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A random walk through the dynamics of homogeneous vapor-liquid
nucleation

David M. Huang and Phil Attarda!

School of Chemistry, University of Sydney, New South Wales 2006, Australia
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A method of calculating rates of homogeneous vapor-liquid nucleation based on Langevin dynamics
of a few relevant degrees of freedom on a free-energy surface is proposed. The surface is obtained
here from simulation and from a semi empirical expression. The mass and friction coefficients are
derived from atomistic umbrella-sampling molecular-dynamics simulations. The calculated
nucleation rate agrees with atomistic simulations for one particular state point of the Lennard-Jones
fluid. The present method is about four orders of magnitude more computationally efficient than the
direct atomistic simulation of the transmission coefficient. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1884086g

I. INTRODUCTION

Classical nucleation theorysCNTd provides a simple
analytic expression for the rate of homogeneous vapor-liquid
nucleation by relying on several assumptions. One such as-
sumption is that the growing liquid droplet is spherical in
shape and of uniform liquid density. The free energy of
nucleation at a given temperature and supersaturation is a
function of a single coordinate, such as the droplet radius or
number of molecules in the droplet, and depends on the
chemical potential difference between the coexistence and
supersaturated vapor phases, and the interfacial tension be-
tween the two phases. Further simplifications are made for
the nucleation rate, namely, that it depends upon the free-
energy barrier height, a steady flux over the barrier, growth
by monomer addition, ideal gas kinetics for the vapor, and
complete removal of product.

Although CNT has been found to reproduce experimen-
tal estimates of the size of critical nuclei, for many of the
same experiments it does not predict the nucleation rate as
accurately.1 This result could be due to the neglect in CNT of
additional degrees of freedom that may be relevant to the
nucleation process; e.g., fluctuations in the density or shape
of the liquid droplet may also be important. A method of
calculating the nucleation rate that incorporates other degrees
of freedom such as these could therefore be useful.

II. BEYOND CLASSICAL NUCLEATION THEORY

According to classical nucleation theory, the Gibbs free
energyDGCNTsRd of a spherical droplet of liquid densityrl

and radiusR in a supersaturated vapor at a pressurep is

DGCNTsRd = Dmrl
4p

3
R3 + g†4pR2. s1d

This is measured relative to the uniform vapor phase, and
Dm=mlspd−mvspd is the difference between the chemical po-
tential of the liquidml and that of the vapormv at the pres-

surep, andg† is the liquid-vapor surface tension for a planar
interface at liquid-vapor coexistence. The second term in Eq.
s1d, which is positive, dominates for smallR, while the first
term, which is negative, dominates for largeR. Therefore,
DGCNTsRd starts off positive, has a maximum, and eventually
becomes negative for very large values ofR.

The CNT expression for the nucleation free energy, Eq.
s1d, can be generalized to include changes in the droplet
densityr sor some other degree of freedomd as well as the
droplet radiusR.

In order to do this, we consider the constrained thermo-
dynamic potential2

FsN,V,Aum,p,g,Td ; FsN,V,A,Td + pV− mN + gA, s2d

where m=msrv ,Td and p=psrv ,Td are, respectively, the
chemical potential and pressure of a reservoir of densityrv at
a temperature ofT, and g;gsr ,rvd is the surface tension
between the reservoir and a subsystem of volumeV contain-
ing N particlessg is assumed to be independent of geom-
etryd. This thermodynamic potential is equal to difference in
Helmholtz free energy between a total system of volumeVtot

and particle numberNtot consisting of a subsystem of volume
V sand surface areaAd containingN particles and a reservoir
of densityrv at a temperatureT and a total system of uni-
form densityrv at temperatureT.

We can show that

U ]FsN,V,Ad
]N

U
N/V=rv

= U ]FsN,V,Ad
]V

U
N/V=rv

= 0, s3d

and, therefore, that

FsN = rvV,V,A = constd = const. s4d

But gA is identically zero if both the subsystem and reservoir
have densityrv, and so

FsN = rvV,V,Ad = const s5d

is true for allA. By settingN=V=0, it is easy to show that
this constant is zero. In other words, ifN/V=rv, the totaladElectronic mail: attard@chem.usyd.edu.au
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system consists entirely of vapor and therefore this con-
strained thermodynamic potential, which is the total Helm-
holtz free-energy relative to a total system of uniform density
rv at temperatureT, must be zero.

