass fingerprinting was performed at the 

Adelaide Proteomics Centre under the supervision and guidance of Dr. C. Bagley. Under 

reducing conditions the sample was separated by SDS-PAGE (section 2.6) and Coomassie 

Blue stained. The gel was rinsed with H2O prior to excision of the band. The band was cut 

again in two and each half was placed into a 1.5ml eppendorf and each half was cut again 

into 2 or 3 smaller pieces followed by 2× 500µl washes with 100mM NH4HCO3 at RT with 

shaking. After the removal of the solution, the gel pieces were destained by incubating with 

500µl of 100mM NH4HCO3 in 50% (v/v) acetonitile for 15 min at RT with agitation. The gel 

particles were spun down by pulse centrifugation and excess liquid was then removed. The 

step was repeated until gel pieces were 90% clear. Two rounds of this step were required for 

sufficient destaining. The gel pieces were then incubated with acetonitrile (200µl) for 15 min 

at RT until they had shrunk, at which point they became white and stuck together. The gel 

pieces were collected at the bottom of the tube by centrifugation and the liquid was removed 

prior to using a vacuum centrifuge for 4 min to dry the gel pieces. To reduce the protein, 

dried gel pieces were re-swelled with 50µl of 10mM dithiothreitol in 100mM NH4HCO3 at 

56˚C for 15 min, rinsed with 100mM NH4HCO3 and shrunk with 200µl of acetonitrile for 15 

min at RT with agitation. After collecting the gel pieces by centrifugation and removal of the 

supernatant, the gel pieces were incubated with 50µl of 55mM iodoacetamide in 100mM 

NH4HCO3 in the dark for 30 min. The iodoacetamide solution was removed and the gel 

pieces were rinsed and incubated with 100µl with 5mM NH4HCO3 at RT for 10 min. The 

solution was then removed and the gel pieces were shrunk and dried by vacuum centrifuge as 

previously described. At this stage one sample was stored and the other sample was digested 

with trypsin as follows. The gel pieces were rehydrated with 10µl of diluted trypsin (100ng/µl 
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in 5mM NH4HCO3) for 10 min before the addition of 20µl of 5mM NH4HCO3 solution (no 

trypsin) and incubation at 37˚C overnight with shaking. Digested peptides were present in the 

solution, so the 20µl solution was transferred into a new eppendorf tube. To ensure all of the 

digested peptides were removed from the gel, the gel was sonicated with 20µl of 1% (v/v) 

Trifluoroacetic acid for 5 min, 20µl of 0.1% Trifluoroacetic acid (v/v) in 50-60% (v/v) 

acetonitrile for 15 min and 50µl 100% acetonitrile for 15 min respectively in a water bath. 

After each incubation the solution was transferred to a new tube before the next solution was 

added to the gel. Finally the solutions containing the extracted peptide were pooled and dried 

down to 2-10µl using vacuum centrifugation. Matrix-assisted laser-desorption/ionisation 

time-of-flight mass spectrometry (MALDI-TOF-MS) analysis was used to authenticate 

LTBP-2C(H) by comparing the originated molecular weights of the peptide to the published 

LTBP-2 amino acid sequence and also to the protein sequence databases. 

 

2.10 Synthesis and Fractionation of Covalently bound conjugates of heparin and 

albumin 

For synthesis of heparin-albumin conjugates (HAC) a method modified from Hennink 

et al., (1983) was used. Briefly, a 1.6:1 ratio of molar concentration of heparin sodium salt 

from porcine intestinal mucosa (Sigma-Aldrich, St Louis, MO) to albumin (bovine serum 

albumin (BSA) (Sigma-Aldrich, St Louis, MO)) was resuspended in ddH2O (for 77mg of 

heparin 5ml of ddH2O was used) and the solution was adjusted to pH 5. A white precipitate 

was formed which contained both heparin and albumin, and the precipitate dissolved within 1 

hr. To the solution 8×100µl portions of N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC) (Sigma-Aldrich, St Louis, MO) (32.5mg/ml) were added at 30 min 

intervals with stirring. The solution was maintained at pH 5. Half an hour after the last 

addition of EDC, the solution was adjusted to pH 7.6 and stirring was continued for 20 hrs at 

4˚C. The solution was dialysed for 2×1 hr against 0.025M Tris, pH 7 (in volume of 50ml 

each time) for subsequent ion chromatography. 

Fractionation of unreacted albumin and HAC was achieved by ion exchange 

chromatography on a column of DEAE-sepharose Cl4B (2.3ml of resin to 5ml of solution), 

which had been pre-washed with 10 col vol of ddH2O to remove ethanol and equilibrated 

with 10 col vol of equilibration buffer (0.3M NaCl/0.025M Tris pH 7). Unreacted albumin 

was eluted with an equilibration buffer (0.3M NaCl/0.025M Tris pH 7) (15×2ml fractions), 

then unfractionated purified conjugate (HAC) was eluted with 0.9M NaCl/0.025M Tris-HCl, 

pH 7 (10×2ml fractions) and stored at -70˚C. 

The albumin concentrations of eluted fractions (free or conjugated) were determined 

from A280 readings of 1:4 dilution of eluted fractions (50µl) to 0.3M NaCl/0.025M Tris pH7 
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(for determining free albumin) or 0.9M NaCl/0.025M tris pH 7 (for detection of conjugated 

albumin) (150µl) in UV-1601 spectrophotometer (Shimadzu, Kyoto, Japan), using a BSA 

standard curve (0-200µg) diluted in the same buffer. The amount of albumin present in each 

fraction was determined by correlating the (A280) with an established BSA standard curve. 

The majority of albumin (free or conjugated) was present in the first four fractions, and after 

that no albumin was detected in the fractions. The heparin concentration was determined 

using an uronic acid assay described in section 2.11. 

 

2.11 Uronic acid assay 

Hexosamine and uronic acid are components of the repeating unit of all GAGs with 

the exception of keratosulphate. To determine the quantity of GAGs in biological substances, 

uronic acid assay is widely used (Blumenkrantz and Asboe-Hansen 1973). A standard curve 

was established using a serial dilution of D-glucuronic acid (0-200µg) diluted in 0.9M 

NaCl/0.025M Tris pH 7. The volume was made up to 200µl using ddH2O. Individual 

fractions containing HAC (1/50 and 1/100) in 0.9M NaCl/0.025M Tris pH 7 were also 

diluted and transferred into pyrex disposable culture tubes (Borosilicate Glass). Sulphuric 

acid (H2SO4)/sodium tetraborate solution (1.2ml) (appendix B) was added to the sample 

tubes, and the samples were vortexed and heated for 5 min at 100˚C, before cooling in an ice 

water bath. After cooling, 20µl m-hydroxydiphenyl solution was added and the samples were 

vortexed well before reading at A520 within 10 min of preparing the samples.  

 

2.12 Determination of protein concentration using Bradford assay 

The Bradford assay (Bradford, 1976) was used to determine the concentration of 

proteins in tissue extracts and proteins eluted from affinity chromatography columns. This 

assay uses coomassie brilliant blue G250 which binds protein causing a shift in the 

absorption maximum from 465nm to 595nm. To prepare the assay solution, Coomassie 

Brilliant Blue G250 (25mg) was dissolved in a mixture of 12.5ml of 95% ethanol and 25ml 

of 85% phosphoric acid. The volume was made up to 250ml using ddH2O and the solution 

was mixed for at least 40 min on a stirrer. The solution was filtered through Whatman’s 

paper before use to remove any Coomassie Brilliant Blue that had not dissolved. A serial 

dilution of ovalbumin (0-10µg) was prepared in a total volume of 100µl of appropriate buffer 

for establishment of a standard curve. To each diluted protein sample or standard 1ml of the 

Coomassie Blue reagent was added. The samples were then vortexed and left for 2 min to 

allow the binding of Coomassie Blue to the protein before analysis in a spectrophotometer 

(UV-1601, Shimadzu, Kyoto, Japan) at 595nm. The A595 readings of the samples were used 

to determine their concentration from the established standard curve. 
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2.13 Solid phase binding assay 

2.13.1 Detecting interaction between two proteins 

The wells of Immuno-Maxisorb modules (Nalge-Nunc International, Roskilde, 

Denmark) were coated with 400ng of test protein diluted in TBS/2mM CaCl2 (unless 

otherwise stated) and incubated overnight at 4˚C in a humidity chamber. Candidate proteins 

used for coating of the wells were HAC (see section 2.10), human recombinant syndecan-2 

and syndecan-4 (R&D Systems, Minneapolis, MN) or purified perlecan (Whitelock, 2001). 

Control wells were coated with the molar equivalent of BSA. All experiments were carried 

out using triplicate wells and each experiments was performed a minimum of three times for 

consistency. Unbound material was washed with 3×TBS/ 2mM CaCl2, and wells were 

blocked for 1.5 hrs at RT with 5% (w/v) low fat dried milk (Diploma instant, Rowville, Vic, 

Australia) in TBS/2mM CaCl2 with gentle agitation. The wells were then rinsed with 

3×TBS/2mM CaCl2 prior to incubation with 200ng of second test protein (LTBP-2 and its 

fragments unless otherwise stated in the figure legends) diluted in TBS/2mM CaCl2. Controls 

of HAC-coated wells were incubated with the molar equivalent of BSA in solution to assess 

the level of cross reactivity of the antibodies being used. After the wells were washed with 

3×TBS/2mM CaCl2 the wells were incubated with primary antibodies specific to the second 

test protein (concentrations as stated in appendix C) in TBS/2Mm CaCl2/0.05% low fat milk 

for 2.5 hrs in humidity chamber at 37˚C. Following antibody incubation the wells were then 

washed with 3×TBS/0.05% (v/v) Tween-20/2mM CaCl2 before they were incubated with the 

secondary antibody, horseradish peroxidase-conjugated (Bio-Rad Laboratories, Hercules, CA) 

at required dilution (appendix C) in TBS/2mM CaCl2 for 1.5 hrs at 37˚C in the humidity 

chamber. After final washes with 4×TBS/ 0.05% (v/v) tween-20/2mM CaCl2, interaction was 

detected using 100µl of 3,3’,5,5’-tetramethylbenzidine substrate (Sigma-Aldrich, St. Louis, 

MO) at RT. Colour was allowed to develop for up to 1 hr at RT with no agitation and colour 

development was stopped by using 0.5M H2SO4 (50µl per well). Absorbance was detected at 

450nm, using Titertek Multiskan MC (Flow Laboratories, North Ryde, NSW, Australia). 

 

2.13.2 Saturation binding curve 

For saturation curves, maxisorb modules were coated with uniform amounts of the 

solid phase test protein and blocked as stated previously in section 2.13.1. Control wells were 

coated with a molar equivalent of BSA. A serial dilution of the liquid phase protein (in 

TBS/2mM CaCl2) was added to the wells and incubated for 2.5 hrs in a humidity chamber at 

37˚C. Reciprocal curves were also produced where serial dilution of a solid phase test protein 

was incubated with a constant amount of second test protein in a liquid phase (TBS/2mM 

CaCl2). The control wells contained a serial dilution of molar equivalent of BSA coated on 
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the wells. After blocking, the appropriate primary antibody was used for the detection of 

protein-protein interaction using horseradish peroxidase-conjugated secondary antibody and 

3,3’,5,5’-tetramethylbenzidine substrate revelation as stated previously.  

 

2.13.3 Inhibition of binding 

For inhibition of binding experiments, maxisorb modules were coated overnight at 

4˚C in a humidity chamber with test proteins (HAC or perlecan) diluted in TBS/2mM CaCl2, 

and blocked as described previously in section 2.13.1. Control wells were coated with the 

molar equivalent of BSA. For complete inhibition, full length rLTBP-2 (in TBS/2mM 

CaCl2/0.05% (w/v) diploma brand low fat dried milk) was pre-treated with 10-fold molar 

excess of free heparin or chondroitin-6-sulphate (C-6-S) for 15 min at RT with gentle 

agitation. Positive controls where full length rLTBP-2 in the absence of free heparin or C-6-S 

was incubated for 15 min at RT were included. The pre-treated rLTBP-2 was added to 

triplicate wells and incubated for 2.5 hrs at 37˚C. Unbound proteins were washed with 

3×TBS/2mM CaCl2 and bound LTBP-2 was detected using anti-(LTBP-2) antibody (LTBP-

2C) followed by goat anti-rabbit IgG horseradish peroxidase-conjugate. The interaction was 

detected with 3,3’,5,5’-tetramethylbenzidine substrate as stated above. 

For inhibition binding curves, maxisorb plates were coated with HAC or BSA 

(2pmol/well) and were blocked with milk as described above. Full length rLTBP-2 

(1pmol/well) was pre-treated with increasing molar excess of free heparin (0-20pmol) as 

described previously. 

 

2.13.4 Determination of dissociation constants 

Dissociation constants (Kd) for specific interactions were calculated from the ELISA 

binding curves. Maxisorb modules were coated with a constant amount of HAC (33ng/well) 

overnight at 4˚C, followed by incubation with an increasing amount of recombinant test 

protein (full length LTBP-2 or LTBP-2C(H)) for 3 hrs at 37˚C, to establish a saturation curve. 

A standard curve of recombinant test protein was concurrently constructed where maxisorb 

wells were coated overnight with an increasing amount of recombinant test protein. Control 

wells were coated with a molar equivalent of BSA. Anti-LTBP-2 antibody (LTBP-2C) was 

used for detection of full length LTBP-2, and anti-(tetra-his) antibody was used for detection 

of LTBP-2C(H). The amount of recombinant test protein bound to heparin in the saturation 

experiment was calculated from the standard curve. After subtraction of the background 

binding to the BSA-coated control wells, the amount bound was plotted against the total 

amount added using data from three repeat experiments. Non-linear regression analysis using 
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Graphpad Prism version 4.02 software for windows (Graphpad Software, San Diego, CA, 

www.graphpad.com) was used to determine the dissociation constant.  

 

2.13.5 Statistical analysis  

The statistical analysis was calculated by two-tailed unpaired t test using Graphpad 

Prism version 4.02 software. P< 0.05 was considered sufficiently significant. The Error bars 

indicate standard error of the mean. 

 

2.13.6 Digestion of glycosaminoglycans (GAGs) 

 HS-side chains were removed from perlecan by treatment with heparitinase. Briefly, 

perlecan (12.5µg) was digested in 100µl of 0.2M Tris/6mM calcium acetate pH 7, containing 

1.7U/mg-HS heparitinase (Seikagaku Corp, Tokyo, Japan). Digestion with 0.021U enzyme 

was carried out for 1hr at 43˚C, then for another 5 hrs following addition of an equal amount 

of fresh enzyme. The extent of digestion was determined by SDS-PAGE and Coomassie Blue 

staining (section 2.6). 

 

2.14 Tissue sectioning and immunofluorescence  

Frozen sections (5µm thick) were cut using a cryostat 1720 (Leitz, Solms, Germany) 

from tissue blocks of 20-weeks-old human foetal thoracic aorta and human placenta 

embedded in optimal cutting temperature compound (Miles Inc., Elkhart, IN). The sections 

were air-dried for 30 min, fixed in cold 100% acetone for 2 min and rehydrated in PBS 

(appendix B) for 5 min. The rehydrated sections were then incubated with antibodies 

specific for LTBP-2, perlecan, fibrillin-1, and laminin at the required concentration 

(appendix C) diluted in PBS overnight at 4˚ in humidity chamber. Control sections were 

incubated with a matched concentration of rabbit IgG for polyclonal antibodies and with 

mouse IgG for monoclonal antibodies. Sections were gently washed in PBS for 10 min prior 

to incubation with the appropriate secondary antibody conjugated to flurophore Alexa 488 

(Invitrogen, Carlabad, CA) or Cy5 (Jackson Immunoresearch, West Grove, PA) at the 

required concentration (appendix C) for 90 min at RT in the dark. Sections were then 

washed with PBS for 10 minutes and mounted in anti-fade solution (90% (v/v) glycerol/10% 

(v/v) PBS and 0.1% p-phenylenediamine (Sigma-Aldrich, St. Louis, MO)) prior to laser 

confocal microscopy. Labelled sections were examined using a Leica SP5 spectral scanning 

microscope. 

 

 



 

  - 56 - 

2.15 Coupling of rβig-h3 and rLTBP-2 to Cyanogen Bromide (CNBr)-activated 

Sepharose 4B 

Recombinant protein (rβig-h3 or rLTBP-2) (1.2µM) was dialysed into a coupling 

buffer (appendix B) in preparation for coupling to CNBr-activated sepharose 4B (Amersham 

Biosciences). 

The CNBr-activated sepharose was prepared following the manufacturer’s instruction. 

Briefly, 0.036g of freeze-dried powder was swollen in 500µl of 1mM HCl (to give a total 

sepharose volume of 126µl), and washed with 1mM HCl in aliquots (500µl/min) for 15 min. 

Immediately after draining recombinant protein was incubated with the activated-CNBr 

sepharose overnight at RT on a rotator. Unbound ligand was washed out with 5 col vol of 

coupling buffer (0.1M NaHCO3, 0.5M NaCl) and analysed by SDS-PAGE (see section 2.6) 

to determine the percentage of bound ligand. The sepharose was then incubated with a 

blocking buffer (appendix B) for 3 hrs at RT to block the remaining CNBr groups on 

sepharose and washed extensively with alternating pH buffers 3×(5 col vol of 0.1M acetate, 

0.5M NaCl, pH 4, and 5 col vol of 0.1M Tris-HCl, 0.5M NaCl, pH 8), followed by 

equilibration with 10 col vol of TBS/0.5M NaCl. 

A protein mixture extracted from 210-250-day-old foetal nuchal ligament with 1M 

NaCl was diluted with TBS to give a 1mg/ml of solubilised proteins in TBS/0.5M NaCl. The 

extracted protein was tested for non-specific binding to sepharose CL4B before it was 

incubated with the protein coupled-sepharose overnight at RT. 

After incubation, the sepharose was drained and washed with the 10×1ml of 

TBS/0.5M NaCl (if matrigel TBS was used) to remove unbound proteins followed by elution 

of the bound proteins with 6M urea. The eluted proteins were analysed by SDS-PAGE and 

either Coomassie Blue stained or silver stained. After eluting the bound protein, the columns 

were washed with the binding buffer and the columns were stored at 4˚C. Columns of 

sepharoseCL4B or BSA coupled to CNBr-activate sepharose were used as controls.  

 

2.16 Using nickel chelate chromatography for identification of binding partners of rβig- 

h3. 

Chelating sepharose CL4B (Amersham Pharmacia), 100µl, was primed with nickel 

prior to incubating the column with rβig-h3 (30µg/600µl) as described in section 2.4. Control 

columns were incubated with 600µl of 10mM imidazole buffer (appendix B) in place of 

rβig-h3. The flow-through was analysed by SDS-PAGE to confirm that all of the rβig-h3 was 

bound to the Ni-sepharose. The coupled sepharose and the control-sepharose were then 

washed with PBS, and incubated for 3 hrs at RT while rotating gently with a protein mixture. 

This protein mixture was extracted from bovine nuchal ligament with 1M NaCl then dialysed 
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into PBS, and had prior incubation with Ni-sepharose to remove non-specifically-binding 

proteins. After the incubation with the protein mixture, the Ni-sepharose was centrifuged at 

1000 rounds per minute for 5 min and was washed with 10 col vol of 10mM imidazole buffer. 

Bound rβig-h3, plus its potential binding partners, was eluted with 10 col vol of 500mM 

imidazole buffer (appendix B) and 500µl fractions were collected. Further bound proteins 

were then eluted with 10mM imidazole buffer containing 6M urea. Each fraction was 

analysed by silver staining. The Ni-sepharose was washed with 10 col vol of 10mM 

imidazole buffer and stored at 4˚C. 

 

2.17 Two-Dimension Gel Electrophoresis (2-DGE) 

Using the manufacturer’s recommendation (Bio-Rad Laboratories Inc, Hercules, CA), 

samples (175µg/125µl) in a rehydration buffer (appendix B) were applied to a 7cm linear pH 

3-10 IPG strip and incubated overnight at RT. The proteins were separated according to their 

isoelectric charge using a slow ramping preset method, where the voltage is increased 

quadratically. This mode is used for high resistance samples to minimise high power input 

initially while achieving high voltage as quickly as possible. Maximum voltage was set at 

4,000V, which is the recommended level for 7cm IPG strips. In this mode the voltage is 

increased quadratically. The conditions were a running temperature of 20˚C, a maximum of 

50µA/Gel, a conditioning step of 250V for 15 min and a total focusing time of 60,000 volt-

hrs on Protean IEF Cell (Bio-Rad Laboratories Inc, Hercules, CA). After the isoelectric 

focusing step, the IPG strip was equilibrated with a dithiothreitol equilibration buffer and an 

iodoacetamide equilibration buffer (appendix B) respectively, for 20 min before separation 

in the second dimension by 15% polyacrylamide gel. The final gel was silver stained (section 

2.7). Except for Cydye DIGE Fluor dye labelled samples the gel was scanned with Typhoon 

Trio+ variable mode imager and analysed using DeCyder 2-D Differential Analysis Software 

(GE Healthcare, Uppsala, Sweden). 

 

2.18 Difference Gel Electrophoresis (DIGE) using CyDye DIGE Fluor Dyes  

Using the manufacture’s recommendation (GE Healthcare Fairfield NY), proteins 

eluates (5µg) from rβig-h3-sepharose and rLTBP-2-sepharose columns were dialysed into the 

rehydration buffer containing thiourea (appendix B), and labelled with fluorescent dye Cye 3 

or Cy 5 (40pmol) on ice in the dark for 30 min. The reaction was then stopped by addition of 

10mM lysine, samples were pooled, the volume was made up to 125µl with the rehydration 

buffer containing thiourea and analysed as previously described in section 2.17. 
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CHAPTER 3 

BINDING INTERACTION OF HUMAN LTBP-2 WITH HEPARIN/ 

HEPARAN SULPHATE PROTEOGLYCANS 

 
LTBP-2 is a member of LTBP/Fibrillin superfamily and it has been found to 

colocalise with microfibrils and directly interact with fibrillin-1 in vitro (Gibson et al., 1995; 

Hirani et al., 2007). A number of other matrix components have been identified to interact 

with fibrillin-1-microfibrils, including MAGP-1, -2 (Gibson et al., 1998; Gibson et al., 1996; 

Henderson et al., 1996), fibulin-2, -4, and -5 (El-Hallous et al., 2007; Freeman et al., 2005; 

Reinhardt et al., 1996b), LTBP-1, -2 and -4 (Hirani et al., 2007; Isogai et al., 2003), various 

PGs such as decorin, biglycan (Reinboth et al., 2002; Trask et al., 2000a), perlecan 

(Tiedemann et al., 2005) and isolated HS-GAG chains (Tiedemann et al., 2005). Not all of 

these components are associated with microfibrils in all tissues. Associated components vary 

as they have tissue-specific functions (depending on the functional and mechanical 

requirements of a given tissue) (Kobayashi et al., 2007; Penttinen et al., 2002; Sterzel et al., 

2000). The biological roles of many of the associated proteins are far from clear and 

continuing study of these associated components is needed to understand how each 

contributes to the structure and function of fibrillin-microfibrils.  

Research into the biological roles of LTBP-2 in relation to microfibrils has shown that 

LTBP-2 is not an integral component of microfibrils (Kielty et al., 1998). Also, in contrast to 

other LTBPs, LTBP-2 does not appear to be directly involved in tissue storage of TGF-β on 

microfibrils as LTBP-2 does not bind covalently to latent TGF-β (Gibson et al., 1995; 

Saharinen and Keski-Oja, 2000). However, the findings of Hirani et al., (2007) have 

indicated that LTBP-2 may be a major modulator of the storage of the growth factor on 

fibrillin-1-microfibrils. This was elucidated from solid phase binding assays showing that 

LTBP-2 competes with LTBP-1 for binding to fibrillin-1 (Hirani et al., 2007). Therefore, the 

examination of the interaction of LTBP-2 with other potential binding ligands is required to 

determine if any additional binding partners of LTBP-2 can be identified to further elucidate 

its full tissue function. In this regard, associated components of microfibrils are the best 

candidates for investigation for relevant interactions. LTBP-2 does not interact directly with 

MAGP, biglycan, decorin, and tropoelastin (Hirani et al., 2007), but its ability to interact with 

heparin/HS-GAGs has not yet been investigated.  

In chapters 3 to 5, the interaction of rLTBP-2 with heparin conjugated to albumin 

(HAC) was studied using solid phase binding assay. Heparin was used because it is 
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structurally similar structure to HS and is a suitable substitute for HS-GAG, and is also 

commercially available in large quantities. To determine the physiological relevance of the 

interaction between LTBP-2 and heparin, the HSPGs perlecan and syndecans were also 

tested for interactions with rLTBP-2 and its fragments.  

The expression clone for human full length rLTBP-2 has been previously used in our 

laboratory to produce rLTBP-2 protein. In addition, three recombinant fragments of LTBP-2 

were made to cover the entire length of the LTBP-2 molecule, consisting of the amino-

terminal fragment (LTBP-2NT(H)), the central fragment (LTBP-2C(H)), and the carboxy-

terminal fragment (LTBP-2CT(H)) (figure 3.1). The construction of LTBP-2CT(H) has 

previously been described (Hirani et al., 2007). The construction and expression of rLTBP-

2NT(H) and rLTBP-2C(H) will be described in section 4.1. The purified rLTBP-2 fragments 

were used for mapping of the heparin binding site(s) on LTBP-2. 

 

 
Figure 3.1. Schematic representation of rLTBP-2 and rLTBP-2 fragments. Domain structure 
of rLTBP-2 constructs. Domain structures: green box, 4-cys domain; red and black striped 
box, EGF-like domain; green crosshatched box, cbEGF-like domain; black diamond, hybrid 
domain; blue ovoid, 8-cys domain; H, his6-tag. 

 

3.1 Expression and purification of human recombinant LTBP-2  

Full length human LTBP-2 cDNA had previously been cloned into the episomal 

expression vector pCEP-4 (Hirani et al., 2007). For production of human rLTBP-2, a number 

of amino acid changes were introduced compared with the published sequence. The 

endogenous LTBP-2 signal peptide was substituted by the signal sequence of human BM 

protein BM40 (Hirani et al., 2007) to allow for enhanced gene expression within the HEK 

cell line (Nischt et al., 1991). A his6-tag was also added to the C-terminus to allow for protein 

purification. The expression LTBP-2 construct was transfected into mammalian 293 EBNA 

cells and rLTBP-2 protein was purified from the conditioned medium using Ni-sepharose 

chromatography (section 2.4). Initially rLTBP-2 was purified from cells that had been 

incubated in three different media to determine which was the most suitable for maximum 

expression of rLTBP-2. The three tested media were serum-free DMEM, DMEM containing 

LTBP-2(H) 

HLTBP-2 NT(H)  

HLTBP-2 CT(H) 

H LTBP-2 C(H)

H
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serum and serum-free Ex-Cell 293 medium which is designed specifically for use with 

suspension cultures of 293 EBNA cell lines. 

Purified samples from different media were analysed by western blotting with anti-

(tetra-his) antibody used to detect purified recombinant protein (section 2.6). A single band 

was detected at 210 kDa in serum-free DMEM and DMEM plus serum, with the intensity of 

the band in serum-free DMEM appearing to be greater (figure 3.2A). In contrast, no antibody 

staining was detected in the sample purified from serum-free Ex-Cell 293 (figure 3.2A). The 

results indicated that rLTBP-2 was not highly expressed using Ex-Cell 293 medium, while 

the highest expression of rLTBP-2 was in serum-free DMEM medium. Hence serum-free 

DMEM was used for larger scale rLTBP-2 production.  

Recombinant LTBP-2 was purified from serum-free DMEM migrated on SDS-PAGE 

as two bands at 226 kDa and 210 kDa under reducing conditions and was free of major 

contaminants (figure 3.2B). The observed molecular weight values of the rLTBP-2 protein 

corresponded well to the previously-reported size of purified rLTBP-2 which was 210 and 

219 kDa under reducing conditions (Hirani et al., 2007), and to the predicted LTBP-2 

polypeptide molecular weight of 195 kDa (Gibson et al., 1995; Moren et al., 1994). The 

discrepancy between the measured molecular mass compared with the theoretical mass 

calculated from the protein sequence of the mature recombinant protein and/or the multiple 

bands present is possibly due to varying degrees of post-translational modifications of the 

protein. LTBP-2 has been shown to contain 10 potential N-glycosylation sites (Hyytiainen et 

al., 1998). Furthermore, the size of the rLTBP-2 doublet was reduced by 15 kDa in the 

presence of N-glycosidase with no dramatic changes in the presence of O-glycosidase (Hirani 

et al., 2007). Western blots showed the purified protein was immunoreactive to anti-(LTBP-2) 

antibody (LTBP-2C) confirming the identity of the purified protein as LTBP-2 (figure 3.2B). 

Approximately 1.7µg of rLTBP-2 was produced per ml of DMEM medium and a total of 

2.1mg of rLTBP-2 was purified.  

There were differences with regard to the medium selected for expression and 

purification of rLTBP-2 between reports of Hirani et al., (2007) and the observed results in 

the present study. Hirani et al., (2007) previously described the purification of larger 

quantities of rLTBP-2 free of contaminants from the Ex-Cell 293 medium compared to the 

observed lower qualities of less pure rLTBP-2 purified from cells grown in serum-free 

DMEM. The differences between the results of Hirani et al., (2007) and those described here 

may be due to batch variation in the composition of the Ex-Cell 293 media supplied by the 

manufacturer.  
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3.2 Synthesis and purification of heparin-albumin conjugate 

Covalent conjugates of BSA and heparin were prepared for use in the coating of 

individual wells of maxisorb microtitre plates which have a high affinity for proteins with 

both hydrophilic and hydrophobic domains. The conjugates were obtained by a condensation 

reaction between albumin and heparin using 1-ethyl-3-(dimethylaminopropyl)-carbodiimide 

(section 2.10). Unfractionated conjugate was purified by ion-exchange chromatography on 

diethyl-aminoethyl (DEAE) sepharose CL4B (section 2.10). Briefly, after the mixture was 

applied to the column, un-conjugated albumin was washed with 0.3M NaCl, and 0.9M NaCl 

was used to elute the more strongly bound heparin-albumin conjugates (HAC) bound to the 

sepharose (figure 3.3). 

The concentration of heparin in HAC was determined by an uronic acid assay using a 

produced D-glucuronic acid standard curve (section 2.11). The A520 readings for the HAC 

fractions were plotted against the standard curve to determine the amount of heparin present 

in the conjugates.  

The amount of free or conjugated albumin in the collected fractions was determined 

spectrophotometrically (A280) using a BSA standard curve (see section 2.10). Fraction 12 

(figure 3.3) contained the highest amount of both heparin and albumin and this was selected 

for solid phase binding studies. It should be noted that this fraction provided a sufficient 

amount of HAC for the binding studies, and that purification of HAC that remained in the 

initial column flow through was not performed. Hence not all of the conjugate was purified 

from the condensation reaction mixture. The yields of heparin and albumin in the conjugate 

were 4.8mg and 19mg, giving an average (wt/wt) ratio of 1:4 heparin to albumin in the 

conjugate. It was estimated that 6% and 7% of heparin and albumin respectively from the 

original material were conjugated. 

 

3.3 The analysis of LTBP-2 interaction with heparin 

3.3.1 Solid phase immuno-assays  

For examining the interaction between LTBP-2 and heparin, a solid phase binding 

method was employed (section 2.13.1). These assays involved coating HAC onto individual 

wells of maxisorb microtitre plates. The non-specific binding sites were blocked with 3-5% 

low fat dried milk or BSA solution. The rLTBP-2 was then added in solution (TBS/2mM 

CaCl2) and incubated with the coated wells. Interaction was detected using rLTBP-2 specific 

antibody followed by colour detection. Control wells replaced the HAC with the molar 

equivalent of BSA to determine the level of background binding of LTBP-2 and LTBP-2 

fragments to the well. In addition, an initial control where LTBP-2 was replaced with the 
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Figure 3.2. Optimisation of expression and purification of rLTBP-2. A, Optimisation of 
rLTBP-2 expression by 293 EBNA cells grown in three different media compared using 
SDS-PAGE and immunoblotting with anti-(tetra-his) antibody. Serum-free DMEM (lane 1), 
DMEM plus serum (lane 2), and serum-free Ex-Cell 293 (lane 3). B, Serum-free DMEM 
was selected for the further production of rLTBP-2 and a typical analysis is shown of the 
purified protein, Coomassie Blue staining (lane 1), immunoblotting with anti-(LTBP-2) 
antibody (LTBP-2C) (lane 2). Two specific immunoreactive bands at 226kDa and 210 kDa 
were identified with no contaminants. 

 
 

 
Figure 3.3. Fractionation of un-conjugated albumin and heparin-albumin conjugate (HAC) 
on DEAE sepharose Cl4B. The arrows indicate I, elution of free albumin bound on the 
column with 0.3M NaCl/0.025M tris pH 7. II, elution of heparin-albumin conjugate with 
0.9M NaCl/0.025M tris pH 7. The concentration of free or conjugated albumin was 
determined spectrophotometrically (A280) from a BSA standard curve, while an uronic acid 
assay (A520) was used to determine the concentration of heparin in HAC using a glucuronic 
acid standard curv. 

0 3 6 9 12 15
0.0

0.3

0.6

0.9

1.2

1.5

0.0

0.5

1.0

1.5

2.0

Fraction number

al
bu

m
in

 A
28

0n
m

he
pa

rin
 m

g/m
lI II



 

 - 63 - 

molar equivalent of BSA was used for detection of any cross-reaction of the HAC with 

antibodies specific to rLTBP-2. Equilibrium dissociation constants were calculated from 

specific binding curves to determine the strength of each association. 

Firstly, binding conditions needed to be optimised to prevent non-specific background 

binding of LTBP-2 to the wells and to maximize detection of authentic LTBP-2-heparin 

binding. For sensitive detection of authentic binding between LTBP-2 and heparin-coated 

wells, two antibodies were considered, anti-(tetra-his) antibody and anti-(LTBP-2) antibody 

(LTBP-2C) (appendix C). While comparing the detection capabilities of the two antibodies, 

a higher specific binding signal was observed for the interaction of LTBP-2 with heparin 

using anti-(LTBP-2) antibody (LTBP-2C) compared to anti-(tetra-his) antibody (figure 3.4). 

Neither antibody cross-reacted with the HAC-coated on the wells (figure 3.4). However, 

both antibodies detected a high level of non-specific interaction of LTBP-2 with BSA-coated 

wells, even though the wells were incubated with 3% BSA solution prior to incubation with 

LTBP-2 (figure 3.4). Overall the results of the initial binding assays indicated that the 

interaction of LTBP-2 and heparin was specific, although a large amount of LTBP-2 was 

interacting non-specifically with BSA-coated wells resulting in a high background. 

To reduce the background signal caused by non-specific interaction of LTBP-2 with 

BSA-coated wells, 5% low fat dried milk was tested as an alternative blocking solution. This 

resulted in a slight decrease in the background signal. However, the reduction was not 

achieved at satisfactorily low levels (data not shown). Therefore, the addition of carrier 

proteins such as BSA or low fat dried milk in solution was considered. The addition of up to 

0.04% BSA to the solution did not reduce the non-specific interaction of LTBP-2 with the 

wells. However, the addition of 0.05% low fat dried milk to the solution dramatically reduced 

the non-specific background binding of LTBP-2 (figure 3.5). These data suggested that the 

optimised protocol for conducting solid phase binding assays included blocking of the wells 

with 5% low fat dried milk solution, dilution of rLTBP-2 in TBS/2mM CaCl2 containing 

0.05% low fat dried milk and using anti-(LTBP-2) antibody (LTBP-2C) for detection of 

heparin/HSPG binding. 
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Figure 3.4. Optimisation of the conditions for solid phase assays. Wells coated with molar 
equivalent of HAC or BSA control were blocked with 3% BSA solution prior to incubation 
with rLTBP-2 or a molar equivalent of BSA as a control. Two antibodies, anti-(tetra-his) 
antibody (0.1µg/ml), and anti-(LTBP-2) antibody (LTBP-2C) (0.1µg/ml), were tested for 
their effectiveness in detecting specific binding. At the concentration of 0.1µg/ml used, anti-
(LTBP-2) antibody (LTBP-2C) produced a higher binding signal. Neither of the antibodies 
cross-reacted with HAC on the wells. * indicates statistical significance of P≤ 0.05. *1, P= 
0.003 and *2, P= 0.0001.  
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Figure 3.5. Reducing non-specific interaction of LTBP-2 with the addition of carrier protein 
in solution. Heparin (HAC) (11.1pmol) and molar equivalent of BSA were coated on the 
wells prior to blocking the excess binding sites with 5% low fat dried milk solution. 
Recombinant LTBP-2 (10nM) in liquid phase containing 0.05% low fat dried milk was 
incubated with the wells and binding was detected with either anti-(tetra-his) antibody 
(0.1µg/ml) or with anti-(LTBP-2) antibody (LTBP-2C) (0.1µg/ml). Non-specific background 
was reduced significantly with the addition of a carrier protein in solution. * indicates 
statistical significance of P≤ 0.05. * P= 0.001.      
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3.3.2 LTBP-2 interacts with heparin-albumin conjugate (HAC)  

To investigate the interaction of LTBP-2 with heparin, solid phase binding assays 

were conducted under optimised conditions (section 3.3.1). A negative control of molar 

equivalent of BSA-coated on the wells was included and experiments were performed in 

triplicate. Incubation of LTBP-2 in the liquid phase with immobilised heparin (HAC) resulted 

in a strong binding signal, while in comparison a minimal signal was observed for the 

interaction of LTBP-2 with BSA-coated control wells, as seen previously in figure 3.5. The 

results indicated that LTBP-2 interacted specifically with heparin and non-specific 

interactions with BSA or the plastic wells were minimal. To authenticate the novel 

interaction between LTBP-2 and heparin, binding and inhibition curves were produced 

(section 2.13.2 & 2.13.3). Increasing molar concentrations of rLTBP-2 in solution were 

incubated with a constant molar amount of heparin (HAC)- or BSA-coated on the wells. The 

resulting binding curve showed a dose-dependent increase. The specific binding of LTBP-2 

with heparin increased as the concentration of added LTBP-2 increased until saturation was 

reached (figure 3.6A).The non-specific interaction of LTBP-2 protein with the BSA-coated 

wells was in direct proportion to the increase in LTBP-2 concentration, indicative of non-

specific binding. The established curve showed specific binding was proportional to the 

concentration of rLTBP-2. The reverse of the experiment was also performed to confirm the 

saturating interaction between LTBP-2 and heparin. Incubating increasing molar amounts of 

heparin (HAC) coated on the well with constant LTBP-2 concentration resulted in a saturable 

binding curve (figure 3.6B). Furthermore, there was a low background signal detected for the 

constant concentration of LTBP-2 added in solution (figure 3.6B). 

