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Abstract 

This paper puts forward a practical method for detecting multiple cracks on beams 

by utilizing transient vibration data. To explicitly address the uncertainty that is induced 

by measurement noise and modeling error, the Bayesian statistical framework is followed 

in the proposed crack detection method, which consists of two stages. In the first stage 

the number of cracks is identified by a computationally efficient algorithm that utilizes 

the Bayesian model class selection method. In the second stage, the posterior probability 

density function (PDF) of crack characteristics (i.e., the crack locations and crack depths) 

are determined by the Bayesian model updating method. The feasibility of the proposed 

methodology is experimentally demonstrated using a cantilever beam with one and two 

artificial cracks with depths between zero and 50% of the beam height. The experimental 

data consists of transient vibration time histories that are collected at a single location 

using a laser Doppler vibrometer measurement system and impact excitations at three 

locations along the beam. The results show that the two-stage procedure enables the 

identification of the correct number of cracks and corresponding locations and extents, 

together with the corresponding coefficient of variation (COV). 
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1. Introduction 

The safety of structures, such as buildings and bridges, and their structural 

components, such as beams, columns, slabs, and canopies, are of serious public concern 

in all developed countries. Reliable and efficient structural damage detection methods are 

of primary importance in addressing such public concern.  

Changes in dynamic characteristics have frequently been employed as a means of 

structural damage detection. A comprehensive review of recent developments can be 

found in reference [5]. Due to advances in sensor technologies, inspection devices such 

as laser Doppler vibrometers and shearographs have been developed to enable the 

measurement of accurate dynamic structural responses. However, the development of 

methodologies and algorithms to extract useful information from the measured data for 

structural damage detection is still immature. The goal of this paper is to make a seminal 

contribution in this area by developing a practical and reliable methodology for detecting 

cracks on structural members and verify it experimentally. 

Many researchers have studied the use of dynamic measurement in crack 

detection on structural members. For detecting the existence of cracks and the 

corresponding locations, a non-model based approach, which relies on the measured 

responses of the undamaged (healthy) and possibly damaged structural member, is 

commonly used (e.g. Liu et al. [3]). However, a model-based approach, which involves 

modeling the structural members, has to be adopted if the crack extent (depth) is to be 

quantified. 

To study the feasibility of the model-based approach, the majority of methods 

were focusing on single crack situations (Rizos et al. [16]; Liang et al. [19]; Narkis [25]; 

Nandwana and Maiti [1]; Tomasel and Larrondo [4]; Lam et al. [7]). To extend the 

approach to a multi-crack situation, Ostachowicz and Krawczuk [24] studied the forward 

problem of a beam structure with two cracks in 1991. They expressed the changes in 

modal parameters as a function of crack locations and extents. In 1993, Hu and Liang [8] 

combined two different models to identify multiple cracks. One of the models involved 

the use of massless springs with infinitesimal lengths to represent the local flexibility 

introduced by a crack; and the other model incorporated the effective stress concept in 
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continuum damage mechanics and Hamilton’s principle. In 2005, Law and Lu [21] 

proposed to use measured time-domain responses in detecting multi-cracks on a beam 

structure through optimization algorithms. All of the abovementioned crack detection 

methods are only applicable in single-crack situations or when the number of cracks is 

known in advance, which is normally not possible in real situations.  

The proposed crack detection methodology addresses this difficulty by dividing 

the process into two stages. The number of cracks is identified in the first stage, and the 

crack characteristics are identified in the second stage. The proposed methodology 

focuses on cases in which cracks are obstructed and therefore the vibration data at and 

near to the damaged region cannot be obtained. Furthermore, the proposed methodology 

is applicable even when the measurement of the undamaged (reference) structure is not 

available. 

Due to the problem of “incomplete” measurement and measurement noise, the 

results of crack detection, such as the identified crack locations and depths, are uncertain. 

In the proposed methodology, these uncertainties are explicitly treated by the Bayesian 

statistical framework. Consequently, the proposed methodology not only calculates the 

crack locations and extents, but also the corresponding confidence level, providing 

engineers with valuable information to make informed judgments on remedial work.  

For a crack detection method to be practical and efficient, it must be applicable 

with a small number of sensors. Otherwise, the equipment installation time and cost will 

seriously affect the applicability of the method. A particular advantage of the proposed 

methodology is that only one sensor is required, and the experimental verification result 

shows that enough information can be extracted from impacts at three locations along the 

structural member in the cases considered. It must be pointed out that the single sensor 

and multiple excitation technique is a practical measurement system for frame and truss 

structures in civil and mechanical applications (e.g., cranes and draglines) [3]. 