To make it clear that we are considering changes in free
energy in going from a uniform system of densityrv to a
nonuniform system consisting ofN particles in a volumeV
surrounded by a reservoir of densityrv, we define the quan-
tity

DFsN,V,Ad ; FsN,V,Ad − FsN = rvV,V,Ad

= FsN,V,Ad. s6d

If we take r=rl, the liquid density, DFsN
=rlV,V,Aum ,p,g ,Td is the free-energy change to nucleate a
droplet of volumeV sand surface areaAd in a vapor of den-
sity rv.

We now make a couple assumptions. Firstly, we assume
that the free energy of the subsystem is equal to the free-
energy density of a uniform system of densityr at tempera-
ture T multiplied by the volume of the system,

FsN = rV,V,A,Td = fsr,TdV. s7d

Therefore,

DFsN,V,Aum,p,g,Td ; DFsr = N/V,V,Aum,p,g,Td

= fsr,TdV + pV− mrV + gsr,rvdA.

s8d

Secondly, we assume that the surface tension is given by the
interpolation formula3,4

gsr,rvd = g†SS0 − S

S0 − 1
DS r − rv

rl
† − rv

D , s9d

whereS0;r‡/rv
† andS;rv /rv

†, and the superscript “‡” de-
notes the spinodal while the superscript “†” denotes liquid-
vapor coexistence. This equation givesgsrv ,rvd=0,
gsrl

†,rv
†d=g†, andgsr ,r‡d=0. We also specialize to a spheri-

cal geometry; i.e.,V=4pR3/3 andA=4pR2, which leads to

DFsr,Rd = ffsr,Td + p − mrg
4pR3

3
+ gsr,rvd4pR2. s10d

With fsr ,Td from an equation of state for the fluid and
g† from simulation or experiment,DFsr ,Rd can be calcu-
lated as a function ofr and R. For the Lennard-JonessLJd
fluid, for example, accurate equations of state are available5

and so is simulation data for the liquid-vapor surface tension.
The pathway to nucleation in classical nucleation theory
sCNTd is the slice through this surface atr=rl, although the
CNT free-energy values useg† instead ofgsrl ,rvd.

The free energyDFsr ,Rd is plotted for the LJ fluid un-
der two different sets of thermodynamic conditions in Fig. 1.
Allowing fluctuations in the spherical droplet’s densityr as
well as its radiusR, it can be seen from Fig. 1 that close to
the critical point—the same occurs at high supersaturation—
changes inr at constantR cost little energy near the barrier
to nucleation. This result indicates the potential importance
of r in determining the nucleation rate.

Accurate empirical free-energy surfacesDFsqd, in terms
of a few relevant degrees of freedom,q=sq1,q2, . . . ,qNd,
such as those in Fig. 1, may provide a more accurate means
than CNT for calculating nucleation rates while avoiding
costly atomic simulations, provided a way of carrying out
dynamics on the surface is available.

One shortcoming with this method is that it does not
provide a way of determininga priori which degrees of free-
dom are relevant to the reaction. However, comparisons with
the experimental or simulation results may indicate whether
a particular choice of coordinates is suitable.

III. LANGEVIN DYNAMICS

One way of carrying out dynamics on the free-energy
surfaceDFsqd is to use the Langevin equation,6,7

miv̇istd = − o
j

zi jfqstdgv jstd + f ifqstdg + o
j

ai jG jstd, s11d

wheremi is the mass corresponding to the coordinateqi and
vi = q̇i. There are two contributions to the force on the coor-
dinatesq. The first is a force due to variations in the free-
energy surfaceDF,

f isqd = −
]DFsqd

]qi
. s12d

The second is a random force which has a mean of zero and
a delta-function correlation in time,

FIG. 1. Nucleation free energyDF for droplet radiusR and droplet density
r for the Lennard-Jones fluid with intermolecular potential truncated and
shifted at 2.5s, calculated using Eq.s6d: sad temperatureT=0.701« /kB, su-
persaturationS=1.96, g†=0.61« /s2 scontour interval 6kBT; CNT route is
the line r=0.76d; sbd T=0.92« /kB, supersaturationS=1.30,g†=0.197« /s2

scontour interval 1kBT; CNT route:r=0.63d.
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kGistdl = 0, kGistdG jst8dl = 2di jdst − t8d. s13d

The friction coefficientszi j can be related to the strength of
the random force via

zi j =
1

kBT
o

l

aila jl , s14d

and to the diffusion coefficientsDij via

o
j

zi jDjl = o
j

Dijz jl = kBTdil . s15d

In principle,mi andzi j can vary withq. It should also be
noted thatmi andzi j are masses and friction coefficients as-
sociated with generalized coordinates and do not have a
simple interpretation in terms of atomic masses or the fric-
tion acting on individual particles.

