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Abstract

Electric power quality problems have become an important issue due to their tech-

nical and financial consequences on industry. Several solutions have been provided

for addressing these probiems such as the use of custom power solutions. These so-

lutions, however, could themselves be a source of power quality distortions. On the

other hand, existing power quality monitors provide sufficient information on power

quality distortions, which require individual inspection of the events. However, with
the growing number of monitors installed in power systems, the amount of data

collected continues to grow, which makes individual inspection of events impossible.

Therefore, it is desirable to have automatic analysis tools integrated with the mon-

itoring systems, that can be applied to large existing databases for automating the

classification process. This makes the clustering of similar events more visible which

is necessary for analysing and identifying the source of the distortion in a particular

pov¡er system.

The work presented in this thesis investigates the application of digital signal pro-

cessing techniques in the power quality automatic classification field, and thus, pro-

poses an optimized automatic monitoring system with an improved accuracy. The

proposed monitoring system involves three main sections: detection of the po'ù/er

quality events, extraction of the distinctive features that characterise each event,

and automatic classification of the similar events under pre-defined categories. The

thesis proposes new po$¡er quality processing techniques for detection and feature

extraction sections, including the Hilbert and Clarke transforms. The former pro-

posed technique was used for analysing single phase signals, while the later technique

was proposed for the simultaneous analysis of three phase signals.



In the classification section of the monitoring system, the k-Nearest Neighbour

pattern recognition technique was used as a decision-making technique. The main

advantage of the k-Nearest Neighbour technique is that it is nonparametric technique

which is simple, yet, effective in many cases, as no prior statistical knowledge about

the data is required. Although the k-Nearest Neighbour technique requires a large

capacity of memory to store the training data, the ever development the memory

size technology makes it a good candidate in the automatic recognition of power

quality events.

The k-Nearest Neighbour technique was used in this thesis with two feature ex-

traction techniques (the Hilbert and the Clarke transforms) to construct two new

classiflers for single-phase systems and three-phase systems. As the number of neigh-

bors affects the accuracy of the decision-making in the technique, this research also

determines the optimum number of neighbors in each classifier.

On the basis of the classification tests performed on nine power quality classes,

(including specified classes such as, sags due to starting motors and sags with har-

monics), it was demonstrated that the proposed classifiers are very effective. The

performance of the proposed classifi.ers was compared with the k-Nearest Neighbour

classifi.er based on the up-to-date feature extraction techniques; S Tlansform ancl

Wavelet Packet transform. By considering identical test data set, the over all accu-

racy of the k-Nearest Neighbour classifier with Clarke transform was around 88.5%

and the k-Nearest Neighbour with Hilbert transform was about 89.2To, whereas the

accuracies of the k-Nearest Neighbour with the S Tlansform and Wavelet Packet

transform were 82.27o and 74.4% respectively. It should be noted that the above

accuïacy figures are calculated based on all nine studied power quality classes, which

can be increased significantly if the classes with similar characteristics, (such as sags

due to starting motors and sags with harmonics), were excluded from the calcu-

lations. A number of real time measured events based on laboratory experiments

and on-site measurements was also provided in this study for testing the proposed

feature extraction techniques and classifiers.
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Chapter 1

Introduction

1.1 An Overview of Power Quality

TnIs introductory chapter provides the context and motivation for the study of

power quality.

An ideal three-phase AC supply consists of three phase voltages that are 120

degrees out of phase and have identical magnitudes. Above all, these voltages should

have sinusoidal waveform characteristic and should be available continuously. Any

diversion from these requirements to the level that has an adverse effect on the

electric consumers is considered as poor qualitv of power.

As a general statement) por¡/er quality can be referred to as the degree to which

voltages and currents in a power system represent sinusoidai waveforms. Clean pouer

refers to voltage and current waveforms that represent pure sine waves and are free

from any distortion, while polluted power refers to voltage and current waveforms

that are distorted and can not be represented by pure sine waves. Voltage dips

(sags), swe/.Is, interruptions, switching transients, or harmonics are examples of the

most frequent disturbances in pol'ver system networks (see Figure 1.1),

In the industrialized world, electric porüer systems have become more polluted

than ever before. This issue is primarily related to ever increasing sources of dis-

turbances that occur in interconnected power grids, which accommodates a large

1



An Overview of Power Quality

amplitude amplitude
v1 v2 vg vl v2 V3

Figure 1.1: Left: Ideal, 'clean', three-phase waveform represented by sine functions
having identical amplitudes, frequency, and 120' apart. Right: Hypothetical pol-
luted sample, phase u1 with voltage sag, phase u2 with harmonics, and phase us with
transients.

number of power sources, transmission systems, transformers and interconnected

loads. In addition, such systems are exposed to environmental disturbances like

lighting strokes. Furthermore, non-linear power electronic loads, such as converter-

driven equipment (from consumer electronics and computers, up to adjustable-

speed drives), have become increasingly common in power systems. Although these

converter-driven equipments are manufactured according to the associated stan-

dards, the wide utilization of such devices pollutes the power systems. If these

unwanted variations in the voltage and current signals are not mitigated properly,

they can lead to failures or malfunctions of the many sensitive loads connected to

the same systems, which may be very costly for the end users.

It is not easy to estimate accurately the exact cost of the pollution in the quality

of the power. However, some reports, (e.g. [1] and [2]), estimated that, poor power

quality in the United States of America causes about US$13.3 billion in damage

per year. As examples of these costs, one glass plant estimates that a five cycle

interruption can cost about US$200,000, and a major computer center reports that

a two second outage can cost about US$600,000 [3].

Numerous studies have attempted to address and reduce the impact of the power

quality aspects. The previous research studies can be categorized into two groups:

the custom powü solutions and úåe powq quality monitoring solutions. The re-

search areas in these two groups are shown in Figure 1.2.