The specific interaction of LTBP-2 with heparin was further confirmed by blocking 

the binding of LTBP-2 with heparin-coated wells with the addition of un-conjugated heparin 

in solution. An inhibition curve was prepared by incubating an increasing excess molar 

concentration of free heparin (compared with heparin coated on wells) with LTBP-2 in 

solution prior to incubation with the heparin-coated wells. This resulted in a decrease in 

binding which was in a non-linear relationship to the increase in molar amounts of un-

conjugated heparin added (figure 3.7). The signal dropped to background levels when the un-

conjugated heparin in solution was five-fold in excess of the molar amount of heparin (HAC) 

coated on the wells. Furthermore, background binding to BSA-coated wells was consistently 

low. The results indicated that the un-conjugated heparin completely blocked the interaction 

of LTBP-2 with the heparin-coated wells through competition for binding to LTBP-2. Based 

on the above results, it was deduced that the interaction between LTBP-2 and heparin was 

specific. 
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Figure 3.6. Saturation binding curve of the interaction of LTBP-2 and heparin. A, Increasing 
concentration of rLTBP-2 (0-50nM) in solution was incubated with constant molar amount of 
immobilised heparin (HAC) (2.8pmol), black circles, or BSA, white circles, at molar 
equivalent to HAC. Anti-(LTBP-2) antibody (LTBP-2C) (0.1µg/ml) was used for detection 
of binding. B, Constant LTBP-2 (10nM) in solution was incubated with increasing molar 
amounts of heparin (HAC) (0-11.1pmol), black circles, or BSA, white circles, at the same 
molar equivalent, which had been coated on the wells.  
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Figure 3.7. Inhibition binding curve of LTBP-2 interaction with heparin. Increase in excess 
molar concentration of free heparin (0-208nM) was incubated with LTBP-2 (10nM) in 
solution for 15 minutes prior to incubation with constant heparin (HAC) (2.1pmol), black 
circles, or molar equivalent of BSA, white circles. Free heparin in solution blocked the 
interaction of LTBP-2 with heparin-coated wells.  
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3.3.3 The interaction of LTBP-2 with heparin is not a non-specific interaction with 

polyanionic GAGs  

Sulphated GAGs which include CS, dermatan sulphate, heparin and HS are repeating 

disaccharide units composed of uronic acid (GlcA or IdoA) and an amino sugar 

(galactosamine or glucosamine) (Mulloy et al., 2006). All of these GAG chains are strongly 

negatively-charged due to their high content of uronic acids and sulphate groups. To confirm 

that the interaction of LTBP-2 with heparin is not solely a charge-related interaction with all 

GAGs, the blocking of the binding with an alternative negatively-charged GAG, CS, was 

conducted. Using the solid phase binding assay, LTBP-2 in solution was incubated with a 

ten-fold molar excess of C-6-S (compared to heparin coated on the wells), prior to incubation 

with the heparin-coated wells. A positive control where LTBP-2 was incubated with heparin 

in the absence of C-6-S was included, in addition to the BSA negative controls. As shown 

previously (figure 3.6), a strong signal was detected for the interaction of LTBP-2 with 

heparin (HAC) in the absence of C-6-S (figure 3.8) and a similarly strong signal was 

detected for the interaction of LTBP-2 with heparin (HAC) in the presence of C-6-S. 

Furthermore, there was minimal non-specific binding detected for the interaction between 

LTBP-2 and BSA-coated wells in the presence or absence of C-6-S. These findings indicate 

that the interaction of LTBP-2 with heparin is not a non-specific charge-related interaction 

with GAGs, but is a specific heparin/HSPG interaction. 

 

3.3.4 LTBP-2 interaction with heparin depends on calcium or other divalent cations  

LTBP-2 protein is composed mainly of a large number of cbEGF-domains and their 

conformation is dependent on calcium ions (Gibson et al., 1995). Recently, Hirani et al., 

(2007) showed the addition of 2mM calcium ions in solution enhanced the interaction of 

LTBP-2 with fibrillin-1. Thus, the interaction studies described in this chapter between 

LTBP-2 and heparin had been initially performed in the presence of 2mM calcium ions. To 

determine if calcium ions actually influence the interaction between LTBP-2 and heparin, 

immuno-assays were conducted under three different conditions, a) in the absence of added 

calcium ions or, in the presence of b) 5mM EDTA or c) 5mM EGTA. EDTA and EGTA are 

chelating agents that sequester divalent metal ions, but EGTA has a much higher specificity 

for calcium ions. The highest level of binding was detected when the interaction was 

conducted in the presence of calcium ions (figure 3.9). The absence of added 2mM calcium 

ions was found to give slightly lower interaction levels compared to those with added 

calcium. However this difference was considered to be insignificant. When the non-specific 
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Figure 3.8. Interaction of LTBP-2 with heparin is specific and is not a non-specific charge-
related interaction. Incubation of Chondroitin-6-sulfate (208nM) with LTBP-2 (10nM) in 
solution for 15 minutes prior to incubation with heparin (HAC) (2.1pmol) or molar 
equivalent of BSA coated on the wells. LTBP-2 does not interact with negatively-charged 
GAGs. Interaction is specific to heparin. * indicates statistical significance of P≤ 0.05. *, P= 
0.001. 
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Figure 3.9. The interaction of LTBP-2 with heparin is cation dependent. Recombinant 
LTBP-2 (10nM) in various solutions; TBS+2mM calcium, TBS only, TBS+5mM EDTA or 
TBS+5mM EGTA was incubated with immobilized heparin (HAC) (2.8pmol) or molar 
equivalent of BSA. Antibody specific to LTBP-2 was used to detect specific binding of 
LTBP-2 with heparin in the various solutions. Presence of EDTA or EGTA blocked the 
interaction of LTBP-2 with heparin, while the presence of calcium ions enhanced the 
interaction. * indicates statistical significance of P≤ 0.05. *1,2, P= 0.0001. *3, P= 0.002. *4, P= 
0.003. *5, P= 0.01.    
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binding of LTBP-2 to the wells was compared in the presence and absence of calcium ions a 

decrease was detected in the presence of calcium, but again the difference was insignificant. 

In the presence of EDTA or EGTA, there was much lower binding with signals close 

to background levels (figure 3.9), compared with binding detected in the presence of calcium. 

It was also noted that the presence of these chelating agents also slightly decreased the non-

specific background interaction of LTBP-2 with the wells. Overall, the data showed that the 

presence of a chelating agent such as EDTA or EGTA almost completely abolished the 

interaction between LTBP-2 and immobilised heparin (HAC). Thus from the results it was 

concluded that the interaction between LTBP-2 and heparin is dependent on the presence of 

divalent metal ions. This may be due to either direct or indirect alterations of the 

conformation of one or more cbEGF-domains of LTBP-2. EGTA inhibited the binding of 

LTBP-2 with heparin (HAC) more effectively than EDTA. This indicates that the interaction 

between LTBP-2 and heparin is most likely to be calcium dependent.  

 

3.3.5 Kinetic analysis of the interaction between LTBP-2 and heparin 

To analyse the dynamic interaction between LTBP-2 and heparin, the Kd was 

calculated from saturation binding experiments using non-linear regression analysis for one 

site binding (GraphPad Prism version 4 for windows, GraphPad Software, San Diego 

California USA, www.graphpad.com) (section 2.13.4). The Kd is expressed in molar units (M) 

and corresponds to the concentration of ligand at which the binding site on the target protein 

is half occupied. More importantly, it is a measure of the affinity (strength) of the interaction. 

Producing a saturation binding curve for binding of LTBP-2 with heparin involved the 

incubation of a constant molar amount of heparin (HAC)- or BSA-coated on the wells with 

increasing molar concentrations of LTBP-2 in solution. Figure 3.10A illustrates the binding 

curve after subtraction of the BSA background. Simultaneously, a standard curve was 

established by directly coating wells with known molar amounts of LTBP-2 or BSA, as the 

relative signal of the known quantities was determined with anti-LTBP-2 antibody (LTBP-2C) 

(figure 3.10B). A standard curve was necessary to determine the molar amount of LTBP-2 

that bound to the heparin-coated wells. After subtraction of the background, using data from 

three repeated experiments, the molar amount of LTBP-2 bound was calculated for each 

HAC amount and plotted against the total molar concentration of LTBP-2 added (figure 

3.10C). The Kd was calculated as 14.5±3.7nM. Therefore, binding of heparin to LTBP-2 was 

considered to be of strong affinity. 

 



 

 

 

0 10 20 30 40 50
0.0

0.4

0.8

1.2

A

LTBP-2 added (nM)

A
 4

50

0 50 100 150
0.0

0.5

1.0

1.5

2.0
B

LTBP-2 on the wells (fmol)

A
 4

50

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
C

LTBP-2 added (nM)

LT
B

P-
2 

bo
un

d 
(fm

ol
/n

M
)

 
 

Figure 3.10. Kinetic analysis of the interaction between LTBP-2 and heparin using solid phase binding assay. A, Saturation binding curve for LTBP-2 and 
heparin after subtraction of the background BSA. Increasing molar concentration of LTBP-2 in solution was incubated with constant molar amount of 
heparin (HAC) (2.1pmol) or molar equivalent of BSA coated on the wells. B, Standard ELISA curve for LTBP-2 after subtraction of the background. 
Increasing molar amount of LTBP-2 (0-160fmol) was coated on the wells overnight and signal levels for each specific quantity was determined using anti-
LTBP-2 antibody (LTBP-2C) (0.1µg/ml). C, LTBP-2-heparin (HAC) binding curve used to calculate Kd. The total molar concentration of LTBP-2 added in 
solution in A was plotted against the molar amount bound determined in B. The Kd.was calculated to be 14.5±3.7nM, suggesting LTBP-2 has a strong 
affinity for heparin. 
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CHAPTER 4 

THE CENTRAL REGION OF LTBP-2 CONTAINS A BINDING SITE 

FOR HEPARIN 

 
Results from Chapter 3 indicate that LTBP-2 has a specific and moderately strong 

interaction with heparin. The interaction was shown to be probably calcium dependent 

(section 3.3.4), thus heparin may be interacting with LTBP-2 via one of its many cbEGF 

domains. Narrowing down the heparin binding site(s) on LTBP-2 will aid in further 

characterisation of this interaction. As more binding partners for LTBP-2 are identified and 

characterised, we can deduce how these novel ligands may influence each other’s interaction 

with LTBP-2 and modulate the function of LTBP-2.  

To define the binding regions for heparin on LTBP-2, production of expression 

constructs for rLTBP-2 fragments was necessary. Our laboratory had already cloned an 

expression cDNA encoding the carboxyl-terminus of LTBP-2 (LTBP-2CT(H) (Hirani et al., 

2007). This chapter describes the construction of the expression plasmids in order to express 

the amino-terminal region of LTBP-2 and the central fragment of LTBP-2, for use in the 

solid phase binding analyses with heparin. 

 

4.1 Expression, purification and characterisation of the central region of LTBP-2 

(LTBP-2C(H)) 

4.1.1 Expression and purification of LTBP-2C(H) 

A cDNA encoding the central region of LTBP-2 (bases 2758-5142, and residues 750-

1584 of the published LTBP-2 sequence, Genbank accession number NM_000428) was 

amplified from the full length LTBP-2 cDNA template, using designed primers containing 

HindIII restriction sites at their 5’ ends (section 2.2.1). The presence of the HindIII sites is 

important for subsequent subcloning into the modified mammalian expression vector pCEP-4. 

These primers flank the region of the cDNA encoding the third EGF-like domain to the 

region just prior to the last 8-cys domain. The amplified PCR product of 2384 bases (figure 

4.1A) was subcloned into modified pCEP-4 (Hanssen and Gibson unpublished). The LTBP-

2C(H) expression construct was transfected into 293 EBNA cells and rLTBP-2C(H) was 

purified using affinity chromatography from the serum-free conditioned medium (section 2.3 

& 2.4). Purification produced yields of approximately 0.7µg/ml of medium. Purified rLTBP-

2C(H) was stored in TBS/0.5M NaCl at -20˚C. 
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4.1.2 Analysis and authentication of rLTBP-2C(H) 

Purified rLTBP-2C(H) was resolved free of major contaminants as a single band at 97 kDa 

under non-reducing conditions and at 130 kDa under reducing conditions (figure 4.1B) 

(section 2.6). This size was larger than the predicted molecular weight of 85 kDa. A 

discrepancy between the predicted and the apparent molecular weight has been reported for 

other recombinant LTBP-2 fragments including LTBP-2CT(H), and some of the fibrillin 

constructs (Hirani et al., 2007). These differences are often the result of post-translational 

modifications including glycosylation, as LTBP-2 is N-glycosylated (Hirani et al., 2007). 

Aside from LTBP-2, the predicted size of the mature MAGP-2 polypeptide encoded by the 

cDNA for both the bovine and human forms of the protein was also smaller than its apparent 

molecular weight observed on SDS-PAGE (Gibson et al., 1996). This discrepancy was 

suggested to be due to glycosylation of the protein which has a consensus sequence for N-

linked carbohydrate attachment (Gibson et al., 1996). Furthermore, it is not uncommon for 

polypeptides to appear on gels as differently sized from their predicted size. These 

differences may occur as a result of a particular conformation of the proteins which may 

affect the mobility of the proteins through the polyacrylamide pores during electrophoresis 

and thus result in the protein migrating at a different size compared to the predicted size. For 

instance, the deviation in molecular mass of MAGP-1 on SDS-PAGE compared with its 

actual molecular mass was suggested to be a function of the primary structure of MAGP-1 

(Gibson et al., 1991). Other examples were fibulin-3 and -4, which showed an increase in 

electrophoretic mobility when the recombinant proteins were examined under reducing 

conditions, due to the many intracellular disulphide bonds present in both recombinant 

proteins (Giltay et al., 1999). When the purified recombinant protein was examined for 

reactivity to anti-(tetra-his) antibody under reducing conditions, a single band at 130 kDa was 

detected (figure 4.1C). No other bands were detected by the antibody suggesting purified 

LTBP-2C(H) was free of his-rich contaminants. Overall the results confirmed the purification 

of a recombinant protein from serum-free DMEM with relatively high purity, though the size 

of the purified protein was substantially different to the predicted size of the expected 

recombinant protein. Furthermore, the discrepancy observed for size of rLTBP-2C(H) was 

substantial compared to the differences reported for other recombinant proteins. Therefore it 

was necessary to authenticate the recombinant protein as LTBP-2C(H). 

The simplest method of authentication of the purified protein as LTBP-2C(H) was 

through western blot analysis using a LTBP-2 antibody. However, the available anti-LTBP-2 

antibody (LTBP-2C) produced in the Gibson laboratory (Hirani et al., 2007) was specific to 

the carboxy-terminal 8-cys domain and thus it was unable to recognise the central fragment 
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of LTBP-2. To confirm that the recombinant protein was a fragment of LTBP-2, peptide 

mass finger-printing was considered (section 2.9).  

 

                      
 

Figure 4.1. PCR amplification of a cDNA encoding rLTBP-2C(H) and analysis of purified 
recombinant protein. A, LTBP-2C(H) PCR product analysed on a 0.8% (w/v) agarose gel and 
stained with ethidium bromide. A single band of expected product size of 2384 bases was 
detected. B, Purified rLTBP-2C(H) resolved by 12% SDS-PAGE. Coomassie Blue indicated 
a contaminant-free protein band of 97 kDa when sample is non-reduced (lane 1) and 130 kDa 
when sample is reduced (lane 2). C, Anti-(tetra-his) antibody confirmed the purified protein 
as recombinant protein. 

 

4.1.3 Peptide mass finger-printing of rLTBP-2C(H)  

MALDI-TOF-MS was used to perform peptide mass finger-printing for identification 

of the purified recombinant protein as LTBP-2C(H) (section 2.9). To do this, the LTBP-2C(H) 

band was excised from SDS-PAGE and digested with trypsin. Trypsin was the favoured 

protease enzyme for peptide mass finger-printing as it is relatively cheap, highly effective 

and generates peptides with an average size of about 8-10 amino acid (Thiede et al., 2005). 

Trypsin also generates peptides with C-terminal basic residues which facilitates ionisation 

and, if necessary, de novo sequencing (Olsen et al., 2004). The experimentally-obtained 

molecular masses for the peptides were compared with the theoretical peptide masses present 

in databases using mass search programs (Aebersold and Mann, 2003). Results were 

statistically analysed to find the best match. 

Peptide mass finger-printing was carried out on the putative rLTBP-2C(H) fragment. 

After acquiring a mass spectrum using the Adelaide Proteomics Centre, the generated data 

were simplified to lists of monoisotopic masses and analysed by an in-house MASCOT 
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server, matching against SwissProt and also against the human LTBP-2C(H) protein 

sequence for protein identification. The MALDI-TOF spectrum of the digested LTBP-2C(H) 

sequence with matching peptide signals identified the protein as LTBP-2C(H). A search on 

Expasy proteomics (http://www.expasy.ch/) for glycosylation modifications identified five 

potential sites of N-linked glycosylation of the LTBP-2C(H) protein. This therefore can 

explain the discrepancy in the predicted and the apparent size of the recombinant protein. 

Following the authentication that the recombinant fragment is LTBP-2C(H), binding studies 

were performed to determine if this region contains heparin binding site(s). 

 

4.2 The central region of LTBP-2 contains a binding site for heparin  

In order to narrow down the binding region(s) for heparin on LTBP-2, solid phase 

binding assays were conducted to screen for interactions between the rLTBP-2 fragments, 

rLTBP-2C(H) and rLTBP-2CT(H) and heparin. Moreover, in light of the C-terminal region 

of rLTBP-2 containing the fibrillin-1 binding site (Hirani et al., 2007), it was of interest to 

see if this region also interacted with heparin. Molar equivalents of each rLTBP-2 fragment 

in the solution were incubated with HAC-coated wells. A positive control using full length 

rLTBP-2 was included for comparison. BSA-coated wells were included as negative controls 

for determining the non-specific protein interaction of each fragment. Using anti-(tetra-his) 

antibody a strong signal was detected for full length rLTBP-2 and a marginally lower but 

positive signal was detected for rLTBP-2C(H) (figure 4.2A). In comparison to full length 

rLTBP-2 and its central fragment, rLTBP-2C(H), only a background signal was detected for 

the C-terminal rLTBP-2CT(H). 

To demonstrate the specificity of the LTBP-2C(H) interaction with heparin, a 

saturation binding curve was established using a range of molar concentrations of rLTBP-

2C(H) in solution with the amount of immobilised heparin constant. The binding signal 

between the two molecules was found to intensify with the increase in molar concentration of 

rLTBP-2C(H) (figure 4.2B). However, saturation was not achieved even with the rLTBP-

2C(H) in solution being three times the molar concentration of heparin coated on the well. 

This was in contrast to the ability of full length rLTBP-2 to saturate the interaction at twice 

the molar concentration of heparin. The binding curve for rLTBP-2C(H) interaction with 

heparin supports the hypothesis that LTBP-2 contains more than one heparin binding site. 

This assumption is possible under the conditions that a) the rLTBP-2C(H) fragment contains 

only one heparin binding site and b) the second binding site contains equal binding affinity to 

the binding site identified in rLTBP-2C(H). Briefly, if full length rLTBP-2 contained only 

one heparin binding site in its central region (see figure 4.2A), then the binding curve 

established for rLTBP-2C(H) should be similar to that of the full length rLTBP-2. With this 
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not being the case, the alternative explanation was that LTBP-2 contains two heparin binding 

sites of equal affinity, hence four times the molar concentration of rLTBP-2C(H) would be 

required for saturation. As a result, the highest molar concentration of rLTBP-2C(H) used 

was insufficient for saturating heparin binding.  

Since the binding curve appeared sigmoidal in shape, an alternative explanation for 

the curve was that the heparin binding site in rLTBP-2C(H) was of low affinity. Weak 

interactions take longer to reach equilibrium and are easier to disrupt. Thus it was possible 

that at low concentrations equilibrium had not been reached and/or that rigorous washing had 

disrupted much of the bound ligand. To confirm the possibility of additional heparin binding 

sites on LTBP-2, as well as the strength of the interaction, the Kd of rLTBP-2C(H) for 

heparin needed to be determined and this is further discussed in the following section. 

 

4.2.1 Defining the affinity between central region of LTBP-2 and heparin 

The Kd for rLTBP-2C(H) and heparin was calculated to determine the strength of 

binding relative to full length rLTBP-2 (section 2.13.4). A saturation curve for rLTBP-2C(H) 

interacting with heparin (HAC) was established by incubating increasing molar 

concentrations of rLTBP-2C(H) in solution with a constant molar amount of heparin coated 

on the wells (figure 4.3A). The saturation binding curve had an obvious sigmoidal 

appearance, once again implying binding is especially weak at low concentrations of rLTBP-

2C(H). Concurrently a standard curve to calculate the molar amount of rLTBP-2C(H) bound 

was established by coating increasing molar amounts of rLTBP-2C(H) directly on the wells 

and detecting the signal with anti-(tetra-his) antibody (figure 4.3B). The molar amount of 

bound rLTBP-2C(H) was plotted against the total molar concentration added (figure 4.3C) 

and the value of Kd was estimated using non-linear regression analysis for one site binding 

(GraphPad Prism). The Kd was calculated to be 52.2±6.9nM. This result confirmed that the 

binding site in rLTBP-2C(H) fragment has a strong affinity for heparin. 

Comparison of the binding affinity of rLTBP-2C(H) to heparin with full length 

rLTBP-2, revealed that the interaction of heparin with rLTBP-2C(H) is not as strong as with 

the full length rLTBP-2, therefore suggesting that there may be additional heparin binding 

site(s) in the N-terminal region of LTBP-2.  

Construction of the rLTBP-2NT(H) expression plasmid was commenced concurrently 

with that of rLTBP-2C(H) (section 2.2.2). However, I was unable to express rLTBP-2NT(H) 

during candidature in 293 EBNA cells due to time constraints. Continuation of this work in 

our laboratory by others showed an additional binding site in the amino-terminus of LTBP-2 

(Parsi et al., 2010). 
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Figure 4.2. Heparin binds specifically to rLTBP-2C(H). A, Full length rLTBP-2 and rLTBP-
2 fragments; rLTBP-2C(H) and rLTBP-2CT(H) in solution were incubated with immobilised 
heparin (HAC) or similar molar equivalent of BSA. Anti-(tetra-his) antibody (0.1µg/ml) was 
then used for binding detection. B, Solid phase binding curve of the interaction of rLTBP-
2C(H) with heparin. Increased molar concentration of rLTBP-2C(H) (0-154nM) in solution 
was incubated with constant amount of heparin (HAC) (2.8pmol) or same molar equivalent 
of BSA coated on the wells. The resulting curve is after subtraction of BSA. * indicates 
statistical significance of P≤ 0.05. *, P= 0.0002. 
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Figure 4.3. Kinetic analysis of the interaction between central fragment of LTBP-2 and heparin using solid phase binding assay. A, Saturation binding 
curve for rLTBP-2C(H) and heparin (HAC) after subtraction of the background BSA. Increasing molar concentration of rLTBP-2C(H) (0-154nM) in 
solution was incubated with constant molar amount of heparin (HAC) or molar equivalent of BSA coated on the wells. B, Standard ELISA curve for LTBP-
2 after subtraction of the background. Increasing molar amount of rLTBP-2C(H) (0-0.12pmol) was coated on the wells overnight and signal levels for each 
specific quantity was determined using anti-(tetra-his) antibody (0.1µg/ml). C, LTBP-2C(H)-heparin (HAC) binding curve used to calculate Kd. The total 
molar concentration of rLTBP-2C(H) added in solution in A was plotted against the molar amount bound determined in B. The Kd was calculated to be 
52.2±6.9nM, suggesting the heparin binding site in the central region of LTBP-2 is of strong affinity. 
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CHAPTER 5 

LTBP-2 INTERACTIONS WITH PERLECAN AND SYNDECANS 

 
The interaction of rLTBP-2 with heparin as demonstrated in chapters 3 and 4, reflects 

the interaction of LTBP-2 with HS-associated PGs in the ECM or at the surface of cells in 

tissue. HSPGs found in the ECM include perlecan, agrin and collagen type XVIII (Ackley et 

al., 2003; Batmunkh et al., 2007; Dong et al., 2003; Iozzo, 1998; Tsen et al., 1995). Perlecan 

was a candidate HSPG for investigation for interaction with LTBP-2 since perlecan is a 

constituent of BM of all human tissues (Murdoch et al., 1994), while agrin is less widespread 

being a major HSPG of neuromuscular junctions and renal BMs (Denzer et al., 1995; Tsen et 

al., 1995).  

Cell surface HS are mostly members of two major groups of membrane-bound protein 

groups, syndecans and glypicans (Bernfield et al., 1999). Syndecans are expressed on the 

surface of all adherent cells, while glypicans are expressed predominantly in the central 

nervous system (David et al., 1992). Therefore, syndecans were also candidate HSPGs to be 

tested for interaction with LTBP-2. 

 

5.1 LTBP-2 interacts with Perlecan 

Solid phase binding assays were used to determine if LTBP-2 interacts with perlecan. 

When rLTBP-2 in solution was incubated with perlecan coated on wells, a strong signal was 

detected with anti-LTBP-2 antibody (LTBP-2C) (figure 5.1A). In addition, a minimal non-

specific binding signal was detected for the interaction of rLTBP-2 with BSA control wells. 

This result indicated that LTBP-2 specifically interacts with perlecan. To confirm the 

interaction, a binding curve was established where a constant concentration of rLTBP-2 in 

solution was incubated with increasing amounts of immobilised perlecan. The binding 

relationship was linear, showing that the interaction of rLTBP-2 with perlecan was 

proportional to the amount of perlecan coated on the wells (figure 5.1B). The binding 

between rLTBP-2 and perlecan did not reach saturation even when the highest amount of 

perlecan coated on the wells was incubated with rLTBP-2 in solution. This may have been 

due to the presence of excess rLTBP-2 compared with perlecan. With limited availability of 

purified perlecan (a gift from Professor John Whitlock, University of New South Wales), we 

were unable to repeat the experiment with a lower ratio of rLTBP-2 to perlecan to achieve 

saturation of the interaction. For the purposes of this work the established graph was 
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Figure 5.1. LTBP-2 interacts specifically with perlecan. A, rLTBP-2 (10nM) in solution was 
incubated with immobilised perlecan (2.1pmol) or molar equivalent of BSA. Specific binding 
was detected using anti-LTBP-2 antibody (LTBP-2C) (0.1µg/ml). B, Binding curve for the 
interaction of rLTBP-2 with perlecan. Constant concentration of rLTBP-2 in solution (10nM) 
was incubated with increasing amount of perlecan (0-2.1pmol) on the wells, black circles, or 
with molar equivalent of BSA, white circles, which had been coated on the wells. Anti-LTBP-
2 antibody (LTBP-2C) (0.1µg/ml) detection of binding indicates that, the interaction of 
rLTBP-2 with perlecan is proportion to the amount of perlecan present. * indicates statistical 
significance of P≤ 0.05. *, P= 0.0003. 
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sufficient in showing that the interaction between LTBP-2 and perlecan was specific and it 

was not just a non-specific protein-protein interaction. 

 

5.2 The interaction of LTBP-2 with perlecan is via the heparan sulphate side chains 

The findings from previous chapters suggest the interaction of LTBP-2 with perlecan 

was likely to be via its HS-side chains. To verify this possibility, free heparin was added to 

inhibit this interaction. Using a solid phase binding assay, rLTBP-2 in solution was incubated 

with heparin at ten-times the molar concentration of perlecan prior to incubation with 

perlecan-coated wells. A positive control where the interaction of rLTBP-2 with perlecan was 

tested in the absence of added heparin was included in addition to a negative control where a 

molar equivalent of BSA was substituted for perlecan-coated wells. A strong signal was 

observed for the interaction between rLTBP-2 and perlecan (figure 5.2), whereas a 

significant reduction in binding signal was observed when rLTBP-2 was pre-incubated with 

heparin, therefore suggesting free heparin completely blocked the interaction of rLTBP-2 

with perlecan. The presence of heparin did not significantly affect the level of non-specific 

interaction of rLTBP-2 with the BSA-coated wells. If LTBP-2 contained binding regions to 

the protein core component of perlecan, then the presence of free heparin should not have 

completely inhibited the binding of rLTBP-2 with perlecan. Therefore, it was evident that 

LTBP-2 interaction with perlecan is predominantly via the HS-side chains.  

To confirm that LTBP-2 lacks binding affinity for the core protein of perlecan, isolation of 

the core protein was pursued by digesting the GAGs. Initially, methods adopted from 

Hayashi et al., (1992) were used for the preparation of the core protein by digestion with 

heparitinase (section 2.13.6) which cleaves N-sulphated glucosaminidio-L-iduronic acid 

linkages of heparin. After digestion was completed, the enzyme was not denatured, since the 

native structural conformation of perlecan was required for future solid phase binding assays. 

The digested perlecan was compared to undigested perlecan on SDS-PAGE. After Coomassie 

Blue staining of the 10% gel, the undigested perlecan could not be detected on the gel (figure 

5.3). This may have been due to the large size of the HSPG which prevented it from entering 

the polyacrylamide gel. In contrast, the digested perlecan appeared as several bands with high 

molecular weights, which suggested degradation of the core protein. It should be noted that 

an additional band at 66 kDa was also detected and this band was the heparitinase that was 

stained with Coomassie Blue staining. 
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Figure 5.2. Perlecan interacts with LTBP-2 via its HS-side chains. Recombinant LTBP-2 
(10nM) in solution or with the addition of free heparin (125nM) were pre-incubated for 15 
minutes prior to incubation with perlecan (1.25pmol) or molar equivalent of BSA on the 
wells. The interaction of rLTBP-2 with perlecan was completely inhibited by free heparin. * 
indicates statistical significance of P≤ 0.05. *1, P= 0.0004. *2, P= 0.0003. *3, P= 0.02. 

 
 

 
 

Figure 5.3. Preparation of the perlecan core protein. Perlecan (12.5µg) was digested with 
(0.042U) of heparitinase. Samples of the undigested (lane 1) and the digested perlecan (lane 
2) were analysed by SDS-PAGE and Coomassie Blue staining. 
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5.3 The interaction of LTBP-2 with perlecan is cation dependent 

Calcium ions were shown to enhance the interaction between rLTBP-2 and heparin 

(HAC) in section 3.3.4. From this we can speculate that calcium is also required for the 

interaction of LTBP-2 with perlecan. In this study, the calcium dependence of the interaction 

between LTBP-2 and perlecan was investigated. A solid phase binding assay was performed 

to examine the interaction between rLTBP-2 and perlecan in the presence of 2mM calcium 

ions or 5mM EDTA. A strong signal was detected for the interaction of rLTBP-2 and 

perlecan in the presence of 2mM calcium ions, while a low signal was detected for the 

interaction performed in the presence of 5mM EDTA (figure 5.4). The obtained result 

suggested that a metal cation, probably calcium, plays a role in the interaction of LTBP-2 

with perlecan, either directly or indirectly through conformation changes in the LTBP-2 

molecule. 

 

5.4 LTBP-2 interacts with syndecan-4 but not syndecan-2 

To expand the spectrum of HSPGs examined as possible binding ligands of LTBP-2, 

the cell surface HSPG syndecans were investigated for binding to LTBP-2. Possible cell 

adhesion properties have been predicted for fibrillin through its interaction with heparin (Bax 

et al., 2007; Cain et al., 2008). Thus, similar functions may be possible for LTBP-2 through 

interaction with syndecans. The syndecan family consists of four transmembrane HSPG 

proteins syndecan -1 to -4 (Rapraeger, 2000). All members of the syndecan family except 

syndecan-3 have been purified from vascular sources (Kojima et al., 1992; Mertens et al., 

1992). Syndecan-1 is the major syndecan of epithelial cells including vascular endothelium 

(Cizmeci-Smith et al., 1997; Gallo et al., 1996; Kojima et al., 1992). Syndecan-2 is mostly 

present in mesenchymal, neuronal and smooth muscle cells (Cizmeci-Smith et al., 1997; 

Pierce et al., 1992), while syndecan-3 is the major syndecan of the nervous system 

(Chernousov and Carey, 1993; Hienola et al., 2006). Syndecan-4 is ubiquitously expressed 

but at lower levels than the other syndecans (Tkachenko et al., 2005; Yoneda and Couchman, 

2003). In this study, r-syndecan-2 and -4 were tested for interaction with rLTBP-2 (section 

2.13.1). A solid phase binding assay was used where rLTBP-2 in solution was incubated with 

the syndecan coated on the wells. The result was the detection of a strong specific signal for 

the interaction of rLTBP-2 with r-syndecan-4, using the anti-(LTBP-2) antibody (LTBP-2C) 

compared with the background signal that was detected between rLTBP-2- and BSA-coated 

wells (figure 5.5). In contrast, the antibody detected a weak signal for the interaction 

between rLTBP-2 and r-syndecan-2 (figure 5.5), which was not significant. The data 

obtained from the solid phase assay suggests that rLTBP-2 interacts with r-syndecan-4 but 

not with r-syndecan-2. This result suggests that LTBP-2 does not bind to all HS-side chains. 
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It is possible that heterogeneity in the HS sequences may result in HS having binding 

specificity for LTBP-2. 

The results of the solid phase binding assays identified two potential biological 

ligands for LTBP-2, one a BM HSPG and the other a cell surface HSPG. Both HSPGs 

interact with LTBP-2 though their HS-GAG chains. Overall, LTBP-2 potentially interacts 

with a specific protein-interacting sequence in HS.  
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Figure 5.4. The interaction of perlecan with LTBP-2 is cation dependent. Recombinant 
LTBP-2 (10nM) in three alternative solution including TBS plus calcium ions, TBS only and 
TBS plus EDTAwas incubated with immobilised perlecan (1.1pmol) or molar equivalent of 
BSA. The interaction between LTBP-2 and perlecan in the alternative solutions was detected 
by anti-LTBP-2 antibody (LTBP-2C) (0.1µg/ml). The presence of EDTA completely blocked 
the interaction of rLTBP-2 with HS-side chains of perlecan. * indicates statistical 
significance of P≤ 0.05. *1, P= 0.001. *2 and 3, P= 0.01. 
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Figure 5.5. LTBP-2 interacts with syndecan-4 but not with syndecan-2. Recombinant LTBP-
2 in solution (10nM) was incubated with r-syndecan -2 and -4 (27pmol) and molar equivalent 
of BSA coated on the wells. Binding was detected with anti-LTBP-2 antibody (LTBP-2C) 
(0.1µg/ml). * indicates statistical significance of P≤ 0.05. *, P= 0.0005. 
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CHAPTER 6 

IMMUNOHISTOCHEMICAL ANALYSIS OF HUMAN FOETAL 

AORTA INDICATES LTBP-2 HAS AREAS OF COLOCALISATION 

WITH PERLECAN 

 
The data in chapter 5 showed that LTBP-2 interacts with HS-side chains of perlecan 

in vitro. However, unlike the in vitro systems where optimal conditions are created to provide 

the best environment for interactions to occur, this is not necessarily true in vivo. Previously, 

it has been shown that LTBP-2 has widespread localisation with fibrillin-microfibrils in 

human foetal aorta (Gibson et al., 1995; Hirani et al., 2007), while perlecan has been 

documented to be the predominant HSPG found in all vascular BM (Murdoch et al., 1994). 

Therefore, LTBP-2 and perlecan are expressed in the same tissue at similar developmental 

stages. It is unclear if LTBP-2 and perlecan are only found in association with fibrillin-

microfibrils and BMs respectively, or if they are found independent of these major structures 

or lie on similar structures. Furthermore, the possibility of an interaction between LTBP-2 

and other components of the matrix, independent of microfibrils, has not fully been explored. 

Therefore, immunohistochemical analysis was undertaken to examine the localisation of 

LTBP-2 and perlecan in developing human thoracic aorta and to determine if they are found 

in close proximity to allow interaction between the two matrix components. The developing 

human aorta was selected as the tissue of choice as it has a high elastic fibre and BM content.  

 

6.1 Localisation of LTBP-2 on microfibrils and perlecan on basement membrane in 

human foetal aorta  

6.1.1 LTBP-2 localises on fibrillin-1-microfibrils in the human foetal aorta 

To investigate the immunolocalisation of LTBP-2 in the aorta, developing human 

aorta from a 20-week-old foetus was obtained under clearance from the Human Ethics 

Committee of University of Adelaide and the Women’s and Children’s Hospital, Adelaide, 

with the informed consent of the patient, mother. The tissue was immediately snap-frozen 

and stored at -80˚C. Cryostat sections of the foetal aorta were prepared (section 2.14) and 

were then immunostained with anti-(LTBP-2) antibody (LTBP-2C) and anti-(fibrillin-1) 

antibody (MAB1919) (appendix C). Specific antibodies to LTBP-2 and fibrillin-1 were used 

firstly to determine the localisation of LTBP-2 and to highlight fibrillin-1-microfibrils in the 

thoracic aorta, and secondly to establish whether all of LTBP-2 found in the aorta localised 

on the fibrillin-microfibrils. Control sections incubated with pre-immune mouse or rabbit IgG 
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were included to indicate non-specific background staining of the polyclonal and the 

monoclonal antibodies respectively. 

To determine any overlap in the distribution patterns of these proteins, stained 

sections were analysed by Leica SP5 spectral scanning confocal microscope, using secondary 

antibodies conjugated to fluorophores Alexa488 and Cy5 (appendix C). These antibodies 

were chosen since the wavelengths used to excite the fluorophores were the furthest apart in 

the emission spectrum allowing distinct visualisation of the stained proteins with minimal 

bleed-through of the fluorescent signal between the two channels used for analysis. 

Confocal microscope analysis of tissue sections stained with anti-(LTBP-2) antibody, 

(LTBP-2C), showed strong staining of LTBP-2 within the medial and intimal layers of the 

developing aorta, whilst LTBP-2 staining was observed to be absent in the adventitia layer of 

the aorta (figure 6.1A). The staining pattern indicated that LTBP-2 is highly expressed only 

in the inner two layers of the thoracic aorta at this stage of development. Examination of the 

control sections incubated with rabbit IgG showed a minimal, generalised cellular staining 

which indicated that non-specific background staining was low (figure 6.1D), and confirmed 

that the staining pattern for LTBP-2 in the aorta was specific. Similar LTBP-2 staining has 

been previously reported in the medial layer of developing human aorta using this anti-

(LTBP-2) antibody (LTBP-2C) (Hirani et al., 2007). In contrast to our findings, Hirani et al., 

(2007) described a lack of LTBP-2 staining in the intimal region. The discrepancy between 

the staining of the intimal layer is perhaps due to the different developmental stages of the 

aorta used in the two studies. Our study looked at expression of LTBP-2 in a 20-week-old 

human foetal aorta, while immunohistochemical studies undertaken by (Hirani et al., 2007) 

examined LTBP-2 expression at 25-36 weeks. 