This paper consists of two main parts: the theoretical development of the 

methodology and the experimental case studies. In the first part (Section 2), the analytical 

beam model, the method for detecting the number of cracks (stage one of the proposed 

methodology), and the method for identifying the crack characteristics (stage two) are 

described. The second part (Section 3) presents the results of a series of comprehensive 
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experimental case studies in demonstrating the proposed crack detection methodology. 

Conclusions are drawn in Section 4.  

 

2. Methodology and Background Theories 

In the first sub-section, details of the modeling of the cracked beam with semi-

rigid connection and its parameterization are addressed. In the second sub-section, the 

main problem of identifying the number of cracks following a model-based approach is 

discussed. That is followed by the first stage of the proposed crack detection 

methodology, namely the determination of the number of cracks, which relies on a 

computationally efficient algorithm and the Bayesian model class selection method. In 

the last sub-section, the second stage of the proposed methodology, which aims in 

identifying the crack locations and extents following the Bayesian model updating 

method, is briefly reviewed. 

 

2.1. Modeling of semi-rigidly connected cantilever beam with multiple cracks 

Fig. 1 shows a model of a cantilever beam with CN  cracks. The beam is divided 

into 1CN +  segments, each with length il , for i = 1, …, 1CN + , where LlCN

i i =∑ +

=

1

1
. 

Each segment is modeled as an Euler-Bernoulli beam with the equation of motion for 

vibration under an arbitrary force ( )P t  as: 

 ( ) ( ) ( )
4 2

4 2

, ,y x t y x t
EI m P t

x t
∂ ∂

+ =
∂ ∂

, (1) 

where EI  is the flexural rigidity, m  is the mass per unit length, and y  is the transverse 

deflection of the beam, which is a function of the position x along the beam and time t. 

By using separation of variables ( , ) ( ) ( )y x t x z tφ= , the displacement ( , )y x t  is described 

as the product of the modal function ( )z t  and the mode shape function ( )xφ . The general 

solution of the mode shape functions ( )i ixφ  for the i-th segment can be expressed as: 

 ( ) ( ) ( ) ( ) ( )sin sinh cos coshi i i i i i i i i ix C x D x E x F xφ β β β β= + + +  for 1, , 1Ci N= +K , (2) 
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where  4 2 /m EIβ ω= ; ω  is the angular natural frequency of the system in radians per 

second, and iC , iD , iE , and iF  are unknown coefficients to be calculated from the 

boundary and continuity conditions. The boundary conditions at the fixed and free ends, 

respectively, are: 

 

( )
( ) ( )

( )

( )

1

2
1 1

2

2
1 1

2

3
1 1

3

0 0

0 0

0

0

C C

C C

N N

N N

d d
K EI

dx dx
d l

dx
d l

dx

φ

φ φ

φ

φ

+ +

+ +

=

=

=

=

 (3) 

where K  is the stiffness coefficient of the rotational spring at the left end of the 

cantilever beam. The rotational spring models the semi-rigid behavior of the beam end 

connection (Chen & Kishi [23]). At the general i-th crack of the beam, the following four 

continuity conditions must be satisfied: 

 

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

1
2

1 1
2

2 2
1

2 2

3 3
1

3 3

0
0 0

0

0

i i i

i i i i
i

i i i

i i i

l
d d l d

L
dx dx dx

d l d
dx dx

d l d
dx dx

φ φ
φ φ φ

φ φ

φ φ

+

+ +

+

+

=

− = Δ

=

=

 for 1,..., Ci N=  (4) 

where iΔ  is the non-dimensional flexibility parameter to characterize the extent of the i-

th crack. The relationship between the crack extent iΔ  and the crack depth ratio 

/i i hδ γ=  can be found in Ostachowicz et al. [24] as: 

 ( )26i i i
h f
L

πδ δ⎛ ⎞Δ = ⎜ ⎟⎝ ⎠
, (5) 

where h  is the beam depth, iγ  is the depth of the i-th crack, and the function ( )if δ  is 

given by [24]: 

 ( ) 2 3 4 5 60.6384 1.035 3.7201 5.1773 7.553 7.332 2.4909i i i i i i if δ δ δ δ δ δ δ= − + − + − +  (6) 
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A characteristic equation of the cracked beam can be obtained by substituting the 

conditions in Eqs. (3) and (4) into Eq. (2). An infinite number of natural frequencies kω  

and mode shapes ( )xkφ  for ∞= .,1…k  of the system can then be calculated. In the under-

damped vibration case, the modal function of k-th mode ( )kz t  is in the following form: 

 ( ) ( ), ,sin cosk kt
k k D k k D kz t e A t B tζ ω ω ω−= + , (7) 

where kA  and kB  depend on the initial conditions of the k-th system and 

2
, 1D k k kω ω ζ= −  and kζ  are the damped frequency and the critical damping ratio of the 

k-th mode. The overall response of the beam can be calculated by the method of modal 

superposition [26]. In general, only a small number of lower modes contribute to the 

dynamic response of the system, and this number depends on many factors, such as the 

support conditions and the types of excitations.  