2Chapter 1: Introduction
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Porver Quality fssues

o SagEvents

o Swell Events

r Momentarylntemrptions

¡ OscillatoryTransients

o Harmonic Distortions

¡ Notches

r Flicker

Power Quality
Monitoring

Custom Powe¡
Solutions

Feahle
Extfaction

Event
Classification

Data
Compression

Power ElecÍonic
Solutions

Control System
Improvement

Unintemrptible Power Supply
(uPs)

Supper Conducting Magnetic
Erergy System (SMES)

Series Compensator
(ssc)

Unified Power Quality
Conditioner (UPQC)

Static VAR Compensator
(svc)

Static Transfer Switch (STS)

Electronic Tap changer

Figure 1.2: Research groups on porwer quality,

3Chapter 1: Introduction



An Overview of Power Quality

In the fi.rst research group, (the custom power solutions), the emphasis is given

to how to protect the electrical loads from seeing any disturbances in the supplied

AC power [4] - [10]. These solutions are available and effective for low voltage level

systems. However, thanks to continual improvement in the rating of power electronic

devices, which provided solutions at the medium voltage level. Examples of these

solutions are shown in Figure 1.2. However, for medium voltage systems, these

solutions are sti[ not yet economically viable at high pov¡er ratings (MVA order),

as they are energy inefficient, and require additional maintenance [11]. Moreover,

power electronic-based solutions themselves can be the source of the power quality

related problems such as harmonics and notches.

In the second research group, the research is focusing on pov¡er quality moni-

toring. The utilization of these monitoring systems gives detailed information on

the characteristics of the events that cause the power quality related problems. The

analysis of this information by expert power quality engineers can identify the char-

acteristics and origin of such events and so suggest possible improvements based on

custom pov/er solutions. For example, in [12], two cases of utilizing power quality

monitoring systems are described. In the first case, monitoring revealed that a pump

control system r,¡¡as exposed to voltage sags and, as a solution, a constant voltage

transformer was installed to support the voltage. In the second case, monitoring

showed that plants in the same geographical area were experiencing voltage sags of

relatively long duration. These long voltage sags were affecting the operation of a

number of apparatuses. The problem was solved by shorting the protection clear-

ance times at certain points in the por,¡/er system within the zone of influence of the

plants. In addition, the information about the monitored events like sag magnitude

and duration are usually used to compare with the voltage tolerance curves of the

loads (see section 2.2.1) to evaluate the influence of these events,

4Chapter 1: Introduction



Project Motivation and Objectives

L.2 Project Motivation and Objectives

Due to the advanced developments in this industrial world, electricity is no longer

viewed as a"load" which may the disturbances be part of it, instead it is now viewed

as a "producl" with certain characteristics have to be met. In addition, because of

privatisation of the po'ü/er system structures, starting from the generation up to the

end users, it is not clear who is responsible for the quality and the reliability of

this producú. For example, if there is any power quality failure, it is important to

specify the source of this failure and identify who is responsible for the improvement,

(i.e. generation authorities, the distributots, or the customers). Due to the above

ambiguity, monitoring instruments have become an integral part for assessing and

improving the power quality. However, due to the extensive number of different

types of disturbances, the analysis of the captured disturbances manually is no

Ionger a practical option. Therefore, it is desirable to have automatic analysis tools,

integrated with the monitoring systems, that can be applied to large disturbance

databases to cluster them automatically based on some predefined criteria.

Although, due to the advances in the signal processing freld, many techniques

have been exploited for extending the ability of the monitoring systems to be auto-

mated, a reliable systems for the automatic classification of a full range of distur-

bances is yet to be formalised. Therefore the objective of this thesis is to investigate

the implementation of different signal processing techniques in order to develop and

pïopose an accurate automatic power quality monitoring system. The principle of

this system as it is illustrated in in Figure 1.3 will include three major steps described

as follows:

1. Thiggering

Because the power quality disturbances usually affect the voltage and/or cur-

rent signals in different ways, different disturbances may require different trig-

gering mechanisms. As a result, the existing triggering techniques may not

capture every type of the disturbances. Therefore, this study will offer an

appropriate triggering mechanism that can be implemented in a custom de-

veloped monitoring program, to capture a wider range of disturbances.

l)Chapter 1: Introduction
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Sensors
Signal

Conditioning
DAQ
Card

Data acquisition system

Triggering

. RMS triggers

. Peak Value triggers

tr¡ggers

envelope detection

Feature Extraction

. Fourier Transform

. Short-Time Fourier Transform

. Continuous Wavelet Transform

. Discrete Wavelet Transform

. S-Transform

. Hilbert Transform

Classif¡cations

Processing and I i
saving the data in a i i

temporary memory i i

Data F¡le

Data File

Sav¡ng specific
features on each
captured event

Data F¡le

Data-base
knowledge about

events

i . Wave-shape

i . Three-phase
Monitoring point in a
three phase power
system

Automatic
monitoring

system

Artificial Neural Networks

Fuzzy Logic

Nearest Neighbour

Figure 1.3: A block diagram highlights the main three steps of automatic monitoring
process.

2. Feature Extraction
This sturly will also investigate clifferent signal processing tools that are ablc

to extract the distinctive characteristics (features) of the disturbances. Dif-

ferent features from different techniques (or clifferent features from the same

technique) will be proposed and examined to show their capability to distin-

guish different power quality disturbances. In addition, in case of three-phase

systems, processing the three-phase signals simultaneously will be considerecl

instead of the traditional methods of processing each phase separately.

3. Classification

Finally this study will implement a decision-making technique based on the

extracted features to automatically classify a wide range of power quality dis-

turbance classes accurately.

6Chapter 1: Introduction



Literature Review

1.3 Literature Review

In order to classify different categories of power quality disturbances automatically, it

is necessary to extract the distinctive features of each category using an appropriate

signal processing technique. The accuracy of the automatic classification systems

depends mainly on how distinctive the extracted features are. Different studies

have been reported on the iiterature considering the feature extraction and decision-

making techniques. These research can be divided into two sections as follows.

1.3.1 Power Quality Feature Extractions

In order to obtain distinctive features for the classification, a number of studies on

signal processing techniques rffere reported in the literature. Among these techniques

the Fourier TYansform (FT) technique was the most commonly used technique in

practice to provide harmonic information about the signals monitored. However,

as reported in [14] - [17], the FT alone is not sufficient for analysing po\¡ver quality

signals as these signals are geneïally non stationary in nature and the FT ignores

the time information which is required for effective analysis.

As an improvement to the FT technique, the Short Time Fourier TYansform

(STFT) technique was implemented in [1S] and [19]. In [18], the STFT was used to

ascertain the frequency content of a non-stationary signal at different time intervals.