Staining with fibrillin-1, anti-(fibrillin-1) antibody (MAB1919) produced a 

widespread specific staining in all three intimal, medial and adventitial layers of the aorta 

(figure 6.1B). The specificity of the MAB1919 staining pattern was confirmed by the 

negligible background staining in control sections treated with pre-immune mouse IgG 

(figure 6.1D). Overall, the immuno-staining results indicated that in the developing aorta 

there is an extensive co-distribution of LTBP-2 and fibrillin-1. However, LTBP-2 is not 

present in the adventitial layer. 



 

 

 
       

        

 
 
 
 
 
 
 
 
 

Figure 6.1. The distribution of LTBP-2, fibrillin-1, perlecan and laminin in the foetal aorta. Cryostat sections of human foetal aorta (20 weeks) were 
incubated with anti-(LTBP-2) antibody (LTBP-2C) (15µg/ml) (A and C); anti-(Fibrillin-1) antibody (MAB1919) (5µg/ml) (B and C); anti-(perlecan) 
antibody (7A5cc) (1:100 dilution) (E and G); and anti-(EHS Laminin) antibody (Rabbit 47) (1:10 dilution) (F and G). Control sections were incubated with 
matched concentration of rabbit IgG (15µg/ml) and mouse IgG (5µg/ml) (D) and normal rabbit serum (1:10 dilution) and mouse IgG (15µg/ml) (H). 
Primary antibody binding was detected using an appropriate secondary antibody conjugated to florophore Alexa488 or Cy5, prior to analysis on the Leica 
SP5 spectral scanning confocal microscope with a 20×objective. A and B are merged in C, E and F are merged in G. Magnification bars, A-H = 100µm. a, 
adventitia; m, media; and i, intima.  
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To determine whether in the developing aorta LTBP-2 is only found in association 

with fibrillin-microfibrils or if it is found independent of these structures, overlay analysis of 

the dual labelled cryostat sections was carried out. The resulting overlay showed that most of 

LTBP-2 staining in the intimal and the medial layers of the aorta coincided with fibrillin-1 

staining (visualised as yellow areas within figure 6.1C). Therefore, the staining pattern 

confirmed that almost all of the LTBP-2 protein found in the aorta is associated with fibrillin-

1-microfibrils. 

 

6.1.2 Perlecan is predominantly associated with smooth muscle BM in foetal aorta 

 Perlecan is predominantly found in most if not all BM (Bix and Iozzo, 2008; Mohan 

and Spiro, 1991). Thus, it can be assumed that in the developing aorta perlecan will be 

localised on BM. However, it is not known if perlecan may also be found independent of BM 

in this tissue. To determine if perlecan can be found associated with alternative structures 

other than the BM, dual labelling of cryostat sections with anti-(perlecan) antibody (7A5cc), 

and anti-(EHS Laminin, α-chain) antibody, Rabbit 47 (appendix C) was performed (section 

2.14). Laminin is a major BM component (LeBleu et al., 2007), therefore tissue sections 

were stained for laminin α-chain to highlight the BM in the foetal aorta. Control sections 

were incubated with the appropriate mouse IgG and normal rabbit serum to determine the 

level of non-specific background staining.  

When cryostat sections were incubated with anti-(perlecan) antibody (7A5cc) staining 

was detected evenly throughout the medial, and intimal layer of the developing aorta, while 

perlecan staining was largely absent in the adventitia (figure 6.1E). Control sections stained 

with pre-immune mouse IgG showed a negligible signal (figure 6.1H). 

Staining for laminin using anti-(EHS Laminin, α-chain) antibody (Rabbit 47) 

produced a similar pattern to perlecan (figure 6.1F). However, the laminin antibody also 

showed weak non-specific cellular staining detected in the adventitia of foetal aorta sections. 

The cellular staining was considered non-specific as a similar staining pattern was also 

observed for control sections stained with normal rabbit serum (figure 6.1H). The results 

therefore indicate that perlecan and laminin are extensively expressed in the inner two layers 

of the developing aorta.  

 Overlay analysis of dual-labelled cryostat sections with perlecan- and laminin-

specific antibodies, showed perlecan staining considerably overlapped with that of laminin in 

the media, intima and the outer region of the adventitia (visualised as yellow areas within 

figure 6.1G), confirming an extensive colocalisation of perlecan with BM. Interestingly, in 

the intimal region it appeared that some perlecan staining occurs independently of BM 

(figure 6.1G). There also appeared to be some laminin staining independent of perlecan in 
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the medial layer that is visualised as faint red areas. However, this staining was most likely 

due to non-specific cellular staining by the antibody, as similar staining was also seen in the 

normal rabbit serum treated control section. As anticipated, normal rabbit serum produced a 

higher overall background cellular staining compared to mouse IgG (red staining indicates 

normal rabbit serum in figure 6.1H) in control sections. The higher level of background 

signal observed is due to the presence of impurities in the anti-(EHS Laminin, α-chain) 

antibody (Rabbit 47) and in normal rabbit serum, since they were collected serums from 

rabbit bleeds which had not been affinity purified. Overall, the results indicated that the 

majority of perlecan is found in association with BM in the foetal aorta. 

In summary, although LTBP-2 can be expressed independently of fibrillin-

microfibrils in some tissues, for example the testis (Shipley et al., 2000), when staining the 

developing aorta almost all of the LTBP-2 resides on the fibrillin-microfibrils (figure 6.1C). 

Similarly, the majority of the expressed perlecan in human foetal aorta is found on the BMs 

(figure 6.1G). With the establishment of LTBP-2 and perlecan on distinct structures in the 

foetal aorta, the localisation of microfibrils in relation to BM in the aorta was investigated. 

Determining whether the two matrix components are found close enough in the foetal aorta to 

interact with each other could indicate if LTBP-2 has additional roles in microfibril-basement 

membrane interaction.  

 

6.1.3 Colocalisation of fibrillin-1 with perlecan  

For comparing the distribution patterns of microfibrils and BMs in a 20-week-old 

human foetal aorta, cryostat sections were labelled with dual combinations of anti-(fibrillin-1) 

antibody (Fib-1A) and anti-(perlecan) antibody (7A5cc) (appendix C). Sections incubated 

with the appropriate mouse or rabbit IgG were also included as controls (section 2.14).  

Overlay analysis of cryostat sections stained with specific antibodies to both perlecan 

(figure 6.2A, C, E, & G) and fibrillin-1 (figure 6.2B-C & F-G), showed distinct staining 

patterns for the two antibodies. Generally, each protein appeared to be localised 

independently from the other (figure 6.2C). However, there were patchy areas in the outer 

regions of the medial layer where fibrillin-1 colocalised with perlecan (visualised as yellow 

staining in figure 6.2C). Control sections incubated with rabbit IgG and mouse IgG showed 

negligible background staining (figure 6.2D), confirming the specificity of the staining 

patterns for fibrillin-1 and perlecan in the aorta.  

Higher power examination of the medial layer confirmed the patchy overlapping 

distribution of fibrillin-1 with perlecan (seen as yellow staining, figure 6.2G). A number of 

the areas where fibrillin-1 and perlecan potentially interact have been marked by arrows in 

figure 6.2G and magnified in figure 6.2G e & f. The results indicate that fibrillin-1 and 



 

 

    
 

    
Figure 6.2. Fibrillin-1 and perlecan have potential areas of colocalisation within the medial layer of human foetal aorta. Cryostat sections (5µm) from 20-week-
foetal aorta were incubated with anti-(perlecan) antibody (7A5cc) (1:100 dilution) (A, C, E and G) and anti-(fibrillin-1) antibody (Fib-1A) (1:10 dilution) (B, C, F 
and G). Primary antibody binding was detected using an appropriate secondary antibody conjugated to flurophore Alexa488 or Cy5, prior to analysis on a Leica 
SP5 spectral scanning confocal microscope with 20×objective (A-G) and 4.04×zoom (E-G). Control sections were incubated with rabbit IgG (15µg/ml) and 
mouse IgG (15µg/ml) (D). A and B are merged in C. E and F are merged in G. In C and G, red staining indicates fibrillin-1, green staining indicates perlecan and 
the patchy areas where fibrillin-1 colocalises with perlecan are seen as yellow regions. The overlapping areas are marked by arrows in G, and are magnified in e 
and f. Magnification bars A-D= 100µm; E-G 25µm and e and f= 5µm.   
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perlecan have a limited co-distribution pattern in the foetal aorta, this perhaps occurring 

where the BM surrounding the smooth muscle cells and elastic fibres are close to each other. 

The results support previous reports of perlecan colocalising with fibrillin-1-microfibrils 

close to BM zones (Tiedemann et al., 2005). Furthermore, our findings and those of 

Tiedemann et al., (2005) identified that in both elastin and elastin-free tissues fibrillin-1 may 

directly link microfibrils to BMs. 

 

6.1.4 Colocalisation of LTBP-2 and perlecan in the foetal aorta  

 Co-localisation of LTBP-2 and perlecan was performed on cryostat sections dual-

labelled with anti-(perlecan) antibody (7A5cc) (figure 6.3A, C, E & G) and anti-(LTBP-2) 

antibody (LTBP-2C) (figure 6.3B, C, F & G) (section 2.14). Analysis of the immuno-stained 

tissue sections showed that LTBP-2 and perlecan generally have uniform and strong staining 

for both molecules detected in the intimal and medial regions (figure 6.3A-C). In addition, 

perlecan also appeared to localise to the blood vessels in the adventitia (figure 6.3A & C). 

Control sections showed negligible background staining (figure 6.3D), indicating that the 

staining for perlecan and LTBP-2 was specific. The overlay analysis of the staining patterns 

for LTBP-2 and perlecan confirmed the mainly independent localisation of perlecan and 

LTBP-2 in the intimal and medial layers (figure 6.3C). Interestingly, there were patchy areas 

in the medial region, particularly towards the outer regions where staining for LTBP-2 

coincided with perlecan staining (seen as yellow areas in figure 6.3C). This pattern was 

similar to that observed for fibrillin-1 and perlecan (section 6.1.3). These areas were therefore 

chosen for examination at higher magnification.  

 Examination at higher magnification of the medial layer revealed scarce areas of 

colocalisation of LTBP-2 and perlecan on the microfibrillar network (figure 6.3G). A 

number of these areas are magnified in figure 6.4G a-d. Elastin autofluorescence has also 

been included to indicate the location of elastic fibres (visualised as blue staining in figure 

6.3G). The confocal analysis of the distribution patterns of LTBP-2 and perlecan therefore 

suggested a potential but limited in vivo interaction between the two proteins.  

 In conclusion, it appears that LTBP-2 has the potential to play a role in the connection 

of microfibrils with BMs through the interaction with perlecan. The potential role of LTBP-2 

as a linker molecule between microfibrils and BMs is further discussed in chapter 8.  

 



 

 

    
 

    
Figure 6.3. Regions of partial colocalisation of LTBP-2 and perlecan within the medial layer of foetal aorta. Cryostat sections of human foetal aorta (20-week) were incubated with anti-
(perlecan) antibody, 7A5cc, (1:100 dilution) (A,C, E and G) and anti-(LTBP-2) antibody (LTBP-2C) (15µg/ml) (B, C, F, and G). Control sections were incubated with rabbit IgG 
(15µg/ml) and mouse IgG (15µg/ml) (D). Primary antibody binding was detected using an appropriate secondary antibody conjugated to florophore Alexa488 or Cy5, prior to analysis on 
a Leica SP5 spectral scanning confocal microscope with 20×objective (A-G) and 4.04×zoom (E-G). Elastin autofluorescence analysed under distinct channel, seen as blue staining in (G). 
A and B are merged in C. E and F are merged in G. Magnification bars, A-D = 100µm; E-G = 25µm; and a-d = 5µm. a, adventitia; m, media; and i, intima. Perlecan is visualised as green 
staining of BMs, LTBP-2 is visualised as red staining of elastic fibres and areas where BMs and elastic fibres potentially meet are visualised as yellow staining. Arrows indicate the areas 
where LTBP-2 colocalises with perlecan. These regions areas are viewed in higher magnification field in a-d. 
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CHAPTER 7 

IDENTIFICATION OF MATRIX MOLECULAR BINDING PARTNERS 

OF βig-h3 AND LTBP-2 USING AFFINITY BINDING AND 

PROTEOMICS TECHNIQUES 

 
βig-h3 and LTBP-2 are matrix components that are associated with two distinct 

microfibrillar structures of the matrix: collagen VI microfibrils and fibrillin-microfibrils 

respectively (Gibson et al., 1995; Gibson et al., 1997; Hanssen et al., 2003). Previous studies 

have found βig-h3 and LTBP-2 to be present in ECM of most tissues (Escribano et al., 1994; 

Gibson et al., 1997; LeBaron et al., 1995; Moren et al., 1994; Shipley et al., 2000; Skonier et 

al., 1994). Their importance has been demonstrated by their involvement in certain 

phenotypes, for example, in mutations of the human βig-h3 gene (TGFβI) which have been 

the cause of several phenotypically different corneal dystrophies (Klintworth, 2003; Munier 

et al., 1997). Also, there have been reports of involvement of βig-h3 with certain cancers 

including colorectal carcinoma, lung carcinoma, renal cell carcinoma (Kitahara et al., 2001; 

Sasaki et al., 2002; Yamanaka et al., 2008). Furthermore, Shipley et al., (2000) demonstrated 

that knockout of the LTBP-2 gene in mice is embryonic lethal, suggesting that LTBP-2 is an 

important molecule in the development of embryos possibly during implantation. 

Additionally, LTBP-2 has been implicated in the development of degenerative and 

inflammatory pathologies (Bujan et al., 2003).  

Given the recognition of the importance of these matrix proteins, the full extent of the 

physiological functions of βig-h3 and LTBP-2 has not yet been characterised. Therefore, to 

better understand the possible roles of these matrix proteins, binding partners for βig-h3 and 

LTBP-2 need to be identified. With the expression and purification of rLTBP-2 described in 

section 3.1, this chapter firstly describes the expression and purification of rβig-h3 followed 

by subsequent experiments to identify potential binding partners for rβig-h3 and rLTBP-2. 

Some insight has been forthcoming into the potential binding ligands of βig-h3 and 

LTBP-2 from previous studies. Firstly integrin binding motifs of βig-h3 and LTBP-2 have 

been identified (Kim et al., 2000; Saharinen et al., 1999; Skonier et al., 1992). 

Secondly, analysis of tissue extracts has shown βig-h3 and LTBP-2 to be associated with 

collagenVI and fibrillin-microfibrils respectively (Gibson et al., 1995; Gibson et al., 1989; 

Gibson et al., 1997; Hanssen et al., 2003). A number of in vitro binding studies using rβig-h3 

have also identified fibronectin, decorin and biglycan as binding partners of βig-h3 (Billings 

et al., 2002; Reinboth et al., 2006). 
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In vitro solid phase binding assays using rLTBP-2 have identified binding of LTBP-2 

to the N-terminal of fibrillin-1, while no binding was detected for fibrillin-2, MAGP, elastin, 

collagen types I, III, V and VI (Hirani et al., 2007). However, the range of purified matrix 

proteins available to be screened individually by in vitro binding assays for identifying 

additional binding partners of βig-h3 and LTBP-2 represents only a small spectrum of matrix 

proteins with the potential to interact with either βig-h3 and LTBP-2. To more systematically 

identify new binding partners, a different approach was required. 

Previously in our laboratory a yeast-two-hybrid system was tested with βig-h3 as bait. 

However, many false positives were identified due to inappropriate formation of disulphide 

bonds between the bait and the retrieved target protein in the yeast cytoplasm (Hew and 

Gibson, unpublished observations). Therefore an approach using affinity chromatography 

combined with proteomics techniques was tested, using both rβig-h3 and rLTBP-2. Two 

basic techniques, 2-DGE and mass spectrometry were used to identify the binding partners. 

Peptide mass finger-printing is the analytical technique used for bound protein 

identification. In this method, the unknown protein of interest is cleaved into smaller peptides, 

and the masses of the produced peptides are accurately measured by MALDI-TOF-MS. 

These masses are then in silico are matched against protein sequence databases such as in-

house Mascot server, SwissPort, MSDB or NCBI to determine the protein’s identity. The 

results are statistically analysed to find the best match. This approach has great promise for 

improved sensitivity, increased throughput, increased resolution and mass accuracy 

(Bergquist et al., 2002)   

Initially, suitable affinity matrices needed to be made, and an appropriate mixture of 

matrix proteins needed to be prepared. The conditions of the affinity chromatography needed 

to be optimised in order to isolate proteins (from the prepared extract) that specifically bound 

to the affinity matrices. Bound proteins were then to be resolved using SDS-PAGE, or 2-

DGE if sufficient resolution was not achieved by the former method. The identities of each 

protein band would be determined by tryptic digestion and peptide mass finger-printing. 

 

7.1 Expression and purification of recombinant βig-h3  

The expression and purification of full length human rβig-h3 has been described 

previously (Hanssen et al., 2003). Briefly, human βig-h3 cDNA was cloned into pGEMT-

easy vector and clones containing authentic βig-h3 cDNA were selected for subcloning of the 

cDNA into episomal expression vector pCEP-4. The pCEP-4 vector carries an ampicillin 

resistance gene for the selection in bacteria and hygromycin B resistance gene for selection in 

mammalian cells.  
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For purification of human rβig-h3, a his6-tag was introduced close to the N-terminus, 

27 amino acids in the peptide sequence to allow for purification on Ni-sepharose. The 

recombinant expression construct (pCEP/BH18) was transfected into 293-EBNA cells and 

the resultant recombinant βig-h3 protein was purified from the serum-free DMEM medium 

using Ni-sepharose chromatography (section 2.4). The purified recombinant protein when 

analysed by SDS-PAGE and Coomassie Blue staining (section 2.6) appeared to migrate as a 

triplet of bands under reducing conditions, with the major band corresponding to apparent 

molecular mass of 66 kDa, while the minor two bands migrated close together at 71 kDa 

(figure 7.1A, lane1). Tissue βig-h3 migrates at 76-78 kDa in size on gels (Gibson et al., 1996; 

Gibson et al., 1989) but processing also yields a 68-70 kDa isoform (Skonier et al., 1994). 

The major band at 66 kDa and two of the minor bands migrating close to 71 kDa, 

corresponded in size to purified rβig-h3 produced previously (Hanssen et al., 2003). 

In addition to the expected 66 kDa rβig-h3, a smaller protein migrating as a band at 

54 kDa was also purified from the medium (figure 7.1A, lane 1). When the purified protein(s) 

were analysed by immunoblotting (section 2.6), all four bands reacted with anti-(βig-h3) 

antibody (MP78/70) (figure 7.1A, lane 2), thus confirming that all of the bands were βig-h3-

related species and not contaminants. The yield of rβig-h3 was approximately 0.2µg/ml of 

DMEM medium and in total 1.2mg of rβig-h3 was purified.  

 

7.2 Preparation of the affinity column; coupling of rβig-h3 and rLTBP-2 to CNBr-

activated sepharose-4B 

Several factors were considered when selecting an appropriate matrix for affinity 

chromatography. Firstly, the entire protein needed to be considered as a bait protein since 

potential binding sites were not defined. Secondly, the reusability of the coupled column was 

important because purified recombinant proteins were limited in quantity and preparation of a 

fresh column for each experiment would be time consuming and laborious. Thus the bait 

needed to be immobilised covalently to the sepharose support. For these reasons, CNBr-

activated sepharose was chosen as the appropriate support. CNBr-activated sepharose reacts 

readily with primary amines to form a covalent coupling of the bait protein to the agarose 

matrix and to allow multi-point attachment of the protein for good chemical stability. 

Furthermore it immobilises the bait protein in a variety of orientations since the coupling 

occurs at random sites on the protein. 

Due to the potential loss of activity of the bait as a result of repeated contact with the 

denaturant, 6M urea, only small quantities of the rβig-h3 protein e.g.613µg/7.8ml, or rLTBP-

2 e.g. 1mg/7.5ml, were immobilised to CNBr-activated sepharose (200µl). This allowed the 

use of fresh affinity columns for each target protein mixture. 
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For the coupling of rβig-h3 and rLTBP-2 to CNBr-activated sepharose, the purified 

recombinant proteins were first dialysed into a coupling buffer (section 2.15). Dialysis was 

performed at 4°C to minimize degradation of the proteins by proteases. The dialysed 

recombinant proteins were analysed on a 15% polyacrylamide gel to confirm there was no 

substantial loss of proteins during dialysis (section 2.6). The concentrations of the dialysed 

proteins were determined by densitometry against known amounts of standard proteins. 

Analysis of the Coomassie Blue-stained gel of rβig-h3 sample prepared for sepharose 

coupling showed the presence of additional bands which migrated at 128 kDa, 120 kDa, 54- 

kDa, 46 kDa and 42 kDa on 15% SDS-PAGE (figure 7.2A, lane 1). Immuno-reactivity of 

these bands with anti-(βig-h3) antibody (MP78/70) suggested that they appear to be 

degradation and aggregation products of the recombinant protein. Both rβig-h3 and rLTBP-2 

were successfully coupled to the CNBr-activated sepharose, with approximately 3% of rβig-

h3 and 5% of rLTB-2 remaining unbound to the CNBr-activated sepharose after two rounds 

of incubation (section 2.15). This was evident from the faint staining of the recombinant 

proteins detected in the coupling solution after the incubation with CNBr-activated sepharose 

(figure 7.2, lanes 2). Therefore a third incubation with the CNBr-activated sepharose was not 

necessary. The coupled columns were then equilibrated for subsequent affinity 

chromatography.  

 

7.3 Selection of tissue extracts for identification of binding partners for rβig-h3 and 

rLTBP-2  

When selecting a protein mixture to incubate with the prepared affinity columns, it 

was crucial to ensure that the extracted proteins were from a tissue that contained either βig-

h3 or LTBP-2, if not both. It was reasoned that, when the bait protein is present in the tissue, 

then the proteins isolated with the affinity columns were more likely to be valid binding 

partners. One such tissue was bovine nuchal ligament, as both proteins were originally 

characterised from this tissue (Gibson et al., 1995; Gibson et al., 1989; Gibson et al., 1997; 

Hirani et al., 2007). Moreover, successful protein extraction protocols have previously been 

established for bovine nuchal ligament, with the extracted protein populations relatively well 

characterised (Gibson et al., 1989). Furthermore, a number of proteins within bovine nuchal 

ligament have previously been identified as binding partners for βig-h3 or LTBP-2 (Gibson et 

al., 1995; Hanssen et al., 2003; Hirani et al., 2007; Reinboth et al., 2006).  
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Figure 7.1. Purification of rβig-h3. Recombinant βig-h3 (15µl) was resolved by 8% SDS-
PAGE followed by lane 1, Coomassie Blue staining or lane 2, immunoblotting with anti-
(βig-h3) antibody (MP78/70). Recombinant βig-h3 migrated as a triplet with the major band 
at approximately 66 kDa and a partially degraded fragment at 54 kDa.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.2. Determination of the extent of coupling of rβig-h3 or rLTBP-2 to CNBr-activated 
sepharose. A, rβig-h3 and B, rLTBP-2 were incubated with CNBr-activated sepharose and 
unbound materials were analysed by 15% SDS-PAGE and Coomassie Blue staining. 
Recombinant proteins (50µl) present lanes 1, before and lanes 2, after coupling. 
Approximately 3% of rβig-h3 and 5% of rLTBP-2 remained unbound to CNBr-sepharose. 
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Bovine nuchal ligament tissue from a foetal calf of 230-day gestation was chosen for 

protein extraction, as there is an increase in the amount of elastic fibre and collagen 

production in the last two months of foetal development (Cleary et al., 1967). The tissue was 

sequentially extracted with 0.1% NP-40 detergent, 1M NaCl and 6M Guanidine 

hydrochloride (GuHCl). Readily soluble proteins such as serum albumin were extracted by 

the initial treatments, saline plus detergent Nonidet P-40 and 1M NaCl, while a different 

population of polypeptides was solubilised by 6M GuHCl (Gibson et al., 1989). Bovine 

nuchal ligament protein mixtures extracted with 1M NaCl (BNLPM-1M NaCl) and 6M 

GuHCl (BNLPM-6M GuHCl) were selected for subsequent affinity binding experiments.  

 

7.4 The use of BNLPM-1M NaCl for identification of novel binding partners  

7.4.1 Selecting a suitable binding buffer  

Initially the solubilised BNLPM-1M NaCl was investigated for potential binding to 

rβig-h3 and rLTBP-2. BNLP-1M NaCl appeared to be more readily soluble in solutions at or 

close to physiological conditions compared with proteins extracted with 6M GuHCl. Before 

the extract was incubated with the coupled rβig-h3 and rLTBP-2 columns, it needed to be 

equilibrated into a suitable buffer. One molar NaCl was a much higher salt concentration 

compared with physiological salt concentration (0.15M), hence this could interfere with 

binding of proteins to the ligands. To ensure binding, it was necessary to perform the 

experiment as close to physiological conditions as possible. Therefore the solubility of the 

BNLPM-1M NaCl was tested in TBS and TBS/0.5M NaCl using SDS-PAGE and Coomassie 

Blue staining (section 2.6). Figure 7.3 illustrates the proteins that remained soluble following 

the different treatments. The BNLPM-1M NaCl was also included for comparison (figure 7.3, 

lane 1). Analysis of the proteins that remained soluble in TBS (figure 7.3, lane 2) and 

proteins that precipitated out of solution in TBS (figure 7.3, lane 3), revealed the presence of 

three protein bands around 40 kDa of similar staining intensity in both the supernatant and 

the precipitate. This suggested a partial precipitation of some BNLPs in TBS. In addition, 

there was relatively strong staining of several protein bands migrating below 35 kDa in the 

precipitated sample (figure 7.3, lane 3) compared to the supernatant (figure 7.3, lane 2). The 

intensity of staining of these precipitated protein bands was similar to that of the same bands 

present in the original 1M NaCl solution (figure 7.3, lane 1), thus confirming the almost 

complete precipitation of these proteins in TBS. Since there was potential for several proteins 

to migrate to the same position during polyacrylamide gel electrophoresis, each band on the 

gel could potentially represent more than one protein and the absence of each band in the 

supernatant could mean the loss of several proteins. Thus TBS was not considered as an 

optimal buffer for the study.  
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The staining of the protein bands in TBS/0.5M NaCl solution was similar to the 

staining detected in BNLPM-1M NaCl, indicating that most if not all of the proteins are 

soluble in the TBS/0.5M NaCl buffer. There were also a number of proteins migrating 

between 45-97 kDa, which appeared in both the supernatant (figure 7.3, lane 4) and the 

precipitate (figure 7.3, lane 5), showing a small degree of precipitation. There appeared to be 

a population of proteins that precipitated out of solution, which were larger than 97 kDa 

(figure 7.3, lane 5). The observed banding pattern of these proteins was different to the 

banding patterns of proteins with similar molecular weights that stayed soluble in solution or 

present in the original 1M NaCl solution. This was due to the analysis of different quantities 

of the precipitated proteins compared with the proteins that remained in the supernatant. 

While out of the total volume of BNLPM (1ml), only a small fraction of the mixture (60µl) 

was analysed by SDS-PAGE for examination of the soluble proteins, precipitated proteins 

from 1ml of BNLPM were used for comparison. Therefore the bands present in the 

precipitated sample which were not present in the supernatant sample or the sample from the 

original solution, represented protein populations with low concentrations, which were 

unable to be detected by Coomassie Blue in the comparison samples tested. Therefore from 

the results it was concluded that there was only minor precipitation of protein bands from 

BNLPM in TBS/0.5M NaCl. Hence, TBS/0.5M NaCl was selected for subsequent affinity 

chromatography experiments.  

 

7.4.2 Incubation of BNLPM with a sepharose column for detection of non-specific 

interactions 

Prior to the incubation of BNLPM with the prepared affinity columns, the level of 

non-specific interaction of the proteins with the sepharose was investigated. For that, 

BNLPM in TBS/0.5M NaCl was incubated with sepharose CL-4B and bound proteins were 

analysed by SDS-PAGE and Coomassie Blue staining, in order to determine the amount of 

non-specific binding of proteins to the sepharose CL-4B (section 2.6). Comparison of the 

BNLPM before and after incubation with sepharose CL-4B showed no major loss of proteins 

(figure 7.4, lane 1& lane 2). However, there were a number of band proteins with molecular 

weights that ranged from 45-200kDa which appeared to be non-specifically binding to 

sepharose CL-4B (figure 7.4, lane 3). The staining intensity of these non-specific binding 

protein bands was either the same or lower compared with that of the same bands remaining 

in solution after incubation (figure 7.4, lane 2). The results therefore suggested that the non-

specific interactions with the sepharose CL-4B were minimal. Moreover, there was no loss of 

specific protein sub-populations due to the non-specific interactions. It would be ideal to have 
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Figure 7.3. Solubility of BNLPM-1M NaCl following different treatments. Lane 1, 
BNLPM-1M NaCl (30µl). Lanes 2 & 3, BNLPM in TBS (60µl). Lanes 4 & 5 BNLPM in 
TBS/0.5M NaCl, supernatant (30µl) and precipitate (1ml). Samples were centrifuged and 
lanes 2 & 4, each supernatant and lanes 3 & 5, each pellet were analysed by 12% SDS-
PAGE and Coomassie Blue staining. 

 
Figure 7.4. BNLPs interacting with sepharose-CL-4B. BNLPM (1mg/ml) in TBS/0.5M NaCl 
was incubated with sepharose CL-4B. Bound and unbound proteins were analysed by SDS-
PAGE on 12% gel and Coomassie Blue stained. Lane 1, mixture prior to incubation (50µl). 
Lane 2, unbound proteins (50µl). Lane 3, bound proteins eluted with 6M urea (500µl). Only 
minor non-specific interaction with sepharose was observed.  
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no non-specific binding to sepharose, and further reductions may be possible by increasing 

the salt concentration in the buffer. However, by so doing, possible authentic interactions 

with the target proteins could be compromised. Thus the small amount of background 

binding was considered acceptable for subsequent affinity chromatography.  

 

7.5 Identification of potential binding partners for rβig-h3 from the BNLPM- 

1M NaCl 

7.5.1 Analysis of the binding proteins using Coomassie Blue staining 

Novel binding partners for rβig-h3 were investigated using a solubilised BNLPM. 

After incubation of BNLPM with rβig-h3 coupled to CNBr-activated sepharose (rβig-h3-

sepharose) and sepharose CL-4B (sepharose-control), bound proteins were eluted and 

analysed by SDS-PAGE and Coomassie Blue staining (section 2.15 and 2.6). A sample of 

BNLPM prior to incubation with the affinity columns was also included for comparison 

(figure 7.5, lane 1). From examination of the eluted proteins, it appeared that there were 

several more protein bands present in the eluate from the rβig-h3-sepharose (figure 7.5, 

lanes 2), when compared with the eluate from sepharose-control (figure 7.5, lane 3). 

On close inspection of the resolved protein bands, it appeared that there were several 

bands which were common to both the eluates from the rβig-h3-sepharose and sepharose-

control. These proteins migrated at 14 kDa, 14.7 kDa, 45 kDa, and 54 kDa, as well as two 

other bands above 97 kDa on both 15% polyacrylamide gels. All of the above mentioned 

protein bands appeared to be major components of the original extract (figure 7.5, lane 1). 

Greater staining intensity of these protein bands was detected in the eluates from the rβig-h3-

sepharose compared with those from the sepharose-control. Therefore these proteins were 

considered to be possible candidate binding partners for rβig-h3.  

A protein band with an apparent molecular weight of 12.5 kDa was intensely stained 

in the eluates from the sepharose-control (figure 7.5, lane 3), suggesting that the protein 

interacted non-specifically with sepharose. In contrast, there was a moderately strong staining 

of a 15 kDa protein band in the eluate from rβig-h3-sepharose (figure 7.5, lane 2), which 

was also present in the extract. This band was therefore defined as a novel candidate binding 

partner of rβig-h3. A repeat of the experiment further confirmed the specificity of the 

interaction between this particular protein and rβig-h3 protein (data not shown). As good 

practice, upon confirmation of the candidacy of the protein, it was decided to ensure the 

candidate protein was not a βig-h3-related species prior to protein identification by mass 

spectrometry (section 7.5.2). 

A prominent band identified as a candidate binding partner for βig-h3 had the same 

size (66 kDa) as the main band of purified rβig-h3 (figure 7.5, lane 2). In order to determine 
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if this band was βig-h3, eluates were tested for reactivity to specific antibodies to rβig-h3. It 

was possible that βig-h3 had been pulled out from the BNLPM by homeotypic interaction 

with rβig-h3-sepharose or that rβig-h3 had leaked from the sepharose. Another reason for 

testing the eluates for reactivity to rβig-h3-specific antibodies was to identify additional 

bands that could be fragments of βig-h3. 

 

 
 
Figure 7.5. BNLPs interacting with rβig-h3-sepharose. BNLPM was incubated with rβig-h3-
sepharose and sepharose-control. Bound proteins were analysed by SDS-PAGE on a 15% gel 
and Coomassie Blue stained. Lane 1, BNLPs before incubating with the columns (50µl). 
Lane 2, bound proteins eluted from rβig-h3-sepharose (500µl). Lane 3, bound proteins 
eluted with 6M urea from sepharose-control (500µl). 
 

7.5.2 Detection of βig-h3 in proteins eluted from rβig-h3-sepharose 

The proteins binding to the rβig-h3-sepharose and sepharose-control, plus BNLPM-

1M NaCl were tested for reactivity to anti-(βig-h3) antibody (MP78/70) and anti-(tetra-his) 

antibody by western blot analysis (section 2.6). A number of protein bands (molecular weight 

31 kDa to above 200 kDa) were stained with anti-(βig-h3) antibody (MP78/70) in the sample 

of BNLPM (figure 7.6A, lane 1) and in the eluate from rβig-h3-sepharose (figure 7.6A, lane 

2). The higher molecular weight bands were 1.5-3 times larger in size than the βig-h3 

monomer. Unpublished work by Dr. Hanssen suggested βig-h3 aggregates are present in 

bovine nuchal ligament, thus supporting the idea that these proteins were βig-h3 aggregates. 

There was no Coomassie Blue staining of the candidate 15 kDa band identified in figure 7.5 

and no reactivity was detected in the eluates from the sepharose-control (figure 7.6A, lane 3).  
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When a sample of BNLPM was immuno-blotted with anti-(tetra-his) antibody, no 

strongly staining bands were detected (figure 7.6B, lane 1), although some minor immuno-

reactive proteins were present. Staining of the eluates from βig-h3-sepharose with anti-(tetra-

his) antibody (figure 7.6B, lane 2), produced staining of similar band proteins previously 

stained with anti-βig-h3 antibody (MP78/70) (figure 7.6A, lane 2). The staining results 

therefore identified the major immuno-reactive bands as rβig-h3, not tissue-extracted βig-h3, 

which was leaching from the column. It was therefore deduced that regular replacement of 

the column would be required due to the significant loss of the coupled protein with each 

experiment. As expected, there was no staining detected in the sepharose-control (figure 

7.6B, lane 3). Overall, the majority of the proteins in the eluates from βig-h3-sepharose were 

rβig-h3, which had been coupled to the sepharose. Therefore, the findings indicated that rβig-

h3 was not completely linking to the sepharose.  

 

 
Figure 7.6. Identification of rβig-h3 in the eluted protein fractions. Proteins bound to rβig-
h3-sepharose and sepharose-control were eluted with 6M urea and eluates were analysed by 
15% SDS-PAGE and immunoblotting with A, anti-(βig-h3) antibody (MP78/70) or B, anti-
(tetra-his) antibody, specific for rβig-h3. Lane 1, BNLPM before incubation with the 
columns (60µl). Lane 2, proteins binding to rβig-h3-sepharose (125µl). Lane 3, proteins 
binding to sepharose-control (125µl). 

 

Immunoblotting analysis of the eluates from βig-h3-sepharose identified the majority 

of the candidate bands as βig-h3 species or aggregates of βig-h3, except for the protein band 

with the apparent size of 15 kDa. To identify the 15 kDa species, the band was prepared for 
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mass spectrometry. The mass spectrometric analysis was performed at Protein Core Facility 

at the Hanson Institute by Dr. Ian R. Milne using tryptic digestion. The mass spectrometry 

analysis identified the band as a human keratin contaminant in the sample. Keratin-like 

proteins are one of the most common contaminations found during a protein identification 

process by mass spectrometry. Keratin proteins can come from virtually anywhere, from the 

air, dandruff from the hair and skin, and those already present in the extract. The keratin 

protein can have a molecular weight ranging from 20 kDa to 70 kDa, but the size may vary 

depending on the point of the experiment at which it was introduced. Keratin contamination 

affects identification of potential protein bands depending on the keratin: protein ratio of the 

excised band. Even with stringent conditions of cleanliness complete avoidance is hardly 

possible. Steps were introduced to minimize future contamination, including washing of all 

containers with 0.1M NaOH prior to use, keeping contact of the samples and gels with air to 

the minimum by making sure lids were always on the test tubes and containers during all 

steps of the experiment, and ensuring face masks were worn when inspecting and analysing 

the stained gels. 

 

7.5.3 Detection of the potential binding proteins for rβig-h3 using silver staining 

The results in section 7.5.2 demonstrated that most of the intensely-stained bands in 

the eluate from the βig-h3-sepharose were identified as rβig-h3 derivatives. The BNLPM 

contains many proteins at various concentrations that may interact with rβig-h3 with varying 

affinities. These factors may affect the chance of detecting an interaction with rβig-h3 since 

only minute amounts of the ligand may be present in the eluates. Therefore, rare interacting 

molecules may not be detected by Coomassie Blue staining after separation by SDS-PAGE. 

In order to visualise a wider spectrum of proteins binding to rβig-h3, a more sensitive method 

of detection was considered. One such technique was silver staining. Silver staining has a 

sensitivity of 0.3-10ng/band (Switzer et al., 1979), compared with Coomassie Blue R-250 

which has a sensitivity of 50-100ng/band. Initially the modified silver staining protocol from 

Cheng et al., (1994) was adapted to detect proteins eluted from rβig-h3-sepharose (section 

2.7). However, this method resulted in almost instantaneous development of the protein 

bands and the background gel, making it difficult to distinguish individual protein bands 

separated in the polyacrylamide wells. The high sensitivity of this silver staining method did 

not allow comparison to be made between the samples (data not shown). However, there was 

a significant increase in the overall number of bands detected on the gel compared to 

Coomassie Blue staining. Modifications were therefore made to reduce the background 

staining and to permit more control over the rate of staining. The first modification was the 

addition of a washing step after silver nitrate incubation, for up to 10 minutes, instead of a 
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quick rinse. This washing step after incubating the polyacrylamide gel with silver nitrate did 

not however improve the contrast between the protein bands and the background as it washed 

away the silver nitrate from the gel and hence no staining was detected (results not shown). 