According to Katafygiotis et al. [15], the uncertainty that is associated with the 

stiffness K  of the rotational spring, which is employed to model the semi-rigid 

connection, is much larger than those associated with other model parameters, such as the 

modulus of elasticity and the mass density of the structural member. Therefore, the 

rotational stiffness will be included as one of the uncertain parameters in the proposed 

methodology. To prevent numerical problems, a normalized rotational stiffness 

/K K EI=%  is used. Furthermore, damping is usually more difficult to identify when 

compared to other model parameters. Thus, the damping ratios are also included as 

uncertain parameters in the proposed methodology. It must be pointed out that increasing 

the number of uncertain parameters by including these system characteristics will 

increase the uncertainties associated with the identified damage parameter results, i.e. 

crack locations and extents. The effects of including these additional uncertain 

parameters in the proposed methodology have been comprehensively studied in reference 

[6] and will not be repeated in this paper. 

In the proposed methodology, the uncertain parameter vector for a beam with j 

cracks is: 

 { }1 1 2 1 2, ,... , , , , , , ,
T

j q j jK l l lζ ζ= Δ Δ Δa % K K  (8) 
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where q  is the number of modes required to describe with sufficient accuracy the 

dynamic response of the cantilever beam for a particular excitation. In the experimental 

case study, the first four modes are used. The total number of uncertain parameters is 

2 1j q+ + .  

 

2.2. Identification of the number of cracks (stage one) 

If the model-based approach is followed for crack detection and the number of 

cracks is not known, beams with different numbers of cracks have to be modeled by 

different classes of models, as shown in Fig. 2. In the figure, the model class jM  is 

employed in modeling a beam with j cracks, and the parameters jl  and jΔ  are used to 

describe the location and extent of the j-th crack. 

The problem is how to identify the “optimal” model class using a set of 

measurements D. By following the concept of model updating, one may consider 

carrying out a minimization for each model class to minimize the discrepancy between 

the measured and modeled responses, and “pick up” the “optimal” model class as that 

which can give the best fit to the measurement. It must be pointed out that the selection of 

the “optimal” model class based on a given set of data is not trivial. It is clear that the 

model class of a beam with more cracks consists of more model parameters (see Fig. 2), 

which will always provide a better fit to the measurement when compared to a model 

class with fewer parameters. Hence, the selection of model class based solely on the 

fitting between the modeled and the measured dynamic responses can be very 

misleading, as the most complex model class will always be selected. 

In addressing this problem, the first stage of the proposed methodology relies on 

the Bayesian model class selection method (Beck & Yuen [9]) in selecting the “optimal” 

model class to identify the number of cracks on the beam. Due to space limitations here, 

the Bayesian model class selection method will only be briefly reviewed. Interested 

readers should consult reference (Beck & Yuen [9]). The original goal of the method is to 

select the “optimal” class of models from a given list of MN  model classes. The selection 

is based on the probability of the model class conditional on the set of measurements D 

(Beck & Yuen [9]): 
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 ( ) ( ) ( )
( )

| , |
| ,

|
j j

j

p D M U P M U
P M D U

p D U
=   for  MNj ,,1…= , (9) 

where U  expresses the user’s judgment about the initial plausibility of the classes of 

models, expressed as a prior probability ( | )jp M U  on the model class jM , such that 

( ) 1|
1

=∑ =
MN

j j UMP . Unless there is prior information about the number of cracks on the 

beam, the prior probability ( | )jP M U  is taken as MN1 ; ( )UDp |1  is treated as a 

normalizing constant. The most important term in Eq. (9) is ( | , )jp D M U , which is 

known as the “evidence” for the model class jM  provided by the data D. The class of 

models to be used is obviously the one that maximizes the probability ( | , )jP M D U  and 

this is generally equivalent to the one that maximizes the evidence ( | , )jp D M U  with 

respect to jM . In the application of the Bayesian model class selection method in the 

detection of the number of cracks, subjective judgment from engineers is not preferred. 

As a result, U  is dropped in ( | , )jp D M U  because it is assumed that jM  alone specifies 

the PDF for the data. Hence, the evidence ( ) ( )jj MDpUMDp |,| =  hereafter. 