Hamming windows were used of iengths of 16, 32, 64, and 128 points. For an

oscillatory transient event, the technique provided more accurate time information

(e.g. start time, end time, rise time, fall time, and duration). For a sag event, the

STFT technique was used for extracting the fundamental components of the signals

with respect to time.

In [19], the voltage disturbances were analyzed in the time-frequency domain

using the STFT technique. The signal studied was split into a set of output sig-

nals, which were obtained using band-pass filters centered at the harmonic frequen-

cies. The paper also provided a comparison between the STFT and Wavelet multi-

resolution analysis. It was shown that, once the center of the window function is
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selected, the center frequencies of the band-pass filters associated with the STFT

can be chosen freely. However, it was found that the proposed technique requires a

significant amount of computational resources. This is due to the fact that the pro-

posed STFT based approach needs the implementation of the FT technique (,nú - I)
times, where l/ is the length of the signal and L is the window function length.

In addition, although the STFT technique offered a partial solution for the ab-

sence of time information in the FFT, it has also limitations due to its fixed window

length, which has to be chosen prior to the analysis. This drawback is reflected by

the achievable frequency resolution when analysing non-stationary signals with low-

and high-frequency components, as will be explained in Chapter 4.

The Wavelet Tþansform (WT), has been shown to be suitable for power quality

analysis, speciflcally for non-stationary signals. Due to the varying window function

of the WT at different frequency levels, it has been explored extensively in various

studies as an alternative to the STFT technique ([20] - [39]). These studies examined

both the Continuous Wavelet TÌansform (CWT) and the Discrete Wavelet transform

(DWT) (also known as Multi-Resolution Analysis, MRA).

Most of the previous work on the CWT was based on visual detection of power

quality events in the time-scale plane (e.g. [20] - [25]). In [20] - 122), a method

was discussed in which the CWT technique was used to extract the superimposed

disturbances in the signal from the fundamental component in order to be able to

analyse the disturbance. By this method, the disturbance time duration is estimated

by evaluating the local maximum at different scales. In [23], the CWT technique was

applied on four power quality events, (voltage sag, transient, harmonic distortion,

and flicker). It was shown that the magnitude of the fundamental component in

the signal can be accurately extracted. However, poor extracting of the harmonic

magnitudes due to the poor frequency localisation at high frequencies. In [24], an

algorithm based on computing a recursive continuous wavelet transform was used

for detecting the sag and transient events in the signals. A what called "clean" time-

frequency plane is presented by computing the magnitudes of the CWT coefficients

taking only a few steps (i.e. the fundamental and higher frequencies). This presented
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plane demonstrates the main signal characteristics change in the fundamental and

higher frequencies. In [25], the detection of harmonic distortions due to adjustable

speed drive and oscillatory transient events using the CWT technique with a dyadic

Daubechies wavelet as a Mother Wavelet, was discussed and compared with the

STFT technique.

Although it was shown that the CWT technique has the capabiiity of handling

the noisy signals, the main disadvantage of the CWT is its redundancy of using a

large number of scales resulting in a signifi.cant computational overhead.

In order to avoid the redundancy in the CWT, the MRA was adapted by many

researchers. In [26], the Wavelet MRA technique was used to expand the distorted

signals in terms of five detailed coeffi.cients and the approximation coefficient. These

coefficients were used to form six feature vectors which were used to represent three

groups of power quality disturbances based on their harmonic contents and the

frequency ranges in each decomposition level. However, in some cases the coefficients

of the high-frequency decomposition levels are small enough to be affected by the

noise and hence the feature of some disturbances may not be identified. In l27l - [29],

the 'Wavelet MRA was applied on three types of power quality events (transformer

energizing, converter operation, and capacitor energizing). The features of these

events were extracted using the statistics of the squared wavelet coefficient at four

decomposition scales. The reason for squaring the wavelet coefficient was to reduce

the effect of noise in the signals. In [30] - [35], the standard deviation of the wavelet

coefficient at different resolution levels based on the MRA was calculated to construct

a feature vector for charcterising different types of pov/er quality events.

Another algorithm explored widely in [36] - [39] using the MRA and Parseval's

Theorem to extract the features of the power quality signals in terms of their ener-

gies at different resolution levels. In this algorithm, it was shown that the energy

values of the decomposed signals at different levels are sensitive to the type of the

disturbances. However) non of these studies did investigate the effect of phase shift

of the signals, which has a significant effect on the energy values of the decomposed

signals even if the signals are pure.
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From the above studies on the WT technique, it can be considered as a powerful

signal processing technique. However, it has limitations in detecting and extracting

the features of some power quality signals which have small changes in the slope

of the signal, such as sags or swells that start at the beginning of the half periods

of the measured signal. In other word, the WT technique can be considered as an

analysis tool for the flrst derivative of the target signal and not the amplitude of the

target signal. This is why the WT technique is sensitive to signal irregularities but

insensitive to regular-like behavior of the signals [40].

The S-Tlansform (ST) was also introduced recently in as a new power quality

signal processing technique, 142) - 1471. In 142], the amplitude contours of four

simulated events, (sag, swell, momentary interruption, and oscillatory transient),

using the ST technique were shown to be suitable for power quality classification by

simple visual inspection. In addition, an attempt was shown to classify three of the

studied events, (i.e. voltage sag, swell, and momentary interruption), by calculating

the standard deviation of the time frequency representation of the signal. In [43] -
[47], the ST technique was used to construct a feature vector comprising the standard

deviation of the lowest ST contour that is above the fundamental frequency, the

minima and maxima of the ST absolute matrix, and the standard deviation of the

instantaneous frequency above twice the fundamental frequency.

Similar to the STFT, the ST also requires significant amount of computational

resources. This is due to the fact that the ST matrix is calculated by performing the

inverse Fourier transforms for a number of iterations depending on the frequency

resolution.

L.3.2 Power Quality Classifications

Power quality events classification is often troublesome because it involves a broad

range of disturbance categories or classes where the decision boundaries of the distur-

bance features may overlap. One of the oidest and most extensively applied for the

classification purposes is the Artifi.cial Neural Networks (ANN) technique, ([40], [41],

Chapter 1: Introduction 10
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and [48] - [52]). The advantage of this technique is its capability to handle easily

the noisy data that is present in real-time measurements. However, the main draw-

back of the ANN technique is the need for large numbers of training cycles and the

requirement of re-training the entire neural networks for every new power quality

event [53]. In addition, the ANN technique suffers from the computation overhead

in some cases [26].