The parametersmi and zi j can, however, be estimated
from molecular dynamicssMDd in which the time depen-
dence of the coordinatesq are measured. In order to obtain
accurate statistics formi and zi j as functions ofq, it is also
necessary to confine the system to a narrow range of values
of q, particularly regions of configuration space that the sys-
tem rarely explores, such as near free-energy barriers. This
can be achieved, for example, with umbrella-sampling mo-
lecular dynamics.

From the computational point of view, the Langevin dy-
namics simulations for a few relevant degrees of freedomq
are trivial compared to carrying out nucleation rate calcula-
tions directly in fully atomistic simulations. The relative ef-
ficiency in obtaining the parameters required for the Lange-
vin equation from an atomistic simulation compared to
simulating the rate directly is less clear. We note however
that the quantities we report below were obtained from a MD
trajectory of 50 000 time steps, and we estimate the relative
statistical error in them and in the nucleation rate itself as
less than 10%. This can be compared with the direct atom-
istic simulations of the rate constant using the reactive flux
method by ten Woldeet al.17 who used 5000 independent
trajectories of 4000 steps, or 23107 MD time steps in total,
which gave a nucleation rate with a relative statistical error
of 67%. On the basis of these numbers, to get the same
statistical accuracy one would require 23104 times as many
MD steps for the direct simulation of the transmission coef-
ficient than for the diffusion constant and inertial mass. In
other words, the present Langevin method is more than four
orders of magnitude more efficient than the conventional di-
rect simulation of the nucleation rate. Further it may be pos-
sible to estimate the Langevin parameters by analytic ap-
proximations or other means as functions of the coordinates
q as well as of the thermodynamic conditions. If this can be
done, the Langevin dynamics method offers even greater
savings. As a first step towards implementing the method and
understanding howmi andzi j vary with q and the thermody-
namic conditions, in this work these quantities have been
obtained from atomistic simulations.

IV. UMBRELLA-SAMPLING MOLECULAR DYNAMICS

A. General equations

For a system with total potential energy

U1fr Ng = U0fr Ng + Vfqsr Ndg, s16d

whereU0fr Ng is the potential energy of the referencesunbi-
asedd system as a function of atomic coordinatesr N and
Vfqsr Ndg is a biasingsumbrellad potential, which is a func-
tion of the coordinatesq, the force acting on a particlei in
the system is

Fi = − ¹iU1fr Ng = − ¹iU0fr Ng − ¹iVfqsr Ndg ; F0i + FVi.

s17d

B. Continuous cluster definition

In the nucleation problem, we are interested in coordi-
nates likeq=sr ,Rd, or equivalentlyq=sN,Rd, wherer, R,
and N are the droplet density, radius, and particle number,
respectively.

In order to apply Eq.s17d, N and R must be differen-
tiable functions of the atomic coordinatesr N. Therefore, con-
tinuous analogs of the more conventional “discrete” cluster
definitions8,9 are required. We have taken

N = o
i

Nd2

wi s18d

for the cluster particle number and

R= F 1

N
o

i

Nd2

wiur i − r cmuMG1/M

s19d

for the cluster radius, where the center of mass is

r cm =
1

N
o

i

Nd2

wir i , s20d

the weight of an atom in the cluster is

wi ;
1

nc
o
jÞi

Nd2

fsur i − r ju;qcd, s21d

and the continuous analog of the Heaviside function is

fsr ;qcd ; h1 + expf− sqc − rd/dgj−1. s22d

The weightwi is a measure of the “contribution” of particle
i to the cluster particle numberswi <1 for a particle near the
center of the cluster and 0,wi ,1 for a particle near the
surfaced.