For a globally identifiable case (Beck & Katafygiotis 1998 [10]; Katafygiotis & 

Beck 1998 [13]), the evidence can be calculated based on an asymptotic approximation 

(Papadimitriou et al. 1997 [2]): 

 ( ) ( )( ) ( ) ( )
1
22ˆ ˆ ˆ| | , 2 |

jN

j j j j j j jp D M p D M p Mπ
−

≈ a a H a   for  MNj ,,1…= , (10) 

where ˆ ja  denotes the optimal model in the model class jM  (the set of optimal model 

parameters of ja ). jN  is the number of uncertain model parameters in ˆ ja , and ˆ( )j jH a  is 

the Hessian of the function ( ) ( ) ( )ln | | ,j j j j jg p M p D M⎡ ⎤= − ⎣ ⎦a a a  evaluated at the 

optimal model ˆ ja . 

The evidence ( | )jp D M  in Eq. (10) consists of two factors. The first factor 

ˆ( | , )j jp D Ma  is the likelihood factor. This will be larger for those model classes that 

give a better “fit” to the data D. This favors model classes with more parameters (model 
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classes with higher complexity). The second factor 2 1 2ˆ ˆ(2 ) ( | ) | ( ) |jN
j j j jp Mπ −a H a  is 

called the Ockham factor (Gull [20]). Beck and Yuen [9] showed that the value of the 

Ockham factor decreases as the number of uncertain parameters in the model class 

increases and therefore provides a mathematically rigorous and robust penalty against 

parameterization. The combination of these two factors enables the selection of the 

“simplest” model class that can provide a “good fit” to the measurement.  

With the help of the Bayesian model class selection method, the computationally 

efficient algorithm is developed for identifying the number of cracks on the beam 

utilizing the given set of measurement D. The algorithm consists of a series of iteration 

steps, as shown in Fig. 3, and begins by testing the simplest class of models with no crack 

on the beam. Value zero is assigned to the variable j, which is the number of cracks at the 

current iteration step. In a general iteration step, the algorithm compares the model class 

that has j cracks with the one that has j + 1 cracks following the Bayesian model class 

selection method. If the evidence of the model class with j cracks is larger than that of the 

model class with j + 1 cracks, then the algorithm stops and  the number of cracks is equal 

to j. Otherwise, the algorithm will assign j = j + 1 and repeat the comparison (see Fig. 3). 

 

2.3. Identification of crack locations and depths (stage two) 

 After identifying the number of cracks, for example CN , by the proposed 

algorithm in stage one, the goal in the second stage is to calculate the posterior PDF 

( )| ,
C CN Np D Ma  of the set of uncertain model parameters 

CN
a  in the model class 

CN
M . 

For identifiable cases, the posterior PDF of uncertain model parameters conditional on 

the measurement D and the model class 
CN

M  can be approximated as (Beck & 

Katafygiotis 1998 [10]; Katafygiotis & Beck 1994 [13]): 

 ( ) ( ) ( )( )( )1

1

ˆ ˆ| , ,
C C C C

N

N N N N Np D M w A
α

α α
α

α

−

=

≈∑a N a a , (11) 

where ( )ˆ
CN
αa  for αα N,,1…=  are the output-equivalent optimal models of the system, 

which can be obtained using the algorithm presented in (Katafygiotis & Beck 1994 [13]); 

( , )N µ Σ  denotes a multivariate Gaussian distribution with mean µ  and covariance matrix 



  11 

Σ . The matrix ( )( )α
cNNA â  is the Hessian of the function ( )ln | ,

C CJ N NN J D Ma  evaluated 

at ( )ˆ
CN
αa , where ( 1) 2J oN NN= − , and ( )| ,

C CN NJ D Ma  is given by: 

 ( ) ( ) ( )
2

1

1 ˆ | ,  ; ,
C C C C

N

N N N N
kO

J D M k M k
NN =

= Ψ −Ψ∑a a  (12) 

The weighting coefficients in Eq. (11) are given by: 

 

1

N
ww
w

α

α
α

α
α =

′
=

′∑
  where ( )( ) ( )( )

1
2ˆ ˆ

C CN N Nw Aα α
α π

−
′ = a a , (13) 

where ( )( )ˆ
CN
απ a  is the prior PDF of the set of uncertain model parameters 

CN
a  evaluated 

at ( )ˆ
CN
αa , which allows engineering judgment to be incorporated in the analysis. 

Instead of pinpointing the crack locations and extents as in the deterministic 

approach, the proposed crack detection methodology focuses on calculating the posterior 

PDF of the model parameters 
CN

a . As a result, the confidence level of the crack detection 

results can be quantified through the calculated probability or the corresponding 

coefficient of variation (COV). This information is extremely important for engineers 

who are making judgments about remedial work. 