TheFuzzy Logic (FL) technique was also reported in [38], [44], and [53] - [57]

for automatic classification of power quality events. Although the FL technique

does not require a training pïocess for automatic recognition, as it uses simple "IF-

THEN" relations, the technique has limitations for events (such as transients and

flicker) that cannot be described easily.

Another technique which has not been explored widely in the po!ù/er quaiity clas-

sification is the k-Nearest Neighbor (/c-NN) pattern recognition technique research.

In [35] and [58], the k-NNtechnique was appiied to classify the disturbances online.

The proposed k-NNclassifier demonstrated 88% accuracy for a set of simulated data

with a 3.5% noise level, without examining the effect of the number of neighbors.

The techniques studied so far are based on single-phase measurements. If three-

phase system monitoring is required, it is necessary to monitor each phase separately,

which results in more computational resources and poor accuracy. Therefore, this

study considers a nev/ power quality monitoring technique that is introduced for

monitoring three-phase systems. In addition, for single-phase systems, the Hilbert

Tþansform (HT) technique is also examined as an alternative technique, and com-

pared to the previous single-phase monitoring techniques.

L.4 Outline of the Thesis

The thesis is divided into seven chapters which can be summarized as follows. Chap-

ter 2 provides the characteristics of several power quality issues belonging to different

categories based on the IEEE standard, [59]. The main causes of power quality issues

is also discussed in the chapter.
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In chapter 3, the most widely used po'ù/er quality detection techniques are re-

viewed. In addition, an alternative proposed detection technique which is based

on monitoring all of the three-phase signals in power systems simultaneously is de-

scribed and tested. A monitoring system which was developed to accommodate the

proposed detection technique is also described in this chapter.

Chapter 4 discusses the proposed power quality feature extraction techniques.

The application of various signal-processing techniques on real-time power quality

waveforms are investigated and their performance in extracting the relevant features

are studied. In each technique, the effect of the use of different parameter settings

on the performance of the technique is also investigated.

Chapter 5 investigates the capability of the feature extraction techniques to dis-

tinguish different po'wer quality events. Unlike the previous studies which were based

on examining a single signal processing technique, in this chapter, combinations of

different features from different techniques (or different features from the same tech-

nique) are investigated to show their capability in distinguishing between different

pov/er quality events.

Chapter 6 examines automatic power quality event classification algorithms based

on the k-Nearest Neighbour technique. The optimum selection of number of neigh-

bors is also investigated to minimize the classification errors'

Finally, chapter 7 presents the main conclusions of this work, and provides in-

sights for the possible future research.
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Chapter 2

Power Quality Events and their
Causes

2.L Introduction

D o\ /ER quality is an issue of ever-increasing concern for many pov/er users whose

I day to day operations rely on sensitive electronic technologies. The emergence

of this issue, as discussed in the previous chapter, is attributed to a variety of reasons

of which a major one is the increasing utilization of poluer electronic loads. Such

loads are sensitive to the disturbances in power systems and also cause power quality

TSSUCS

This issue of power quality involves a wide variety of electromagnetic phenom-

ena that characterise the voltage and current signals at a given time and at a given

location on the power system. The Institute of Electrical and Eiectronic Engineers

(IEEE) Standard, [59], categorised these phenomena (which are usually referred to as

por,¡/er quality events) into different categories as shown in Table 2.1. This categori-

sation is done in terms of the frequency components (spectral content) that appear

in the voltage signals during the phenomenon, the duration of the phenomenon, and

the typical voltage magnitude. For the classification purposes, most of the primary

categories are further expanded into subcategories that provide additional specifica-

tions on the event. For example, the sag event can be further categorised based on

13
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the cause of the event (e.g. motor starting sag, sag due to faults, etc.). In addition, a

combination of events may occur. For example sag events are usually contaminated

with harmonics. More details on the characteristics of the most common events will

be described in this chapter.

2.2 Classes of Power Quality Events

In power systems, different actions may cause clifferent power quality events having

specific characteristics. In this section the most common power quality events will

be described. This wili include: sags, swells, interruptions, harmonics, oscillatory

transients, and flicker.

2.2.L Sag (Dip) trvents

The sag event is the most common event in powel systems. It is defined by a

reduction in the amplitude of the nominal voltage signals. According to the IEEE

standards, as shown in Table 2.1, the depth of the sag varies from 0.1 to 0.9 pu of the

signal. Figure 2.1 shows a sample of a typical sag event of 0.5 pu, which continues

for eight cycles.
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Figure 2.I: Ã sample sag event of 0.5 pu.
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Table 2.1: Categorisation of power quality events [59]

Categories

1.0 Transients
1.1 Impulsive

1.1.1 Nanosecond

1.1.2 Microsecond
1.1.3 Millisecond

1.2 Oscillatory
1.2.1 Low frequency
1.2.2 Medium frequency
1.2.3 High frequency

2.0 Short duration variations
2.1 Instantaneous

2.1.1 Sag

2.1.2 Swell
2.2 Momentary

2.2.I Interruptions
2.2.2 Sag
2.2.3 Swell

2.3 Temporary
2.3.1 Interruptions
2.3.2 Sag
2.3.3 Swell

3.0 Long duration variations
3.1 Interruption, sustained
3.2 Undervoltage
3.3 Overvoltage

4.0 Voltage Imbalance
5.0 

.Waveform distortion
5.1 DC offset

5.2 Harmonics
5.3 Interharmonics
5.4 Notching
5.5 Noise

6.0 Voltage fluctuations
7.0 Power frequency variations

Voltage
magnitude

0-4pu
0-8pu
0-4pu

0.1 - 0.9pu
1.1 - 1.8pu

<0.lpu
0.1 - 0.9pu
1.1 - 1.2pu

<0.1pu
0.1 - 0.9pu
1.1 - 1.2pu

0.Opu

0.8 - 0.9p

1.1 - 1.2pu

0.5 - 2%

0 - 0.7%

0-20%
0-2%

0-7%

Typical du-
ration

Spectral
content

( 50ns

50ns 1ms

> lms

0.3 - 50ms

20ps

5p¿s

5ns rise

1¡.r,s rise

0.lms rise

< SkHz
5 - 500kHz
0.5 - SMHz

0.5 - 30cyc.