The upper limit on the sums,Nd2, is the number of par-
ticles in the largest discrete cluster in the system, defined
according to Stillinger’s criterion8 with cluster cutoff dis-
tanceqc2. According to this criterion, two particles belong to
the same cluster if separated by less than the cutoff distance
ssee Fig. 2d. The quantitiesqc, d, nc, andM are parameters to
be chosen. To obtain a physically meaningful value forN, nc

is chosen such thatwi <1 for particles in the center of the
cluster.qc and qc2 are chosen such that the discontinuity in
the force is small when a particle joins the discrete cluster.
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This definition of the continuous cluster particle number
N is the continuous analog of the “liquidlike” cluster particle
number used by ten Wolde and Frenkel.9 Their liquidlike
cluster criterion is almost the same as Stillinger’s criterion,
except that only liquidlike particles are counted when deter-
mining whether two particles are part of the same cluster. A
particle is liquidlike if it has more than a certain number of
nearest neighborssin their work9 this number was fourd, with
particles defined as being nearest neighbors if separated by
less than the cluster cutoff distance. According to this liquid-
like cluster criterion, particles near the center of the cluster
contribute a value of 1 to the particle number while particles
near the surface may not contribute at all. Similarly, accord-
ing to our continuous cluster definition, particles near the
center contributewi <1 to the particle number while par-
ticles near the surface contribute 0,wi ,1, with wi ap-
proaching zero as the particle moves away from the cluster.

C. Force on the cluster

For the quadratic biasing potential

VsN,Rd =
cN

2
sN − N0d2 +

cR

2
sR− R0d2, s23d

the contribution from the biasing potential to the force on
particle i is

FVi = − cNsN − N0d¹iN − cRsR− R0d¹iR, s24d

where

¹iN =
2

nc
o
jÞi

Nd2 r i j

r i j
f8sr ijd s25d

and

¹iR=
1

MNRM−1HMwiFr ic
M−2r ic −

1

N
o

j

Nd2

wjr jc
M−2r jcG

+
1

nc
o
jÞi

Nd2 r i j

r i j
f8sr ijdFr ic

M + r jc
M − 2RM

−
M

N
o
k

Nd2

wkrkc
M−2r kc · sr ic + r jcdGJ . s26d

Here, r i j ; r i −r j,r ic; r i −r cm sand similarly forr jc and r kcd,
r ij ;ur i j u, and f8sr ijd=dfsr ijd /drij . Note that the force only
acts on theNd2 particles in largest discrete cluster in the
system.

V. APPLICATION TO THE LJ FLUID

The umbrella-sampling MD method of the previous sec-
tion were applied to the LJ fluid with intermolecular poten-
tial truncated and shifted at 2.5s. All quantities hereafter are
in reduced LJ units unless otherwise stated.

The MD simulations of 864 particles at a constant tem-
perature ofT=0.741 and a constant pressure ofP=0.01202
were carried out using the extended system methods of
Nosé,10 Hoover,11 and Andersen,12 and the reversible integra-
tion algorithm of Martynaet al.13 The MD time step used
was 0.01t, wheret=Î« / smLJs

2d.
It should be noted that Eq.s7d for the internal pressure

Pint in Ref. 13 must be modified to include the contribution
of the biasing potentialDPint. For VsN,Rd given by Eq.s23d,
this contribution is

DPint =
− 1

dVH cNsN − N0d
nc

o
i

Nd2

o
jÞi

Nd2

r ij f8sr ijd

+
cRsR− R0d
MNRM−1 SMo

i

Nd2

wiric
M +

1

nc
o

i

Nd2

o
jÞi

Nd2

r ij f8sr ijd

3Fr ic
M − RM −

M

N
o
k

Nd2

wkrkc
M−2r ic · r kcGDJ , s27d

whereV is the volume of the cubic simulation box andd is
the dimensionality.

A. Equilibrium free energies

The umbrella-sampling MD method was tested by com-
paring the change in the Gibbs free energy for nucleation as
a function of cluster particle numberN with results obtained
by ten Wolde and Frenkel9 from Monte CarlosMCd simula-
tions under the same thermodynamic conditions. For these
calculations, the biasing potential acted only onN and not on
R; i.e., cR=0 in Eq. s23d or

VsNd =
cN

2
sN − N0d2. s28d

As explained in Sec. IV B, ten Wolde and Frenkel used a
different, liquidlike, definition of the cluster particle number
than the continuous definition used here. The liquidlike clus-
ter number will be denoted hereafter asNl.

The parameters in Eqs.s21d ands22d were chosen so that
N and Nl in our simulations matched as closely as possible
over the entire range onN fnc=9.0, qc=1.5s ssame as the
cutoff used by ten Wolde and Frenkeld, qc2=2.0, and d
=0.02g. Figure 3 shows a typical configuration near the free-
energy barrier to nucleation from our simulations.