 

3. Experimental Verification 

The proposed crack detection methodology was demonstrated and verified using 

the cantilever beam test system as shown in Fig. 4. The test sample is an aluminum bar 

with Young’s modulus E  = 69 GPa, density ρ  = 2960 kg/m3, width b  = 12 mm, height 

h  = 6 mm and the length of the aluminium bar is 600 mm. The first 200 mm of the beam 

is fixed in a rigid clamping system, and the length of the cantilever beam is therefore 400 

mm. Fig. 5 shows the excitation locations, measurement location and crack locations on 

the cantilever. The cantilever beam is excited at three points ( 1e  = 50 ± 1 mm, 2e  = 200 ± 

1 mm and 3e  = 300 ± 1 mm from the fixed end) using a 086D80 PCB Piezotronics 

impact hammer with a 5mm thick steel backing mass and a nylon tip together with a 

480C02 ICP sensor signal conditioner. The transient transverse vibration response is 
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measured at 220 ± 1 mm from the fixed end using a Polytec laser vibrometer system with 

an OFV-502 fibre-optic laser head and an OVD-02 velocity demodulator set at 125 

mm/s/V measurement resolution.   

 The response signal is collected for 500 ms with an approximately 50 ms pre-

trigger with a temporal resolution of 0.2 ms. Fig. 6 shows typical time histories measured 

at the sensor for the three excitation locations. The three graphs highlight the different 

characteristics of the response signals depending on the impact location. 

 Artificial cracks 1c  and 2c  are machined into the beam using a bandsaw with a 

blade thickness of approximately 1 mm. The locations of the cracks are l1 = 80 ± 1 mm 

and l2 = 100 ± 1 mm (see Fig. 5) as measured from 1l .  Experimental data were collected 

for three depths of the second crack.  The nominal crack depths are 2.8 mm for 1c  and 0.8 

mm, 1.7 mm, and 3.2 mm for 2c  with an estimated uncertainty of ± 0.15 mm. Fig. 7 

shows the response signals in time and frequency space for excitation at position 2e  for 

the cases of the uncracked beam and the beam with cracks 1c  and 2c  extended to their 

maximum depths, i.e. 1γ  = 2.8 ± 0.15 mm and 2γ  = 3.2 ± 0.15 mm respectively. It should 

be noted that the response signal in time space is normalized so that the maximum 

amplitude is equal to unity for the uncracked and cracked beams. The signals confirm 

that, as expected, the natural frequencies for the cracked beam are shifted to lower 

frequencies, but they also show that these frequency shifts are small, especially for the 

first two vibration modes and considering that the data of the cracked beam is for the 

maximum crack depths of both cracks c1 and c2. Hence, damage detection using modal 

parameter identification techniques, e.g. [27], will be difficult.  

 The calibration constant of the instrumented impact hammer is given as 17 mV/N.  

This parameter had to be adjusted, since a steel backing mass was used to increase the 

excitation strength, especially for the higher vibration modes. In addition, as always in 

impact testing using a handheld hammer, there was a slight variation in the direction of 

impact relative to the axis of the beam from experiment to experiment. Consequently, the 

effective excitation force perpendicular to the beam was calculated by matching the 

signal amplitudes of the first few cycles of the simulated and measured response signals.  
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Considering these two effects, the effective calibration constants for the excitation forces 

used in the simulation varied between 30.9 mV/N and 40.7 mV/N.  

 Table 1 gives a list of the particular experimental configurations analyzed for this 

paper. Case A is the beam without cracks. Case B has crack 1c  at location l1 = 80 ± 1 mm 

from the semi-rigid end with depth 1γ  = 2.8 ± 0.15 mm (i.e. the nominal value 1δ  = 

0.4667 and 1Δ  = 0.0407). The robustness and sensitivity of the proposed methodology is 

investigated in Cases C, D, and E with two cracks, 1c  at 1l  = 80 ± 1 mm and 2c  at 2l  = 

100 ± 1 mm measured from 1c . In all three cases, 1c  has a depth of 1γ  = 2.8 ± 0.15 mm 

whereas the depth of the second crack 2c  varies from a shallow crack to an 

approximately half-thickness crack. The nominal values of the crack parameters for crack 

2c  are 2γ  = [0.8 mm, 1.7 mm, 3.2 mm], 2δ  = [0.1333, 0.2833, 0.5333], and 2Δ  = 

[0.0028, 0.0128, 0.0572], respectively.  

As shown in Fig. 7, it is clear from the spectrum that only the first four modes 

significantly contribute to the measured responses. Hence, only the first four modes are 

considered in the dynamic analysis. Furthermore, the system is assumed to be classically 

damped with different critical damping ratios for different modes. The uncertain 

parameter vector for different cases can then be obtained using Eq. (8), and the 

identification models that are adopted in different cases are summarized in Table 2. 