0.5 - 30cyc.

0.5cyc. 3s

30cyc. - 3s

30cyc. - 3s

3s lmin
3s - lmin
3s lmin

) lmin
> lmin
) lmin
steady state

0 100th H
0-6kHz

broad-band

steady state
steady state
steady state
steady state
steady state
Intermittent< 25Hz

< 10s
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The major cause of experiencing the sags on the customer sides is usually the

faults in power systems. Other sources are the starting of large loads (especially

common in industrial systems), starting of induction motors, or energizing trans-

formers. The difference between the sags due to faults and the sags due to starting

motors or energizing transformers is in the way the affected signals recover from

the event. The sags due to faults usually recover as soon as the fault causing it is
cleared, while the sags due to starting induction motors or energizing transformers

recover gradually. Figure 2.2 shows an example of a simulated voltage sag due to

starting an induction motor. In this sample figure, the magnitude of the voltage

decreases and gradually recovers within about 0'4 seconds.
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oÞ
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time (sec)

Figure 2.2: A, sample of sag event due to starting of motors.

0.9

The magnitude and duration of the sag events are often compared against toler-

ance envelopes to identify the severity of the event. The most widely used curve for

this purpose v/as proposed by the Computer Business Equipment Manufacturer's

Association (CBEMA), which was intended to specify the ability of mainframe com-

puters to sustain voltage sags, as shown in Figure 2.3 (top) [77]. The "CBEMA

Curves" has been updated and renamed the "ITIC Curve" (for Information Technol-

ogy Industry Council), and adopted by IEEE Std. 446-1995 [60]. The ITIC Curves

is presented in Figure 2.3 (bottom).
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In both curves, the vertical axis represents the percentage voltage magnitude

change with respect to its nominal value, and the horizontal axis represents the time

duration of the event. Upper and lower curves indicates the maximum and minimum

Iimits. In the center of the plot is the acceptable area. Outside this area is the region

where the equipment may be damaged or may not function correct. The overvoltage

zone at the top involves the tolerance of equipment to excessive voltage levels, while

the zone at the bottom describes the tolerance of equipment to a loss or reduction

in applied voltage for a certain period of time.
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Figure 2.3: (Top), Computer Business Equipment Manufacturer's Association
Curves (CBEMA Curves). (Bottom), Information Technology Industry Council
Curves (ITIC Curve) [77].
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2.2.2 Swell Events

Swell events are defined by an increase in the amplitude of the signal starts from 1.1

pu and up to 1.8 pu for a duration more than 0.5 cycle according to the IEEE Std.

1159. Figure 2.4 shows a typical swell event of 1.3 pu.
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Figure 2.4: Ã sample of swell event of 1.3 pu

Swell events a,re commonly caused by the de-energizing of large loads or by

asymmetrical faults (".g. u line to ground fault will cause a voltage rise in the other

two phases). Swells can cause insulation breakdown in sensitive electronic equipment

if voltage increases are high enough for a sufficient period of time. Equipment

tolerance to swells, like sags, is described by voltage tolerance envelopes described

by the ITIC Curves in a similar way to the sag events (see Figure 2.3).

2.2.3 Interruption Events

An interruption event is a complete loss of electric po'\¡/er or a more than 90%

reduction in the signal nominal amplitude for more than half a cycle as shown in

Figure 2.5. The major cause of interruptions is faults in power systems or the

malfunction of protection systems.
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Figure 2.5: A, sample of an interruption event.

2.2.4 flarmonic Distortion

Harmonics are sinusoidal components superimposed onto the voltage or current sig-

nals having frequencies that are integer multiple of the fundamental frequency in the

power system. An example of a signal distorted by harmonic components is shown

in Figure 2.6(top). The frequency spectrum of this signal which shows the harmonic

content is illustrated in Figure 2.6(bottom).

Harmonic distortion is normally attributed to the application of nonlinear loads

(i.". loads that when supplied by a sinusoidal voltage do not draw a sinusoidal

current). The current in these loads can be heavily distorted compared to a sine

wave, and usually containing the odd harmonics, 3,5,7,9, etc. For example in an

extreme case, the third harmonic may be 80% of the fundamental, and the fifth may

be 60% of the fundamental. These nonlinear loads not only have the potential to

create problems within the facility that contains the nonlinear loads but also can

arlversely affect neighboring facilities [63].
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Figure 2.6: A sample of harmonic distortion event (top), and its frequency spectrum
(bottom).

Examples of common nonlinear loads are adjustable-speed drives and dc power

supplies. These devices rectify the incoming three-phase AC supply. In doing this,

the current is distorted with harmonics of order 5, 7,11, 13, etc. (i.". all of the

odd harmonics except multiples of three). In theory, the amplitude of the fifth

harmonic is one-fifth of the fundamental, the seventh harmonic is one-seventh of the

fundamental, and so forth.

Other harmonic-producing loads include arc furnaces, arc welders, fluorescent

Iights (with magnetic and especially with electronic ballasts), battery chargers, and

cycloconverters.

The harmonic currents drawn by loads distort supply voltage waveforms due to

finite supply impedance of the power system, and hence produce voltage harmonics.

The effect of the resulting supply voltage harmonics is determined by the suscep-

tibility of the load to them. The least susceptible loads to the harmonics are the
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resistive loads whose main function is heating, such as in the electric ovens. The

most susceptible loads, in the other hand, are that require a (nearly) perfect sinu-

soidal fundamental input. Communications or data processing equipment often fall

into this category of loads. Even in the case of the least susceptible loads, harmonics

still can have some harmful effects. In the case of an oven, for example, they can

cause dielectric thermal or voltage stress) which causes a premature aging of the

electrical insulation.

A type of load that normally falls between these two extremes of susceptibility are

motor/generator loads. These loads are reiatively tolerant to harmonics. The major

effect of harmonic voltages and currents in rotating machinery is increased heating

due to iron and copper losses at the harmonic frequencies. The harmonic components

thus afiect the machine efficiency and can also reduce the output torque [61].