Following an equilibration period of 1 000 000 MD
cycles, simulations of 3 000 000 MD cycles in length were
carried out in each of 17 approximately evenly spaced win-
dows forN spanning the range from 0 to approximately 350.

FIG. 2. Discrete clusters defined according to Stillinger’s criterionsRef. 8d
with cluster cutoff distancesqc sbounded by dashed lined andqc2 ssolid lined,
where qc,qc2. Here, the discrete cluster particle numbers areNd=5 and
Nd2=6, respectively.
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The umbrella-sampling MD algorithm does not work for
smallN, where the identity of the largest cluster can fluctuate
between different clusters. So, for smallN, a 10 000 000-
cycle simulation without the biasing potential was carried
out. The length of these simulations was chosen to match the
statistical accuracy of the MC simulations of ten Wolde and
Frenkel.9 They carried out simulations of 250 000 MC cycles
in length in approximately the same number of umbrella-
sampling windows as we used. However, the “diffusion con-
stant” in theNl coordinate in the MC simulations was esti-
mated to be 7–8 times as large as that in MD simulations
with the same time step as ours.9 Therefore, it was necessary
to carry out MD simulations approximately eight times as
long to obtain the same accuracy.

Figure 4 shows contour plots of two-dimensional histo-
gramsnsN,Nld from two different simulations, one with the
quadratic biasing potential centered at smallN and the other
at largeN. It can be seen from Fig. 4 thatN and Nl match
very closely at smallN. At largeN, N is generally larger than
Nl and for a given value ofN, Nl can take quite a large range
of values.

The joint probability distribution functionp2sN,Nld for
the reference system without the biasing potential was calcu-
lated from the distribution function with the biasing poten-
tial, p̃2sN,Nld, using

p2sN,Nld = p̃2sN,Nld
expfbVsNdg

kexpfbVsNdgl1
, s29d

where subscript “1” notes an average for the biased system.
The full joint probability distribution functionp2sN,Nld

was obtained for the entire range ofN and Nl by using the
multiple-histogram method14 generalized to two dimensions.
The singlet distribution functions were then obtained by us-
ing

p1sNd =E dNlp2sN,Nld, p1sNld =E dNp2sN,Nld. s30d

The Gibbs free energy was calculated using

DGsqd = − kBT lnfp1sqdg, q = N or Nl . s31d

Almost identical results were obtained when the singlet dis-
tribution function for the reference system,p1sqd, whereq
=N or Nl was calculated directly from the singlet distribution
with the biasing potential,p̃1sqd, and joined together using
the multiple-histogram method in one dimension. Since the
joint distribution functionp̃2sN,Ndd was not calculated in the
simulations while the singlet distribution functionp̃1sNdd
was, this latter method was used to obtain the free energy
for Nd.

The Gibbs free energy as a function ofN, Nl, andNd is
shown in Fig. 5. The free energy as a function ofN does not
extend to zero because we only calculatedN for the largest
cluster in the system. It was instead assumed thatDGsNd
coincided withDGsNld for N=Nl =15.

FIG. 3. Typical configuration from a simulation withcN=0.014 and
N0=290.0.

FIG. 4. Two-dimensional histogramnsN,Nld from constantNPT MD simu-
lations of the LJ fluid withT=0.741 andP=0.01202 for two different bias-
ing potentials,VsNd=cNsN−N0d2/2: sad cN=0.020,N0=70.0; sbd cN=0.014,
N0=290.0. Each simulation was 1 000 000 MD cycles in length, with data
collected every 5 cycles. The histogram bin widths wereDN=DNl =1.0.