 

3.1. Identified number of cracks (stage one) 

Table 3 shows the results of the first stage of the proposed crack detection 

methodology for all five cases. The larger the value of the evidence, the higher the 

probability of the model class conditional on the data D. The logarithm is used because 

the numerical values of the evidence are usually very large, which may cause 

computational problems. The number of cracks can then be identified based on the value 

of the logarithm of the evidence. From Table 3, it is clear that 0M  (no crack) and 1M  

(single crack) are selected for Case A and Case B, respectively, while 2M  is selected for 

Cases C, D, and E. The proposed methodology successfully identifies the true number of 

cracks in all cases. 
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Table 3 also shows the likelihood and Ockham factors of the evidence for all 

cases. The logarithm of the likelihood factor, which shows the ability of the model class 

in fitting the measurement, will increase when the complexity of the model class 

increases (beams with more cracks). Hence, it is not possible to only use the likelihood 

factor in selecting the “optimal” model class to identify the number of cracks. The value 

of the logarithm of the Ockham factor for all cases will be smaller (i.e., the logarithm will 

become more negative) when the complexity of the model class increases. Hence, the 

Ockham factor penalizes the complexity of the model class in the evidence.  

This is a very important result because it has been achieved without any 

subjective judgment from the user and any prior knowledge (i.e., a prior probability 

( | )jP M U  in Eq. (9)). Hence, the decision of how many cracks to include in the damage 

characterization process relies purely on the set of measurement D. 

 

3.2. Identified crack characteristics (stage two) 

In the second stage of the proposed methodology, the set of “optimal” parameters 

is identified and the PDF of the uncertain parameters, which consists of the crack 

parameters and the beam properties, is approximated by Eq. (11). Table 4 summarizes the 

identified “optimal” crack parameters, and the normalized marginal PDF of the crack 

parameters in Case B is shown in Fig. 8. As there is only one optimal model within the 

domain of interest, there is only one peak in Fig. 8. The figure also shows that the PDF 

value drops significantly when one moves away form the optimal model 1â . This is the 

typical characteristic of an identifiable case ([12], [14], and [15]). The marginal 

cumulative distributions of the crack parameters are plotted in Figs. 9 and 10. It is clear 

from the figures that the uncertainties that are associated with the identified crack 

detection results are very low. In other words, the identified results are of high degree of 

confidence. To make the discussion on the uncertainty of the identification results more 

convenient, the coefficients of variation (COVs) of all uncertain parameters are 

calculated and summarized in Table 4. 

The identified crack location and crack depth (79.6 mm and 2.92 mm) in the 

single crack case (Case B) in Table 4 are perfectly matched with the true values (80 ± 1 

mm and 2.8 ± 0.15 mm). Furthermore, the COVs of the identified crack location and 
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depth are very small, and the confidence level of the result of crack detection is therefore 

high. It can be concluded that the proposed crack detection methodology successfully 

identifies the crack location and depth in Case B. 

There are two cracks in Case C: the first crack 1c  at 80 ± 1 mm is the same as that 

in Case B, and the second crack 2c  at 100 ± 1 mm is very small (0.8 ± 0.15 mm) at only 

about 13% of the overall depth of the beam. Hence, this case can be used to test the 

performance of the proposed methodology in detecting small cracks. The identified crack 

locations for both 1c  and 2c  in Case C in Table 4 are very close to the true values. As the 

COV value of the first crack location is smaller than that of the second crack location, the 

result shows that the second crack location is relatively more uncertain when compared to 

the first. This can be explained by the fact that the crack depth of the second crack is 

much smaller than that of the first crack (i.e., the first crack is more outstanding than the 

second). When the identified crack depths are considered, the identified crack depth of 

the first crack 1c  (3.02 mm) is closer to the true value (2.8 ± 0.15 mm) when compared to 

that of the second crack 2c . The relatively poor result for the second crack can be 

explained by the high uncertainty, which is clearly shown by the relatively large COV 

value of the identified crack depth of 2c . This case shows the importance of estimating 

the uncertainties associated with the identification results. 

In Case D, the crack depth of 2c  is increased from 0.8 ± 0.15 mm to 1.7 ± 0.15 

mm, which is about 28% of the overall depth of the beam. The identified crack locations 

in Case D are very similar to those in Case C except the COV value of the second crack 

location is relatively smaller when compared to that in Case C. This result is expected as 

the crack depth of 2c  is larger in Case D than in Case C. The identified crack depth of 1c  

is very similar to that in Case C, and the identified crack depth of 1c  is much more 

accurate than that in Case C. This result aligns with the relatively small COV value in 2Δ  

of Case D when compared to that of Case C. 