A common measure of the severity of harmonics in power systems is what known

as the Total Harmonic Distortion,(THD), which is the square-root of the sum of

the squares of each individual harmonic expressed as a ratio with the fundamental

component. Thus, for voltage signals the total harmonic distortion, (V7¡7¡1), is

calculated as:

(rn, rr)'''Vrno:
Vt

(2.2.1)

where,

V1 is the RMS magnitude of the fundamental component in the voltage signal, and

V¿ is the RMS magnitude of the harmonic component h..

The IEEE provides a recommended practice for harmonics, IEEE Std. 519-

1992 [61], which sets voltage harmonic limits for utilities and for end users. As

shown in Table 2.2, for suppliers at 69 kV and below, the IEEE voltage limits are

3To on each individual harmonic and \c/o on the total harmonic distortion. Both of

these percentages are referenced to the nominai voltage [61].

For the current distortion, the IEEE Std. 519-1992 also provided current har-
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monic limits, (illustrated in Table 2.3) which are designed to be consistent with the

voltage distortion limits. That means, if users limit their current injections accord-

ing to the guidelines, the voltage limits will remain under the guidelines imposed on

the utility. In the table, the harmonic current limits are based on the size of the loacl

which respect to the size of the power system to which the load is connected. The

ratio I"¡f I¡ is the ratio of the short-circuit current available at the point of com-

mon coupling (PCC), to the maximum fundamental load current. The individual

harmonics and the total harmonics (total demand distortion, TDD) are referenced

to the maximum demand at that point. The TDD is calculated as [63]:

, tl/2

l>z,r'^¡' (2.2.2)rITDD - x 100%
Ir,

where,

ITpp is the total demand distortion in percentage,

1¿ is the RMS magnitude of the harmonic component h, and

1¿ is the maximum fundamental load current(rated current).

Table 2.2: Yoltage Distortion Limits for Distribution Systems [61]

Voltage Distortion Limits

Individual Harmonics

Total Harmonic Distortion (THD)

3%

5%

2.2.5 Oscillatory Tlansients

tansients are high frequency components that occur in the voltage or current signals

for a short time. As stated in Table 2.1, based on the spectral content, the oscillatory

transients are considered as Low-, Medi,um-, or Hi,gh- frequency oscillatory trans'ients

with primary frequency component is less than 5 kHz, between 5 kHz and 500 kHz,

or, between 500 kHz and 5 MHz respectively.
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Table 2.3: Current Distortion Limits for Distribution Systems [61].

I"nlIt h<rr tt<h<L7 17<h<23 23<h<35 35<h rDD

<20
20-50
50 - 100

100 - 1000

> 1000

4.0

7.0

10.0

12.0

15.0

2.0

3.5

4.5

5.5

7.0

0.6

1.0

1.5

2.0

2.5

0.3

0.5

0.7

1.0

L.4

5.0

8.0

12.0

15.0

20.0

1.5

2.5

4.0

5.0

6.0

Note: Even harmonics are limited to 25% of the odd harmonic limits above. Current distortion
that result in a dc offset are not allowed.

The main cause of transients is switching of capacitors in power systems, where

once the capacitoï is switched, it momentarily pulls the system voltage down (as

a large current flows into the capacitor to charge it up). As the system is nor-

mally under damped, rebounds and the voltage overshoots and oscillates about the

fundamental frequency [64]. This transient normally decays quickly. The oscilla-

tion occurs at the natural resona,nce frequency between the capacitor being and the

inductance of the por¡rer system, which can be calculated as [64]:

!- 1I": 2n.,f,p Q'2'3)

where,

/" is the frequency of the oscillatory transient,

C is the capacitance of the capacitor, and

L" is the system inductance.

Figure 2.7 shows a simulated example of an osciilatory transient having a lkHz

resonant frequency.

In power systems, the switching of capacitors is often an unavoidable action,

where it has several purposes. Two different cases are [29]:

L. Normal Energizing of Uti,h,ty Capacitors: As part of normal operation in the

utility system for anticipating a load increase at customer side, or to correct

the power factor, capacitors are switched in on a daily basis.
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Figure 2.7: A, sample of an oscillatory transient event having aIkHz resonant fre-
quency.

2. Baclc-to-Back Capaci,tor Energi,z'ing: Back-to-Back energizing transient involve

two capacitors in close vicinity. One of them is fully energized (local), when

the other is switching in. The resulting step voltage in this case is not as

large as if the fully energized capacitor did not exist. However, the oscillation

frequency in this case is higher than that in normal energizing case, due to the

much smaller effective system inductance.

The overvoltage in this scenario depends on the rating values of the two capac-

itors as it was shown by a study done by [65]. The results of the study is shown

in Figure 2.8, which shows the effect of switching three capacitors, (1.2 MVar,

1.8 MVar, and 3 MVar), on the peak voltage for a range of different sizes of

local energized capacitors. One can see from the figure that for each size of

the capacitor being switched, there is a specific value of local capacitor that

generates the maximum peak voltage. For example, for switching 1.2 MVar

capacitor, the maximum voltage peak, (2.4 pu), occurs when the energized

capacitor size is 100 kVar.
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Figure 2.8: Tlansient magnitude for various sizes of switched and local capacitors

[65]

2.2.6 Voltage fluctuations (Flicker Event)

Voltage fluctuation is a low-frequency phenomenon in which the magnitude of the

voltage signal changes periodically. If these changes are at such a rate as to be

perceptible to the human eye, it is called flicker. A sample of a flicker event is shown

in Figure 2.9. Although the flicker does not normally have a serious impact on

electrical equipment, flickering lights, televisions, or computer monitors can disturb

end users.

The most common causes of voltage fluctuations on the transmission and distri-

bution system are the Arc furnaces and periodical starting of motors. The flicker is

usually expressed in percentage as:

Il -TTVr:2# xI00%
vr

(2.2.4)

Chapter 2: Power Quality Events and their Causes 25



Classes of Power Quality Events

where,

7¡, is the percentage of the flicker,

I/-u* and Vy1¡in ã,rë the maximum and minimum changes in the RMS voltage respec-

tivel¡ and V, is the rated RMS voltage.
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Figure 2.9: A sample of a flicker event.