FIG. 5. Gibbs free energy for nucleation from simulations as a function ofN
ssolid lined, Nl sdashed lined andNd sdotted lined. Data from ten Wolde and
FrenkelsRef. 9d for Nl are also shownsdot-dashed lined. The error bars in
our data were estimated via block averaging to be approximately ±3kBT.
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Figure 5 shows that there is a discrepancy between our
results for DGsNld and those of ten Wolde and Frenkel.9

However, this discrepancy is likely due to the extreme sen-
sitivity of DGsNld to supersaturation under the particular set
of thermodynamic conditions studied.9 sFitting their data for
the free-energy barrierbDGsNl

*d as a function of supersatu-
ration S to bDGsNl

*d=−397.59+2341.71/S−4635.03/S2

+3240.05/S3, it can be seen that changingSby just 2% from
S=1.53 swhere P=0.01202d to S=1.50 changesbDGsNl

*d
from 57.5 to 63.5. Another possible contribution to the dis-
crepancy between our results ofDGsNld and those of ten
Wolde and Frenkel9 could be the accumulation of small er-
rors arising from the joining of nonoverlapping umbrella-
sampling windows by eye in Ref. 9. This could be particu-
larly problematic at smallNl due to the steepness of the
free-energy curve and to the statistical error in the data.

The crucial point to note from Fig. 5 is thatDGsNld
<DGsNd, for all N and Nl. On the other handDGsNdd is
significantly different. The free-energy barrier as a function
of Nd is also lower than that forN andNl. There is, in fact,
no reason whyDGsNd

*d, DGsNl
*d, andDGsN*d should be the

same, since there is no one-to-one correspondence between
these coordinates.

VI. NUCLEATION RATE

As a simple first test of the Langevin dynamics method
for calculating nucleation rates, the calculations were re-
stricted to those of the Langevin equation for one degree of
freedomsNd with constant coefficients; i.e.,

mN̈std = − mgṄstd + ffNstdg + aGstd, s32d

wherea=kBTmg andg=z /m.
The coefficientsm andg were estimated from the auto-

correlation function for the velocity ofN, Ṅ=dN/dt,

kṄstdṄs0dl =
kBT

m
exps− gtd. s33d

It should be noted that this equation does not hold fort=0,

wheredkṄstdṄs0dl /dt=0.
For the constantNPTMD simulations carried out in this

work using the algorithm in Ref. 13,Ṅ can be calculated
analytically by using

Ṅ =
1

nc
o

i

Nd2

o
jÞi

Nd2 f8sr ijd
r ij

Fr i j ·Svi j +
pe

W
r i jDG , s34d

wherevi j =dr i /dt−dr j /dt and pe and W are the momentum
and mass, respectively, of the barostat in the MD algorithm
ssee p. 1119 of Ref. 13 for notationd. An advantage of using
a continuous coordinate such asN rather than a discrete co-
ordinate likeNl or Nd is that the velocity can be calculated
analytically. This avoids any ambiguity or error that may
arise from taking a numerical difference to calculate the ve-
locity of the discrete coordinate.

The simulations in whichm andg were calculated were
carried out for various values ofcN and N0 in the biasing
potential ssee Table Id. The simulations were 50 000 MD
cycles in length. They were effectively carried out at con-

stant volume by setting the inertia on the barostat at a very
large number. This was done because the fluctuations in the
simulation box volume were found to produce a lot of noise

in kṄstdṄs0dl. The simulation box volume was set at its av-
erage value in constantNPT simulations using the same bi-
asing potential. Since these simulations were effectively at
constant volume, then the second term in Eq.s34d can be
ignored.

The autocorrelation functionskṄstdṄs0dl obtained from
these simulations are shown in Fig. 6.kBT/m was taken to be

the value ofkṄstdṄs0dl at t=0, while g was obtained by

fitting kṄstdṄs0dl for small but nonzerot st=0.02–0.06td to
an exponential function of the form of Eq.s33d. The values
of kBT/m andg obtained from the simulations are shown in
Table I. The data forkBT/m from Table I are plotted as a
function of kNl in Fig. 7.

It can be seen from Table I that the friction coefficientg
acting on theN coordinate is roughly independent ofN and
approximately equal to 50t−1. On the other hand, from Fig.
7, it can be seen thatkBT/m varies linearly withN sor at least

TABLE I. Results of fitting kṄstdṄs0dl from the simulations for
t=0.02−0.06t to Eq. s33d.

N0

cN

f«g kNl
kBT/m
ft−2g

g
ft−1g

110 0.015 92.9 363.7 44.829
230 0.014 228.71 842.8 49.144
230 0.030 226.96 856.0 53.172
290 0.014 291.63 1066.2 47.556
350 0.015 345.926 1301.0 51.986

FIG. 6. Autocorrelation function for the velocity ofN, kṄstdṄs0dl, as a
function of time t from simulations using various biasing potentials:cN

=0.015«, N0=110 scirclesd; cN=0.014«, N0=230 ssquaresd; cN=0.030«, N0

=230 striangles upd; cN=0.014«, N0=290 striangles downd. The solid lines
are exponential fits to the data points fort=0.02–0.06t.