The second modification included diluting the developing solution. It was found that 

development of protein bands using a diluted developing agent slightly reduced the overall 

background staining, but not to required levels (results not shown). Also, this did not improve 

the rate of protein band development versus background development. Addition of a washing 

step after incubating the polyacrylamide gel with silver nitrate did not help as it washed away 

the silver nitrate from the gel and hence no staining was detected.  

Due to the above problems, a second method for silver staining was adapted from 

Gromova, (2006) (see section 2.7). Initial modifications were made to the protocol to suit the 

thin polyacrylamide gels used for the separation of the proteins. A quick rinse of 10 seconds 

with distilled water replaced the 3×5min and 2×1min washes after sensitising the gel with 

sodium thiosulphate, and after incubation of the gel with silver nitrate respectively. The result 

was minimal background staining and greater control over the staining intensity of the 

developing protein bands. This method was used for all subsequent silver staining. Figure 

7.7 illustrates the pattern of proteins bound to the rβig-h3-sepharose and sepharose-control. 

Numerous protein bands were detected in the eluates from both rβig-h3-sepharose (figure 7.7, 

lane 1) and sepharose-control (figure 7.7, lane 2) by silver staining when compared to 

Coomassie Blue staining previously described (figure 7.5, lane 2 & lane 3). Therefore as 

expected, a larger spectrum of proteins potentially interacting with the rβig-h3 was revealed 

due to this higher sensitivity. 

Bands present in the eluates from both rβig-h3-sepharose and sepharose-control were 

disregarded. However, a substantial number of protein bands remained that were candidate 

binding partners of βig-h3. However, we were interested in focusing on one or two stained 

bands which represented major new binding partners for rβig-h3 in BNLPM rather than 

previously identified binding partners. Therefore, measures were taken in order to identify 

more specific binding partners for rβig-h3 using silver staining. 
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Figure 7.7. Detection of BNLPs binding to rβig-h3-sepharsose using silver staining. Bound 
proteins were eluted with 6M urea and subsequently analysed by 15% SDS-PAGE and silver 
staining. Lane 1, eluted proteins from rβig-h3-sepharose (200µl). Lane 2, proteins eluted 
from sepharose-control (200µl). This stain improved the sensitivity for detection of proteins, 
exposing more protein bands that appear to interact with rβig-h3. 

 

7.5.4 Isolation of potential binding partners of βig-h3 using immobilised-Metal Affinity 

chromatography 

The rβig-h3 contains a Ni-binding his6-tag and thus Ni-sepharose chromatography can 

potentially be used to pull out rβig-h3 together with proteins that are bound specifically to it. 

An advantage of using Ni-sepharose is that the bait protein binds to the Ni-sepharose by its 

his-tag compared with the randomly cross-linking of rβig-h3 to the CNBr-activated sepharose. 

Therefore the use of Ni-sepharose allows the entire rβig-h3 molecule to be available to bind 

its ligands. This may maximise the identification of specific binding partners. 

In section 7.4.1 TBS/0.5M NaCl was considered as an optimal buffer for BNLPM for 

subsequent affinity binding to rβig-h3-sepharose. However, it is possible that the presence of 

0.5M NaCl may interfere with binding of rβig-h3 to some ligands. Consequently, binding 

studies were carried out under physiological conditions. However, two factors needed to be 

considered before carrying out the experiment. Firstly, as previously shown in section 7.4.1, 

there is a complete loss of the lower molecular weight proteins when BNLPM-1M NaCl is 

dialysed into TBS. Loss of these proteins due to precipitation potentially meant loss of 

possible binding ligands. However, BNLPM was considered to contain a number of 
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unidentified proteins with the potential to interact with βig-h3. Thus loss of a small portion of 

these proteins would still leave many other interactions to be identified under physiological 

conditions. To prevent the precipitation of rβig-h3 in TBS, it was necessary to bind rβig-h3 to 

Ni-sepharose prior to incubation with the BNLPM in a physiological buffer (TBS). In 

addition, Ni-sepharose was used as a control (section 2.16). 

Bound proteins were eluted with 500mM imidazole, resolved by SDS-PAGE and 

detected by silver staining. A number of intensely stained bands, such as those migrating at 

26 kDa, 42 kDa, 46 kDa, 54 kDa, 66 kDa, 97 kDa, 120 kDa, 128 kDa and 200 kDa, were 

detected in the eluate from the rβig-h3-Ni-sepharose (figure 7.8A, lane 1) which was not as 

strongly stained in the Ni-sepharose-control (figure 7.8A, lane 2). However, there also 

appeared to be more non-specific interaction of proteins with the Ni-sepharose-control, 

compared to previous sepharose-control. Most of the non-specifically interacting proteins 

were of very high molecular weight for one protein band migrating at 46 kDa. To identify 

rβig-h3 protein and its isoforms verses the mixture of candidate binding partners, the eluates 

from both rβig-h3-Ni-sepharose and Ni-sepharose-control were immunoblotted with anti-

(tetra-his) antibody and anti-(βig-h3) antibodies (MP78/70) and Rabbit 45 (section 2.6). A 

sample of purified rβig-h3 was also included for positive identification of rβig-h3. Two 

specific antibodies to βig-h3 were used as they recognised different epitopes. The Rabbit 45 

is made to a peptide in fasciclin-1 domain of βig-h3, while (MP78/70) recognises mainly 

regions of fasciclin-2 and fasciclin-4 domains of βig-h3 (Gibson, M. A., unpublished 

REFERENCE_TYPE>0</REFERENCE_TYPE><REFNUM>7</REFNUM><ACCESSION

_NUMBER>12719415</ACCESSION_NUMBER><VOLUME>278</VOLUME><NUMB

ER>27</NUMBER><YEAR>2003</YEAR><DATE>Jul 4</DATE><TITLE>Covalent 

and non-covalent interactions of betaamples from the Ni-sepharose-control (figure 7.8B, 

lane 2). Therefore, the results indicated that tissue βig-h3 does not bind non-specifically to 

Ni-sepharose. Anti-(tetra-his) antibody staining of the purified rβig-h3 sample showed 

staining of a major band at 66 kDa and the triplet band at 56 kDa (figure 7.8B, lane 3). It 

should be noted that due to the difference in quantity of rβig-h3 present in the eluate from 

rβig-h3-Ni-sepharose and the purified sample, it was not possible to confirm the identity of 

the other identified band proteins in figure 7.8B lane 1. Similarly anti-(βig-h3) antibody 

(MP78/70) identified the prominent bands at 42k-66 kDa, 120 kDa, 128 kDa and 200 kDa, 

but not the bands at 26 kDa and 97 kDa as βigh-3 in the rβig-h3-Ni-sepharose eluate (figure 

7.8C lane 1). There was no staining detected in the eluted samples from the Ni-sepharose-

control (figure 7.8C, lane 2). The immuno-reactivity of a 97 kDa band protein in the purified rβig-h3 sample 

(figure 7.8C, lane3), suggested that the similar sized protein band observed by silver staining 

could potentially be related to rβig-h3. Anti-(βig-h3) antibody Rabbit 45 staining of the 
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fractionated samples by SDS-PAGE identified similar bands migrating at 42-66 kDa, 128 

kDa and 200 kDa in the eluate from rβig-h3-Ni-sepharose (figure 7.8D, lane 1). There was 

no staining detected in the eluted sample from the Ni-sepharose-control when tested with the 

anti-(βig-h3) antibody, Rabbit 45 (figure 7.8C lane 2). Furthermore, band proteins stained 

with anti-(βig-h3) antibody (MP78/70) in the sample of purified rβig-h3, also showed 

reactivity to anti-(βig-h3) antibody, Rabbit-45 (figure 7.8D, lane 3). Overall from these 

results it was concluded that the majority of the prominent bands detected in the silver 

stained eluate from rβig-h3 coupled to Ni-sepharose were βig-h3. The exception was the 

silver-stained band with molecular weight of 26 kDa, in the eluate from βig-h3-Ni-sepharose 

which did not immuno-react with either of the antibodies and therefore, may be a potential 

binding partner of βig-h3. To confirm the protein band as a unique candidate binding partner 

for βig-h3, the BNLPM was also tested for immuno-reactivity to anti-(tetra-his) antibody, and 

anti-βig-h3 antibodies (MP78/70) and Rabbit 45). No reactivity of the candidate protein band 

to anti-(tetra-his) antibody and anti-βig-h3 antibody (MP78/70) was detected (data not 

shown). However, the candidate protein showed reactivity to anti-βig-h3 antibody, Rabbit 45 

suggesting the possibility that the candidate band may be related to βig-h3 (figure 7.8D, lane 

4). In addition the major βig-h3 species at 66 kDa was detected as a doublet in the BNLPM 

compared to the βig-h3 coupled and eluted from Ni-sepharose. 

From the collected data no certain candidate binding partners were identified as it was 

concluded that rβig-h3 interfered with gel analysis of potential binding partners. Therefore, 

this alternative approach of nickel affinity chromatography under physiological conditions 

did not appear to improve the detectability of protein interactions with rβig-h3. 

From the results of sections 7.5.1-7.5.3, it was apparent that a lot more proteins in the 

BNLPM were bound to rβig-h3-sepharose than to sepharose-control. Some of these proteins 

may be authentic binding ligands of βig-h3. However, identification of a few specific βig-h3 

ligands was not achieved using the methods described above, nor was it possible to narrow 

down and select with confidence the potential candidate binding partners amongst the rest of 

the eluted proteins. To reduce problems in the system, different aspects of the system had to 

be tested. Given that a substantial number of BNLPs were binding to the affinity columns, 

BNLPM was tested to determine if the BNLPs were sticky in nature. For this, the approach 

taken was changing of the bait protein, to see whether the same degree of non-specific 

interaction between BNLPs and a different bait protein still occurred. Therefore, rLTBP-2 

was chosen as an alternative bait protein for separation of potential binding ligands from 

BNLPM (described in more detail in section 7.6).  

 

 



 

 

 
 

 
 

Figure 7.8. Affinity chromatography on columns of rβig-h3 bound to Ni-sepharose. BNLPM was incubated with rβig-h3 (30µg) coupled to Ni-sepharose 
or Ni-sepharose-control. Bound proteins were eluted with 500mM imidazole and eluates (50µl) were analysed by SDS-PAGE on a 15% gel, followed by A, 
silver staining, or immunoblotting with B, anti-(tetra-his) antibody, or anti-(βig-h3) antibody; C, MP78/70 and D, Rabbit 45. Lane 1, rβig-h3 plus BNLPs 
eluted from Ni-sepharose (50µl). Lane 2, BNLPs eluted from Ni-sepharose-control (50µl). Lane 3, purified rβig-h3 (0.6µg). Lane 4, BNLPM extract 
(20µl). The majority of the unique bands identified were rβig-h3 that bound to Ni-sepharose. Arrows in A indicate molecular weights of some of the eluted 
proteins from the Ni-sepharose.  
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7.6 Identification of binding partners for rLTBP-2 from BNLPM using silver staining 

 The interaction of rLTBP-2 with BNLPMs was investigated to identify novel binding 

ligands for LTBP-2, and to observe how the banding pattern of proteins eluted from rLTBP-

2-sepharose compared with that for rβig-h3. A BSA-coupled sepharose was added as a 

control to identify non-specific protein-protein interactions that might be occurring in the 

affinity chromatography system. Analysis of proteins eluting from rLTBP-2-sepharose and 

BSA-sepharose-control following incubation with BNLPM in TBS/0.5M NaCl, showed more 

protein bands in the eluate from rLTBP-2-sepharose (figure 7.9A, lane 1) compared to the 

eluate from BSA-sepharose-control (figure 7.9A, lane 2). Comparison of the eluates from 

rLTBP-2-sepharose with gels from previous experiments using rβig-h3-sepharose (figure 7.7, 

lane 1) showed that both have very similar banding patterns, therefore suggesting that the 

isolated proteins binding non-specifically. When the silver stained eluate from the sepharose-

control (figure 7.7 lane 2) and BSA-sepharose-control (figure 7.9A lane 2) were compared, 

it appeared that there were more band proteins present in the eluate from sepharose-control, 

although it appeared that there was an overall increased quantity of proteins present in the 

eluate from BSA-sepharose-control. This was evident from the stronger staining of the band 

ation</KEYWORD><KEYWORD>*Heart 

Catheterization</KEYWORD><KEYWORD>*Pulmonary Valve 

Stenosis</KEYWORD></KEYWORDS><UR-control represent a wider spectrum of non-

specifically interacting proteins making sepharose-control a more appropriate control for 

identification of non-specifically interacting proteins.   The detection of a large number of BNLPs in the eluate from rLTBP-2-sepharose 

reflects the previous observations made for eluates from rβig-h3-sepharose, i.e. that the large 

number of proteins isolated from BNLPM by rβig-h3-sepharose and rLTBP-2-sepharose 

could be due to the adhesive property of the BNLPs. Thus, usage of an alternative protein 

mixture may perhaps be more successful for identification of potential binding partners with 

βig-h3-sepharose and LTBP-2-sepharose. 
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Figure 7.9. Identification of matrix proteins potentially interacting with LTBP-2. Matrix 
protein mixtures; A, BNLPM or B, BM-rich matrigel mixture (1mg/ml) were incubated with 
rLTBP-2-sepharose and BSA-sepharose-control. Bound proteins were eluted with 6M urea 
and eluates were analysed by 15% SDS-PAGE and silver staining. Lanes 1, proteins bound 
to rLTBP-2-sepharose (200µl). Lanes 2, bound proteins to BSA-sepharose-control (200µl).  

 

7.7 Isolation of binding partners for rLTBP-2 from a basement membrane-rich mixture  

 Since the distribution of LTBP-2 in all tissues is not yet defined, and LTBP-2 

expression has been reported in BM-rich tissues such as placenta (Moren et al., 1994), there 

is a possibility that LTBP-2 may have some association with BM. Therefore, it was decided 

to search for binding partners for LTBP-2 amongst BM components. If isolation of binding 

ligands for LTBP-2 was successful, searching for βig-h3 binding partners in a BM mixture 

would then be considered, since βig-h3 expression has previously been reported in the BM of 

proximal tubules of kidney (Park, 2004). The commercially available BM preparation, 

matrigel (BD Biosciences, San Jose, CA) was used for the experiments. Matrigel BM mix is 

a solubilised BM preparation extracted from the EHS mouse sarcoma, a tumour rich in these 

components. Its major component is laminin, followed by collagen IV, HSPG and nidogen. It 

also contains TGF-β and other growth factors which occur naturally in the EHS tumours. 

 After the incubation of matrigel at 1mg/ml in TBS with rLTBP-2-sepharose and BSA-

sepharose-control, eluates were analysed by SDS-PAGE and silver staining (section 2.15, 2.6 

and 2.7). Several protein bands appeared to be interacting non-specifically with both rLTBP-

2-sepharose (figure 7.9B, lane 1) and BSA-sepharose-control (figure 7.9B, lane 2). Thus, 
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the results of incubating rLTBP-2-sepharose with matrigel were very similar to that of 

incubating rLTBP-2-sepharose with BNLPM, in that a large number of proteins from both 

mixtures bound non-specifically to rLTBP-2. Therefore, it appeared that, similar to BNLPs, 

the BM proteins contain strong adhesive properties. In addition, it can be concluded from the 

combined results that LTBP-2 also has extensive adhesive properties that contribute to its 

non-specific interaction with BNLPs and proteins found in matrigel. Similar adhesive 

characteristics also appear to exist for βig-h3, although alternative tissue extracts or protein 

mixtures need to be tested to confirm this observation. 

 From the results of the affinity chromatography thus far, it was evident that the 

general adhesive characteristics of matrix proteins including βig-h3 and LTBP-2 were major 

problems for the isolation of binding partners from various extracts at or close to 

physiological conditions. With this in mind, modifications to the affinity chromatography 

system were necessary and hence considered in an attempt to reduce the non-specific protein-

protein interactions of rβig-h3 and rLTBP-2. 

 

7.8 Affinity chromatography improvements for isolation of binding ligands for βig-h3 

and LTBP-2 from BNLPM  

7.8.1 Dilution of BNLPM 

 To reduce non-specific binding, alterations to the affinity chromatography system 

were considered for identifying binding partners for rβig-h3 and rLTBP-2. BNLPM was 

chosen over matrigel since BNLPs interacted non-specifically with sepharose-control and 

BSA-sepharose-control to a lesser extent than the proteins in the matrigel mixture. 

Initially, the concentration of BNLPs incubated with the columns was decreased to 

investigate its effect on the specificity of the interaction with rβig-h3 and rLTBP-2. 

Previously a total of 1mg/ml of solubilised BNLPM in TBS/0.5M NaCl was incubated with 

each column. Since the mixture contains a diverse population of proteins, the concentration 

of the individual proteins will be quite low compared to concentration of the bait protein. 

Thus it was predicted that excess bait protein would be available to interact non-specifically 

at a lower affinity with various proteins instead of specifically with its high affinity binding 

partners. These non-specific binding proteins may also have precipitated on the column 

contributing to the high level of background observed in previous experiments. It was 

considered that dilution of the BNLPM may result in an increased chance of specific protein-

protein interactions occurring during the incubation period. 

A 1/10 dilution of BNLPM (100µg/ml), was incubated with rβig-h3-sepharose, 

rLTBP-2-sepharose and sepharose-control. Silver staining of the eluted proteins from the 

columns indicated that more BNLPs bound to rβig-h3-sepharose (figure 7.10, lane 1) and 
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rLTBP-2-sepharose (figure 7.10, lane 2) compared to the sepharose-control (figure 7.10, 

lane 3). The protein patterns from rβig-h3-sepharose and rLTBP-2-sepharose appeared to be 

similar, though the intensity of the staining of the bands was greater in the eluate from the 

rLTBP-2-sepharose. The reduction in the concentration of the extract did not appear to 

increase the specificity of the interaction between rβig-h3 and rLTBP-2 with the BNLPs. The 

dilution of the BNLPM also appeared to make no significant difference to the pattern of 

bands in the non-specific binding to the sepharose-control column, compared to the undiluted 

extract (figure 7.7, lane 2). However, a general increase in the staining intensity of the 

protein bands was noted, suggesting dilution of the BNLPM actually increased the 

background binding.  

 

7.8.2 Reducing the size of the ‘bait’ protein columns 

The size of the rβig-h3-sepharose, rLTBP-2-sepharose, BSA-sepharose-control and 

sepharose-control columns (40µl) was reduced 5-fold with respect to the amount of BNLPM. 

Silver staining of the eluted proteins from the smaller columns revealed a different pattern of 

bands with a total of only four bands identified in the eluates from all four columns. These 

were rβig-h3-sepharose (figure 7.11, lane 1), rLTBP-2-sepharose (figure 7.11, lane 2) and 

BSA-sepharose-control (figure 7.11, lane 3). No protein bands were detected in the 

sepharose-control (figure 7.11 lane 4). These results showed that decreasing the amount of 

bait protein, by reducing size of the columns, did not increase the interaction with specific 

binding partners in the BNLPM. 

 Despite altering the concentration of the BNLPM, or the size of protein-sepharose 

columns and the use of different protein mixtures (BNLPM, matrigel), a large number of 

proteins in the mixtures continued to bind to both the rβig-h3-sepharose and rLTBP-2-

sepharose. This suggested that most interactions were of a non-specific nature. Due to our 

continuing inability to reduce the non-specific interaction of the proteins in tissue extracts 

with the recombinant proteins, a different approach needed to be considered. Better controls 

were needed for distinguishing the proteins binding specifically to the bait-sepharose 

columns compared with those that bound non-specifically. Hence, the eluates from rβig-h3-

sepharose and rLTBP-2-sepharose were chosen to act as controls for the other since most 

proteins appeared to be non-specifically binding to both rβig-h3 and rLTBP-2. Identification 

of proteins that bind uniquely to only one of the two bait proteins would suggest a specific 

interaction. 
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Figure 7.10. Effect of decreased concentration of BNLPM on isolating binding ligands for 
rβig-h3 and rLTBP-2. BNLPM at 100µg/ml was incubated with rβig-h3-sepharose and 
sepharose-control. Bound proteins were eluted with 6M urea and eluates were analysed by 
15% SDS-PAGE and silver staining. Lane 1, rβig-h3-sepharose (200µl). Lane 2, rLTBP-2-
sepharose (200µl). Lane 3, sepharose-control. The pattern of proteins eluted from rβig-h3 
and sepharose column appeared to be very similar. 

 
Figure 7.11. Effect of reducing the size of the sepharose affinity columns on non-specific 
background binding. The amount of rβig-h3-sepharose and rLTBP-2-sepharose incubated 
with BNLPM was reduced from 200µl to 40µl. Bound proteins were analysed by 15% SDS-
PAGE and silver staining. Lane 1, rβig-h3-sepharose (200µl). Lane 2, rLTBP-2-sepharose 
(200µl). Lane 3, BSA-sepharose-control (200µl). Lane 4, sepharose-control (200µl). 
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7.9 Separation of proteins eluted from rβig-h3- and rLTBP-2-sepharose by 2-D Gel 

Electrophoresis (2-DGE) 

7.9.1 Silver staining detection of proteins separated by 2-DGE  

The large number of proteins that bound to rβig-h3 and rLTBP-2 made it difficult to 

identify specific binding partners, especially when the eluates from both rβig-h3-sepharose 

and rLTBP-2-sepharose gave very similar banding patterns. Considering that the proteins are 

associated with different structures within the tissue it was unlikely that they shared a large 

number of binding partners. Therefore the results thus far indicated that the adhesive natures 

of βig-h3 and LTBP-2 contributed to the similar banding patterns seen when the eluates from 

both columns were separated on a polyacrylamide gel. There were potential differences in the 

proteins that bound to the two sepharose columns; however, they may have been masked by 

insufficient separation of the eluted proteins by SDS-PAGE. It was considered that further 

separation of the proteins might aid in identification of distinct binding partners of rβig-h3 

and/or rLTBP-2. For additional separation, affinity-purified proteins were analysed by 2-

dimensional gel electrophoresis (2-DGE) (section 2.17). Two-DGE is a widely used 

separation technique in which proteins are separated according to isoelectric point by 

isoelectric focusing in the first dimension, and according to molecular weight by SDS-PAGE 

in the second dimension (O'Farrell, 1975). 2-DGE has a high capacity for resolution of 

complex mixtures of protein, permitting visualisation and analysis of hundreds of protein 

spots (Tannu and Hemby, 2006). 

BNLPM was applied to both the rβig-h3-sepharose and rLTBP-2-sepharose and 

bound proteins were eluted and the total protein concentrations were determined using the 

Bradford assay (section 2.15). A sample of the eluate, (5.5µg) was made up in standard 

solubilisation buffer (section 2.17) which was a modification of O’Farrell’s lysis buffer 

(O'Farrell, 1975). These modifications included change of the total urea concentration from 

9.5M urea to 6M, substituting 5% β-mercaptoethanol for 50mM dithiothreitol and 2% (w/v) 

NP-40 for 4% CHAPS (as recommended by Bio-Rad Laboratories, Hercules, CA). This was 

then followed by passive loading of the sample on to the 7cm IPG strip pH 3-10. Proteins 

were separated by isoelectric focusing using a slow ramping preset program (section 2.17). 

After completion of the isoelectric focusing, the IPG strip was then treated sequentially with 

dithiothreitol and iodoacetamide equilibration buffers (appendix B) and electrophoresed on a 

10% polyacrylamide gel (section 2.6). The protein spot patterns of eluates from rβig-h3-

sepharose and rLTBP-2-sepharose, were visualised by silver staining (section 2.7) (figure 

7.12). Compared to the protein spots detected on the gel of the eluate from rβig-h3-sepharose 

(figure 7.12A), there appeared to be less protein detected on the gel of the eluate from 

 



 

 

 
 
 
 

                
 

Figure 7.12. 2-DGE analysis of BNLPs bound to rβig-h3 and rLTBP-2. Eluates from rβig-h3-sepharose and rLTBP-2-sepharose were separated in the first 
dimension by isoelectric focusing on a pH 3-10 IPG strip, followed by 10% SDS-PAGE separation and silver staining. A, Proteins bound to rβig-h3-
sepharose (5.5µg). B, Proteins bound to rLTBP-2-sepharose (5.5µg). The arrows indicate unique spots to each protein. 
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rLTBP-2-sepharose (figure 7.12B). There were a number of spots that seemed specific to the 

individual bait proteins which were marked by arrows in figure 7.12, but it was difficult to 

confirm their candidacy due to inequality of loading between the two gels. The reduced 

amount of protein present on the SDS-PAGE of the sample from the rLTBP-2-sepharose may 

have been caused by insufficient sample entering the IPG strip or by the loss of proteins 

during dialysis prior to application to the strip. In addition to the difference in the amount of 

total protein present on the gels, there were horizontal steaks associated with some protein 

spots which were more apparent in the gel of the sample eluted from the rLTBP-2-sepharose. 

The horizontal streaking associated with protein spots indicated incomplete focusing of the 

protein spots. This might have been caused by samples having incomplete solubilisation prior 

to application or by the presence of ionic impurities in the sample. In contrast to the LTBP-2 

gel, there was a prominent vertical streak observed close to pH 7 in the sample eluted from 

rβig-h3-sepharose. The vertical streak was probably due to high salt in the mixture, perhaps 

due to inefficient removal of salts by dialysis. Furthermore, as described by (Gorg et al., 

1988), vertical streaking is related to the second dimension, and may be caused by 

insufficient equilibration prior to SDS-PAGE (Gorg et al 1988). In summary, an increase in 

solubility of the proteins in the samples was required to improve the entry of the proteins into 

the IPG strip, as well as improving the focusing of the proteins in the strip by altering the 

isoelectric focusing run. These are further discussed section 7.9.2. 

 

7.9.2 Improving the resolution of 2-DGE 

From the evidence in section 7.9.1, the separation of the BNLPs eluting from rβig-h3-

sepharose and rLTBP-2-sepharose needed to be optimised for comparison and identification 

of specific ligands with adequate certainty. Firstly, the total protein concentrations of both 

samples needed to be equal to compare the samples properly. Therefore, extra care was taken 

during preparation of the sample for isoelectric focusing, i.e. during dialysis of the samples 

into 6M urea and during rehydration of the IPG strip, to minimize protein loss. Furthermore, 

to further improve the entry of the proteins into the IPG strip during passive rehydration, and 

to improve their focusing on the strip, the solubility of the eluates could be improved by 

dialysis into enhanced solubilisation solution. This was designed to increase both the uptake 

of the proteins by the strip and the protein resolution by allowing complete dis-aggregation, 

denaturation, and reduction of proteins due to disruption of all protein-protein interactions 

(Herbert, 1999; Rabilloud, 1996). A typical solubilisation solution contains 1) a chaotropic 

agent such as urea and/or thiourea for denaturation of proteins (Galvani et al., 2001; 

Rabilloud et al., 1997), 2) detergents for forming stable solubilised complexes with exposed 

hydrophobic residues during focusing, 3) reducing agents for reduction of disulphide bonds 



 

 - 119 - 

to ensure complete protein solubilisation, and 4) carrier ampholytes to keep the separated 

proteins in a charged state (Lalwani et al., 2005). Compared to the original solubilising 

solution, the enhanced solubilising solution contains the additional non-detergents 

sulfobetaine 3-10, and the chaotropic agent thiourea and replaces of dithiothreitol with the 

reducing agent tributylphosphine. A urea-thiourea mixture has been reported to improve the 

solubility and resolution of proteins on IPG strip compared with urea alone. Also 

tributylphosphine is known to be a more selective and efficient reducing agent than 

dithiothreitol, as it retains its reducing power at acidic pH 5 and at pH levels above 7.5 

(Herbert et al., 1998). The addition of the zwitterionic surfactant, sulfobetaine 3-10 has been 

reported to improve protein solubility at or near its isoelectric point (Esteve-Romero et al., 

1996).  

Secondly, the isoelectric focusing resolution needed to be improved for differentiation 

of the fainter proteins spots. Therefore, several aspects of the isoelectric focusing were 

altered in an attempt at improving the focusing of the protein mixture. One of the isoelectric 

focusing alterations that were considered was the time of the conditioning step. This step was 

increased from 15 minutes to 3 hours to allow more time for the salts and other contaminants 

to be removed prior to focusing the proteins. Salts increase the ionic strength of the solution 

and thus produce a high current which is not desired when high voltages need to be reached 

during the isoelectric focusing (Vincourt et al., 2006). An additional clean up step to further 

remove salt from the samples was considered, but additional steps needed to be kept to a 

minimum to limit losses of the protein sample. 

To observe whether salts and contaminants were the reason for insufficient focusing 

of the proteins, a sample of eluate from rβig-h3-sepharose (5.5µg) was loaded on to a IPG pH 

3-10 strip through passive rehydration and was isoelectric-focused with a 3 hrs conditioning 

step and several changes of the electrode filter paper electrode strips. Silver staining of the 2-

D pattern, showed reduction in the vertical smearing (figure 7.13A) previously present. 

However, there also appeared to be a marked reduction in the total amount of protein 

resolved on the gel. Thus it was difficult to establish how the prolonged voltage step aided in 

the focusing of the proteins. There did appear to be a slight change in one of the prominent 

spots migrating at 47 kDa. This spot seemed to focus as three spots, instead of one as 

previously, but this result may have been caused by protein carbamylation. Protein 

carbamylation changes a protein’s isoelectric point and is caused by reaction with isocyanate, 

a urea degradation product. However, the proteins migrating at 37 kDa have consistently 

clustered very close together, therefore these protein spots might be normal modifications of 

the same protein within the extract and may not be modifications due to urea carbamylation. 

 



 

 

 
 
 

                
 

Figure 7.13. The effect of a prolonged conditioning step or different solubilisation solution on isoelectric focusing of proteins. Proteins bound to rβig-h3-
sepharose (5.5µg) were separated by 2-DGE under different conditions and silver stained for analysis. In A, the conditioning step was for 3 hours during 
the isoelectric focusing run, while in B, bound protein was dialysed into multiple surfactant solubilisation solution prior to passive rehydration. Fewer 
proteins were observed on the gels.  
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To investigate whether enhanced solubilisation solution improved the uploading of 

the proteins onto the strip and their focusing, the eluted proteins from rβig-h3-sepharose 

(5.5µg) were dialysed into a multiple surfactant solubilisation solution, loaded passively onto 

the IPG strip and analysed by for 2-DGE. Silver staining of the 2-D gel revealed once again 

reduced amounts of total proteins present on the gel (figure 7.13B), when compared with the 

original conditions used. The protein spots that were detectable on the gel did not appear 

better focused. They looked blurred and had vertical smears still associated with a number of 

the spots. The results therefore indicated that under our standard conditions the use of 

multiple surfactant solubilisation solution did not improve the focusing of the proteins on the 

IPG strip during isoelectric focusing. Similar findings were reported by Lee, (2009) where 

direct correlation between the effects of buffers with changes in protein solubilisation was 

investigated. Lee, (2009) reported that neither the replacement of dithiothreitol with 

tributylphosphine nor the addition of detergent improved the solubility and resolution of the 

protein sample tested. In contrast, solubilisation of proteins with buffer containing 1.5% 

dithiothreitol and 4% CHAPS increased spot numbers, density and resolution (Lee, 2009). 

Therefore it appeared that the original solubilisation solution and the initial focusing program 

were more appropriate for use for isoelectric focusing.  

From the results it was concluded that one of the contributing factors to the lack of 

identification of specific binding ligands for βig-h3 and LTBP-2 was poor reproducibility of 

protein spot patterns. This perhaps was caused by the lack of consistent uptake of the protein 

sample into the IPG strip. Therefore an alternative approach which included cup loading was 

considered to improve sample loading. Cup loading is an alternative approach to passive 

rehydration and it is commonly used to improve resolution when separating basic proteins 

(Görg et al., 2000). For this, samples were actively loaded using a cup onto a pre-hydrated 

IPG strip and separated by 2-DGE (sections 2.17). The resulting spot pattern however, 

showed no improvements in the amount or resolution of proteins entering the gel (data not 

shown). 

Optimal conditions for solubility and resolution of protein samples vary somewhat 

with the type of sample under examination. Thus far, the problems of insufficient sample 

entering the gel and incomplete focusing of spots were unable to be eliminated by various 

modifications of the 2-DGE method. It was considered that, working with such low 

concentrations of protein in association with complicated sample preparation may be 

affecting the total protein that is resolved on the gel. Because of such low amounts of 

proteins being available for analysis, silver staining appeared to be of limited value for 

identifying protein spots from artefacts on the gels. Therefore, increasing the sensitivity of 

the staining would overcome the lack of detection of scarce protein spots and allow for 
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adequate comparison between the eluates from the rβig-h3-sepharose and rLTBP-2-sepharose. 

The detection of minute amounts of proteins may even compensate for the insufficient 

focusing of the proteins on the IPG strip. Another contributing factor to the inability of 

positive identification of unique protein spots was the variability seen within two gels after 2-

DGE, making it difficult to match protein spots in the two gels. The variability associated 

with 2-DGE, including sample preparation and sample separation, was approximately 20-

30% from gel-to-gel. Therefore better methods needed to be considered in order to eliminate 

gel-to-gel variation.  

 

7.9.3 Detection of proteins separated by 2-DGE using 2-D-DIGE technology 

7.9.3.1 Labelling of the proteins with CyDye DIGE Fluor minimal dye 

The silver stained 2-DGE protein spot patterns were difficult to analyse, compare and 

contrast. This was mostly due to inconsistent concentration of sample protein entering the 

IPG strip due to loss of protein during sample preparation. Additionally, there was gel-to-gel 

variation which also contributed to the difficulty in trying to distinguish real differences 

between unique proteins and non-specifically binding proteins that bound to rβig-h3-

sepharose and rLTBP-2-sepharose. Hence 2-D SDS-PAGE using fluorescence 2-D difference 

gel electrophoresis (2-D-DIGE) technology was employed for detection of minute amounts 

of protein being analysed and to improve comparability between eluates from rβig-h3-

sepharose and rLTBP-2-sepharose. The advantage of this technology is that it allows the 

analysis of both samples on the one gel, eliminating gel to gel variation. 

2-D DIGE uses molecular weight- and isoelectric point-matched, spectrally resolvable 

cyanine dyes (Unlu et al., 1997) to label two or three protein samples prior to 2-DGE. It is 

the use of different dyes to separately label BNLPs eluted from rβig-h3-sepharose and 

rLTBP-2-sepharose that allows for co-separation of the samples in a single 2-D 

polyacrylamide gel. Firstly, CyDye DIGE fluor minimal dyes, Cy3 and Cy5 were used for 

labelling of the bound proteins. The sensitivity of CyDye DIGE dyes Cy3 and Cy5 is 0.025ng 

compared with silver staining which has a sensitivity of 1ng (Marouga et al., 2005). The 

labelling reaction was designed to ensure labelling of approximately 1-2% of the lysine 

residues of the protein sample (Marouga et al., 2005; Tannu and Hemby, 2006). Therefore, 

for comparison of protein spot pattern between proteins bound to rβig-h3-sepharose and 

rLTBP-2-sepharose, 5µg of eluates from both sepharose columns were labelled with CyDye 

DIGE fluor minimal dyes Cy3 and Cy5 respectively. 

After the CyDye-labelled proteins had been fractionated by 2-DGE, the gels were 

scanned and analysed by a Typhoon Trio+ variable mode imager (GE Healthcare, Uppsala, 

Sweden). The resulting spot patterns for the eluates from rβig-h3-sepharose (figure 7.14A & 
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C) and rLTBP-2-sepharose (figure 7.14B & C) appeared to be very similar and the 

inconsistency between the concentrations of the two eluates appeared to have been eliminated. 

However, there appeared to be fewer protein spots detected when samples were labelled with 

the CyDye DIGE fluor minimal dyes than when previously stained with silver. This 

suggested that the labelling reaction was not efficient. Furthermore, the labelled proteins 

were not focused sufficiently, as they all appeared to be migrating as a block in the second 

dimension. In addition, instead of protein spots horizontal smears dominated the gel, which 

further suggested that the isoelectric focusing step was not optimised. In spite of these 

problems, the overlay of the two staining patterns revealed several protein spots that appeared 

to be unique to rβig-h3-sepharose or rLTBP-2-sepharose which were marked by arrows in 

figure 7.14C. To confirm the authenticity of the unique spots, the experiment was repeated. 

Figure 7.15 illustrates the spot pattern achieved for each of the fractionated samples. In this 

experiment the labelling reaction appeared to be more successful as there were more total 

protein spots present, most of which appeared to have localised in the centre of the gel close 

to neutral pH (figure 7.15). No obvious unique protein spots were identified by comparing 

the separated BNLPs eluted from the rβig-h3-sepharose (figure 7.15A & C) with rLTBP-2-

sepharose (figure 7.15B & C). However, from the overlay analysis of the spot patterns, 

several protein spots were identified as possible unique binding partners for both rβig-h3 and 

rLTBP-2 (figure 7.15C). The unique protein spots identified previously were no longer 

detectable, perhaps due to better labelling of the proteins in the samples, thus indicating that 

they were not true unique protein spots. However, they were neither sufficiently convincing 

nor abundant to be taken for protein identification. 

From the results of CyDye DIGE fluor minimal dye labelling of the eluates, it 

appeared that there was inconsistency with the labelling of the protein samples under analysis. 

Consistency was necessary for labelling of the protein samples and subsequent binding ligand 

identification. Since each CyDye DIGE fluor minimal dye labels only a small percentage of 

the total protein present in the sample (Marouga et al., 2005), the next approach was to use 

CyDye DIGE fluor saturation dyes for labelling. CyDye DIGE fluor saturation dye labelling, 

labels the majority of the total proteins present in the samples, which improves the sensitivity 

of spot detection (Shaw et al., 2003). 

 

 

 



 

 

 
 
 

             
 

Figure 7.14. Comparison of the bound proteins to rβig-h3 and rLTBP-2 using 2-D-DIGE technology. CyDye DIGE fluor minimal dye labelling of the 
eluates from A, rβig-h3-sepharose (5µg) and B, rLTBP-2-sepharose (5µg), prior to 2-DGE. A and B are superimposed in C. Arrows indicate the specific 
spots for each protein. Proteins specifically binding to rβig-h3 are visualised as green spots, while red spots are proteins binding specifically to rLTBP-2. 
Yellow spots indicates proteins binding to both rβig-h3 and rLTBP-2. 

 
 



 

 

 
 
 
 

             
 

 

Figure 7.15. Repeat of CyDye DIGE fluor minimal labelling of bound proteins to rβig-h3 and rLTBP-2. A sample of the eluates from A, rβig-h3-sepharose 
(5µg) and B, rLTBP-2-sepharose (5µg) were labelled with Cy3 and Cy5 respectively, prior to 2-DGE. A and B are superimposed in C. Arrows indicate 
specific spots to each protein. There were more proteins spots present on the gel compared with initial CyDye DIGE fluor minimal labelling of bound 
proteins to the coupled sepharose columns. 
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7.9.3.2 Labelling of the proteins with CyDye DIGE fluor saturation dyes 

The CyDye DIGE fluor saturation dyes label all reduced cysteine thiols of proteins, 

and are even more sensitive than minimal dyes in detecting amounts as low as 15pg 

(Marouga et al., 2005). It was hoped that this system would increase the number of protein 

spots detected and the intensity of the detected protein spots. In previous experiments, only 

the abundant proteins were detected and these appeared to be present in eluates from both 

rβig-h3-sepharose and rLTBP-2-sepharose. Visualsing the larger spectrum of proteins present 

in the samples would increase the chance of identifying authentic candidate partners. 