The IEEE standards [62] provided "Flicker curves" shown in Figure 2.10 which

are derived from controlled experiments to offer thresholds of acceptable voltage

flicker for incandescent lights used by a large number of utilities. In this figure,

the two curves show how the acceptable voltage flicker magnitude depends on the

frequency of dips in the flicker. The lower curve shows a borderline where people

begin to detect flicker. The upper curve is the borderline where some people will
find the flicker objectionable. For example, at 10 dips per hour, people begin to

detect incandescent lamp flicker for voltage fluctuations larger lhan I%o and begin

to object when the magnitude exceeds 3%.
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Figure 2.10: The perceptibility threshold of voltage flicker verse time [62]

2.3 Conclusion

A wide variety of electromagnetic phenomena are becoming an every day issue in

porù/er systems. These phenomena have different characteristics that affect the volt-

age and/or current signals at a given time and given location on power systems.

This chapter described the characteristics of the most frequent phenomena in

the power systems including sags due to faults, sags due to starting of motors,

swells, interruptions, harmonic distortions, transients, and flicker. The main causes

of these phenomena are also discussed. In addition, the acceptable limits of some

phenomena (i.e. sags, swells, harmonics, and flicker) based on the available relevant

standards are also explored. The phenomena explained in this chapter will be the

main categories in the automatic classiflcation system explained in the forth coming

chapters.
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Chapter 3

Detection Techniques for Power

Quality Events

3.1 Introduction

T\, IFFERENT monitoring devices are currently available that can capture and

l)collect large amounts of power quality disturbance data. The techniques

used for capturing these disturbance are usually based on detecting when a certain

threshold level is exceeded. The limits or threshold levels are primarily defined by

the standards that define the acceptable level of disturbances in AC power systems

seen by the end users.

It is imperative that the detection mechanism of the monitoring devices be fast

enough to process any acquired sequences of the monitored signal before the acqui-

sition of the ner¡/ sequences starts. Delayed detection of distorted signals may result

in missing the second of two closest spaced events or overlapping of two successive

sequences of the same signal which may lead to errors in processing the signal.

The sensitivity of the monitoring devices depends on the selected threshold level.

A high threshold results in missing disturbances which should have been recorded,

while a low threshold results in capturing large number of waveforms. Practical

monitoring systems, however, have a limited size of memory to store the distur-

bance data. Therefore, an important task in power quality monitoring is to set the
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triggering to capture only the desired povrer quality events to make the best use of

available memory [79].

Commonly used thresholds for power quality monitoring are the changes in the

root mean square or the peak value of the signal (RMS or Peak thresholds), or cycle-

by-cycle signal comparison threshold. In this technique, the monitored waveforms

are broken down into user-defined windows of time that represent a percentage of

the overall waveform. Each window is compared to the same window of time in the

previous waveform and if the difference exceeds the user's limits an event is recorded.

The technique has a drawback of not being able to capture disturbances that appear

periodically in many cycles of the waveform, like flat-top and phase controlled load

(repeated notch) waveforms [80].

This chapter, therefore, discusses the performance of two widely used detection

techniques in power quality monitoring systems (the root mean square and the peak

values of signals). In addition, monitoring the signal envelope using the Clarke

transform is introduced as an alternative detection technique for monitoring all

phases of three-phase systems simultaneously with high sensitivity to short duration

events.

3.2 Point-by-Point Root Mean Square Technique

The main advantage of the Root Mean Square (RMS) technique as a triggering

threshold for power quality events is its speed and simplicity in terms of the calcu-

lations involved. The general formula for calculating the RMS value of a sinusoidal

signal is given by:

Vrrn" + l,' u(t)2 dt (321)

where,

u(t) is the continuous function of voltage (or current) signal in the time domain,

T is the time period of the signal, and

V,,," is the RMS value of the signal.
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In real time applications, however, the power quality signals are captured in a dis-

crete sequence of samples. Therefore, for monitoring purposes, the RMS values of

por¡/er quality signals have to be calculated at each point of the sampled signal. This

can be performed as described by the following equation:

v,*"ln¡,+ il : 
l*p=uv4z)1/2 

, i:1,2,...,N-n* (3.2.2)

where,

,lk] is the sampled voltage (or current) signal,

fl.¡x is the number of samples in a half cycle or one full cycle (window size),

V,*"lnn + i,] is the RMS value at the sample point n¿ I i,

¡/ is the total number of samples in the signal, and

k is the discrete time index.

In order to investigate the performance of the RMS algorithm, it has been applied

on two common real power quality signals; sag, and oscillation transient events. The

results are shown in Figures 3.1 and 3.2.

In Figure 3.1, the RMS value of a three-phase voltage sag followed by an inter-

ruption is calculated over a window of one cycle length, (Figure 3.1 middle), and

half cycle length, (Figure 3.1 bottom). It should be noted that the exact frequency

of the signal should be known a pri,ori in order to be able to calculate the one cycle

window length. For the signal in Figure 3.1, the number of points in each cycie is

50. Note that, in the case of the one cycle calculation, because the RMS calculation

described in Equation 3.2.2 starts at the 50Úh point, the RMS value is only available

from the 50¿h point onwards. Similarly, in the case of the half-cycle calculation, the

RMS value is only available from the 25¿å point.

From Figure 3.1 one can see that when using the half-cycle window, the RMS

values tracks the distortions in the signals more rapidly. This can be observed from

the curves of the half-cycle RMS values which drop more quickly to the lowest value

of the disturbance, while the response of the one-cycle RMS curves are delayed by

about half a cycle.
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Figure 3.1: Three-phase distorted signal (top), and its point-by-point one-cycle RMS
value (middle) and half-cycle RMS value (bottom).
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Figure 3.2: Oscillatory transient on a single phase of a three-phase signal (top) and
its point-by-point half-cycle RMS value (bottom).
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Although the RMS technique is shown to be sensitive to low frequency distur-

bances like sags and swells, it fails to detect disturbances that have high frequency

components and occur for only a short time, as in the case of transient events. Fig-

ure 3.2 shows an oscillatory transient event that occurs on one phase of a three

phase signal. The point-by-point RMS values are calculated over a window of half

a cycle. From the fi.gure, one can see that, because the event has a high frequency

component which lasts for less than a quarter cycle, this event will not be detected

with the RMS technique. This limitation make the RMS technique not suitable for

detecting transient events.