FIG. 7. kBT/m vs kNl from Table I. sThe linear fit to the points iskBT/m
=17.86+3.66kNl.d
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with kNl in our simulationsd. Therefore, the “mass” of theN
coordinate is inversely proportional to the actual mass of the
cluster.

The reason for this dependence follows directly from the
definition Eq.s34d. Ignoring the barostat term, it is straight-
forward to show that

kBT

m
; kṄ2l =

4rlkBTf2g
s2dsqcd

nc
2mLJ

N

−
2rl

2kBTf1
2g1

s3dsqc,qcd
nc

2mLJ

N, s35d

where f1;edr f8srd, f2;edr f8srd2, and the pair and first
Legendre transform of the triplet distribution function ap-
pear. This result uses the factskvil=0 and kvi ·v jl
=3di j kBT/mLJ, and assumes thatf8srd is sharply peaked atqc,
that the droplet is of liquid densityrl, that the correlation
functions are bulk quantities, and that the contribution from
the surface of the droplet may be ignored. The particular
consequence of this last assumption is that the mass of the
coordinateN is inversely proportional toN, in agreement
with Fig. 7. One concludes from these results that the domi-

nant contribution toṄ at small times comes from changing
the number of bonds of atoms in the interior of the droplet
rather than from atoms joining or leaving the surface of the
droplet. This in turn suggests that the behavior of the liquid-
like cluster definition and its continuum analog used here
may not be as appealing as the original Stillinger definition.

In order to calculate the rate coefficient for nucleationk,
the reactive flux method15,16 was used, in conjunction with
Langevin dynamics. In this method, the rate coefficient is
given by a time-dependent function,

kstd =
kq̇s0ddfqs0d − q*gufqstd − q*gleq

kufq* − qgleq
, s36d

which should be approximately constant and equal to the
forward rate of reaction for timet intermediate between the
molecular relaxation time and the reaction time. Here,q is an
order parameter that discriminates between the reactant and
product states,sin our nucleation calculations,q;Nd, q* is
the transition state separating the reactant and product states,
sq,q* denotes reactants andq.q* denotes productsd, and
the subscript “eq” denotes an equilibrium average.

The transition state theorysTSTd estimate of the rate
coefficient kTST, which assumes that trajectories that cross
the transition stateq* from reactants to products never re-
cross the transition state surface, is thet→0+ limit of kstd:

kTST = lim
t→0+

kstd =
kq̇*leq

2

kdfq − q*gleq

kufq* − qgleq
. s37d

The transmission coefficient is defined as the ratio ofk to
kTST,

k = k/kTST. s38d

The ratek was taken as the plateau value ofkstd.
The transmission coefficientk should be governed

largely by diffusive behavior near the free-energy barrier. So
k from Langevin dynamics simulations on different free-

energy surfaces,DGsNd that are the same near the barrier but
differ in the stable states should be approximately the same.
Since we had accurate free-energy surfaces forDGsqd, where
q=N or Nl from both our atomistic simulations and those of
ten Wolde and Frenkel,9 these surfaces were used in the
Langevin dynamics calculations rather than a free-energy
surface derived from the equation of state in Eq.s10d. The
barrier region of our simulation curve forDGsNd was fitted
to a couple of different polynomial functions that differed in
the stable statesfcurvess4d and s5d in Fig. 8g. Due to the
discrepancy between our results forDGsNld and those of ten
Wolde and Frenkel,9 we did the same for their simulation
curve forDGsNld fcurvess1d–s3d in Fig. 8g.

In order to use Eq.s32d, bothg andm had to be fixed at
constant values.g was fixed at its approximately constant
value of 50.0. Sincek should depend mostly on what hap-
pens at the barrier,m was fixed at its value at the barrier in
the free-energy curves from the atomistic simulations. There-
fore, we tookm=7.0310−4«t2 in the simulations on curves
s1d–s3d ssinceN* <280d andm=6.0310−4«t2 in the simula-
tions on curvess4d and s5d ssinceN* <330d.