In Case E, the crack depth of 2c  is further increased from 1.7 ± 0.15 mm to 3.2 ± 

0.15 mm. Considering Case E in Table 4, the identified crack location and depth of 1c  are 

very similar as those in the previous cases. However, the identified crack location of 2c  is 



  16 

the worst among all cases. This result is unexpected as the crack depth of 2c  in Case E is 

the largest among all cases, and this crack should be the most outstanding. After carefully 

inspecting the second crack 2c  on the aluminum bar, the inaccuracy in the identified 

crack location of 2c  in Case E may be caused by the poor workmanship in increasing the 

crack depth of 2c  from Case D to Case E. Fig. 11 shows the crack 2c  in Case E. It is 

clear from the figure that the crack is not straight and the crack width is large; as a result, 

the modeling error becomes large. Even under such non-favorable conditions, the 

identified crack characteristics are still of acceptable accuracy. 

 

3.3. Identified Beam Property Parameters 

Apart from the crack characteristics, several beam properties have to be included 

in the uncertain parameter vector ja . These include the normalized stiffness K% for 

modeling the semi-rigid connection of the cantilever beam and the damping ratios of the 

first four vibration modes. The inclusion of K% as uncertain parameter is essential in this 

study as the clamping condition changes every time the crack state in the beam is altered 

from case to case by bandsaw machining. In addition, the different thicknesses of the 

remaining material ligaments and the local characteristics at the groove of the artificial 

notch will influence the damping characteristics for every configuration and for every 

vibration mode. Hence, it is necessary to include the damping characteristics as uncertain 

parameters. 

Table 5 shows the calculated beam properties for the five cases. The normalized 

rotational spring stiffness varies between 378 and 704. This confirms the well known fact 

that it is extremely difficult to experimentally realize a fixed-end condition and to use a 

semi-rigid end condition in the analytical model is absolutely essential in the case of a 

“fixed” end.  

For the relatively short observation period of 450 ms the fundamental mode turns 

out to be effectively undamped apart from Case B, which shows a small damping value 

( 1ζ  = 0.0383%) with large uncertainty (COV = 16.84%). Mode 2 shows also very little 

damping and the uncertainties in the calculated values are relatively large. Modes 3 and 4 
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show higher damping values. These results agree with simple observations made by 

looking at the time histories that are shown in Fig. 6. 

As an example of how well the optimized system matches the experimental 

results, a comparison between the simulated and measured time histories for Case B is 

plotted in Fig. 12. The simulated response perfectly matches the measured response. 

 

4. Conclusions 

This paper presented a practical crack detection methodology and its verification 

through experimental case studies. An aluminum bar with different crack configurations 

was considered in the experimental verification, using a Polytec laser Doppler vibrometer 

to measure the velocity at a single point on the beam with separate excitations at three 

different locations. The proposed crack detection methodology consists of two stages. 

The number of cracks is identified utilizing the Bayesian model class selection method in 

the first stage. The updated PDF of the crack locations, extents, the rotational stiffness of 

the semi-rigid connection, and the damping ratio of first four modes are then identified by 

the Bayesian model updating method in the second stage.  

Very encouraging results were obtained from the experimental case studies. First, the 

proposed methodology successfully identified the number of cracks in all cases. Second, 

all identified crack characteristics, such as crack locations and depths, were very close to 

the true values. One of the outstanding advantages of the proposed methodology is that 

the uncertainties associated with the identified results can be quantified. As a result, 

engineers know the confidence level of the crack detection results. 
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Fig. 1. The model of a cracked cantilever beam with semi-rigid connection. 
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Fig. 2. Schematic diagram illustrating the basic strategy for the first stage of the proposed 

methodology. 
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Initialization:
j = 0

Calculate the evidence of the model 
class with j cracks

Calculate the evidence of the model 
class with j + 1 cracks

Which of the two calculated 
evidences is larger?

Number of cracks = j

j + 1
j

j = j + 1

 
Fig. 3. The proposed algorithm for identifying the number of cracks in the first stage of 

the proposed methodology. 
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Fig. 4. Cantilever beam experiment configuration. 
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Fig. 5. Excitation location ue  (u = 1, 2, and 3), measurement location mT , and crack 

locations ic  ( i  = 1,2). 
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Fig. 6. Part of the impact response signals for the three excitation locations (Top: 1e , 

middle: 2e , bottom: 3e ). 
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Fig. 7. Impact response signals in time and frequency domain for the uncracked (solid) 

and cracked (dashed) beam (excitation position at 2e , cracks 1c  and 2c  are in full depths).
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Fig. 8. Normalized marginal PDF of the crack location ( 1l ) and extent ( 1Δ ) in Case B. 
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Fig. 9. Marginal cumulative distribution of the crack location ( 1l ) in Case B. 
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Fig. 10. Marginal cumulative distribution of the crack extent ( 1Δ ) in Case B. 
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10 mm