Similar to CyDye DIGE fluor minimal dye labelling, 5µg of bound proteins eluted 

from rβig-h3-sepharose and rLTBP-2-sepharose were labelled with Cy3 and Cy5 respectively. 

After labelling of the bound proteins, they were combined and were loaded on the IPG strip 

through passive rehydration (section 2.17). Upon completing the fractionation of the labelled 

proteins by size, the gel was scanned and analysed once again by a Typhoon Trio+ variable 

mode imager (GE Healthcare, Uppsala, Sweden). The resulting image was a black gel with 

no traces of labelled protein spots and a dye front at the bottom of the polyacrylamide gel 

(data not shown). The results indicated that the labelling reaction was unsuccessful, and no 

proteins were labelled despite following the manufacturer’s instructions (see section 2.17). 

The experiment was repeated, this time paying extra attention to the pH of the sample prior to 

commencing labelling, since it is essential for the protein samples to be at pH 8.0 for efficient 

labelling with CyDye DIGE fluor saturation dyes. Analysis of the gel using Typhoon Trio+ 

again revealed no labelled spots, suggesting unsuccessful labelling of the proteins with 

CyDye DIGE fluor saturation dyes. Several possible factors may have contributed to the 

unsuccessful CyDye DIGE fluor saturation dye labelling of the bound proteins, including the 

loss of BNLPs during sample preparation for labelling and fractionation by 2-DGE. 

Furthermore, even though care was taken to ensure an optimised condition for successful 

labelling, the conditions may have still been sub-optimal for labelling, perhaps due to 

contaminants being carried over or perhaps due to over-estimation of the amount of proteins 

in the eluates. 

Identification of the novel binding ligands for βig-h3 and LTBP-2 from protein 

mixtures proved to be difficult using affinity chromatography and proteomics techniques. 

The non-specific interaction of proteins with the affinity columns and low concentration of 

eluates remained major problems despite various modifications. The small quantities of 

purified recombinant proteins available for column preparation were also a limiting factor for 

this project, and preparation of affinity columns with more ‘bait’ proteins should be 

considered for similar experiments in the future. The amount of ‘bait’ protein available was 

one of several limiting factors in the isolation of novel binding partners of rβig-h3 and 
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rLTBP-2 using affinity chromatography. Details of these and possible alternatives for future 

experiments are outlined and discussed in section 8.2.2.  
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CHAPTER 8 

DISCUSSION AND FUTURE DIRECTIONS 

 
8.1 Discussion 

LTBP-2 belongs to the fibrillin/LTBPs superfamily of ECM proteins. The members 

of this superfamily share similar protein composition and structure. The full extent of LTBP-

2 functions within the ECM is still unclear. The involvement of LTBP-2 in elastic fibre 

assembly has been suggested following tissue extraction and immunohistochemical analysis 

of bovine nuchal ligament, where LTBP-2 was identified as an associated component of 

fibrillin-microfibrils (Gibson et al., 1995). In Dr. Gibson’s laboratory, to further characterise 

the function of LTBP-2 in the structure and assembly of elastic fibres, the identification of 

LTBP-2 interactions with associated components of fibrillin-microfibrils has been ongoing. 

Binding and immunohistochemical studies have been used previously to demonstrate the 

interaction between LTBP-2 and fibrillin-1 (Hirani et al., 2007). No direct interaction with 

other elastic fibre-associated proteins, namely fibrillin-2, tropoelastin, MAGP-1, -2, dermatan 

sulphate-PGs, decorin and biglycan, was identified (Hirani et al., 2007). 

In recent years the interaction of fibrillin-1 with unidentified HSPGs has been 

reported to have an essential influence on the assembly of microfibrils and elastic fibres 

(Cain et al., 2005; Cain et al., 2008; Ritty et al., 2003a; Tiedemann et al., 2001). In elastic 

tissues HSPGs are found mainly on cell surfaces for example, syndecans and glypican or in 

BM for example, perlecan. This suggested the importance of HSPG and instigated the 

investigation of possible HSPG interactions with LTBP-2.  

To commence with, conjugated heparin was used to represent HSPG in the solid 

phase binding studies with LTBP-2. One of the reasons for this use was the limited 

availability of rHSPG. Recombinant HSPG of interest were either not available (perlecan) or 

were very expensive in small quantities (syndecans). Tissue extraction of HSPGs is possible, 

but it is difficult and it usually results in low yields of impure product. On the other hand, 

heparin was readily available commercially in large quantities. The most important factor 

however, is the structural similarity that is shared between heparin and HS which allowed 

heparin to be suitable for the binding studies (table 1.1). Solid phase binding assay was the 

method of choice for determining direct interactions between LTBP-2 and heparin. Other 

methods such as co-culture systems in conjunction with immunofluorescence staining can be 

used to identify interactions between two matrix proteins. However, colocalisation does not 
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necessarily indicate that there is a direct interaction between the proteins, as was found for 

fibronectin and LTBP-1 (Chen et al., 2007).  

Solid phase binding studies revealed that full length rLTBP-2 contains a moderately 

strong binding affinity for heparin (section 3.3.5). To ensure the interaction was not merely 

charge-related, it was important to test the interaction of LTBP-2 with C-6-S, another highly 

sulphated GAG, which is found in the matrix attached to other PG. Sulphate groups are 

attached to a number of hydroxyl or amino groups on GAG and they contribute considerably 

to the GAG polyanionic properties (Zhang et al., 2005). The inability of C-6-S to block the 

interaction between LTBP-2 and heparin suggests that the heparin-binding region(s) in 

LTBP-2 are specific for heparan sulphate (section 3.3.3). Similar results were found by 

Tiedemann et al., (2001), where inhibition assays were used to demonstrate the lack of 

binding inhibition between heparin and fibrillin-1 with chondroitin -4-sulphate, C-6-S or 

dermatan sulphate, thus confirming the specificity of heparin binding to fibrillin-1. 

Furthermore, (Kozel et al., 2004) demonstrated that HS, but not chondroitin sulphate was 

able to decrease the deposition of tropoelastin into fibres in an in vitro model. 

The interaction of LTBP-2 with heparin was found to be largely cation (calcium) 

dependent, similar to the interaction of heparin with other relevant ECM proteins, for 

example, fibrillins (Jensen et al., 2001; Kielty and Shuttleworth, 1993; Reinhardt et al., 

1997a; Reinhardt et al., 1997b) and fibulins (Yanagisawa et al., 2002). Depletion of calcium 

ions prevented the binding of LTBP-2 to heparin (section 3.3.4), although the mechanism by 

which the binding was affected is not clear. Two possible ways in which the binding of 

LTBP-2 to heparin may have been affected are (a) directly, if one of the many cbEGF-like 

domains present in LTBP-2 calcium was involved in the binding site itself perhaps on or (b) 

indirectly, where removal of calcium ions may alter the structural conformation of the 

cbEGF-like domains on LTBP-2, consequently disrupting the heparin binding site. Similar 

enhancement of binding to heparin in the presence of calcium ions has been previously 

demonstrated for other relevant molecules, for example MAGP-1 to fibrillin-1 (Jensen et al., 

2001). Furthermore, (Yanagisawa et al., 2002) demonstrated that the binding of fibulin-5 to 

tropoelastin is inhibited in the presence of 10mM EDTA. In general, it appears that calcium 

chelation with 5mM EDTA or 5mM EGTA does not permanently affect the integrity or the 

function of proteins. Indeed, Kielty and Shuttleworth (1993), demonstrated that the effects of 

calcium chelation can be rapidly reversed when isolated fibrillin-microfibrils were incubated 

with 5mM EDTA or 5mM EGTA prior to incubation with calcium (5mM CaCl2). However, 

the effects of 25mM EDTA or 25mM EGTA were not completely reversed by subsequent 

incubation with calcium (25mM CaCl2). Disrupted regions within individual microfibrils 

were still observed in these treated microfibrils (Kielty and Shuttleworth 1993). 
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To aid further functional analysis of LTBP-2, it was planned to identify the location 

of the heparin binding sites on LTBP-2. Recombinant central and carboxy-terminal fragments 

of LTBP-2 were tested for heparin binding. The C-terminal fragment of LTBP-2 lacked 

heparin binding. Since LTBP-2 interacts with fibrillin-1 through its carboxyl region (Hirani 

et al., 2007), the absence of a binding site for heparin in this region implies that LTBP-2 

interaction with heparin/HSPGs is unlikely to directly interfere with LTBP-2 binding to 

fibrillin-1-microfibrils. A relatively low-affinity binding site was identified in the central 

region of LTBP-2. The difference in the strength of heparin binding to the full length LTBP-2, 

compared with the central region of this molecule, suggested additional heparin binding site(s) 

may be present in the amino-terminal region of LTBP-2. Subsequent binding studies from 

our laboratory have revealed three heparin binding-sites in the N-terminal region of LTBP-2 

(J Adams and M Gibson). 

Thus far five heparin binding sites have been identified on fibrillin-1 (Cain et al., 

2005; Cain et al., 2008; Tiedemann et al., 2001).There are two in the N-terminal region and 

one in the C-terminal region, which are considered to regulate linear assembly of microfibrils, 

perhaps by acting as a template for the newly-secreted fibrillin-1 or for alignment and 

concentration of fibrillins-1 (Cain et al., 2008). Earlier cell culture experiments had shown 

that exogenous heparin disrupts microfibril deposition, but has no effect on the secretion of 

these macromolecules (Tiedemann et al., 2001). Interestingly, heparin was found to inhibit 

the binding of MAGP-1 to the N-terminal region of fibrillin-1, but was found not to affect the 

head to tail binding of fibrillin-1 (Ritty et al., 2003a). Thus N-terminal HS binding is likely to 

be a critical determinant of fibrillin-1 polymerisation during microfibril assembly and of 

MAGP-1 binding during elastic fibre assembly (Cain et al., 2005). The heparin binding site 

at the C-terminal region of fibrillin-1 overlaps with the tropoelastin binding site on fibrillin-1, 

and binding assays have been used to demonstrate that heparin inhibits the interaction of 

tropoelastin with fibrillin-1 C-terminal regions (Cain et al., 2008). Tropoelastin has another 

binding site in the central region of fibrillin-1 (Rock et al., 2004). Competitive binding 

between heparin and tropoelastin for the fibrillin-1 central region has also been demonstrated. 

Therefore, HS attachment to fibrillin-1 at sites overlapping with tropoelastin has been 

suggested to regulate the deposition of elastin onto the microfibrils (Cain et al., 2005; Cain et 

al., 2008). A heparin binding site in central region of fibrillin-1 has also been shown to bind 

perlecan (Tiedemann et al., 2005). This interaction is proposed to be involved in anchorage 

of microfibrils to BM (Tiedemann et al., 2005). With the identification of multiple heparin 

binding sites on fibrillin-1, it can be speculated that heparin/HS binding ability of LTBP-2 

may modulate the binding of HSPGs with various sites on fibrillin-1 (see below).  
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To investigate the implications of LTBP-2 interaction with heparin for microfibril and 

elastic fibre assembly, the immunolocalisation of LTBP-2 in elastic tissues was examined 

(Chapter 6). In the human foetal aorta, the majority of LTBP-2 was revealed to be associated 

with elastic fibres in the medial layer and not with elastin-free microfibrils in the adventitia. 

These findings suggest that LTBP-2 interaction with fibrillin-1 is not essential for the 

assembly of microfibrils. Therefore, it appears that LTBP-2 is more important for elastic 

fibrillogenesis, rather than microfibrillogenesis, and the interaction of LTBP-2 with HSPG is 

more likely to involved in this process.  

It can be speculated that the interaction between LTBP-2 and heparin may be 

involved in the deposition of elastin on fibrillin-1 microfibrils. A recent study has implicated 

LTBP-2 in promoting elastin deposition on fibrillin-1-containing microfibrils during elastic 

fibre assembly (Hirai et al., 2007). Hirai et al., (2007) demonstrated that the fibulin-5-

targeting role of the LTBP-2 is mediated by the interaction of N-terminal region of LTBP-2 

with fibulin-5, a protein well documented for its involvement with deposition of elastin on 

microfibrils during elastic fibre assembly (Freeman et al., 2005). It is possible that, during 

targeting of the fibulin-5/elastin complex to fibrillin-1 microfibrils, LTBP-2 binding to HS-

side chains of HSPG displaces it from fibrillin-1-microfibrils allowing deposition of the 

elastin. This speculation is supported by the inhibition studies showing that heparin binding 

to fibrillin-1 prevents tropoelastin from binding to fibrillin-1 (Cain et al., 2008). Therefore, 

LTBP-2 binding HSPGs may regulate elastic deposition on microfibrils during elastic fibre 

assembly.  

An alternative way that the HSPGs binding to LTBP-2 may play a role in elastic fibre 

assembly is through regulating the interaction of LTBP-2 with fibulin-5. HS-chains of 

HSPGs binding to LTBP-2 may instigate conformational changes to the LTBP-2 protein 

structure. This may in turn have either a positive or a negative influence on LTBP-2 binding 

with fibulin-5, depending on whether it enhances or inhibits the interaction.  

There is strong evidence that fibrillin-microfibrils intersect with BM in various tissues 

(Sakai et al., 1986; Tiedemann et al., 2005). In human tissues, studies have shown the 

colocalisation of perlecan with fibrillin-1-microfibrils (Tiedemann et al., 2005). In addition, 

in vitro binding studies have shown that fibrillin-1 interacts with high affinity to domain V of 

perlecan core protein and with relatively low affinity with the HS-chains attached to domain I 

of the protein core (Tiedemann et al., 2005). This raises the question whether there are other 

associated components of fibrillin-microfibrils, which have the potential to serve as “linker” 

molecules, between microfibrils and BM. One such molecule could be LTBP-2. 

On the molecular level we have shown that LTBP-2 interacts with the HS-side chains 

of perlecan (section 5.1). The presence of exogenous heparin was found to greatly inhibit the 
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interaction between LTBP-2 and perlecan, indicating the prominent binding was to the HS-

chains. However, protein-protein interaction between LTBP-2 and the protein core 

component of perlecan cannot be completely ruled out, and further experiments investigating 

the binding interaction with the perlecan protein core are needed. At the tissue level, LTBP-2 

and perlecan have been found to partially colocalise in the medial layer of the foetal aorta 

(section 6.1.4). The identified interaction between LTBP-2 and perlecan suggests a potential 

role of LTBP-2 in connecting microfibrils to BMs. Previously, (Tiedemann et al., 2001) 

demonstrated by double immunofluorescence and immunogold labelling that fibrillin-1 and 

perlecan were colocalised in close vicinity with various dermal and ocular BM. In the present 

study it is of interest that perlecan was found to colocalise with fibrillin-1 in the medial layer 

of the developing foetal aorta, in areas where microfibrils and BM are in close contact. The 

distribution patterns of fibrillin-1 and perlecan in the foetal aorta were found to be similar to 

that of LTBP-2 and perlecan. This similar pattern of overlap suggests that LTBP-2 may play 

a part in the interaction of fibrillin-1-microfibrils and perlecan in the aorta. The role of 

LTBP-2 could be to stabilise the interaction between fibrillin-1 and the core protein of 

perlecan by interacting with the HS-chains of perlecan. The interaction of fibrillin-1 with 

perlecan in the foetal aorta still remains to be confirmed as does the interaction of LTBP-2 

with perlecan in this tissue. In order to confirm these interactions in vivo, electron 

microscopy analysis of these regions is required. Post-embedded electron microscopy 

staining of tissue samples was attempted to identify the structures associated with LTBP-2, 

fibrillin-1 and perlecan in the developing aorta. However, analysis of the sections was 

uninformative due to lack of staining. This may be due to the large size of the gold particles 

not being able to penetrate the tissue after embedding. To overcome this problem, pre-

imbedding staining of fresh samples needs to be considered. Further studies on the role of 

LTBP-2 in microfibril-BM interactions are suggested in section 8.2.1. 

It has been reported that knockout of mouse ltbp-2 results in embryonic lethality 

between E-3.5 and E-6.5 (Shipley et al., 2000). In the study it was reported that the 

expression of ltbp-2 mRNA is detected at E-3.5, is switched off by E-6.5 and reinitiates again 

at E-13.5. The absence of elastic fibres or fibrillin microfibrils in a developing embryo at E-

3.5 indicates any role of LTBP-2 in early mouse development must be independent of these 

structures. Such novel functions of LTBP-2 have yet to be investigated. 

During early embryogenesis, the only ECM structure to exist is BM surrounding the 

developing blastocoelic cavity, and perlecan is present within this structure (Arikawa-

Hirasawa et al., 1999; Costell et al., 1999). The BM plays a critical role during early stages 

of the developing embryo (Miner and Yurchenco, 2004). Disruption in initial stages of BM 

development can have severe consequences for the state of the embryo, usually causing 
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embryonic lethality (Miner and Yurchenco, 2004). For instance, knockout of the laminin γ1 

subunit, the most expressed laminin subunit of the first BM in the embryo, causes lethality 

during the same period reported for LTBP-2 null lethality (E-5) (Miner et al., 2004; Smyth et 

al., 1999). The death of the embryo is due to the absence of BM (Smyth et al., 1999). We can 

speculate that LTBP-2 associates with the BM by interacting with perlecan, and thus it plays 

a role in early embryo development which is independent from elastic fibres. The possibility 

that the interaction of LTBP-2 with perlecan is necessary for proper development of the 

embryo deserves further investigation.  

In addition to the interaction with perlecan, we have established that LTBP-2 interacts 

with the cell surface HSPG syndecan-4 but not with another member of the syndecan family, 

syndecan-2, hence suggesting LTBP-2 may possess novel cell interaction. A previous study 

has demonstrated that LTBP-2 supports melanoma cell adhesion and migration (Vehvilainen 

et al., 2003), which appears to be dependent on α3β1 and α6β1 integrins, and that soluble 

heparin was able to inhibit this adhesion to LTBP-2. Syndecan-4 could therefore be a natural 

modulator of LTBP-2 interactions.  

Cell adhesion is a central, regulated cascade of events during development (Gumbiner, 

1996). The interaction of cells with the ECM contributes to modifications in cell proliferation, 

morphogenesis and survival and HSPGs allow this interaction to occur (Wilcox-Adelman et 

al., 2002). During embryo development syndecan-4 is mainly expressed in the embryonic 

ectoderm of the post-implantation embryo (Sutherland et al. 1991). It is possible that LTBP-2 

interacting with syndecans-4-expressing cells may be involved in some of these cell 

processes during development, after implantation of the embryo. Further analysis of the 

interaction of LTBP-2 with syndecan-4, identifying syndecan-expressing cells and 

establishing the distribution patterns in developing embryos may produce rewarding data. 

In addition to the solid phase binding studies we were interested in employing an 

alternative approach for isolating binding partners for LTBP-2 and also matrix protein βig-h3 

from tissue extracts or other protein mixtures using affinity chromatography. The advantage 

of this method was that it was not limited to the availability of purified candidate proteins. In 

addition to the LTBP-2 work, identifying βig-h3 interaction with associated components of 

collagen type-VI microfibrils has been ongoing in Dr. Gibson’s laboratory. Furthermore, 

isolating binding ligands of βig-h3 independent of collagen-VI microfibrils will provide 

insight into the possible novel function of this molecule in the matrix. During attempts to 

identify binding ligands for LTBP-2 and βig-h3, it was found that the highly adhesive nature 

of the two proteins contributed to non-specific interactions with the BNLPs, making it 

difficult to identify specific partners for these proteins by SDS-PAGE. Modifications to the 
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affinity chromatography system were carried out to improve detectability of specific 

interactions of proteins with the rβig-h3- and rLTBP-2 attached to sepharose columns.  

The presence of large numbers of proteins present in the eluted fractions from the 

columns made separation by SDS-PAGE alone an inadequate method. Thus 2-DGE was 

necessary for sufficient separation of the proteins. Two-Dimensional Gel Electrophoresis is a 

powerful technology for the study of a highly diverse protein sample. In general, 2,000 

protein spots can be visualised on a gel depending on the staining technique, the pI range of 

the first dimension and the size of the 2-DGE (Tannu and Hemby, 2006).  

The separation of the bait-column eluates by 2-DGE and subsequent silver staining 

did little to help identify candidate binding partners of rβig-h3 and rLTBP-2. This was due to 

several contributing factors, including the inconsistency of the amount of proteins entering 

the gels, most likely due to loss of proteins during sample preparation, and the use of small 

amounts of material. Some loss of protein during sample preparation is inevitable, but 

commencing with amounts as low as 5µg makes any loss significant. It should be noted that 

there are specific limitations to 2-DGE which depend on the characteristics of the proteins to 

be visualised. For instance, many hydrophobic proteins or extreme acidic or basic proteins 

are not able to enter the IPG strip used for first dimensional separation (Van den Bergh et al., 

2003). The detection of low numbers of protein spots on a gel made confirming possible 

candidate binding partners difficult. Even though silver staining is a highly sensitive method 

for protein staining (Steinberg et al., 2000), it can easily over-develop and speckled 

background staining also occurs (unpublished observation). In order to visualise less 

abundant proteins without compromising visualisation of more abundant proteins, 2-DGE in 

conjunction with CyDye DIGE fluor minimal and saturation dyes was considered. CyDye 

DIGE fluor minimal and saturation dyes and 2-DGE are proven tools for identification of 

ligands since in combination they provide sensitivity and allow analysis of multiple samples 

on one polyacrylamide gel. 

 CyDye DIGE fluor minimal and saturation dyes are much more sensitive than 

Coomassie Blue staining and are quantitative, unlike silver staining. However, there was a 

lack of reproducibility in the labelling of the proteins with the CyDye DIGE fluor minimal 

dyes, even though labelling of the proteins was achieved. To overcome this difficulty, CyDye 

DIGE fluor saturation dyes were used to label up to 5µg of total protein and generate 2-D 

images with 1,500 protein spots (Kondo et al., 2003). However, we were again unable to 

optimise the conditions for the labelling of proteins with CyDye DIGE fluor saturation dyes, 

and this was the main factor in the lack of adequate protein labelling which contributed to 

low numbers of proteins detectable on the gels. 
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Even though a suitable separating method and sensitive detection techniques were 

developed, higher initial concentrations of protein samples appeared to be the key to 

overcoming the above problem. The rationale for this is a) less manipulation is needed for 

sample preparation, for example various sample concentration steps will be eliminated, and b) 

several experiments can be carried out from the same column eluates and thus reproducibility 

will be improved. The higher concentrations will thus improve detection of possible 

candidate binding partners for rβig-h3 and rLTBP-2. 

 

8.2 Future Directions 

8.2.1 Experiments for the comprehensive understanding of LTBP-2 interactions with HSPG 

The recognition of heparin binding sites on fibrillin-1 has shed new light on its 

interaction with other ECM structures and the complexity of microfibril assembly (Cain et al., 

2005; Tiedemann et al., 2001; Tiedemann et al., 2005). More recently, LTBP-4 interaction 

with heparan sulphate has been shown to play a role in TGF-β storage and cell adhesion 

(Kantola et al., 2008). In this thesis, the interaction of LTBP-2 with heparin/HSPGs including 

perlecan and syndecan-4 has been demonstrated. However, more studies are needed for 

confirmation of the functional role of these binding interactions with LTBP-2. Defining the 

affinities of the LTBP-2 interactions with perlecan and syndecan-4 in vitro will indicate the 

strength of the interaction, and whether it is likely to be transient or more permanent. Results 

obtained in section 5.2 indicated the interaction between LTBP-2 and perlecan is through its 

HS-side chains. To determine if perlecan interacts only via its GAG-side chains, solid phase 

binding assay using perlecan core protein will determine if there are additional LTBP-2 

binding sites on perlecan.  

To understand the physiological significance of the identified interactions, 

determination of the range of tissues where LTBP-2 colocalises with perlecan or syndecan-4 

is required using immunohistochemisty. The use of this technique may also confirm any 

identified in vitro interaction to be biologically relevant. Both LTBP-2 and perlecan are 

expressed in tissues such as the aorta, lung, and kidney and these are possible tissues for 

further investigation. Colocalisation of LTBP-2 with HSPGs perlecan and/or syndecan-4 

during different stages of normal mouse embryonic development is another area of interest 

for understanding the possible functions of LTBP-2 in embryo development. Perlecan plays a 

role in the adaptive modification of the uterine micro-environment to receive and implant the 

embryo (San Martin et al., 2004). The role of LTBP-2 in this process needs further 

characterisation using immunohistochemistry techniques to look at the distribution patterns 

of the pre-implanted embryo and the uterine tissue. Furthermore, since syndecan-4 is mainly 

expressed in both the embryo and the uterine tissue after the embryo is implanted (San 
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Martin et al., 2004), distribution patterns of LTBP-2 and syndecan-4 in embryos and uterine 

tissues after implantation are worthy of investigation. 

 

8.2.2 Possible alternatives for the identification of binding partners for βig-h3 and LTBP-2 

 Determining protein-protein interaction is an important component in assigning 

function and understanding the biological relevance of βig-h3 and LTBP-2 within a 

physiological context. The actual detection of protein interaction is complicated by the fact 

that proteins themselves are chemically distinct entities with differing charges, numerous 

secondary and tertiary structural folds, and may include a wide variety of parameters, for 

instance concentration of protein, ionic strength, and dissociation constants, all of which can 

influence molecular interactions (Howell et al., 2006; Kantola et al., 2008). Hence, selection 

of the most appropriate experimental techniques is important to ensure that the interaction is 

detected.   

 Several methods can be used to study protein-protein interactions. Affinity 

chromatography was the first method of choice for detection of specific protein interaction 

with rβig-h3 and rLTBP-2 which were coupled to sepharose. The method was chosen 

because affinity chromatography has been used very successfully to identify specifically 

interacting proteins (Howell et al., 2006). Many efforts were made to identify specific 

partners from BNLPMs for rβig-h3 and rLTBP-2 attached to sepharose. The high background 

binding made the direct identification of potential interactions difficult using this method. 

Further alterations (to the method) may be made to improve the identification of specific 

binding partners for rβig-h3 and rLTBP-2 using this method. One of the alterations may be 

performing binding studies between rβig-h3-sepharose or rLTBP-2-sepharose in the presence 

of a mild detergent such as Nonidet P-40, Lubrol PX, octylglucoside, CHAPS, tween-20 or 

triton X-100, to aid in minimizing non-specific interactions of hydrophobic domains of 

proteins with βig-h3 and LTBP-2 coupled to sepharose. Alternatively, testing alternative 

eluting buffers for the elution of bound proteins may improve the isolation of candidate 

binding partners of βig-h3 and LTBP-2. Rather than using a strong denaturant (6M urea) for 

elution of all of the bound proteins, a gradient of denaturants can be used for the gradual 

elution of proteins interacting with different affinities from the columns. Alternatively, 

fractionation of the BNLPM using gel filtration chromatography prior to incubation with 

rβig-h3-sepharose and rLTBP-2-separose would be another appropriate approach for 

reducing the background binding problem.  

 In addition to alterations of binding conditions, increasing the size of the coupled 

columns used in affinity chromatography, by coupling more rβig-h3 and rLTBP-2 to CNBr- 

activated sepharose, may have improved the analysis of the proteins binding to rβig-h3-
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sepharose and rLTBP-2-sepharose. An increase in the size of the affinity columns should 

correlate with an increase in the amount of proteins eluted from the columns. Thus analysis 

of the bound proteins using Coomassie Blue staining would have been possible with minimal 

handling of the samples. However, an increase in the size of the columns also risks an 

increase in the amount of non-specific interaction with the columns. In 2-DGE, starting with 

a higher concentration of protein sample would mean that there would be a greater chance of 

retaining rarer proteins during sample preparation and thus more of these proteins would be 

visibly represented on the gel.  

 Another procedure similar in principle to the affinity columns used for interaction 

studies is affinity blotting. With affinity blotting, BNLPs eluted from rβig-h3 sepharose and 

rLTBP-2 sepharose can be fractionated by either SDS-PAGE or 2-DGE and transferred to 

nitrocellulose membrane. Specific interactors can then be identified by their ability to bind 

the probe (rβig-h3 or rLTBP-2). The appropriate probes can subsequently be detected either 

with antibodies specific to each protein or by anti-(tetra-his) antibody specific for the his6-tag 

of the recombinant proteins. Affinity blotting was used previously to identify the specific 

interaction of MAGP-1 with the α3 (VI) chain of pepsin type VI collagen (Finnis and Gibson, 

1997). Considerations in affinity blotting include the recovery of the biological activity of the 

proteins after separation under denaturing conditions and the activity of the probes added to 

the membrane. 

 Other methods such as co-immunoprecipitation (CoIP) can be used for detection of 

potential ligands of βig-h3 and LTBP-2. CoIP uses bait-specific antibody to co-precipitate the 

bait protein along with any target protein for identification of specific interactors, for 

example of βig-h3 and LTBP-2. The CoIP method has the advantage of identifying less 

tightly bound targets due to the specificity of the antibody for antigen. This allows interaction 

experiments to be carried out under less stringent conditions, more closely mimicking in vivo 

conditions. For example, successful identification of LTBP-2 interaction with fibulin-5 from 

cultured media of bovine aortic smooth muscle cells using CoIP has been recently reported 

Hirai et al., (2006). A disadvantage of this method is that it is not suitable for low abundance 

proteins (Howell et al., 2006). 

 The most common biochemical technique used to identify protein-protein interactions 

include affinity purification procedures. Either using antibodies to endogenous proteins or 

using exogenous expression of tagged recombinant protein baits. Mass spectrometry has 

become established as method of choice for identifying purified proteins because of its high 

sensitivity. However, the majority of these proteins usually represent contaminants, including 

proteins that bind non-specifically to the affinity matrix (Boulon et al., 2010). Thus, despite 

many technical improvements made in recent years, the unambiguous discrimination between 
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genuine protein interaction partners, either stable or transient and co-purifying contaminants 

remains one of the major challenges in the field. Most researchers have sought to identify 

specific protein interactors by reducing or eliminating the background of non-specific 

proteins through either biochemical or data analysis strategies (Boulon et al., 2010). In this 

project eliminating non-specific interactors was attempted at the biochemical level however, 

our groups have eliminated background binding through data analysis strategies. 

 Recently, affinity capture liquid chromatography tandem mass spectrometry has been 

used by others successfully to identify ECM molecular interactions (Cain et al., 2009). A 

range of purified recombinant human elastic fibre molecules containing four his6-tags were 

incubated with cells in culture or with the solubilised matrix. This was followed by 

purification of protein complexes formed with the recombinant proteins using a HisTrap FF 

column. Mass spectrometry analysis of the eluates from the affinity column revealed that 

abundant proteins were purified though this protocol. Amongst the proteins binding 

specifically to the bait proteins, keratin contaminants were also present and were estimated to 

have a protein-protein association probability of greater than 40% (Cain et al., 2009). These 

proteins were therefore removed from further analysis. It appears that the presence of non-

specific contaminants is inevitable. An alternate to the attempts of eliminating non-specific 

binding of proteins to the affinity columns, is discarding them from future analysis similar to 

the works of Cain et al., (2009). 

 In addition, the combination of quantitative mass spectrometry and differential 

labelling of proteins with heavy isotopes, especially with stable isotope labelling with amino 

acids in cell culture (SILAC) (Ong et al., 2002; Ong and Mann, 2006) can also help to 

distinguish between specific and non-specific binding proteins in an affinity experiment. 

Differentiation between specific and non-specific binding of proteins is achieved through the 

inclusion of an integral negative control. The presence of a negative control allows for direct 

comparison between the relative levels of each protein present in the control and 

experimental samples. SILAC thus objectively identifies proteins that can bind non-

specifically to the affinity matrix or the fusion tag protein and highhights by comparison 

proteins that bind specifically to the bait protein (Vermeulen et al., 2008). For instance, HeLa 

cells expressing a tagged protein were metabolically labelled by culturing in heavy media 

containing 13C-isotopes of arginine and lysine, while the parental HeLa cells were grown in 

light media containing the 12C-isotopes of arginine and lysine. Whole cell extracts were then 

prepared and pre-cleared on sepharose beads. The pre-cleared extracts were mixed in equal 

amounts prior to affinity purification of the tagged protein. This was followed by elution of 

the protein from the beads and size fractionation by SDS-PAGE for digestion and liquid 

chromatography tandem mass spectrometric analysis. The advantage of SILAC is that it 
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identifies components of protein complexes purified under lower stringency conditions, 

which preserves more specific interactions (Trinkle-Mulcahy et al., 2008).  

 Overall, we have characterised LTBP-2 as a heparin/HSPG binding molecule. In vitro 

binding assays demonstrated LTBP-2 binds basement membrane HSPG perlecan and 

transmembrane cell-signalling HSPG syndecan-4. These findings suggest LTBP-2 has a more 

complex function in elastic fibre assembly, than previously anticipated. As described in 

section 1.1.2 tropoelastin aggregates on cell surfaces and it remains attached to cell surface 

heparan sulphate, prior to its release onto preformed microfibrils. Since unknown HSPGs 

play a critical role in elastic fibre assembly, it may be that LTBP-2 binding to heparan 

sulphate enhances displacement of the fibulin-5/elastin complex from the cell surface HSPGs. 

In addition, the binding of LTBP-2 to GAG-side chains of HSPGs may be involved in the 

detachment of elastin from fibulin-5 during its deposition on fibrillin-microfibril scaffold. 

Syndecan-4 is a strong candidate for a HSPG involved in the above mechanisms. The 

interaction of LTBP-2 with syndecan-4 may also be important for other processes. Generally, 

LTBP-2 is known as an antiadhesive molecule with poor interaction with integrin receptors. 

However, the findings presented within this thesis suggest that syndecan-4 may be a novel 

mediator of LTBP-2-cell signalling. In addition, it would be interesting to investigate whether 

LTBP-2 binding to syndecan-4 influences heparin sulphate-dependent growth factor 

signalling e.g, fibroblast growth factor-2, which requires the formation of a ternary complex 

with its high affinity receptors (FGFR1-FGFR4) and HSPGs to initiate its signalling cascade 

(Eswarakumar et al., 2005; Jaye et al., 1992). Identification of novel binding partners for 

LTBP-2 has helped in understanding the function of this intriguing matrix molecule. Further 

studies into revealing the full spectrum of LTBP-2-binding proteins is an exciting area of 

continuing research that will lead to disclosure of additional unknown biological roles of 

LTBP-2. 
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APPENDIX A 

 
Primer sequences used for cloning of recombinant LTBP-2NT(H) and LTBP-2C(H). Prime 
sequences are written 5’-3’. Primer sequences are based upon GenbankTM published 
sequences, accession numbers and base numbers where the primers bind are included. 
 
 Sequence (5’-3’) Bases GenbankTM 

accession 
code 

HindIII +LTBP-2 NT 
Forward  

CAC CAA GCT TCC AAA GGG ACC CCG T
  

492-506 NM_000428 

LTBP-2 NT Reverse+ 
HindIII 

GGC CAA GCT TAG AGT  CAC CCT TGT C 2749-2763 NM_000428 

LTBP-2 Central Forward 
 

CTG AAA GCT TGG ACT CTC AGG CTG 
GCC AGG 

2758-2776 NM_000428 

LTBP-2 Central Reverse TTT TAA GCT TGA TGT CCA TGT GGA 
TGT CGT 

5123-5142 NM_000428 
 

M13F 
 

GTTTTCCCAGTCACGAC   

M13R 
 

CAGGAAACAGCTATGAC   

HLTBPF3 
 

CAG CCC CCT GGG TGA CTC CT 

 

2141-2148 NM_000428 

LTBP-R2 TCA CAG AGC GCG GCC CCA CAT AC 

 

4450-4472 NM_000428 
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APPENDIX B 

 
Solution formulation 
 
10×PCR reaction buffer (Stratagene, La Jolla, 
CA) 
200mM Tris-HCl (pH 8.8) 
20mM MgSO4 
100mM KCl 
100mM (NH4)2SO4 
1% Triton X-100 
1mg/ml nuclease-free BSA 
 
6× load buffer for DNA gels 
5mL Glycerol 
2mL 50× TAE buffer (see below) 
2mL Bromophenol Blue (saturated) (see below) 
Adjust volume to 10mL using ddH2O, aliquot and 
store at -20˚C 
 
50× TAE 
2M Tris-HCl  
57.1mL Glacial acetic acid 
0.1M Na2EDTA.2H2O 
Adjust to 1L volume using ddH2O 
 
Soc medium 
2g bacto-tryptone 
0.5g bacto yeast extract 
10mM NaCl 
2.5mM KCl 
Dissolve in 100mL ddH2O, autoclave and cool to 
room temperature. Add 20mM Mg2+ (1mL of 2M 
Mg2+ stock containing 1M MgCl2 and 1M MgSO4) 
and 20mM glucose. Filter through 0.2µm filter to 
sterilize store at room temperature in 25-50mM 
aliquots.  
 
Luria Broth 
10g Bacto-tryptone (BD Biosciences, Sparks, MD) 
5g Bacto-yeast extract (BD Biosciences, Sparks, 
MD) 
86mM NaCl 
Dissolve in 1L ddH2O, adjust pH to 7.5 with 
NaOH and autoclave to sterilize. For LB plates, 
include 15g bacto-agar (BD, Sparks, MD) prior to 
autoclaving. 
Allow solutions to cool to 55˚C prior to adding 
amplicillin. 
 
Dulbecco’s Modification of Eagles Medium 
(DMEM) 
13.05g/1L Powdered DMEM 
3.7g/1L NaHCO3 
pH 7.2 
0.22µm filter sterilized  
 
Dulbecco’s PBS 
0.14M NaCl 
2.7mM KCl 
3.2mM Na2HPO4.12H2O 
1.5mM KH2PO4 

 

 
pH 7.4 
Filter sterilize using 0.22µm filter 
 
8×Phosphate Buffer 
80mM Na2HPO4.12H2O 
80mM NaH2PO4.2H2O 
4M NaCl 
pH 7.4 
 
2M Imidazole 
2M imidazole 
pH 7.4 
Filter through 0.45µm filter 
 
0.1M NiSO4 (nickel sulphate) 
0.1M NiSO4.6H2O 
Dissolve in ddH2O and filter through a 0.2µm filter. 
 