The calculated values ofk, kTST, and k on the free-
energy surfacess1d–s6d in Fig. 8 are shown in Table II. As
expected,k is approximately independent of the differences
in the stable states. The similarity between the valuek for
surfacess1d–s3d and s4d and s5d is because, despite the dis-
crepancy between our results forDGsNld and those of ten
Wolde and Frenkel,9 the curvature of our surface and theirs
near the barrier is approximately the same.

The sensitivity ofk, kTST, andk to the values ofm andg
chosen can be estimated from Kramers’ rate theory in the
high-friction limit, which predicts thatk~1/mg, kTST

~1/Îm, andk~1/Îmg.
The total nucleation rate,snumber of droplets produced

per unit volume per unit timed, as shown by ten Woldeet
al.,17 can be calculated by using

FIG. 8. Free-energy surfaces used in calculation of nucleation rate:sad from
ten Woldeet al. sRef. 17d; sbd from our calculations. The circles are simu-
lation data, and the curves are fits numbered from top to bottom.
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Rate =k
kuṄ* ul

2
rv expf− bDGsN*dg. s39d

The required input for this equation arek andkuṄ* ul from the
Langevin simulations, the vapor densityrv, and the free-
energy barrier with respect to the vapor phase,DGsN*d, from
the full empirical free-energy surface.

For almost the same thermodynamic conditions of the LJ
fluid studied in this worksT=0.741 andP=0.012 rather than
P=0.01202 as used in this workd, ten Woldeet al.17 carried
out fully atomistic MD simulations to estimate the nucleation
rate. For the liquidlike cluster particle number coordinateNl,

they found thatk=0.003±0.002 andkuṄl
* ul=76.2t−1. The er-

rors in their value ofk are very large, because its value is
very small and it takes a lot of costly simulation time to
improve the statistics.sIn fact, using several different gener-
alizations of the reactive flux method, they calculated values
of k that included k=0.03±0.03, 0.004±0.004,
0.011±0.009, and 0.004±0.01.d

In comparison, we obtained for the continuous cluster
particle number coordinateN the values ofk<0.014 and

kuṄ* ul=26.0t−1. If it is assumed thatDGsNl
*d<DGsN*d,

which we found from our simulations, and the values of
bDGsNl

*d<59.4 andrv=0.0188 are taken from ten Woldeet
al.,17 it is found that the total nucleation rate calculated by
our method, 5.4310−29s−3t−1, agrees with the value of
s3.5±2.3d310−29s−3t−1 obtained by ten Woldeet al.17 from
their atomistic MD simulations.

VII. DISCUSSION

This simple first test of the Langevin dynamics method
for calculating the nucleation rate demonstrates its potential
utility. In this work the free-energy surface and mass and
friction coefficients used in the Langevin calculations were
obtained from atomistic computer simulations. Compared to
the direct atomistic simulation of the rate coefficient using
the reactive flux method, it appears that more than four or-
ders of magnitude less computer time is required to obtain
the Langevin coefficients for comparable statistical accuracy.
In addition, there are potentially other means for estimating
the free-energy surface and mass and friction coefficients
that may even avoid the atomistic simulations.

Our first test of the method for the LJ fluid demonstrated
that, for at least one set of thermodynamic conditions, the
nucleation rate is accurately estimated by assuming the dif-
fusive behavior of a single coordinate, the number of par-
ticles in the cluster. In simulations of nucleation dynamics of
the Ising model under similar thermodynamic conditions to
the LJ fluid studied in this worksaway from the critical point
and at low supersaturationd, Pan and Chandler18 found that
the number of particles in the cluster was “good” reaction
coordinate and obtained a reasonable estimate ofk with a
simple equation based on diffusive behavior ofN near bar-
rier. sThis analysis was analogous to ours in terms of Lange-
vin dynamicsd.

However, as discussed in Sec. II, other degrees of free-
dom may be important under other conditionsse.g., near the
critical point and at high supersaturationd. These degrees of
freedom can readily be incorporated into our Langevin dy-
namics calculations, along with the coordinate dependence
of mass and friction coefficients.7
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TABLE II. k, kTST, andk from Langevin dynamics simulations on the free-energy surfaces shown in Fig. 8.

Surface
104m
f«t2g

g
ft−1g

105k
ft−1g

103kTST

ft−1g k

s1d 7.0 50 24 16 0.015
s2d 7.0 50 3.6 2.7 0.013
s3d 7.0 50 0.42 0.30 0.014
s4d 6.0 50 5.1 3.3 0.015
s5d 6.0 50 1.2 0.84 0.014
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