 
Fig. 11. The second crack 2c  in Case E. 
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Fig. 12. Comparison of the simulated and measured time histories for Case B (Dash: 

measured, Solid: simulated) (Top: 1e , middle: 2e , bottom: 3e ).
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Case CN  Crack location (mm) Crack extent Crack depth (mm) 

A 0 N/A N/A N/A 

B 1 1l =  80 ± 1 1Δ =  0.0407 2.8 ± 0.15 

C 2 
1l =  80 ± 1, 

2l =  100 ± 1  

1Δ =  0.0407 

2Δ =  0.0028 

2.8 ± 0.15 

0.8 ± 0.15 

D 2 
1l =  80 ± 1, 

2l =  100 ± 1 

1Δ =  0.0407 

2Δ =  0.0128 

2.8 ± 0.15 

1.7 ± 0.15 

E 2 
1l =  80 ± 1, 

2l =  100 ± 1 

1Δ =  0.0407 

2Δ =  0.0572 

2.8 ± 0.15 

3.2 ± 0.15 

Table 1: Summary of all cases in the experimental study. 
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Case Uncertain parameters of the identification model 

A { }0 1 2 3 4, , , ,
T

K ζ ζ ζ ζ=a %  

B { }1 1 2 3 4 1 1, , , , , ,
T

K lζ ζ ζ ζ= Δa %  

C, D, and E { }2 1 2 3 4 1 1 2 2, , , , , , , ,
T

K l lζ ζ ζ ζ= Δ Δa %  

Table 2: The vector of uncertain parameters of the identification model in each case. 
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Case 
Class of 

models 

Logarithm of the 

Evidence 

Logarithm of  the 

Likelihood factor 

Logarithm of the 

Ockham factor 

A 
0M  25095 25117 -22 

1M  25091 25122 -31 

B 

0M  21525 21532 -7 

1M  31798 31828 -39 

2M  31778 31830 -52 

C 

0M  16706 16710 -4 

1M  25000 25040 -40 

2M  27668 27728 -60 

3M  27658 27729 -71 

D 

0M  15776 15788 -12 

1M  21628 21656 -28 

2M  28914 28974 -60 

3M  28906 28975 -69 

E 

0M  15243 15248 -5 

1M  23020 23058 -38 

2M  31018 31083 -65 

3M  30993 31084 -91 

Table 3. The results of Bayesian model class selection in all cases. 
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Case Location(s) (mm) Extent(s) 

 il  (COV %) 
True 

location 
iΔ  (COV %) 

Crack 

depth (mm) 

True crack 

depth (mm) 

B 1l  = 79.6 (0.03) 80 ± 1 Δ1 = 0.0451 (0.12) 2.92 2.8 ± 0.15 

C 
1l  = 82.2 (0.21) 

2l  = 102.6 (1.15) 

80 ± 1 

100 ± 1 

Δ1 = 0.0492 (0.34) 

Δ2 = 0.0091 (5.48) 

3.02 

1.44 

2.8 ± 0.15 

0.8 ± 0.15 

D 
1l  = 82.4 (0.24) 

2l  = 102.1 (0.69) 

80 ± 1 

100 ± 1 

Δ1 = 0.0489 (0.40) 

Δ2 = 0.0171 (3.47) 

3.01 

1.94 

2.8 ± 0.15 

1.7 ± 0.15 

E 
1l  = 79.2 (0.25) 

2l  = 106.4 (0.20) 

80 ± 1 

100 ± 1 

Δ1 = 0.0479 (0.30) 

Δ2 = 0.0700 (0.97) 

2.99 

3.46 

2.8 ± 0.15 

3.2 ± 0.15 

Table 4. The results of crack evaluation in Cases B, C, D, and E.
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Case 
K% 

(COV %) 

Damping Ratio (%) of each mode (C.O.V %) 

1ζ  2ζ  3ζ  4ζ  

A 
378.42 

(0.10) 

0% 

(--) 

0.0021% 

(56.70) 

0.3417% 

(3.31) 

0.2001% 

(2.39) 

B 
428.64 

(0.05) 

0.0383% 

(16.84) 

0.0123% 

(4.18) 

0.0632% 

(1.72) 

0.5367% 

(1.51) 

C 
740.48 

(4.90) 

0% 

(--) 

0.0076% 

(11.08) 

0.0876% 

(2.52) 

0.0795% 

 (1.25) 

D 
704.18 

(5.43) 

0% 

(--) 

0.0085% 

(8.43) 

0.0775% 

(2.33) 

0.0731% 

(1.09) 

E 
403.65 

(3.00) 

0% 

(--) 

0.0200% 

(3.92) 

0.0761% 

(1.82) 

0.0927% 

(0.96) 

Table 5: The results of beam property identification in all cases. 

 