10mM Imidazole Buffer 
1× Phosphate buffer 
10mM Imidazole 
pH 7.4-7.6 
 
500mM Imidazole Buffer 
1×Phosphate buffer 
500mM Imidazole 
pH 7.4-7.6  
 
0.05M EDTA Solution 
0.02M Na2HPO4 
0.5M NaCl 
0.05M EDTA 
Add ddH2O to 100mls, filter through 0.2µm filter 
 
1M NaOH Solution 
4g NaOH 
Dissolve in 100mLs of ddH2O, filter through 0.2µm 
filter  
 
Tris Buffered Saline (TBS)/ 0.5M NaCl 
20mM Tris 
0.5M NaCl 
0.005% Thimerosal 
pH 7.4 
Dissolve in ddH2O, adjust pH 7.4 
 
Freezing solution A 
50% (v/v) Foetal Calf Serum 
50% (v/v) DMEM 
 
Freezing solution B 
15% (v/v) Dimethyl sulphoxide (DMSO) 
85% (v/v) DMEM 
Dilute DMSO into DMEM then filter sterilize the 
solution through 0.2µm. 
 
Stock 30% Acrylamide Solution  
4.22M (30%) acrylamide  
52mM (0.8%) Bis-acrylamide (N-
N,Methylenebisaceylamide) 
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Dissolve in ddH2O, filter using whatman paper, 
store in a dark bottle at 4˚C 
 
Separating Gel 
25mL separating gel buffer 
 x mL Stock 30% acrylamide solution (amount 
depends on the strength of the separating gel) 
10mg Ammonium persulphate  
22.5µL TEMED (Sigma-Aldrich, St. Louis, MO) 
Dissolve in ddH2O to total volume of 50mL, the 
ammonium persulphate and TEMED should only 
be added just before gels are to be set 
 
3% Stacking Gel 
12.5mL Stacking Gel Buffer  
2.5mL Stock acrylamide solution  
18.8mg Ammonium Peroxide 
11µL TEMED 
Dissolve in ddH2O to total volume of 25mL, the 
ammonium persulphate and TEMED should be 
added just before gels are to be set     
 
Protein sample Loading Buffer 
10mL Glycerol (add last) 
25mL Stacking gel buffer (see above) 
2M Urea 
20mL of 10% (w/v) SDS solution 
20mg phenylmethylsulphonyl fluoride (PMSF)  
(dissolve in of ethanol added dropwise) (Sigma-
aldrich, St Louis, MO) 
5mL Bromophenol Blue (saturated) (see below) 
Dissolve in 100mL ddH2O until dissolved, aliquot 
and store at -20˚C. 
 
Saturated Bromophenol Blue 
0.1g Bromophenol Blue 
Dissolve in 20mL ddH2O by stirring overnight at 
37˚C 
 
Chamber Buffer 
25mM Tris 
195mM Glycine 
3.5mM SDS 
Dissolve in ddH2O, do not pH 
 
Coomassie Brillian Blue R-250 
Dye content of coomassie Blue should be ∼50% 
 
0.3% (w/v) Coomassie brilliant Blue R-250 
45% (v/v) Methanol  
9% (v/v) Acetic Acid  
Dissolve in ddH2O, stir solution well, filter using  
Whatman paper before use. 
 
40% Methanol/ acetic acid solution 
40% (v/v) Methanol 
7% (v/v) Acetic Acid 
Dissolve in ddH2O 
 
 
7.5% Methanol/ acetic acid solution 
7.5% (v/v) Methanol 
7% (v/v) Acetic Acid 
Dissolve in ddH2O  
 

Tris/Glycine Buffer 
6mM Tris 
48mM Glycine 
pH 8.3 
 
Tris Buffered Saline (TBS) 
20mM Tris 
0.13M NaCl 
0.0005% (w/v) Thimerosal 
Dissolve in ddH2O, adjust pH to 7.4 with HCl and 
autoclave if sterile solution required 
 
Blocking solution for western blots 
10% (w/v) non-fat skim milk in TBS 
3% (w/v) BSA in TBS for anti-(his tag) antibodies 
 
Antibody solution for western blots 
2% (w/v) non-fat milk in TBS 
3% (w/v) BSA in TBS for anti-(his tag) antibodies 
 
Tris/ Tween-20/ Triton X-100 
20mM Tris 
500mM NaCl 
0.05% (v/v) Tween-20 
0.2% (v/v) Triton X-100 
0.005% Thimerosal 
Dissolve Tris, NaCl, and thimerosal in ddH2O and 
then add tween-20 and triton X-100, adjust pH to 7.5 
 
Substrate Buffer 
100mM Tris 
100mM NaCl 
50mM MgCl2 
pH 9.5 
 
Developing solution for revealing western blots 
10mL Substrate Buffer 
100µL BCIP (see below) 
100µL NBT (see below) 
mix and use immediately 
 
5-Bromo-4Chloro-3-indolyl-phosphate (BCIP) 
(Diagnostic Chemicals Ltd, Charlottetown, PEI)  
25mg BCIP 
0.5ml H2O 
0.5ml N, N-Dimethylformamide (DMF) 
 
Nitro Blue Tetrazolium (NBT) 
(Boehringer Mannheim GmbH, Mannheim, 
Germany) 
50mg NBT 
0.3ml H2O 
0.7ml N, N-Dimethylformamide (DMF) 
 
H2SO4/Sodium Tetreborate 
0.0125M Tetraborate in conc. H2SO4. 
Phosphate buffered Saline (PBS) 
20mM NaH2PO2.2H2O 
0.13M NaCl 
0.005% Thimerosal 
 
Coupling Buffer 
0.1M NaHCO3 
0.5M NaCl 
pH 4 
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Blocking Buffer 
0.1M Ethanolamine 
pH 8 
 
Rehydration Buffer 
6M Urea 
50mM Dithiothreitol 
4% CHAPS 
0.2% Bio-Lyte 3/10 ampholytes 
0.0002% Bromophenol Blue 
 
Dithiothreitol Equilibration Buffer 
6M Urea 
2% (v/v) SDS 
0.05M Tris pH8.8 
20% (v/v) Glycerol 
2% (w/v) Dithiothreitol 
 
Iodoacetamide Equilibration Buffer 
6M Urea 
2% (v/v) SDS 
0.05M Tris pH8.8 
20% (v/v) Glycerol 
2.5% (w/v) Iodoacetamide 
 
Lysis Buffer 
7M Urea 
2M Thiourea 
4%CHAPS 
30mM Tris 
pH 8.5 for minimal labelling  
pH 8.0 for saturation labelling  
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APPENDIX C 
 

Antibody concentrations for various experiments conducted are listed in the table below. 
Concentrations for each antibody are indicated as working dilutions from stock antibody 
solution ane are specified for western blots, solid phase assays and tissue section 
immunofluorescence. 
 
Antigen Antibody  Concentration 

for blot 
Concentration 
for solid 
phase  

Concentration 
for immumo-
fluorescence 

his6-tag Tetra-his at 
100µg/mL 
(Qiagen) 

Mouse 
ascites 
Monoclonal 

1:1000 1:1000-1:2000  

LTBP-2 LTBP-2C 
(affinity 
purified at 
500µg/mL) 

Rabbit 
polyclonal 

1:500 1:5000 1:20 

Fibrillin-
1 

MAB1919-
Fib1N(H) 
2mg/mL 
(Chemicon) 

Mouse 
ascites 
monoclonal 

1:2000  1:200 
 

Fibrillin-
1 
 

Fib-1A 
 

Rabbit 
Polycolonal 

  1:10 

Perlecan 7A5CC Mouse 
Monoclonal 

  1:100 

EHS 
Laminin, 
α-chain 

Rabbit-47 
“14/9/87” 

Rabbit 
Polyclonal 

  1:10 

βig-h3 MP78/70 Polyclonal 1:500   
βig-h3 Rabbit-45 Polyclonal 1:5000   
 Goat anti-

rabbit 
conjugated 
to alkaline 
phosphatase 
or  
horseradish 
peroxidase 
(Bio-Rad) 

Goat 
secondary  

1:2000 
 

1:2000  

 Goat anti-
mouse 
conjugated 
to alkaline 
phosphatase 
or  
horseradish 
peroxidase 

Goat 
secondary 

1:2000 
1:5000 (for 
detecting 6His-
specific 
antibodies) 

1:2000  

 FITC 
1.5mg/mL 
(Jackson 
Immuno-

Donkey 
secondary 

  1:25 
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reseach) 
 Alexa488 

2mg/mL 
(Molecular 
Life 
Sciences) 

Donkey 
secondary 

  1:25 

 Cy5 
1.5mg/mL 
(Molecular 
Life 
Sciences) 

Donkey 
secondary 

  1:25 



 

 - 146 - 

REFERENCES 

 
Ackley, B.D., Kang, S.H., Crew, J.R., Suh, C., Jin, Y. and Kramer, J.M. (2003) The 

basement membrane components nidogen and type XVIII collagen regulate 
organization of neuromuscular junctions in Caenorhabditis elegans. J Neurosci, 23, 
3577-3587. 

Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature, 422, 198-
207. 

Alexopoulos, L.G., Setton, L.A. and Guilak, F. (2005) The biomechanical role of the 
chondrocyte pericellular matrix in articular cartilage. Acta Biomater, 1, 317-325. 

Alexopoulos, L.G., Youn, I., Bonaldo, P. and Guilak, F. (2009) Developmental and 
osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in 
the cartilage pericellular matrix. Arthritis Rheum, 60, 771-779. 

Alexopoulou, A.N., Multhaupt, H.A. and Couchman, J.R. (2007) Syndecans in wound 
healing, inflammation and vascular biology. Int J Biochem Cell Biol, 39, 505-528. 

Ali, M., McKibbin, M., Booth, A., Parry, D.A., Jain, P., Riazuddin, S.A., Hejtmancik, J.F., 
Khan, S.N., Firasat, S., Shires, M., Gilmour, D.F., Towns, K., Murphy, A.L., 
Azmanov, D., Tournev, I., Cherninkova, S., Jafri, H., Raashid, Y., Toomes, C., Craig, 
J., Mackey, D.A., Kalaydjieva, L., Riazuddin, S. and Inglehearn, C.F. (2009) Null 
mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet, 84, 664-
671. 

Anderson, D.R. (1981) The development of the trabecular meshwork and its abnormality in 
primary infantile glaucoma. Trans Am Ophthalmol Soc, 79, 458-485. 

Annes, J.P., Munger, J.S. and Rifkin, D.B. (2003) Making sense of latent TGFbeta activation. 
J Cell Sci, 116, 217-224. 

Appleton, C.T., Pitelka, V., Henry, J. and Beier, F. (2007) Global analyses of gene 
expression in early experimental osteoarthritis. Arthritis Rheum, 56, 1854-1868. 

Arikawa-Hirasawa, E., Rossi, S.G., Rotundo, R.L. and Yamada, Y. (2002) Absence of 
acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nat 
Neurosci, 5, 119-123. 

Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J.R. and Yamada, Y. (1999) 
Perlecan is essential for cartilage and cephalic development. Nat Genet, 23, 354-358. 

Arteaga-Solis, E., Gayraud, B., Lee, S.Y., Shum, L., Sakai, L. and Ramirez, F. (2001) 
Regulation of limb patterning by extracellular microfibrils. J Cell Biol, 154, 275-281. 

Ashworth, J.L., Kielty, C.M. and McLeod, D. (2000) Fibrillin and the eye. Br J Ophthalmol, 
84, 1312-1317. 

Aviezer, D., Hecht, D., Safran, M., Eisinger, M., David, G. and Yayon, A. (1994) Perlecan, 
basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, 
mitogenesis, and angiogenesis. Cell, 79, 1005-1013. 

Ayad, S., Evans, H., Weiss, J.B. and Holt, L. (1984) Type VI collagen but not type V 
collagen is present in cartilage. Coll Relat Res, 4, 165-168. 

Baldock, C., Koster, A.J., Ziese, U., Rock, M.J., Sherratt, M.J., Kadler, K.E., Shuttleworth, 
C.A. and Kielty, C.M. (2001) The supramolecular organization of fibrillin-rich 
microfibrils. J Cell Biol, 152, 1045-1056. 

Baldock, C., Siegler, V., Bax, D.V., Cain, S.A., Mellody, K.T., Marson, A., Haston, J.L., 
Berry, R., Wang, M.C., Grossmann, J.G., Roessle, M., Kielty, C.M. and Wess, T.J. 
(2006) Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and 
mechanism for extensibility. Proc Natl Acad Sci U S A, 103, 11922-11927. 

Batmunkh, E., Tatrai, P., Szabo, E., Lodi, C., Holczbauer, A., Paska, C., Kupcsulik, P., Kiss, 
A., Schaff, Z. and Kovalszky, I. (2007) Comparison of the expression of agrin, a 
basement membrane heparan sulfate proteoglycan, in cholangiocarcinoma and 
hepatocellular carcinoma. Hum Pathol, 38, 1508-1515. 



 

 - 147 - 

Battaglia, C., Mayer, U., Aumailley, M. and Timpl, R. (1992) Basement-membrane heparan 
sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by 
sites in the protein core. Eur J Biochem, 208, 359-366. 

Bax, D.V., Bernard, S.E., Lomas, A., Morgan, A., Humphries, J., Shuttleworth, C.A., 
Humphries, M.J. and Kielty, C.M. (2003) Cell adhesion to fibrillin-1 molecules and 
microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem, 
278, 34605-34616. 

Bax, D.V., Mahalingam, Y., Cain, S., Mellody, K., Freeman, L., Younger, K., Shuttleworth, 
C.A., Humphries, M.J., Couchman, J.R. and Kielty, C.M. (2007) Cell adhesion to 
fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-
binding site that regulates focal adhesion formation. J Cell Sci, 120, 1383-1392. 

Beauvais, D.M. and Rapraeger, A.C. (2004) Syndecans in tumor cell adhesion and signaling. 
Reprod Biol Endocrinol, 2, 3. 

Bellin, R., Capila, I., Lincecum, J., Park, P.W., Reizes, O. and Bernfield, M.R. (2002) 
Unlocking the secrets of syndecans: transgenic organisms as a potential key. 
Glycoconj J, 19, 295-304. 

Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J. and Zako, M. 
(1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem, 
68, 729-777. 

Bidanset, D.J., Guidry, C., Rosenberg, L.C., Choi, H.U., Timpl, R. and Hook, M. (1992) 
Binding of the proteoglycan decorin to collagen type VI. J Biol Chem, 267, 5250-
5256. 

Billings, P.C., Herrick, D.J., Howard, P.S., Kucich, U., Engelsberg, B.N. and Rosenbloom, J. 
(2000) Expression of betaig-h3 by human bronchial smooth muscle cells: localization 
To the extracellular matrix and nucleus. Am J Respir Cell Mol Biol, 22, 352-359. 

Billings, P.C., Whitbeck, J.C., Adams, C.S., Abrams, W.R., Cohen, A.J., Engelsberg, B.N., 
Howard, P.S. and Rosenbloom, J. (2002) The transforming growth factor-beta-
inducible matrix protein (beta)ig-h3 interacts with fibronectin. J Biol Chem, 277, 
28003-28009. 

Bix, G., Fu, J., Gonzalez, E.M., Macro, L., Barker, A., Campbell, S., Zutter, M.M., Santoro, 
S.A., Kim, J.K., Hook, M., Reed, C.C. and Iozzo, R.V. (2004) Endorepellin causes 
endothelial cell disassembly of actin cytoskeleton and focal adhesions through 
alpha2beta1 integrin. J Cell Biol, 166, 97-109. 

Bix, G. and Iozzo, R.V. (2008) Novel interactions of perlecan: unraveling perlecan's role in 
angiogenesis. Microsc Res Tech, 71, 339-348. 

Blyth, M., Foulds, N., Turner, C. and Bunyan, D. (2008) Severe Marfan syndrome due to 
FBN1 exon deletions. Am J Med Genet A, 146A, 1320-1324. 

Boldt, A., Wetzel, U., Lauschke, J., Weigl, J., Gummert, J., Hindricks, G., Kottkamp, H. and 
Dhein, S. (2004) Fibrosis in left atrial tissue of patients with atrial fibrillation with 
and without underlying mitral valve disease. Heart, 90, 400-405. 

Bonaldo, P., Braghetta, P., Zanetti, M., Piccolo, S., Volpin, D. and Bressan, G.M. (1998) 
Collagen VI deficiency induces early onset myopathy in the mouse: an animal model 
for Bethlem myopathy. Hum Mol Genet, 7, 2135-2140. 

Boulon, S., Ahmad, Y., Trinkle-Mulcahy, L., Verheggen, C., Cobley, A., Gregor, P., 
Bertrand, E., Whitehorn, M. and Lamond, A.I. Establishment of a protein frequency 
library and its application in the reliable identification of specific protein interaction 
partners. Mol Cell Proteomics, 9, 861-879. 

Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 
248-254. 

Breborowicz, A., Korybalska, K., Grzybowski, A., Wieczorowska-Tobis, K., Martis, L. and 
Oreopoulos, D.G. (1996) Synthesis of hyaluronic acid by human peritoneal 
mesothelial cells: effect of cytokines and dialysate. Perit Dial Int, 16, 374-378. 



 

 - 148 - 

Breborowicz, A., Wisniewska, J., Polubinska, A., Wieczorowska-Tobis, K., Martis, L. and 
Oreopoulos, D.G. (1998) Role of peritoneal mesothelial cells and fibroblasts in the 
synthesis of hyaluronan during peritoneal dialysis. Perit Dial Int, 18, 382-386. 

Bressan, G.M., Daga-Gordini, D., Colombatti, A., Castellani, I., Marigo, V. and Volpin, D. 
(1993) Emilin, a component of elastic fibers preferentially located at the elastin-
microfibrils interface. J Cell Biol, 121, 201-212. 

Brockington, M., Brown, S.C., Lampe, A., Yuva, Y., Feng, L., Jimenez-Mallebrera, C., 
Sewry, C.A., Flanigan, K.M., Bushby, K. and Muntoni, F. (2004) Prenatal diagnosis 
of Ullrich congenital muscular dystrophy using haplotype analysis and collagen VI 
immunocytochemistry. Prenat Diagn, 24, 440-444. 

Broekelmann, T.J., Kozel, B.A., Ishibashi, H., Werneck, C.C., Keeley, F.W., Zhang, L. and 
Mecham, R.P. (2005) Tropoelastin interacts with cell-surface glycosaminoglycans via 
its COOH-terminal domain. J Biol Chem, 280, 40939-40947. 

Brown-Augsburger, P., Broekelmann, T., Mecham, L., Mercer, R., Gibson, M.A., Cleary, 
E.G., Abrams, W.R., Rosenbloom, J. and Mecham, R.P. (1994) Microfibril-associated 
glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate 
for transglutaminase. J Biol Chem, 269, 28443-28449. 

Bruns, R.R., Press, W., Engvall, E., Timpl, R. and Gross, J. (1986) Type VI collagen in 
extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron 
microscopy. J Cell Biol, 103, 393-404. 

Bujan, J., Gimeno, M.J., Jimenez, J.A., Kielty, C.M., Mecham, R.P. and Bellon, J.M. (2003) 
Expression of elastic components in healthy and varicose veins. World J Surg, 27, 
901-905. 

Burg, M.A., Tillet, E., Timpl, R. and Stallcup, W.B. (1996) Binding of the NG2 proteoglycan 
to type VI collagen and other extracellular matrix molecules. J Biol Chem, 271, 
26110-26116. 

Cain, S.A., Baldock, C., Gallagher, J., Morgan, A., Bax, D.V., Weiss, A.S., Shuttleworth, 
C.A. and Kielty, C.M. (2005) Fibrillin-1 interactions with heparin. Implications for 
microfibril and elastic fiber assembly. J Biol Chem, 280, 30526-30537. 

Cain, S.A., Baldwin, A.K., Mahalingam, Y., Raynal, B., Jowitt, T.A., Shuttleworth, C.A., 
Couchman, J.R. and Kielty, C.M. (2008) Heparan sulfate regulates fibrillin-1 N- and 
C-terminal interactions. J Biol Chem, 283, 27017-27027. 

Cain, S.A., McGovern, A., Small, E., Ward, L.J., Baldock, C., Shuttleworth, A. and Kielty, 
C.M. (2009) Defining elastic fiber interactions by molecular fishing: an affinity 
purification and mass spectrometry approach. Mol Cell Proteomics, 8, 2715-2732. 

Camacho, C.J. and Vajda, S. (2001) Protein docking along smooth association pathways. 
Proc Natl Acad Sci U S A, 98, 10636-10641. 

Camacho Vanegas, O., Bertini, E., Zhang, R.Z., Petrini, S., Minosse, C., Sabatelli, P., Giusti, 
B., Chu, M.L. and Pepe, G. (2001) Ullrich scleroatonic muscular dystrophy is caused 
by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A, 98, 7516-7521. 

Cardy, C.M. and Handford, P.A. (1998) Metal ion dependency of microfibrils supports a rod-
like conformation for fibrillin-1 calcium-binding epidermal growth factor-like 
domains. J Mol Biol, 276, 855-860. 

Carson, D.D., DeSouza, M.M. and Regisford, E.G. (1998) Mucin and proteoglycan functions 
in embryo implantation. Bioessays, 20, 577-583. 

Carson, D.D., Tang, J.P. and Julian, J. (1993) Heparan sulfate proteoglycan (perlecan) 
expression by mouse embryos during acquisition of attachment competence. Dev Biol, 
155, 97-106. 

Carta, L., Pereira, L., Arteaga-Solis, E., Lee-Arteaga, S.Y., Lenart, B., Starcher, B., Merkel, 
C.A., Sukoyan, M., Kerkis, A., Hazeki, N., Keene, D.R., Sakai, L.Y. and Ramirez, F. 
(2006) Fibrillins 1 and 2 perform partially overlapping functions during aortic 
development. J Biol Chem, 281, 8016-8023. 

Castelletti, F., Donadelli, R., Banterla, F., Hildebrandt, F., Zipfel, P.F., Bresin, E., Otto, E., 
Skerka, C., Renieri, A., Todeschini, M., Caprioli, J., Caruso, R.M., Artuso, R., 



 

 - 149 - 

Remuzzi, G. and Noris, M. (2008) Mutations in FN1 cause glomerulopathy with 
fibronectin deposits. Proc Natl Acad Sci U S A, 105, 2538-2543. 

Cha, J., Kwak, T., Butmarc, J., Kim, T.A., Yufit, T., Carson, P., Kim, S.J. and Falanga, V. 
(2008) Fibroblasts from non-healing human chronic wounds show decreased 
expression of beta ig-h3, a TGF-beta inducible protein. J Dermatol Sci, 50, 15-23. 

Chakravarti, R., Sapountzi, V. and Adams, J.C. (2005) Functional role of syndecan-1 
cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. 
Mol Biol Cell, 16, 3678-3691. 

Chang, J., Nakajima, H. and Poole, C.A. (1997) Structural colocalisation of type VI collagen 
and fibronectin in agarose cultured chondrocytes and isolated chondrons extracted 
from adult canine tibial cartilage. J Anat, 190 ( Pt 4), 523-532. 

Charbonneau, N.L., Dzamba, B.J., Ono, R.N., Keene, D.R., Corson, G.M., Reinhardt, D.P. 
and Sakai, L.Y. (2003) Fibrillins can co-assemble in fibrils, but fibrillin fibril 
composition displays cell-specific differences. J Biol Chem, 278, 2740-2749. 

Charbonneau, N.L., Ono, R.N., Corson, G.M., Keene, D.R. and Sakai, L.Y. (2004) Fine 
tuning of growth factor signals depends on fibrillin microfibril networks. Birth 
Defects Res C Embryo Today, 72, 37-50. 

Chaudhry, S.S., Gazzard, J., Baldock, C., Dixon, J., Rock, M.J., Skinner, G.C., Steel, K.P., 
Kielty, C.M. and Dixon, M.J. (2001) Mutation of the gene encoding fibrillin-2 results 
in syndactyly in mice. Hum Mol Genet, 10, 835-843. 

Chen, E., Hermanson, S. and Ekker, S.C. (2004) Syndecan-2 is essential for angiogenic 
sprouting during zebrafish development. Blood, 103, 1710-1719. 

Chen, Q., Sivakumar, P., Barley, C., Peters, D.M., Gomes, R.R., Farach-Carson, M.C. and 
Dallas, S.L. (2007) Potential role for heparan sulfate proteoglycans in regulation of 
transforming growth factor-beta (TGF-beta) by modulating assembly of latent TGF-
beta-binding protein-1. J Biol Chem, 282, 26418-26430. 

Chernousov, M.A. and Carey, D.J. (1993) N-syndecan (syndecan 3) from neonatal rat brain 
binds basic fibroblast growth factor. J Biol Chem, 268, 16810-16814. 

Cheung, C.L., Sham, P.C., Chan, V., Paterson, A.D., Luk, K.D. and Kung, A.W. (2008) 
Identification of LTBP2 on chromosome 14q as a novel candidate gene for bone 
mineral density variation and fracture risk association. J Clin Endocrinol Metab, 93, 
4448-4455. 

Choudhury, R., McGovern, A., Ridley, C., Cain, S.A., Baldwin, A., Wang, M.C., Guo, C., 
Mironov, A., Jr., Drymoussi, Z., Trump, D., Shuttleworth, A., Baldock, C. and Kielty, 
C.M. (2009) Differential regulation of elastic fiber formation by fibulin-4 and -5. J 
Biol Chem, 284, 24553-24567. 

Chung, K.Y., Taylor, J.S., Shum, D.K. and Chan, S.O. (2000) Axon routing at the optic 
chiasm after enzymatic removal of chondroitin sulfate in mouse embryos. 
Development, 127, 2673-2683. 

Cizmeci-Smith, G., Langan, E., Youkey, J., Showalter, L.J. and Carey, D.J. (1997) 
Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and 
arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 17, 
172-180. 

Clarke, A.W., Arnspang, E.C., Mithieux, S.M., Korkmaz, E., Braet, F. and Weiss, A.S. (2006) 
Tropoelastin massively associates during coacervation to form quantized protein 
spheres. Biochemistry, 45, 9989-9996. 

Cleary, E.G. and Gibson, M.A. (1983) Elastin-associated microfibrils and microfibrillar 
proteins. Int Rev Connect Tissue Res, 10, 97-209. 

Cleary, E.G., Sandberg, L.B. and Jackson, D.S. (1967) The changes in chemical composition 
during development of the bovine nuchal ligament. J Cell Biol, 33, 469-479. 

Cleary, E.G.a.G., M. A. (1996) Elastic tissue, elastin and elastin-associated microfibrils. 
Amsterdam: Harwood Academic Publishers. 



 

 - 150 - 

Cohen, I.R., Grassel, S., Murdoch, A.D. and Iozzo, R.V. (1993) Structural characterization of 
the complete human perlecan gene and its promoter. Proc Natl Acad Sci U S A, 90, 
10404-10408. 

Colombatti, A., Bonaldo, P., Ainger, K., Bressan, G.M. and Volpin, D. (1987) Biosynthesis 
of chick type VI collagen. I. Intracellular assembly and molecular structure. J Biol 
Chem, 262, 14454-14460. 

Colombatti, A., Doliana, R., Bot, S., Canton, A., Mongiat, M., Mungiguerra, G., Paron-Cilli, 
S. and Spessotto, P. (2000) The EMILIN protein family. Matrix Biol, 19, 289-301. 

Corson, G.M., Chalberg, S.C., Dietz, H.C., Charbonneau, N.L. and Sakai, L.Y. (1993) 
Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure 
and alternatively spliced exons at the 5' end. Genomics, 17, 476-484. 

Corson, G.M., Charbonneau, N.L., Keene, D.R. and Sakai, L.Y. (2004) Differential 
expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, 
connective tissues. Genomics, 83, 461-472. 

Costell, M., Gustafsson, E., Aszodi, A., Morgelin, M., Bloch, W., Hunziker, E., Addicks, K., 
Timpl, R. and Fassler, R. (1999) Perlecan maintains the integrity of cartilage and 
some basement membranes. J Cell Biol, 147, 1109-1122. 

Couchman, J.R. (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? 
Nat Rev Mol Cell Biol, 4, 926-937. 

Curran, M.E., Atkinson, D.L., Ewart, A.K., Morris, C.A., Leppert, M.F. and Keating, M.T. 
(1993) The elastin gene is disrupted by a translocation associated with supravalvular 
aortic stenosis. Cell, 73, 159-168. 

Dabovic, B., Chen, Y., Colarossi, C., Obata, H., Zambuto, L., Perle, M.A. and Rifkin, D.B. 
(2002a) Bone abnormalities in latent TGF-[beta] binding protein (Ltbp)-3-null mice 
indicate a role for Ltbp-3 in modulating TGF-[beta] bioavailability. J Cell Biol, 156, 
227-232. 

Dabovic, B., Chen, Y., Colarossi, C., Zambuto, L., Obata, H. and Rifkin, D.B. (2002b) Bone 
defects in latent TGF-beta binding protein (Ltbp)-3 null mice; a role for Ltbp in TGF-
beta presentation. J Endocrinol, 175, 129-141. 

Dahn, R.D. and Fallon, J.F. (2000) Interdigital regulation of digit identity and homeotic 
transformation by modulated BMP signaling. Science, 289, 438-441. 

Dallas, S.L., Keene, D.R., Bruder, S.P., Saharinen, J., Sakai, L.Y., Mundy, G.R. and 
Bonewald, L.F. (2000) Role of the latent transforming growth factor beta binding 
protein 1 in fibrillin-containing microfibrils in bone cells in vitro and in vivo. J Bone 
Miner Res, 15, 68-81. 

Dallas, S.L., Miyazono, K., Skerry, T.M., Mundy, G.R. and Bonewald, L.F. (1995) Dual role 
for the latent transforming growth factor-beta binding protein in storage of latent 
TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol, 
131, 539-549. 

Dallas, S.L., Sivakumar, P., Jones, C.J., Chen, Q., Peters, D.M., Mosher, D.F., Humphries, 
M.J. and Kielty, C.M. (2005) Fibronectin regulates latent transforming growth factor-
beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. 
J Biol Chem, 280, 18871-18880. 

Danielson, K.G., Baribault, H., Holmes, D.F., Graham, H., Kadler, K.E. and Iozzo, R.V. 
(1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology 
and skin fragility. J Cell Biol, 136, 729-743. 

David, G. (1993) Integral membrane heparan sulfate proteoglycans. Faseb J, 7, 1023-1030. 
David, G., van der Schueren, B., Marynen, P., Cassiman, J.J. and van den Berghe, H. (1992) 

Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate 
proteoglycan expressed by epithelial and fibroblastic cells. J Cell Biol, 118, 961-969. 

Demir, E., Sabatelli, P., Allamand, V., Ferreiro, A., Moghadaszadeh, B., Makrelouf, M., 
Topaloglu, H., Echenne, B., Merlini, L. and Guicheney, P. (2002) Mutations in 
COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. 
Am J Hum Genet, 70, 1446-1458. 



 

 - 151 - 

Denzer, A.J., Gesemann, M., Schumacher, B. and Ruegg, M.A. (1995) An amino-terminal 
extension is required for the secretion of chick agrin and its binding to extracellular 
matrix. J Cell Biol, 131, 1547-1560. 

Dietz, H.C. and Mecham, R.P. (2000) Mouse models of genetic diseases resulting from 
mutations in elastic fiber proteins. Matrix Biol, 19, 481-488. 

Dietz, H.C. and Pyeritz, R.E. (1995) Mutations in the human gene for fibrillin-1 (FBN1) in 
the Marfan syndrome and related disorders. Hum Mol Genet, 4 Spec No, 1799-1809. 

Dobolyi, A. and Palkovits, M. (2008) Expression of latent transforming growth factor beta 
binding proteins in the rat brain. J Comp Neurol, 507, 1393-1408. 

Dodge, G.R., Kovalszky, I., Chu, M.L., Hassell, J.R., McBride, O.W., Yi, H.F. and Iozzo, 
R.V. (1991) Heparan sulfate proteoglycan of human colon: partial molecular cloning, 
cellular expression, and mapping of the gene (HSPG2) to the short arm of human 
chromosome 1. Genomics, 10, 673-680. 

Dong, S., Cole, G.J. and Halfter, W. (2003) Expression of collagen XVIII and localization of 
its glycosaminoglycan attachment sites. J Biol Chem, 278, 1700-1707. 

Downing, A.K., Knott, V., Werner, J.M., Cardy, C.M., Campbell, I.D. and Handford, P.A. 
(1996) Solution structure of a pair of calcium-binding epidermal growth factor-like 
domains: implications for the Marfan syndrome and other genetic disorders. Cell, 85, 
597-605. 

Dridi, S.M., Foucault Bertaud, A., Igondjo Tchen, S., Senni, K., Ejeil, A.L., Pellat, B., 
Lyonnet, S., Bonnet, D., Charpiot, P. and Godeau, G. (2005) Vascular wall 
remodeling in patients with supravalvular aortic stenosis and Williams Beuren 
syndrome. J Vasc Res, 42, 190-201. 

Dziadek, M., Fujiwara, S., Paulsson, M. and Timpl, R. (1985) Immunological 
characterization of basement membrane types of heparan sulfate proteoglycan. Embo 
J, 4, 905-912. 

Eisenberg, R., Young, D., Jacobson, B. and Boito, A. (1964) Familial Supravalvular Aortic 
Stenosis. Am J Dis Child, 108, 341-347. 

Eldadah, Z.A., Brenn, T., Furthmayr, H. and Dietz, H.C. (1995) Expression of a mutant 
human fibrillin allele upon a normal human or murine genetic background 
recapitulates a Marfan cellular phenotype. J Clin Invest, 95, 874-880. 

El-Hallous, E., Sasaki, T., Hubmacher, D., Getie, M., Tiedemann, K., Brinckmann, J., Batge, 
B., Davis, E.C. and Reinhardt, D.P. (2007) Fibrillin-1 interactions with fibulins 
depend on the first hybrid domain and provide an adaptor function to tropoelastin. J 
Biol Chem, 282, 8935-8946. 

Engel, J., Furthmayr, H., Odermatt, E., von der Mark, H., Aumailley, M., Fleischmajer, R. 
and Timpl, R. (1985) Structure and macromolecular organization of type VI collagen. 
Ann N Y Acad Sci, 460, 25-37. 

Engvall, E., Hessle, H. and Klier, G. (1986) Molecular assembly, secretion, and matrix 
deposition of type VI collagen. J Cell Biol, 102, 703-710. 

Escribano, J., Hernando, N., Ghosh, S., Crabb, J. and Coca-Prados, M. (1994) cDNA from 
human ocular ciliary epithelium homologous to beta ig-h3 is preferentially expressed 
as an extracellular protein in the corneal epithelium. J Cell Physiol, 160, 511-521. 

Esteve-Romero, J.S., Bossi, A. and Righetti, P.G. (1996) Purification of thermamylase in 
multicompartment electrolyzers with isoelectric membranes: the problem of protein 
solubility. Electrophoresis, 17, 1242-1247. 

Eswarakumar, V.P., Lax, I. and Schlessinger, J. (2005) Cellular signaling by fibroblast 
growth factor receptors. Cytokine Growth Factor Rev, 16, 139-149. 

Ethell, I.M., Irie, F., Kalo, M.S., Couchman, J.R., Pasquale, E.B. and Yamaguchi, Y. (2001) 
EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron, 31, 1001-1013. 

Ewart, A.K., Jin, W., Atkinson, D., Morris, C.A. and Keating, M.T. (1994) Supravalvular 
aortic stenosis associated with a deletion disrupting the elastin gene. J Clin Invest, 93, 
1071-1077. 



 

 - 152 - 

Ewart, A.K., Morris, C.A., Atkinson, D., Jin, W., Sternes, K., Spallone, P., Stock, A.D., 
Leppert, M. and Keating, M.T. (1993) Hemizygosity at the elastin locus in a 
developmental disorder, Williams syndrome. Nat Genet, 5, 11-16. 

Eyre, D.R., Wu, J.J. and Apone, S. (1987) A growing family of collagens in articular 
cartilage: identification of 5 genetically distinct types. J Rheumatol, 14 Spec No, 25-
27. 

Farach, M.C., Tang, J.P., Decker, G.L. and Carson, D.D. (1987) Heparin/heparan sulfate is 
involved in attachment and spreading of mouse embryos in vitro. Dev Biol, 123, 401-
410. 

Farach-Carson, M.C. and Carson, D.D. (2007) Perlecan--a multifunctional extracellular 
proteoglycan scaffold. Glycobiology, 17, 897-905. 

Fears, C.Y., Gladson, C.L. and Woods, A. (2006) Syndecan-2 is expressed in the 
microvasculature of gliomas and regulates angiogenic processes in microvascular 
endothelial cells. J Biol Chem, 281, 14533-14536. 

Ferguson, J.W., Mikesh, M.F., Wheeler, E.F. and LeBaron, R.G. (2003) Developmental 
expression patterns of Beta-ig (betaIG-H3) and its function as a cell adhesion protein. 
Mech Dev, 120, 851-864. 

Finnis, M.L. and Gibson, M.A. (1997) Microfibril-associated glycoprotein-1 (MAGP-1) 
binds to the pepsin-resistant domain of the alpha3(VI) chain of type VI collagen. J 
Biol Chem, 272, 22817-22823. 

Fitzgerald, M.L., Wang, Z., Park, P.W., Murphy, G. and Bernfield, M. (2000) Shedding of 
syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and 
mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol, 148, 811-824. 

Forsberg, E., Pejler, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., Kusche-
Gullberg, M., Eriksson, I., Ledin, J., Hellman, L. and Kjellen, L. (1999) Abnormal 
mast cells in mice deficient in a heparin-synthesizing enzyme. Nature, 400, 773-776. 

Freeman, L.J., Lomas, A., Hodson, N., Sherratt, M.J., Mellody, K.T., Weiss, A.S., 
Shuttleworth, A. and Kielty, C.M. (2005) Fibulin-5 interacts with fibrillin-1 
molecules and microfibrils. Biochem J, 388, 1-5. 

Friedrich, M.V., Gohring, W., Morgelin, M., Brancaccio, A., David, G. and Timpl, R. (1999) 
Structural basis of glycosaminoglycan modification and of heterotypic interactions of 
perlecan domain V. J Mol Biol, 294, 259-270. 

Fujiki, K., Hotta, Y., Nakayasu, K., Yokoyama, T., Takano, T., Yamaguchi, T. and Kanai, A. 
(1998) A new L527R mutation of the betaIGH3 gene in patients with lattice corneal 
dystrophy with deep stromal opacities. Hum Genet, 103, 286-289. 

Furthmayr, H., Wiedemann, H., Timpl, R., Odermatt, E. and Engel, J. (1983) Electron-
microscopical approach to a structural model of intima collagen. Biochem J, 211, 
303-311. 

Gallagher, J.T. (1989) The extended family of proteoglycans: social residents of the 
pericellular zone. Curr Opin Cell Biol, 1, 1201-1218. 

Gallo, R., Kim, C., Kokenyesi, R., Adzick, N.S. and Bernfield, M. (1996) Syndecans-1 and -
4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol, 
107, 676-683. 

Galvani, M., Rovatti, L., Hamdan, M., Herbert, B. and Righetti, P.G. (2001) Protein 
alkylation in the presence/absence of thiourea in proteome analysis: a matrix assisted 
laser desorption/ionization-time of flight-mass spectrometry investigation. 
Electrophoresis, 22, 2066-2074. 

George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H. and Hynes, R.O. 
(1993) Defects in mesoderm, neural tube and vascular development in mouse 
embryos lacking fibronectin. Development, 119, 1079-1091. 

Giancotti, F.G. and Ruoslahti, E. (1999) Integrin signaling. Science, 285, 1028-1032. 
Gibson, M.A. and Cleary, E.G. (1987) The immunohistochemical localisation of microfibril-

associated glycoprotein (MAGP) in elastic and non-elastic tissues. Immunol Cell Biol, 
65 ( Pt 4), 345-356. 



 

 - 153 - 

Gibson, M.A., Finnis, M.L., Kumaratilake, J.S. and Cleary, E.G. (1998) Microfibril-
associated glycoprotein-2 (MAGP-2) is specifically associated with fibrillin-
containing microfibrils but exhibits more restricted patterns of tissue localization and 
developmental expression than its structural relative MAGP-1. J Histochem Cytochem, 
46, 871-886. 

Gibson, M.A., Hatzinikolas, G., Davis, E.C., Baker, E., Sutherland, G.R. and Mecham, R.P. 
(1995) Bovine latent transforming growth factor beta 1-binding protein 2: molecular 
cloning, identification of tissue isoforms, and immunolocalization to elastin-
associated microfibrils. Mol Cell Biol, 15, 6932-6942. 

Gibson, M.A., Hatzinikolas, G., Kumaratilake, J.S., Sandberg, L.B., Nicholl, J.K., Sutherland, 
G.R. and Cleary, E.G. (1996) Further characterization of proteins associated with 
elastic fiber microfibrils including the molecular cloning of MAGP-2 (MP25). J Biol 
Chem, 271, 1096-1103. 

Gibson, M.A., Kumaratilake, J.S. and Cleary, E.G. (1989) The protein components of the 12-
nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem, 264, 4590-4598. 

Gibson, M.A., Kumaratilake, J.S. and Cleary, E.G. (1997) Immunohistochemical and 
ultrastructural localization of MP78/70 (betaig-h3) in extracellular matrix of 
developing and mature bovine tissues. J Histochem Cytochem, 45, 1683-1696. 

Gibson, M.A., Sandberg, L.B., Grosso, L.E. and Cleary, E.G. (1991) Complementary DNA 
cloning establishes microfibril-associated glycoprotein (MAGP) to be a discrete 
component of the elastin-associated microfibrils. J Biol Chem, 266, 7596-7601. 

Giltay, R., Kostka, G. and Timpl, R. (1997) Sequence and expression of a novel member 
(LTBP-4) of the family of latent transforming growth factor-beta binding proteins. 
FEBS Lett, 411, 164-168. 

Giltay, R., Timpl, R. and Kostka, G. (1999) Sequence, recombinant expression and tissue 
localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix 
Biol, 18, 469-480. 

Gleizes, P.E., Beavis, R.C., Mazzieri, R., Shen, B. and Rifkin, D.B. (1996) Identification and 
characterization of an eight-cysteine repeat of the latent transforming growth factor-
beta binding protein-1 that mediates bonding to the latent transforming growth factor-
beta1. J Biol Chem, 271, 29891-29896. 

Goessler, U.R., Bugert, P., Bieback, K., Deml, M., Sadick, H., Hormann, K. and Riedel, F. 
(2005) In-vitro analysis of the expression of TGFbeta -superfamily-members during 
chondrogenic differentiation of mesenchymal stem cells and chondrocytes during 
dedifferentiation in cell culture. Cell Mol Biol Lett, 10, 345-362. 

Gohring, W., Sasaki, T., Heldin, C.H. and Timpl, R. (1998) Mapping of the binding of 
platelet-derived growth factor to distinct domains of the basement membrane proteins 
BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. Eur J 
Biochem, 255, 60-66. 

Gorg, A., Postel, W. and Gunther, S. (1988) The current state of two-dimensional 
electrophoresis with immobilized pH gradients. Electrophoresis, 9, 531-546. 

Goutebroze, L., Carnaud, M., Denisenko, N., Boutterin, M.C. and Girault, J.A. (2003) 
Syndecan-3 and syndecan-4 are enriched in Schwann cell perinodal processes. BMC 
Neurosci, 4, 29. 

Govindraj, P., West, L., Smith, S. and Hassell, J.R. (2006) Modulation of FGF-2 binding to 
chondrocytes from the developing growth plate by perlecan. Matrix Biol, 25, 232-239. 

Greene, D.K., Tumova, S., Couchman, J.R. and Woods, A. (2003) Syndecan-4 associates 
with alpha-actinin. J Biol Chem, 278, 7617-7623. 

Gregory, K.E., Ono, R.N., Charbonneau, N.L., Kuo, C.L., Keene, D.R., Bachinger, H.P. and 
Sakai, L.Y. (2005) The prodomain of BMP-7 targets the BMP-7 complex to the 
extracellular matrix. J Biol Chem, 280, 27970-27980. 

Gromova, I., and Celis J. E. (2006) Protein Detection in Gels by silver Staining: A Procedure 
Compatible with Mass-Spectrometry. In Celis, J.E., Carter N., Hunter T., Simons K., 



 

 - 154 - 

Small J. V and Shotton D (ed.), Cell Biology: A Laboratory Handbook. Elsevier. 
Academic Press. 

Guilak, F., Alexopoulos, L.G., Upton, M.L., Youn, I., Choi, J.B., Cao, L., Setton, L.A. and 
Haider, M.A. (2006) The pericellular matrix as a transducer of biomechanical and 
biochemical signals in articular cartilage. Ann N Y Acad Sci, 1068, 498-512. 

Gumbiner, B.M. (1996) Cell adhesion: the molecular basis of tissue architecture and 
morphogenesis. Cell, 84, 345-357. 

Gutman, A. and Kornblihtt, A.R. (1987) Identification of a third region of cell-specific 
alternative splicing in human fibronectin mRNA. Proc Natl Acad Sci U S A, 84, 7179-
7182. 

Ha, N.T., Fujiki, K., Hotta, Y., Nakayasu, K. and Kanai, A. (2000) Q118X mutation of M1S1 
gene caused gelatinous drop-like corneal dystrophy: the P501T of BIGH3 gene found 
in a family with gelatinous drop-like corneal dystrophy. Am J Ophthalmol, 130, 119-
120. 

Habashi, J.P., Judge, D.P., Holm, T.M., Cohn, R.D., Loeys, B.L., Cooper, T.K., Myers, L., 
Klein, E.C., Liu, G., Calvi, C., Podowski, M., Neptune, E.R., Halushka, M.K., Bedja, 
D., Gabrielson, K., Rifkin, D.B., Carta, L., Ramirez, F., Huso, D.L. and Dietz, H.C. 
(2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of 
Marfan syndrome. Science, 312, 117-121. 

Hacker, U., Nybakken, K. and Perrimon, N. (2005) Heparan sulphate proteoglycans: the 
sweet side of development. Nat Rev Mol Cell Biol, 6, 530-541. 

Hagiwara, H., Schroter-Kermani, C. and Merker, H.J. (1993) Localization of collagen type 
VI in articular cartilage of young and adult mice. Cell Tissue Res, 272, 155-160. 

Han, I., Park, H. and Oh, E.S. (2004) New insights into syndecan-2 expression and 
tumourigenic activity in colon carcinoma cells. J Mol Histol, 35, 319-326. 

Hanssen, E., Reinboth, B. and Gibson, M.A. (2003) Covalent and non-covalent interactions 
of betaig-h3 with collagen VI. Beta ig-h3 is covalently attached to the amino-terminal 
region of collagen VI in tissue microfibrils. J Biol Chem, 278, 24334-24341. 

Hashimoto, K., Noshiro, M., Ohno, S., Kawamoto, T., Satakeda, H., Akagawa, Y., 
Nakashima, K., Okimura, A., Ishida, H., Okamoto, T., Pan, H., Shen, M., Yan, W. 
and Kato, Y. (1997) Characterization of a cartilage-derived 66-kDa protein (RGD-
CAP/beta ig-h3) that binds to collagen. Biochim Biophys Acta, 1355, 303-314. 

Haslinger, B., Mandl-Weber, S., Sellmayer, A. and Sitter, T. (2001) Hyaluronan fragments 
induce the synthesis of MCP-1 and IL-8 in cultured human peritoneal mesothelial 
cells. Cell Tissue Res, 305, 79-86. 

Hayashi, K., Madri, J.A. and Yurchenco, P.D. (1992) Endothelial cells interact with the core 
protein of basement membrane perlecan through beta 1 and beta 3 integrins: an 
adhesion modulated by glycosaminoglycan. J Cell Biol, 119, 945-959. 

Henderson, M., Polewski, R., Fanning, J.C. and Gibson, M.A. (1996) Microfibril-associated 
glycoprotein-1 (MAGP-1) is specifically located on the beads of the beaded-filament 
structure for fibrillin-containing microfibrils as visualized by the rotary shadowing 
technique. J Histochem Cytochem, 44, 1389-1397. 

Hennekam, R.C. (2005) Severe infantile Marfan syndrome versus neonatal Marfan syndrome. 
Am J Med Genet A, 139, 1. 

Herbert, B. (1999) Advances in protein solubilisation for two-dimensional electrophoresis. 
Electrophoresis, 20, 660-663. 

Herbert, B.R., Molloy, M.P., Gooley, A.A., Walsh, B.J., Bryson, W.G. and Williams, K.L. 
(1998) Improved protein solubility in two-dimensional electrophoresis using tributyl 
phosphine as reducing agent. Electrophoresis, 19, 845-851. 

Heremans, A., De Cock, B., Cassiman, J.J., Van den Berghe, H. and David, G. (1990) The 
core protein of the matrix-associated heparan sulfate proteoglycan binds to fibronectin. 
J Biol Chem, 265, 8716-8724. 

Hienola, A., Tumova, S., Kulesskiy, E. and Rauvala, H. (2006) N-syndecan deficiency 
impairs neural migration in brain. J Cell Biol, 174, 569-580. 



 

 - 155 - 

Higuchi, I., Suehara, M., Iwaki, H., Nakagawa, M., Arimura, K. and Osame, M. (2001) 
Collagen VI deficiency in Ullrich's disease. Ann Neurol, 49, 544. 

Hinek, A., Braun, K.R., Liu, K., Wang, Y. and Wight, T.N. (2004) Retrovirally mediated 
overexpression of versican v3 reverses impaired elastogenesis and heightened 
proliferation exhibited by fibroblasts from Costello syndrome and Hurler disease 
patients. Am J Pathol, 164, 119-131. 

Hinkes, M.T., Goldberger, O.A., Neumann, P.E., Kokenyesi, R. and Bernfield, M. (1993) 
Organization and promoter activity of the mouse syndecan-1 gene. J Biol Chem, 268, 
11440-11448. 

Hirai, M., Horiguchi, M., Ohbayashi, T., Kita, T., Chien, K.R. and Nakamura, T. (2007) 
Latent TGF-beta-binding protein 2 binds to DANCE/fibulin-5 and regulates elastic 
fiber assembly. Embo J, 26, 3283-3295. 

Hirani, R., Hanssen, E. and Gibson, M.A. (2007) LTBP-2 specifically interacts with the 
amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this 
microfibrillar protein. Matrix Biol, 26, 213-223. 

Hirano, K., Hotta, Y., Fujiki, K. and Kanai, A. (2000) Corneal amyloidosis caused by 
Leu518Pro mutation of betaig-h3 gene. Br J Ophthalmol, 84, 583-585. 

Ho, C.L. and Walton, D.S. (2004) Primary congenital glaucoma: 2004 update. J Pediatr 
Ophthalmol Strabismus, 41, 271-288; quiz 300-271. 

Hocking, A.M., Shinomura, T. and McQuillan, D.J. (1998) Leucine-rich repeat glycoproteins 
of the extracellular matrix. Matrix Biol, 17, 1-19. 

Hopf, M., Gohring, W., Kohfeldt, E., Yamada, Y. and Timpl, R. (1999) Recombinant domain 
IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and 
heparin. Eur J Biochem, 259, 917-925. 

Hopf, M., Gohring, W., Mann, K. and Timpl, R. (2001) Mapping of binding sites for 
nidogens, fibulin-2, fibronectin and heparin to different IG modules of perlecan. J 
Mol Biol, 311, 529-541. 

Horowitz, A., Tkachenko, E. and Simons, M. (2002) Fibroblast growth factor-specific 
modulation of cellular response by syndecan-4. J Cell Biol, 157, 715-725. 

Howell, J.M., Winstone, T.L., Coorssen, J.R. and Turner, R.J. (2006) An evaluation of in 
vitro protein-protein interaction techniques: assessing contaminating background 
proteins. Proteomics, 6, 2050-2069. 

Hu, Q., Reymond, J.L., Pinel, N., Zabot, M.T. and Urban, Z. (2006) Inflammatory 
destruction of elastic fibers in acquired cutis laxa is associated with missense alleles 
in the elastin and fibulin-5 genes. J Invest Dermatol, 126, 283-290. 

Hubmacher, D., El-Hallous, E.I., Nelea, V., Kaartinen, M.T., Lee, E.R. and Reinhardt, D.P. 
(2008) Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C 
terminus into bead-like structures enables self-assembly. Proc Natl Acad Sci U S A, 
105, 6548-6553. 

Hubmacher, D., Tiedemann, K. and Reinhardt, D.P. (2006) Fibrillins: from biogenesis of 
microfibrils to signaling functions. Curr Top Dev Biol, 75, 93-123. 

Humphries, D.E., Wong, G.W., Friend, D.S., Gurish, M.F., Qiu, W.T., Huang, C., Sharpe, 
A.H. and Stevens, R.L. (1999) Heparin is essential for the storage of specific granule 
proteases in mast cells. Nature, 400, 769-772. 

Hynes, R.O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 69, 
11-25. 

Hyytiainen, M. and Keski-Oja, J. (2003) Latent TGF-beta binding protein LTBP-2 decreases 
fibroblast adhesion to fibronectin. J Cell Biol, 163, 1363-1374. 

Hyytiainen, M., Penttinen, C. and Keski-Oja, J. (2004) Latent TGF-beta binding proteins: 
extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab 
Sci, 41, 233-264. 

Hyytiainen, M., Taipale, J., Heldin, C.H. and Keski-Oja, J. (1998) Recombinant latent 
transforming growth factor beta-binding protein 2 assembles to fibroblast 



 

 - 156 - 

extracellular matrix and is susceptible to proteolytic processing and release. J Biol 
Chem, 273, 20669-20676. 

Iozzo, R.V. (1998) Matrix proteoglycans: from molecular design to cellular function. Annu 
Rev Biochem, 67, 609-652. 

Iozzo, R.V. (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol 
Cell Biol, 6, 646-656. 

Iozzo, R.V., Cohen, I.R., Grassel, S. and Murdoch, A.D. (1994) The biology of perlecan: the 
multifaceted heparan sulphate proteoglycan of basement membranes and pericellular 
matrices. Biochem J, 302 ( Pt 3), 625-639. 

Iozzo, R.V. and San Antonio, J.D. (2001) Heparan sulfate proteoglycans: heavy hitters in the 
angiogenesis arena. J Clin Invest, 108, 349-355. 

Ishikawa, H., Sugie, K., Murayama, K., Awaya, A., Suzuki, Y., Noguchi, S., Hayashi, Y.K., 
Nonaka, I. and Nishino, I. (2004) Ullrich disease due to deficiency of collagen VI in 
the sarcolemma. Neurology, 62, 620-623. 

Isogai, Z., Aspberg, A., Keene, D.R., Ono, R.N., Reinhardt, D.P. and Sakai, L.Y. (2002) 
Versican interacts with fibrillin-1 and links extracellular microfibrils to other 
connective tissue networks. J Biol Chem, 277, 4565-4572. 

Isogai, Z., Ono, R.N., Ushiro, S., Keene, D.R., Chen, Y., Mazzieri, R., Charbonneau, N.L., 
Reinhardt, D.P., Rifkin, D.B. and Sakai, L.Y. (2003) Latent transforming growth 
factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated 
protein. J Biol Chem, 278, 2750-2757. 

Jaye, M., Schlessinger, J. and Dionne, C.A. (1992) Fibroblast growth factor receptor tyrosine 
kinases: molecular analysis and signal transduction. Biochim Biophys Acta, 1135, 
185-199. 

Jensen, S.A., Reinhardt, D.P., Gibson, M.A. and Weiss, A.S. (2001) Protein interaction 
studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem, 276, 39661-39666. 

Jobsis, G.J., Boers, J.M., Barth, P.G. and de Visser, M. (1999) Bethlem myopathy: a slowly 
progressive congenital muscular dystrophy with contractures. Brain, 122 ( Pt 4), 649-
655. 

Jobsis, G.J., Keizers, H., Vreijling, J.P., de Visser, M., Speer, M.C., Wolterman, R.A., Baas, 
F. and Bolhuis, P.A. (1996) Type VI collagen mutations in Bethlem myopathy, an 
autosomal dominant myopathy with contractures. Nat Genet, 14, 113-115. 

Jovanovic, J., Takagi, J., Choulier, L., Abrescia, N.G., Stuart, D.I., van der Merwe, P.A., 
Mardon, H.J. and Handford, P.A. (2007) alphaVbeta6 is a novel receptor for human 
fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd 
affinity and specificity. J Biol Chem, 282, 6743-6751. 

Kallunki, P. and Tryggvason, K. (1992) Human basement membrane heparan sulfate 
proteoglycan core protein: a 467-kD protein containing multiple domains resembling 
elements of the low density lipoprotein receptor, laminin, neural cell adhesion 
molecules, and epidermal growth factor. J Cell Biol, 116, 559-571. 

Kantola, A.K., Keski-Oja, J. and Koli, K. (2008) Fibronectin and heparin binding domains of 
latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. 
Exp Cell Res, 314, 2488-2500. 

Kanzaki, T., Olofsson, A., Moren, A., Wernstedt, C., Hellman, U., Miyazono, K., Claesson-
Welsh, L. and Heldin, C.H. (1990) TGF-beta 1 binding protein: a component of the 
large latent complex of TGF-beta 1 with multiple repeat sequences. Cell, 61, 1051-
1061. 

Kato, M., Wang, H., Kainulainen, V., Fitzgerald, M.L., Ledbetter, S., Ornitz, D.M. and 
Bernfield, M. (1998) Physiological degradation converts the soluble syndecan-1 
ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med, 4, 691-697. 

Keene, D.R., Engvall, E. and Glanville, R.W. (1988) Ultrastructure of type VI collagen in 
human skin and cartilage suggests an anchoring function for this filamentous network. 
J Cell Biol, 107, 1995-2006. 



 

 - 157 - 

Keene, D.R., Sakai, L.Y. and Burgeson, R.E. (1991) Human bone contains type III collagen, 
type VI collagen, and fibrillin: type III collagen is present on specific fibers that may 
mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J 
Histochem Cytochem, 39, 59-69. 

Kelleher, C.M., McLean, S.E. and Mecham, R.P. (2004) Vascular extracellular matrix and 
aortic development. Curr Top Dev Biol, 62, 153-188. 

Kielty, C., and Grant, EM. (2002) The Collagen Family: Structure, Assembly, and 
Organisation in the Extracellular Matrix. In Royce, P.M., and Steinmann, B (ed.), 
Connective Tissues and its Heritable Disorders- Molecular, Genetics and medical 
aspects. Wiley-Liss, New York. 

Kielty, C.M. (2006) Elastic fibres in health and disease. Expert Rev Mol Med, 8, 1-23. 
Kielty, C.M., Hanssen, E. and Shuttleworth, C.A. (1998) Purification of fibrillin-containing 

microfibrils and collagen VI microfibrils by density gradient centrifugation. Anal 
Biochem, 255, 108-112. 

Kielty, C.M., Sherratt, M.J., Marson, A. and Baldock, C. (2005) Fibrillin microfibrils. Adv 
Protein Chem, 70, 405-436. 

Kielty, C.M., Sherratt, M.J. and Shuttleworth, C.A. (2002) Elastic fibres. J Cell Sci, 115, 
2817-2828. 

Kielty, C.M. and Shuttleworth, C.A. (1993) The role of calcium in the organization of 
fibrillin microfibrils. FEBS Lett, 336, 323-326. 

Kielty, C.M. and Shuttleworth, C.A. (1995) Fibrillin-containing microfibrils: structure and 
function in health and disease. Int J Biochem Cell Biol, 27, 747-760. 

Kielty, C.M. and Shuttleworth, C.A. (1997) Microfibrillar elements of the dermal matrix. 
Microsc Res Tech, 38, 413-427. 

Kielty, C.M., Whittaker, S.P., Grant, M.E. and Shuttleworth, C.A. (1991) Type VI collagen 
forms a structural association with hyaluronan in vivo. Biochem Soc Trans, 19, 384S. 

Kielty, C.M., Whittaker, S.P. and Shuttleworth, C.A. (1996) Fibrillin: evidence that 
chondroitin sulphate proteoglycans are components of microfibrils and associate with 
newly synthesised monomers. FEBS Lett, 386, 169-173. 

Kim, J.E., Han, M.S., Bae, Y.C., Kim, H.K., Kim, T.I., Kim, E.K. and Kim, I.S. (2007) 
Anterior segment dysgenesis after overexpression of transforming growth factor-beta-
induced gene, beta igh3, in the mouse eye. Mol Vis, 13, 1942-1952. 

Kim, J.E., Jeong, H.W., Nam, J.O., Lee, B.H., Choi, J.Y., Park, R.W., Park, J.Y. and Kim, I.S. 
(2002) Identification of motifs in the fasciclin domains of the transforming growth 
factor-beta-induced matrix protein betaig-h3 that interact with the alphavbeta5 
integrin. J Biol Chem, 277, 46159-46165. 

Kim, J.E., Kim, S.J., Lee, B.H., Park, R.W., Kim, K.S. and Kim, I.S. (2000) Identification of 
motifs for cell adhesion within the repeated domains of transforming growth factor-
beta-induced gene, betaig-h3. J Biol Chem, 275, 30907-30915. 

Kinsey, R., Williamson, M.R., Chaudhry, S., Mellody, K.T., McGovern, A., Takahashi, S., 
Shuttleworth, C.A. and Kielty, C.M. (2008) Fibrillin-1 microfibril deposition is 
dependent on fibronectin assembly. J Cell Sci, 121, 2696-2704. 

Kitahama, S., Gibson, M.A., Hatzinikolas, G., Hay, S., Kuliwaba, J.L., Evdokiou, A., Atkins, 
G.J. and Findlay, D.M. (2000) Expression of fibrillins and other microfibril-
associated proteins in human bone and osteoblast-like cells. Bone, 27, 61-67. 

Kitahara, O., Furukawa, Y., Tanaka, T., Kihara, C., Ono, K., Yanagawa, R., Nita, M.E., 
Takagi, T., Nakamura, Y. and Tsunoda, T. (2001) Alterations of gene expression 
during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture 
microdissection of tumor tissues and normal epithelia. Cancer Res, 61, 3544-3549. 

Klass, C.M., Couchman, J.R. and Woods, A. (2000) Control of extracellular matrix assembly 
by syndecan-2 proteoglycan. J Cell Sci, 113 ( Pt 3), 493-506. 

Klintworth, G.K. (2003) The molecular genetics of the corneal dystrophies--current status. 
Front Biosci, 8, d687-713. 



 

 - 158 - 

Kobayashi, N., Kostka, G., Garbe, J.H., Keene, D.R., Bachinger, H.P., Hanisch, F.G., 
Markova, D., Tsuda, T., Timpl, R., Chu, M.L. and Sasaki, T. (2007) A comparative 
analysis of the fibulin protein family. Biochemical characterization, binding 
interactions, and tissue localization. J Biol Chem, 282, 11805-11816. 

Kojima, T., Shworak, N.W. and Rosenberg, R.D. (1992) Molecular cloning and expression of 
two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat 
endothelial cell line. J Biol Chem, 267, 4870-4877. 

Koli, K., Saharinen, J., Hyytiainen, M., Penttinen, C. and Keski-Oja, J. (2001) Latency, 
activation, and binding proteins of TGF-beta. Microsc Res Tech, 52, 354-362. 

Kondo, T., Seike, M., Mori, Y., Fujii, K., Yamada, T. and Hirohashi, S. (2003) Application 
of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional 
gel electrophoresis as a cancer proteomic study tool. Proteomics, 3, 1758-1766. 

Kornblihtt, A.R., Vibe-Pedersen, K. and Baralle, F.E. (1984) Human fibronectin: molecular 
cloning evidence for two mRNA species differing by an internal segment coding for a 
structural domain. Embo J, 3, 221-226. 

Kozel, B.A., Ciliberto, C.H. and Mecham, R.P. (2004) Deposition of tropoelastin into the 
extracellular matrix requires a competent elastic fiber scaffold but not live cells. 
Matrix Biol, 23, 23-34. 

Kramer, K.L., Barnette, J.E. and Yost, H.J. (2002) PKCgamma regulates syndecan-2 inside-
out signaling during xenopus left-right development. Cell, 111, 981-990. 

Kramer, K.L. and Yost, H.J. (2002) Ectodermal syndecan-2 mediates left-right axis 
formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell, 2, 
115-124. 

Kuo, H.J., Keene, D.R. and Glanville, R.W. (1989) Orientation of type VI collagen 
monomers in molecular aggregates. Biochemistry, 28, 3757-3762. 

Kuo, H.J., Maslen, C.L., Keene, D.R. and Glanville, R.W. (1997) Type VI collagen anchors 
endothelial basement membranes by interacting with type IV collagen. J Biol Chem, 
272, 26522-26529. 

Kupfer, C. and Kaiser-Kupfer, M.I. (1979) Observations on the development of the anterior 
chamber angle with reference to the pathogenesis of congenital glaucomas. Am J 
Ophthalmol, 88, 424-426. 

Lack, J., O'Leary, J.M., Knott, V., Yuan, X., Rifkin, D.B., Handford, P.A. and Downing, A.K. 
(2003) Solution structure of the third TB domain from LTBP1 provides insight into 
assembly of the large latent complex that sequesters latent TGF-beta. J Mol Biol, 334, 
281-291. 

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature, 227, 680-685. 

Lalwani, S., Tutu, E. and Vigh, G. (2005) Synthesis and characterization of quaternary 
ammonium dicarboxylic acid isoelectric buffers and their use in pH-biased isoelectric 
trapping separations. Electrophoresis, 26, 2047-2055. 

Lampe, A.K. and Bushby, K.M. (2005) Collagen VI related muscle disorders. J Med Genet, 
42, 673-685. 

LeBaron, R.G., Bezverkov, K.I., Zimber, M.P., Pavelec, R., Skonier, J. and Purchio, A.F. 
(1995) Beta IG-H3, a novel secretory protein inducible by transforming growth 
factor-beta, is present in normal skin and promotes the adhesion and spreading of 
dermal fibroblasts in vitro. J Invest Dermatol, 104, 844-849. 

LeBleu, V.S., Macdonald, B. and Kalluri, R. (2007) Structure and function of basement 
membranes. Exp Biol Med (Maywood), 232, 1121-1129. 

Lee, B., Godfrey, M., Vitale, E., Hori, H., Mattei, M.G., Sarfarazi, M., Tsipouras, P., 
Ramirez, F. and Hollister, D.W. (1991) Linkage of Marfan syndrome and a 
phenotypically related disorder to two different fibrillin genes. Nature, 352, 330-334. 

Lee, K., Pi, k., Lee, K. (2009) Buffer optimization for high resolution of human lung cancer 
tissue proteins by two-dimensional gel electrophoresis. Biotechnol Lett, 31, 31-37. 



 

 - 159 - 

Lee, S.S., Knott, V., Jovanovic, J., Harlos, K., Grimes, J.M., Choulier, L., Mardon, H.J., 
Stuart, D.I. and Handford, P.A. (2004) Structure of the integrin binding fragment 
from fibrillin-1 gives new insights into microfibril organization. Structure, 12, 717-
729. 

Li, D.Y., Brooke, B., Davis, E.C., Mecham, R.P., Sorensen, L.K., Boak, B.B., Eichwald, E. 
and Keating, M.T. (1998a) Elastin is an essential determinant of arterial 
morphogenesis. Nature, 393, 276-280. 

Li, D.Y., Faury, G., Taylor, D.G., Davis, E.C., Boyle, W.A., Mecham, R.P., Stenzel, P., Boak, 
B. and Keating, M.T. (1998b) Novel arterial pathology in mice and humans 
hemizygous for elastin. J Clin Invest, 102, 1783-1787. 

Li, D.Y., Toland, A.E., Boak, B.B., Atkinson, D.L., Ensing, G.J., Morris, C.A. and Keating, 
M.T. (1997) Elastin point mutations cause an obstructive vascular disease, 
supravalvular aortic stenosis. Hum Mol Genet, 6, 1021-1028. 

Lim, S.T., Longley, R.L., Couchman, J.R. and Woods, A. (2003) Direct binding of syndecan-
4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) 
increases focal adhesion localization of PKC alpha. J Biol Chem, 278, 13795-13802. 

Lin, X. (2004) Functions of heparan sulfate proteoglycans in cell signaling during 
development. Development, 131, 6009-6021. 

Loeser, R.F. (1997) Growth factor regulation of chondrocyte integrins. Differential effects of 
insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 
integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum, 
40, 270-276. 

Lopes, C.C., Dietrich, C.P. and Nader, H.B. (2006) Specific structural features of syndecans 
and heparan sulfate chains are needed for cell signaling. Braz J Med Biol Res, 39, 
157-167. 

Mangasser-Stephan, K. and Gressner, A.M. (1999) Molecular and functional aspects of latent 
transforming growth factor-beta binding protein: just a masking protein? Cell Tissue 
Res, 297, 363-370. 

Mark, K., Soroken, L.,. (2002) Adhesive Glycoproteins. In Royce, P.M., and Steinmann, B 
(ed.), Connective Tissues and its Heritable Disorders-Molecular, Genetics and 
medical aspects. Wiley-Liss, New York, pp. 159-221. 

Marouga, R., David, S. and Hawkins, E. (2005) The development of the DIGE system: 2D 
fluorescence difference gel analysis technology. Anal Bioanal Chem, 382, 669-678. 

Marson, A., Rock, M.J., Cain, S.A., Freeman, L.J., Morgan, A., Mellody, K., Shuttleworth, 
C.A., Baldock, C. and Kielty, C.M. (2005) Homotypic fibrillin-1 interactions in 
microfibril assembly. J Biol Chem, 280, 5013-5021. 

Masse, M., Cserhalmi-Friedman, P.B., Falanga, V., Celebi, J.T., Martinez-Mir, A. and 
Christiano, A.M. (2005) Identification of novel type VII collagen gene mutations 
resulting in severe recessive dystrophic epidermolysis bullosa. Clin Exp Dermatol, 30, 
289-293. 

McDevitt, C.A., Marcelino, J. and Tucker, L. (1991) Interaction of intact type VI collagen 
with hyaluronan. FEBS Lett, 294, 167-170. 

McGettrick, A.J., Knott, V., Willis, A. and Handford, P.A. (2000) Molecular effects of 
calcium binding mutations in Marfan syndrome depend on domain context. Hum Mol 
Genet, 9, 1987-1994. 

McKee, C.M., Penno, M.B., Cowman, M., Burdick, M.D., Strieter, R.M., Bao, C. and Noble, 
P.W. (1996) Hyaluronan (HA) fragments induce chemokine gene expression in 
alveolar macrophages. The role of HA size and CD44. J Clin Invest, 98, 2403-2413. 

McLaughlin, P.J., Chen, Q., Horiguchi, M., Starcher, B.C., Stanton, J.B., Broekelmann, T.J., 
Marmorstein, A.D., McKay, B., Mecham, R., Nakamura, T. and Marmorstein, L.Y. 
(2006) Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal 
lethality in mice. Mol Cell Biol, 26, 1700-1709. 



 

 - 160 - 

Mecham, R.P., and Davis, E. (1994) In P.D Yurchenco, D.E.B., and R.P Mecham (ed.), 
Elastic fiber structure and assembly: Extracellular Matrix Assembly and Structure. 
Academic Press, New York, pp. 281-314. 

Melrose, J., Hayes, A.J., Whitelock, J.M. and Little, C.B. (2008) Perlecan, the "jack of all 
trades" proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays, 30, 
457-469. 

Mercuri, E., Lampe, A., Allsop, J., Knight, R., Pane, M., Kinali, M., Bonnemann, C., 
Flanigan, K., Lapini, I., Bushby, K., Pepe, G. and Muntoni, F. (2005) Muscle MRI in 
Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscul Disord, 
15, 303-310. 

Mertens, G., Cassiman, J.J., Van den Berghe, H., Vermylen, J. and David, G. (1992) Cell 
surface heparan sulfate proteoglycans from human vascular endothelial cells. Core 
protein characterization and antithrombin III binding properties. J Biol Chem, 267, 
20435-20443. 

Metcalfe, K., Rucka, A.K., Smoot, L., Hofstadler, G., Tuzler, G., McKeown, P., Siu, V., 
Rauch, A., Dean, J., Dennis, N., Ellis, I., Reardon, W., Cytrynbaum, C., Osborne, L., 
Yates, J.R., Read, A.P., Donnai, D. and Tassabehji, M. (2000) Elastin: mutational 
spectrum in supravalvular aortic stenosis. Eur J Hum Genet, 8, 955-963. 

Miao, M., Bellingham, C.M., Stahl, R.J., Sitarz, E.E., Lane, C.J. and Keeley, F.W. (2003) 
Sequence and structure determinants for the self-aggregation of recombinant 
polypeptides modeled after human elastin. J Biol Chem, 278, 48553-48562. 

Miao, M., Cirulis, J.T., Lee, S. and Keeley, F.W. (2005) Structural determinants of cross-
linking and hydrophobic domains for self-assembly of elastin-like polypeptides. 
Biochemistry, 44, 14367-14375. 

Michelacci, Y.M. (2003) Collagens and proteoglycans of the corneal extracellular matrix. 
Braz J Med Biol Res, 36, 1037-1046. 

Midwood, K.S. and Schwarzbauer, J.E. (2002) Elastic fibers: building bridges between cells 
and their matrix. Curr Biol, 12, R279-281. 

Milewicz, D.M., Urban, Z. and Boyd, C. (2000) Genetic disorders of the elastic fiber system. 
Matrix Biol, 19, 471-480. 

Miner, J.H., Li, C., Mudd, J.L., Go, G. and Sutherland, A.E. (2004) Compositional and 
structural requirements for laminin and basement membranes during mouse embryo 
implantation and gastrulation. Development, 131, 2247-2256. 

Miner, J.H. and Yurchenco, P.D. (2004) Laminin functions in tissue morphogenesis. Annu 
Rev Cell Dev Biol, 20, 255-284. 

Miosge, N., Hartmann, M., Maelicke, C. and Herken, R. (2004) Expression of collagen type I 
and type II in consecutive stages of human osteoarthritis. Histochem Cell Biol, 122, 
229-236. 

Mithieux, S.M. and Weiss, A.S. (2005) Elastin. Adv Protein Chem, 70, 437-461. 
Miyazono, K., Olofsson, A., Colosetti, P. and Heldin, C.H. (1991) A role of the latent TGF-

beta 1-binding protein in the assembly and secretion of TGF-beta 1. Embo J, 10, 
1091-1101. 

Mohan, P.S. and Spiro, R.G. (1991) Characterization of heparan sulfate proteoglycan from 
calf lens capsule and proteoglycans synthesized by cultured lens epithelial cells. 
Comparison with other basement membrane proteoglycans. J Biol Chem, 266, 8567-
8575. 

Mongiat, M., Taylor, K., Otto, J., Aho, S., Uitto, J., Whitelock, J.M. and Iozzo, R.V. (2000) 
The protein core of the proteoglycan perlecan binds specifically to fibroblast growth 
factor-7. J Biol Chem, 275, 7095-7100. 

Moren, A., Olofsson, A., Stenman, G., Sahlin, P., Kanzaki, T., Claesson-Welsh, L., ten Dijke, 
P., Miyazono, K. and Heldin, C.H. (1994) Identification and characterization of 
LTBP-2, a novel latent transforming growth factor-beta-binding protein. J Biol Chem, 
269, 32469-32478. 



 

 - 161 - 

Mundhenke, C., Meyer, K., Drew, S. and Friedl, A. (2002) Heparan sulfate proteoglycans as 
regulators of fibroblast growth factor-2 receptor binding in breast carcinomas. Am J 
Pathol, 160, 185-194. 

Munier, F.L., Frueh, B.E., Othenin-Girard, P., Uffer, S., Cousin, P., Wang, M.X., Heon, E., 
Black, G.C., Blasi, M.A., Balestrazzi, E., Lorenz, B., Escoto, R., Barraquer, R., 
Hoeltzenbein, M., Gloor, B., Fossarello, M., Singh, A.D., Arsenijevic, Y., Zografos, L. 
and Schorderet, D.F. (2002) BIGH3 mutation spectrum in corneal dystrophies. Invest 
Ophthalmol Vis Sci, 43, 949-954. 

Munier, F.L., Korvatska, E., Djemai, A., Le Paslier, D., Zografos, L., Pescia, G. and 
Schorderet, D.F. (1997) Kerato-epithelin mutations in four 5q31-linked corneal 
dystrophies. Nat Genet, 15, 247-251. 

Murdoch, A.D., Liu, B., Schwarting, R., Tuan, R.S. and Iozzo, R.V. (1994) Widespread 
expression of perlecan proteoglycan in basement membranes and extracellular 
matrices of human tissues as detected by a novel monoclonal antibody against domain 
III and by in situ hybridization. J Histochem Cytochem, 42, 239-249. 

Nagase, T., Nakayama, M., Nakajima, D., Kikuno, R. and Ohara, O. (2001) Prediction of the 
coding sequences of unidentified human genes. XX. The complete sequences of 100 
new cDNA clones from brain which code for large proteins in vitro. DNA Res, 8, 85-
95. 

Nakamura, T., Lozano, P.R., Ikeda, Y., Iwanaga, Y., Hinek, A., Minamisawa, S., Cheng, C.F., 
Kobuke, K., Dalton, N., Takada, Y., Tashiro, K., Ross Jr, J., Honjo, T. and Chien, 
K.R. (2002) Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature, 415, 
171-175. 

Narayanan, A.S., Page, R.C., Kuzan, F. and Cooper, C.G. (1978) Elastin cross-linking in 
vitro. Studies on factors influencing the formation of desmosines by lysyl oxidase 
action on tropoelastin. Biochem J, 173, 857-862. 

Nareyeck, G., Seidler, D.G., Troyer, D., Rauterberg, J., Kresse, H. and Schonherr, E. (2004) 
Differential interactions of decorin and decorin mutants with type I and type VI 
collagens. Eur J Biochem, 271, 3389-3398. 

Neptune, E.R., Frischmeyer, P.A., Arking, D.E., Myers, L., Bunton, T.E., Gayraud, B., 
Ramirez, F., Sakai, L.Y. and Dietz, H.C. (2003) Dysregulation of TGF-beta activation 
contributes to pathogenesis in Marfan syndrome. Nat Genet, 33, 407-411. 

Ng, C.M., Cheng, A., Myers, L.A., Martinez-Murillo, F., Jie, C., Bedja, D., Gabrielson, K.L., 
Hausladen, J.M., Mecham, R.P., Judge, D.P. and Dietz, H.C. (2004) TGF-beta-
dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan 
syndrome. J Clin Invest, 114, 1586-1592. 

Nischt, R., Pottgiesser, J., Krieg, T., Mayer, U., Aumailley, M. and Timpl, R. (1991) 
Recombinant expression and properties of the human calcium-binding extracellular 
matrix protein BM-40. Eur J Biochem, 200, 529-536. 

Noguera, I., Obata, H., Gualandris, A., Cowin, P. and Rifkin, D.B. (2003) Molecular cloning 
of the mouse Ltbp-1 gene reveals tissue specific expression of alternatively spliced 
forms. Gene, 308, 31-41. 

Nunes, I., Gleizes, P.E., Metz, C.N. and Rifkin, D.B. (1997) Latent transforming growth 
factor-beta binding protein domains involved in activation and transglutaminase-
dependent cross-linking of latent transforming growth factor-beta. J Cell Biol, 136, 
1151-1163. 

Nzeusseu Toukap, A., Galant, C., Theate, I., Maudoux, A.L., Lories, R.J., Houssiau, F.A. and 
Lauwerys, B.R. (2007) Identification of distinct gene expression profiles in the 
synovium of patients with systemic lupus erythematosus. Arthritis Rheum, 56, 1579-
1588. 

Odermatt, E., Risteli, J., van Delden, V. and Timpl, R. (1983) Structural diversity and domain 
composition of a unique collagenous fragment (intima collagen) obtained from human 
placenta. Biochem J, 211, 295-302. 



 

 - 162 - 

O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol 
Chem, 250, 4007-4021. 

Oklu, R. and Hesketh, R. (2000) The latent transforming growth factor beta binding protein 
(LTBP) family. Biochem J, 352 Pt 3, 601-610. 

Oklu, R., Hesketh, T.R., Metcalfe, J.C. and Kemp, P.R. (1998) Expression of alternatively 
spliced human latent transforming growth factor beta binding protein-1. FEBS Lett, 
435, 143-148. 

Olofsson, A., Ichijo, H., Moren, A., ten Dijke, P., Miyazono, K. and Heldin, C.H. (1995) 
Efficient association of an amino-terminally extended form of human latent 
transforming growth factor-beta binding protein with the extracellular matrix. J Biol 
Chem, 270, 31294-31297. 

Olsen, J.V., Ong, S.E. and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to 
arginine and lysine residues. Mol Cell Proteomics, 3, 608-614. 

Olson, T.M., Michels, V.V., Lindor, N.M., Pastores, G.M., Weber, J.L., Schaid, D.J., Driscoll, 
D.J., Feldt, R.H. and Thibodeau, S.N. (1993) Autosomal dominant supravalvular 
aortic stenosis: localization to chromosome 7. Hum Mol Genet, 2, 869-873. 

Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A. and Mann, 
M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple 
and accurate approach to expression proteomics. Mol Cell Proteomics, 1, 376-386. 

Ong, S.E. and Mann, M. (2006) A practical recipe for stable isotope labeling by amino acids 
in cell culture (SILAC). Nat Protoc, 1, 2650-2660. 

Ottani, V., Martini, D., Franchi, M., Ruggeri, A. and Raspanti, M. (2002) Hierarchical 
structures in fibrillar collagens. Micron, 33, 587-596. 

Park, S.W., Bae, J. S., et al. (2004) Beta ig-h3 promotes renal proximal tubular epithelial cell 
adhesion, migration and proliferation through the interaction with alpha3beta1 
integrin. Experimetal and Molecular medicine, 36, 211-219. 

Parsi, M.K., Adams, J.R., Whitelock, J. and Gibson, M.A. LTBP-2 has multiple 
heparin/heparan sulfate binding sites. Matrix Biol. 

Pearlstein, E., Gold, L.I. and Garcia-Pardo, A. (1980) Fibronectin: a review of its structure 
and biological activity. Mol Cell Biochem, 29, 103-128. 

Pei, Y.F. and Rhodin, J.A. (1970) The prenatal development of the mouse eye. Anat Rec, 168, 
105-125. 

Peng, H.B., Xie, H., Rossi, S.G. and Rotundo, R.L. (1999) Acetylcholinesterase clustering at 
the neuromuscular junction involves perlecan and dystroglycan. J Cell Biol, 145, 911-
921. 

Penner, A.S., Rock, M.J., Kielty, C.M. and Shipley, J.M. (2002) Microfibril-associated 
glycoprotein-2 interacts with fibrillin-1 and fibrillin-2 suggesting a role for MAGP-2 
in elastic fiber assembly. J Biol Chem, 277, 35044-35049. 

Penttinen, C., Saharinen, J., Weikkolainen, K., Hyytiainen, M. and Keski-Oja, J. (2002) 
Secretion of human latent TGF-beta-binding protein-3 (LTBP-3) is dependent on co-
expression of TGF-beta. J Cell Sci, 115, 3457-3468. 

Pereira, L., Andrikopoulos, K., Tian, J., Lee, S.Y., Keene, D.R., Ono, R., Reinhardt, D.P., 
Sakai, L.Y., Biery, N.J., Bunton, T., Dietz, H.C. and Ramirez, F. (1997) Targetting of 
the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. 
Nat Genet, 17, 218-222. 

Perrimon, N. and Bernfield, M. (2001) Cellular functions of proteoglycans--an overview. 
Semin Cell Dev Biol, 12, 65-67. 

Pezet, M., Jacob, M.P., Escoubet, B., Gheduzzi, D., Tillet, E., Perret, P., Huber, P., Quaglino, 
D., Vranckx, R., Li, D.Y., Starcher, B., Boyle, W.A., Mecham, R.P. and Faury, G. 
(2008) Elastin haploinsufficiency induces alternative aging processes in the aorta. 
Rejuvenation Res, 11, 97-112. 

Pfaff, M., Aumailley, M., Specks, U., Knolle, J., Zerwes, H.G. and Timpl, R. (1993) Integrin 
and Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple helix 
of collagen type VI. Exp Cell Res, 206, 167-176. 



 

 - 163 - 

Pfaff, M., Reinhardt, D.P., Sakai, L.Y. and Timpl, R. (1996) Cell adhesion and integrin 
binding to recombinant human fibrillin-1. FEBS Lett, 384, 247-250. 

Pierce, A., Lyon, M., Hampson, I.N., Cowling, G.J. and Gallagher, J.T. (1992) Molecular 
cloning of the major cell surface heparan sulfate proteoglycan from rat liver. J Biol 
Chem, 267, 3894-3900. 

Poole, C.A. (1997) Articular cartilage chondrons: form, function and failure. J Anat, 191 ( Pt 
1), 1-13. 

Poole, C.A., Ayad, S. and Schofield, J.R. (1988) Chondrons from articular cartilage: I. 
Immunolocalization of type VI collagen in the pericellular capsule of isolated canine 
tibial chondrons. J Cell Sci, 90 ( Pt 4), 635-643. 

Prosser, I.W., Gibson, M.A. and Cleary, E.G. (1984) Microfibrillar protein from elastic tissue: 
a critical evaluation. Aust J Exp Biol Med Sci, 62 ( Pt 4), 485-505. 

Putnam, E.A., Zhang, H., Ramirez, F. and Milewicz, D.M. (1995) Fibrillin-2 (FBN2) 
mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. 
Nat Genet, 11, 456-458. 

Pyeritz, R.E. (2000) The Marfan syndrome. Annu Rev Med, 51, 481-510. 
Quondamatteo, F., Reinhardt, D.P., Charbonneau, N.L., Pophal, G., Sakai, L.Y. and Herken, 

R. (2002) Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development. 
Matrix Biol, 21, 637-646. 

Rabilloud, T. (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis, 
17, 813-829. 

Rabilloud, T., Adessi, C., Giraudel, A. and Lunardi, J. (1997) Improvement of the 
solubilization of proteins in two-dimensional electrophoresis with immobilized pH 
gradients. Electrophoresis, 18, 307-316. 

Raghunath, M., Putnam, E.A., Ritty, T., Hamstra, D., Park, E.S., Tschodrich-Rotter, M., 
Peters, R., Rehemtulla, A. and Milewicz, D.M. (1999) Carboxy-terminal conversion 
of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for 
incorporation in the matrix. J Cell Sci, 112 ( Pt 7), 1093-1100. 

Ramirez, F. and Dietz, H.C. (2007) Fibrillin-rich microfibrils: Structural determinants of 
morphogenetic and homeostatic events. J Cell Physiol, 213, 326-330. 

Ramirez, F. and Sakai, L.Y. Biogenesis and function of fibrillin assemblies. Cell Tissue Res, 
339, 71-82. 

Ramirez, F., Sakai, L.Y., Rifkin, D.B. and Dietz, H.C. (2007) Extracellular microfibrils in 
development and disease. Cell Mol Life Sci, 64, 2437-2446. 

Ramos Arroyo, M.A., Weaver, D.D. and Beals, R.K. (1985) Congenital contractural 
arachnodactyly. Report of four additional families and review of literature. Clin Genet, 
27, 570-581. 

Rapraeger, A., Jalkanen, M., Endo, E., Koda, J. and Bernfield, M. (1985) The cell surface 
proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and 
heparan sulfate glycosaminoglycans. J Biol Chem, 260, 11046-11052. 

Rapraeger, A.C. (2000) Syndecan-regulated receptor signaling. J Cell Biol, 149, 995-998. 
Raulo, E., Chernousov, M.A., Carey, D.J., Nolo, R. and Rauvala, H. (1994) Isolation of a 

neuronal cell surface receptor of heparin binding growth-associated molecule (HB-
GAM). Identification as N-syndecan (syndecan-3). J Biol Chem, 269, 12999-13004. 

Reale, E., Groos, S., Luciano, L., Eckardt, C. and Eckardt, U. (2001) In the mammalian eye 
type VI collagen tetramers form three morphologically different aggregates. Matrix 
Biol, 20, 37-51. 

Reinboth, B., Hanssen, E., Cleary, E.G. and Gibson, M.A. (2002) Molecular interactions of 
biglycan and decorin with elastic fiber components: biglycan forms a ternary complex 
with tropoelastin and microfibril-associated glycoprotein 1. J Biol Chem, 277, 3950-
3957. 

Reinboth, B., Thomas, J., Hanssen, E. and Gibson, M.A. (2006) Beta ig-h3 interacts directly 
with biglycan and decorin, promotes collagen VI aggregation, and participates in 
ternary complexing with these macromolecules. J Biol Chem, 281, 7816-7824. 



 

 - 164 - 

Reinhardt, D.P., Keene, D.R., Corson, G.M., Poschl, E., Bachinger, H.P., Gambee, J.E. and 
Sakai, L.Y. (1996a) Fibrillin-1: organization in microfibrils and structural properties. 
J Mol Biol, 258, 104-116. 

Reinhardt, D.P., Mechling, D.E., Boswell, B.A., Keene, D.R., Sakai, L.Y. and Bachinger, 
H.P. (1997a) Calcium determines the shape of fibrillin. J Biol Chem, 272, 7368-7373. 

Reinhardt, D.P., Ono, R.N. and Sakai, L.Y. (1997b) Calcium stabilizes fibrillin-1 against 
proteolytic degradation. J Biol Chem, 272, 1231-1236. 

Reinhardt, D.P., Sasaki, T., Dzamba, B.J., Keene, D.R., Chu, M.L., Gohring, W., Timpl, R. 
and Sakai, L.Y. (1996b) Fibrillin-1 and fibulin-2 interact and are colocalized in some 
tissues. J Biol Chem, 271, 19489-19496. 

Rifkin, D.B. (2005) Latent transforming growth factor-beta (TGF-beta) binding proteins: 
orchestrators of TGF-beta availability. J Biol Chem, 280, 7409-7412. 

Ritty, T.M., Broekelmann, T., Tisdale, C., Milewicz, D.M. and Mecham, R.P. (1999) 
Processing of the fibrillin-1 carboxyl-terminal domain. J Biol Chem, 274, 8933-8940. 

Ritty, T.M., Broekelmann, T.J., Werneck, C.C. and Mecham, R.P. (2003a) Fibrillin-1 and -2 
contain heparin-binding sites important for matrix deposition and that support cell 
attachment. Biochem J, 375, 425-432. 

Ritty, T.M., Ditsios, K. and Starcher, B.C. (2002) Distribution of the elastic fiber and 
associated proteins in flexor tendon reflects function. Anat Rec, 268, 430-440. 

Ritty, T.M., Roth, R. and Heuser, J.E. (2003b) Tendon cell array isolation reveals a 
previously unknown fibrillin-2-containing macromolecular assembly. Structure, 11, 
1179-1188. 

Roark, E.F., Keene, D.R., Haudenschild, C.C., Godyna, S., Little, C.D. and Argraves, W.S. 
(1995) The association of human fibulin-1 with elastic fibers: an immunohistological, 
ultrastructural, and RNA study. J Histochem Cytochem, 43, 401-411. 

Robb, B.W., Wachi, H., Schaub, T., Mecham, R.P. and Davis, E.C. (1999) Characterization 
of an in vitro model of elastic fiber assembly. Mol Biol Cell, 10, 3595-3605. 

Roberts, G.C. and Critchley, D.R. (2009) Structural and biophysical properties of the 
integrin-associated cytoskeletal protein talin. Biophys Rev, 1, 61-69. 

Rock, M.J., Cain, S.A., Freeman, L.J., Morgan, A., Mellody, K., Marson, A., Shuttleworth, 
C.A., Weiss, A.S. and Kielty, C.M. (2004) Molecular basis of elastic fiber formation. 
Critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem, 279, 23748-
23758. 

Rose, M.J. and Page, C. (2004) Glycosaminoglycans and the regulation of allergic 
inflammation. Curr Drug Targets Inflamm Allergy, 3, 221-225. 

Rosenbloom, J., Abrams, W.R. and Mecham, R. (1993) Extracellular matrix 4: the elastic 
fiber. Faseb J, 7, 1208-1218. 

Ruoslahti, E. (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev 
Biol, 12, 697-715. 

Sabatier, L., Chen, D., Fagotto-Kaufmann, C., Hubmacher, D., McKee, M.D., Annis, D.S., 
Mosher, D.F. and Reinhardt, D.P. (2009) Fibrillin assembly requires fibronectin. Mol 
Biol Cell, 20, 846-858. 

Saharinen, J., Hyytiainen, M., Taipale, J. and Keski-Oja, J. (1999) Latent transforming 
growth factor-beta binding proteins (LTBPs)--structural extracellular matrix proteins 
for targeting TGF-beta action. Cytokine Growth Factor Rev, 10, 99-117. 

Saharinen, J. and Keski-Oja, J. (2000) Specific sequence motif of 8-Cys repeats of TGF-beta 
binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of 
small latent TGF-beta. Mol Biol Cell, 11, 2691-2704. 

Saharinen, J., Taipale, J. and Keski-Oja, J. (1996) Association of the small latent 
transforming growth factor-beta with an eight cysteine repeat of its binding protein 
LTBP-1. Embo J, 15, 245-253. 

Saharinen, J., Taipale, J., Monni, O. and Keski-Oja, J. (1998) Identification and 
characterization of a new latent transforming growth factor-beta-binding protein, 
LTBP-4. J Biol Chem, 273, 18459-18469. 



 

 - 165 - 

Sakai, L.Y., Keene, D.R. and Engvall, E. (1986) Fibrillin, a new 350-kD glycoprotein, is a 
component of extracellular microfibrils. J Cell Biol, 103, 2499-2509. 

Sampath, T.K., Coughlin, J.E., Whetstone, R.M., Banach, D., Corbett, C., Ridge, R.J., 
Ozkaynak, E., Oppermann, H. and Rueger, D.C. (1990) Bovine osteogenic protein is 
composed of dimers of OP-1 and BMP-2A, two members of the transforming growth 
factor-beta superfamily. J Biol Chem, 265, 13198-13205. 

San Martin, S., Soto-Suazo, M. and Zorn, T.M. (2004) Perlecan and syndecan-4 in uterine 
tissues during the early pregnancy in mice. Am J Reprod Immunol, 52, 53-59. 

Sasaki, H., Kobayashi, Y., Nakashima, Y., Moriyama, S., Yukiue, H., Kaji, M., Kiriyama, M., 
Fukai, I., Yamakawa, Y. and Fujii, Y. (2002) Beta IGH3, a TGF-beta inducible gene, 
is overexpressed in lung cancer. Jpn J Clin Oncol, 32, 85-89. 

Sasaki, T., Hohenester, E., Zhang, R.Z., Gotta, S., Speer, M.C., Tandan, R., Timpl, R. and 
Chu, M.L. (2000) A Bethlem myopathy Gly to Glu mutation in the von Willebrand 
factor A domain N2 of the collagen alpha3(VI) chain interferes with protein folding. 
Faseb J, 14, 761-768. 

Sasisekharan, R., Raman, R. and Prabhakar, V. (2006) Glycomics approach to structure-
function relationships of glycosaminoglycans. Annu Rev Biomed Eng, 8, 181-231. 

Scacheri, P.C., Gillanders, E.M., Subramony, S.H., Vedanarayanan, V., Crowe, C.A., 
Thakore, N., Bingler, M. and Hoffman, E.P. (2002) Novel mutations in collagen VI 
genes: expansion of the Bethlem myopathy phenotype. Neurology, 58, 593-602. 

Schwarzbauer, J.E. (1991) Identification of the fibronectin sequences required for assembly 
of a fibrillar matrix. J Cell Biol, 113, 1463-1473. 

Schwarzbauer, J.E., Patel, R.S., Fonda, D. and Hynes, R.O. (1987) Multiple sites of 
alternative splicing of the rat fibronectin gene transcript. Embo J, 6, 2573-2580. 

Schwarzbauer, J.E., Tamkun, J.W., Lemischka, I.R. and Hynes, R.O. (1983) Three different 
fibronectin mRNAs arise by alternative splicing within the coding region. Cell, 35, 
421-431. 

Seftalioglu, A. and Karakus, S. (2003) Syndecan-1/CD138 expression in normal myeloid, 
acute lymphoblastic and myeloblastic leukemia cells. Acta Histochem, 105, 213-221. 

Sengle, G., Charbonneau, N.L., Ono, R.N., Sasaki, T., Alvarez, J., Keene, D.R., Bachinger, 
H.P. and Sakai, L.Y. (2008) Targeting of bone morphogenetic protein growth factor 
complexes to fibrillin. J Biol Chem, 283, 13874-13888. 

Shaw, J., Rowlinson, R., Nickson, J., Stone, T., Sweet, A., Williams, K. and Tonge, R. (2003) 
Evaluation of saturation labelling two-dimensional difference gel electrophoresis 
fluorescent dyes. Proteomics, 3, 1181-1195. 

Shipley, J.M., Mecham, R.P., Maus, E., Bonadio, J., Rosenbloom, J., McCarthy, R.T., 
Baumann, M.L., Frankfater, C., Segade, F. and Shapiro, S.D. (2000) Developmental 
expression of latent transforming growth factor beta binding protein 2 and its 
requirement early in mouse development. Mol Cell Biol, 20, 4879-4887. 

Skonier, J., Bennett, K., Rothwell, V., Kosowski, S., Plowman, G., Wallace, P., Edelhoff, S., 
Disteche, C., Neubauer, M., Marquardt, H. and et al. (1994) beta ig-h3: a 
transforming growth factor-beta-responsive gene encoding a secreted protein that 
inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. 
DNA Cell Biol, 13, 571-584. 

Skonier, J., Neubauer, M., Madisen, L., Bennett, K., Plowman, G.D. and Purchio, A.F. (1992) 
cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human 
adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA 
Cell Biol, 11, 511-522. 

Smith, L.T. (1994) Patterns of type VI collagen compared to types I, III and V collagen in 
human embryonic and fetal skin and in fetal skin-derived cell cultures. Matrix Biol, 
14, 159-170. 

Smith, S.E., French, M.M., Julian, J., Paria, B.C., Dey, S.K. and Carson, D.D. (1997) 
Expression of heparan sulfate proteoglycan (perlecan) in the mouse blastocyst is 
regulated during normal and delayed implantation. Dev Biol, 184, 38-47. 



 

 - 166 - 

Smith, S.M., West, L.A., Govindraj, P., Zhang, X., Ornitz, D.M. and Hassell, J.R. (2007) 
Heparan and chondroitin sulfate on growth plate perlecan mediate binding and 
delivery of FGF-2 to FGF receptors. Matrix Biol, 26, 175-184. 

Smyth, N., Vatansever, H.S., Murray, P., Meyer, M., Frie, C., Paulsson, M. and Edgar, D. 
(1999) Absence of basement membranes after targeting the LAMC1 gene results in 
embryonic lethality due to failure of endoderm differentiation. J Cell Biol, 144, 151-
160. 

Sottile, J. and Mosher, D.F. (1993) Assembly of fibronectin molecules with mutations or 
deletions of the carboxyl-terminal type I modules. Biochemistry, 32, 1641-1647. 

Specks, U., Mayer, U., Nischt, R., Spissinger, T., Mann, K., Timpl, R., Engel, J. and Chu, 
M.L. (1992) Structure of recombinant N-terminal globule of type VI collagen alpha 3 
chain and its binding to heparin and hyaluronan. Embo J, 11, 4281-4290. 

Spissinger, T. and Engel, J. (1995) Type VI collagen beaded microfibrils from bovine cornea 
depolymerize at acidic pH, and depolymerization and polymerization are not 
influenced by hyaluronan. Matrix Biol, 14, 499-505. 

Staprans, I., Piel, C.F. and Felts, J.M. (1986) Analysis of selected plasma constituents in 
continuous ambulatory peritoneal dialysis effluent. Am J Kidney Dis, 7, 490-494. 

Steinberg, T.H., Chernokalskaya, E., Berggren, K., Lopez, M.F., Diwu, Z., Haugland, R.P. 
and Patton, W.F. (2000) Ultrasensitive fluorescence protein detection in isoelectric 
focusing gels using a ruthenium metal chelate stain. Electrophoresis, 21, 486-496. 

Sterner-Kock, A., Thorey, I.S., Koli, K., Wempe, F., Otte, J., Bangsow, T., Kuhlmeier, K., 
Kirchner, T., Jin, S., Keski-Oja, J. and von Melchner, H. (2002) Disruption of the 
gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) 
causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes 
Dev, 16, 2264-2273. 

Sterzel, R.B., Hartner, A., Schlotzer-Schrehardt, U., Voit, S., Hausknecht, B., Doliana, R., 
Colombatti, A., Gibson, M.A., Braghetta, P. and Bressan, G.M. (2000) Elastic fiber 
proteins in the glomerular mesangium in vivo and in cell culture. Kidney Int, 58, 
1588-1602. 

Switzer, R.C., 3rd, Merril, C.R. and Shifrin, S. (1979) A highly sensitive silver stain for 
detecting proteins and peptides in polyacrylamide gels. Anal Biochem, 98, 231-237. 

Taipale, J., Lohi, J., Saarinen, J., Kovanen, P.T. and Keski-Oja, J. (1995) Human mast cell 
chymase and leukocyte elastase release latent transforming growth factor-beta 1 from 
the extracellular matrix of cultured human epithelial and endothelial cells. J Biol 
Chem, 270, 4689-4696. 

Takeshita, S., Kikuno, R., Tezuka, K. and Amann, E. (1993) Osteoblast-specific factor 2: 
cloning of a putative bone adhesion protein with homology with the insect protein 
fasciclin I. Biochem J, 294 ( Pt 1), 271-278. 

Tannu, N.S. and Hemby, S.E. (2006) Two-dimensional fluorescence difference gel 
electrophoresis for comparative proteomics profiling. Nat Protoc, 1, 1732-1742. 

Taylor, K.R. and Gallo, R.L. (2006) Glycosaminoglycans and their proteoglycans: host-
associated molecular patterns for initiation and modulation of inflammation. Faseb J, 
20, 9-22. 

Teder, P., Vandivier, R.W., Jiang, D., Liang, J., Cohn, L., Pure, E., Henson, P.M. and Noble, 
P.W. (2002) Resolution of lung inflammation by CD44. Science, 296, 155-158. 

Thiede, B., Treumann, A., Kretschmer, A., Sohlke, J. and Rudel, T. (2005) Shotgun proteome 
analysis of protein cleavage in apoptotic cells. Proteomics, 5, 2123-2130. 

Tiedemann, K., Batge, B., Muller, P.K. and Reinhardt, D.P. (2001) Interactions of fibrillin-1 
with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem, 
276, 36035-36042. 

Tiedemann, K., Sasaki, T., Gustafsson, E., Gohring, W., Batge, B., Notbohm, H., Timpl, R., 
Wedel, T., Schlotzer-Schrehardt, U. and Reinhardt, D.P. (2005) Microfibrils at 
basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem, 280, 
11404-11412. 



 

 - 167 - 

Timpl, R., and Chu, M. L.,. (1994) In Yurchenco, P.D., Birk, D., and Micham, R. P., (ed.), In 
Extracellular Matrix Assembly and Structure. Academic Press, Inc, New York, pp. 
207-242. 

Timpl, R. and Brown, J.C. (1996) Supramolecular assembly of basement membranes. 
Bioessays, 18, 123-132. 

Tkachenko, E., Rhodes, J.M. and Simons, M. (2005) Syndecans: new kids on the signaling 
block. Circ Res, 96, 488-500. 

Todorovic, V., Frendewey, D., Gutstein, D.E., Chen, Y., Freyer, L., Finnegan, E., Liu, F., 
Murphy, A., Valenzuela, D., Yancopoulos, G. and Rifkin, D.B. (2007) Long form of 
latent TGF-beta binding protein 1 (Ltbp1L) is essential for cardiac outflow tract 
septation and remodeling. Development, 134, 3723-3732. 

Trask, B.C., Trask, T.M., Broekelmann, T. and Mecham, R.P. (2000a) The microfibrillar 
proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate 
proteoglycan decorin. Mol Biol Cell, 11, 1499-1507. 

Trask, T.M., Ritty, T.M., Broekelmann, T., Tisdale, C. and Mecham, R.P. (1999) N-terminal 
domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible 
first step in microfibril assembly. Biochem J, 340 ( Pt 3), 693-701. 

Trask, T.M., Trask, B.C., Ritty, T.M., Abrams, W.R., Rosenbloom, J. and Mecham, R.P. 
(2000b) Interaction of tropoelastin with the amino-terminal domains of fibrillin-1 and 
fibrillin-2 suggests a role for the fibrillins in elastic fiber assembly. J Biol Chem, 275, 
24400-24406. 

Trinkle-Mulcahy, L., Boulon, S., Lam, Y.W., Urcia, R., Boisvert, F.M., Vandermoere, F., 
Morrice, N.A., Swift, S., Rothbauer, U., Leonhardt, H. and Lamond, A. (2008) 
Identifying specific protein interaction partners using quantitative mass spectrometry 
and bead proteomes. J Cell Biol, 183, 223-239. 

Tsen, G., Halfter, W., Kroger, S. and Cole, G.J. (1995) Agrin is a heparan sulfate 
proteoglycan. J Biol Chem, 270, 3392-3399. 

Tsuji, T., Okada, F., Yamaguchi, K. and Nakamura, T. (1990) Molecular cloning of the large 
subunit of transforming growth factor type beta masking protein and expression of the 
mRNA in various rat tissues. Proc Natl Acad Sci U S A, 87, 8835-8839. 

Unlu, M., Morgan, M.E. and Minden, J.S. (1997) Difference gel electrophoresis: a single gel 
method for detecting changes in protein extracts. Electrophoresis, 18, 2071-2077. 

Unsold, C., Hyytiainen, M., Bruckner-Tuderman, L. and Keski-Oja, J. (2001) Latent TGF-
beta binding protein LTBP-1 contains three potential extracellular matrix interacting 
domains. J Cell Sci, 114, 187-197. 

Urban, Z., Gao, J., Pope, F.M. and Davis, E.C. (2005) Autosomal dominant cutis laxa with 
severe lung disease: synthesis and matrix deposition of mutant tropoelastin. J Invest 
Dermatol, 124, 1193-1199. 

Urban, Z., Michels, V.V., Thibodeau, S.N., Davis, E.C., Bonnefont, J.P., Munnich, A., 
Eyskens, B., Gewillig, M., Devriendt, K. and Boyd, C.D. (2000) Isolated 
supravalvular aortic stenosis: functional haploinsufficiency of the elastin gene as a 
result of nonsense-mediated decay. Hum Genet, 106, 577-588. 

Urban, Z., Zhang, J., Davis, E.C., Maeda, G.K., Kumar, A., Stalker, H., Belmont, J.W., Boyd, 
C.D. and Wallace, M.R. (2001) Supravalvular aortic stenosis: genetic and molecular 
dissection of a complex mutation in the elastin gene. Hum Genet, 109, 512-520. 

Van den Bergh, G., Clerens, S., Vandesande, F. and Arckens, L. (2003) Reversed-phase 
high-performance liquid chromatography prefractionation prior to two-dimensional 
difference gel electrophoresis and mass spectrometry identifies new differentially 
expressed proteins between striate cortex of kitten and adult cat. Electrophoresis, 24, 
1471-1481. 

Vehvilainen, P., Hyytiainen, M. and Keski-Oja, J. (2003) Latent transforming growth factor-
beta-binding protein 2 is an adhesion protein for melanoma cells. J Biol Chem, 278, 
24705-24713. 



 

 - 168 - 

Vehvilainen, P., Hyytiainen, M. and Keski-Oja, J. (2009) Matrix association of latent TGF-
beta binding protein-2 (LTBP-2) is dependent on fibrillin-1. J Cell Physiol, 221, 586-
593. 

Vermeulen, M., Hubner, N.C. and Mann, M. (2008) High confidence determination of 
specific protein-protein interactions using quantitative mass spectrometry. Curr Opin 
Biotechnol, 19, 331-337. 

Vincourt, J.B., Lionneton, F., Kratassiouk, G., Guillemin, F., Netter, P., Mainard, D. and 
Magdalou, J. (2006) Establishment of a reliable method for direct proteome 
characterization of human articular cartilage. Mol Cell Proteomics, 5, 1984-1995. 

Vrhovski, B., Jensen, S. and Weiss, A.S. (1997) Coacervation characteristics of recombinant 
human tropoelastin. Eur J Biochem, 250, 92-98. 

Wagenseil, J.E. and Mecham, R.P. (2007) New insights into elastic fiber assembly. Birth 
Defects Res C Embryo Today, 81, 229-240. 

Wess, T.J. (2005) Collagen fibril form and function. Adv Protein Chem, 70, 341-374. 
Whitelock, J. (2001) Purification of perlecan from endothelial cells. Methods Mol Biol, 171, 

27-34. 
Whitelock, J.M., Melrose, J. and Iozzo, R.V. (2008) Diverse cell signaling events modulated 

by perlecan. Biochemistry, 47, 11174-11183. 
Whiteman, P. and Handford, P.A. (2003) Defective secretion of recombinant fragments of 

fibrillin-1: implications of protein misfolding for the pathogenesis of Marfan 
syndrome and related disorders. Hum Mol Genet, 12, 727-737. 

Wiberg, C., Hedbom, E., Khairullina, A., Lamande, S.R., Oldberg, A., Timpl, R., Morgelin, 
M. and Heinegard, D. (2001) Biglycan and decorin bind close to the n-terminal region 
of the collagen VI triple helix. J Biol Chem, 276, 18947-18952. 

Wiberg, C., Heinegard, D., Wenglen, C., Timpl, R. and Morgelin, M. (2002) Biglycan 
organizes collagen VI into hexagonal-like networks resembling tissue structures. J 
Biol Chem, 277, 49120-49126. 

Wiberg, C., Klatt, A.R., Wagener, R., Paulsson, M., Bateman, J.F., Heinegard, D. and 
Morgelin, M. (2003) Complexes of matrilin-1 and biglycan or decorin connect 
collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem, 278, 37698-
37704. 

Wilcox-Adelman, S.A., Denhez, F., Iwabuchi, T., Saoncella, S., Calautti, E. and Goetinck, 
P.F. (2002) Syndecan-4: dispensable or indispensable? Glycoconj J, 19, 305-313. 

Wu, J.J., Eyre, D.R. and Slayter, H.S. (1987) Type VI collagen of the intervertebral disc. 
Biochemical and electron-microscopic characterization of the native protein. Biochem 
J, 248, 373-381. 

Wu, X.X., Gordon, R.E., Glanville, R.W., Kuo, H.J., Uson, R.R. and Rand, J.H. (1996) 
Morphological relationships of von Willebrand factor, type VI collagen, and fibrillin 
in human vascular subendothelium. Am J Pathol, 149, 283-291. 

Yamamoto, S., Okada, M., Tsujikawa, M., Shimomura, Y., Nishida, K., Inoue, Y., Watanabe, 
H., Maeda, N., Kurahashi, H., Kinoshita, S., Nakamura, Y. and Tano, Y. (1998) A 
kerato-epithelin (betaig-h3) mutation in lattice corneal dystrophy type IIIA. Am J 
Hum Genet, 62, 719-722. 

Yamanaka, M., Kimura, F., Kagata, Y., Kondoh, N., Asano, T., Yamamoto, M. and 
Hayakawa, M. (2008) BIGH3 is overexpressed in clear cell renal cell carcinoma. 
Oncol Rep, 19, 865-874. 

Yanagisawa, H., Davis, E.C., Starcher, B.C., Ouchi, T., Yanagisawa, M., Richardson, J.A. 
and Olson, E.N. (2002) Fibulin-5 is an elastin-binding protein essential for elastic 
fibre development in vivo. Nature, 415, 168-171. 

Yin, W., Smiley, E. and Bonadio, J. (1998) Alternative splicing of LTBP-3. Biochem Biophys 
Res Commun, 245, 454-458. 

Yoneda, A. and Couchman, J.R. (2003) Regulation of cytoskeletal organization by syndecan 
transmembrane proteoglycans. Matrix Biol, 22, 25-33. 



 

 - 169 - 

Yurchenco, P.D., Cheng, Y.S., Campbell, K. and Li, S. (2004) Loss of basement membrane, 
receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. J Cell Sci, 
117, 735-742. 

Zajchowski, D.A., Bartholdi, M.F., Gong, Y., Webster, L., Liu, H.L., Munishkin, A., 
Beauheim, C., Harvey, S., Ethier, S.P. and Johnson, P.H. (2001) Identification of gene 
expression profiles that predict the aggressive behavior of breast cancer cells. Cancer 
Res, 61, 5168-5178. 

Zhang, H., Apfelroth, S.D., Hu, W., Davis, E.C., Sanguineti, C., Bonadio, J., Mecham, R.P. 
and Ramirez, F. (1994) Structure and expression of fibrillin-2, a novel microfibrillar 
component preferentially located in elastic matrices. J Cell Biol, 124, 855-863. 

Zhang, H., Hu, W. and Ramirez, F. (1995) Developmental expression of fibrillin genes 
suggests heterogeneity of extracellular microfibrils. J Cell Biol, 129, 1165-1176. 

Zhang, M.C., He, L., Giro, M., Yong, S.L., Tiller, G.E. and Davidson, J.M. (1999) Cutis laxa 
arising from frameshift mutations in exon 30 of the elastin gene (ELN). J Biol Chem, 
274, 981-986. 

Zhang, Y., Conrad, A.H., Tasheva, E.S., An, K., Corpuz, L.M., Kariya, Y., Suzuki, K. and 
Conrad, G.W. (2005) Detection and quantification of sulfated disaccharides from 
keratan sulfate and chondroitin/dermatan sulfate during chick corneal development by 
ESI-MS/MS. Invest Ophthalmol Vis Sci, 46, 1604-1614. 

Zhao, L., Liang, T., Xu, J., Lin, H., Li, D. and Qi, Y. (2009) Two novel FBN1 mutations 
associated with ectopia lentis and marfanoid habitus in two Chinese families. Mol Vis, 
15, 826-832. 

Zheng, Q., Davis, E.C., Richardson, J.A., Starcher, B.C., Li, T., Gerard, R.D. and 
Yanagisawa, H. (2007) Molecular analysis of fibulin-5 function during de novo 
synthesis of elastic fibers. Mol Cell Biol, 27, 1083-1095. 

Zimmermann, D.R., Trueb, B., Winterhalter, K.H., Witmer, R. and Fischer, R.W. (1986) 
Type VI collagen is a major component of the human cornea. FEBS Lett, 197, 55-58. 

Zinn, K., McAllister, L. and Goodman, C.S. (1988) Sequence analysis and neuronal 
expression of fasciclin I in grasshopper and Drosophila. Cell, 53, 577-587. 

 
 


	TITLE: CHARACTERISATION OF NOVEL MATRIX-BINDING  INTERACTIONS FOR LATENT TRANSFORMING GROWTH FACTOR-β-BINDING PROTEIN-2 (LTBP-2), WITH EMPHASIS ON HEPARIN AND HEPARAN SULPHATE PROTEOGLYCANS
	DECLARATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	PRESENTATIONS AND PUBLICATION ARISING
	AWARDS ARISING FROM PhD CANDIDATURE
	ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	SUMMARY

	CHAPTER 1 INTRODUCTION
	CHAPTER 2 MATERIALS AND METHODS
	CHAPTER 3 BINDING INTERACTION OF HUMAN LTBP-2 WITH HEPARIN/HEPARAN SULPHATE PROTEOGLYCANS
	CHAPTER 4 THE CENTRAL REGION OF LTBP-2 CONTAINS A BINDING SITE FOR HEPARIN
	CHAPTER 5 LTBP-2 INTERACTIONS WITH PERLECAN AND SYNDECANS
	CHAPTER 6 IMMUNOHISTOCHEMICAL ANALYSIS OF HUMAN FOETAL AORTA INDICATES LTBP-2 HAS AREAS OF COLOCALISATION  WITH PERLECAN
	CHAPTER 7 IDENTIFICATION OF MATRIX MOLECULAR BINDING PARTNERS OF βig-h3 AND LTBP-2 USING AFFINITY BINDING AND PROTEOMICS TECHNIQUES
	CHAPTER 8 DISCUSSION AND FUTURE DIRECTIONS
	APPENDIX A Primer sequences used for cloning of recombinant LTBP-2NT(H) and LTBP-2C(H).
	APPENDIX B Solution formulation
	APPENDIX C Antibody concentrations for various experiments conducted
	REFERENCES