3.3 Point-by-Point Peak Value

Another common technique used for monitoring and detecting signals is the Point-

by-Point peak value of the signal. This technique is obtained by tracking the max-

imum of the absolute value of the signal over a preselected window length. The

window length is selected to be a multiple of one half-cycle of the signal. Therefore,

for a discrete time signai u[k], its point-by-point peak values is calculated as [13]:

Ve.onfk*n¿] :-u* ulk - n¡,1 V 0 < n¡, <T (3.3.3)

where,

ulk - n¡l is the segment of the signal of length n¿,

Ve"onlk + n/,] is the peak value of the signal at point lc I n*,

? is the period time of the signal, and

k is the discrete time index.

It should be noted that the above equation gives the point-by-point peak value

starting at the end of the first cycle (or half a cycle). Therefore, similar to the RMS

technique, the flrst cycle (or half a cycle) peak value is set to the same value of the

last point in the cycle (or half a cycle).

The application of this technique on the real sag events is shown in Figure 3.3
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In Figure 3.3 (middte), one cycle is used for the calculations, while in Figure 3.3

(bottom), half a cycle is used for the calculations. Similarly to the RMS performance,

the calculation with a half a cycle window is shown to have faster response than using

a one cycle length. This is obvious from the quicker response of the calculation with

half a cycle at the start and end of the event.

In Figure 3.4, the technique is tested with the short transient event, In the fi.gure,

the peak values of an oscillatory transient event when using half a cycle window for

the calculations is shown. As it can be seen from the figure, the transient was not

detected by the technique which indicates the unsuitability of this technique for

monitoring such short duration events.
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Figure 3.3: Three-phase distorted signal (top), and its point-by-point one-cycle peak
value (middle) and half-cycle peak value (bottom).
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Figure 3.4: Oscillatory transient on a single phase of a three-phase signal (top) and
its point-by-point half-cycle peak value (bottom).

3.4 Point-by-Point Three-Phase Envelope

In order to overcome the limitations mentioned above in the point-by-point RMS

and Peak value monitoring approaches, this section presents a new triggering method

for a more reliable monitoring system. In this triggering method, the three-phase

signal envelope approach is used. The principle idea in this approach is based on

the characteristic of a balanced three-phase system, in which the magnitude of the

instantaneous vector sum of the three phases at any time is constant. As it will be

discussed in more detail in Chapter 4, lhe Point-by-Point three-phase envelope of a

three-phase signal can be calculated from sampled data as:

Valkl : ultSlkl + urt(Slk) - 2n l3) + ust(þlk) + 2r l3) (3.4.4)

0.02
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where,

yElk] is the three-phase envelope at point k,

't)L,'n2, and u3 are the three-phase system signals, and

/ is the phase shift of phase u1.

In order to examine the sensitivity of the proposed approach, it was applied

to the sag followed by interruption event (shown in Figures 3.5 (top)) and to the

oscillatory transient event (shown in Figure 3.6 (top)). The three-phase envelope of

these events are shown in Figures 3.5 (bottom) and 3.6 (bottom) respectively. As

can be seen in the figures, this approach has the ability to track the changes in the

three-phase signals simultaneously. The changes are superimposed on a constant

value of 1.5 pu.
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Figure 3.5: Three-phase distorted signal (top), and its point-by-point three-phase
envelope (bottom).

It should be noted in Figure 3.6 that the steady-state ripple in the envelope

around the average value of 1.5 pu is attributed to the distortion on the three-phase
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voltages. The steady-state ripple amplitude is about 0.03 pu, which is much less than

the capacitor switching transient in the signal (about 0.2 pu). Therefore, setting the

triggering index in this approach above the ripple value will be sensitive enough for

detecting short transient events.

Therefore, as compared with the previous results, these results demonstrate that

the point-by-point three-phase envelope approach is a useful method to detect short

duration transient events as well as voltage sags that may be present in any of the

three phases of a power system.
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Figure 3.6: Oscillatory transient on a single phase of a three-phase signal (top) and
its point-by-point three-phase envelope (bottom).
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3.5 Custom Developed Monitoring System

This section describes a power quality monitoring system that was developed as a

part of this project, for capturing real time power quality signals. The monitoring

system has been tested in the laboratory for capturing a number of experimentally

simulated power quality signals. In addition, it was also used to perform monitoring

at a power station, the Pelican Point Generation Station in South Australia, as will
be shown in Chapter 6. The monitoring systems includes two sections: the software

section and the hardware section.

3.5.1 The Software Architecture

In the software section, a custom monitoring program for tracking real-time distor-

tions in voltage and current signals was developed based on the point-by-point three-

phase signal envelope. The program was written using a graphical programming

language, LabVIEW, (Laboratory Virtual Instrument Engineering Workbench), de-

veloped by National Instruments@ company. This language was chosen for writing

the program, because its capability to communicate easily with the hardware system.

The program consists of a number of subprograms called VI's, (Virtual Instru-

ments) each of which executes a specific function. The hierarchal structure of the

main sub VI's in the program are shown in Figure 3.7. As demonstrated in the

fi.gure, the main VI communicate with other five sub-Vl's. In the "Configuration

VI", the specifications of the hardware are confi.gured and defined. The "File setup

VI" specifies the type of each data from the I/O file and adjusts the gain of the

acquired data. The "Read Data VI" allows the system to start acquiring the data

from the DAQ card. In the "Data Processing VI", the data is diagnosed for any

out-of-tolerance condition. Finally, in the "Save Data VI", the information about

any distorted signal is saved in a specific memory.

Each of these sub-Vl's consists of a block diagram, which represents the structure

of the program, and a front panel interface. The main VI block diagram and its

front panel interface which allows the monitoring parameters and limits to be set
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are shown in Figures 3.8 and 3.9 respectively. Therefore, in the program, the voltage

or current signals are continuously monitored for any out-of-tolerance in signals. If
a predefined limit of the three-phase envelope is exceeded, the program saves the

signal in a temporary memory for further analysis.

Figure 3.7: Block diagram of the monitoring system software.

3.5.2 The Hardware Architecture

The hardware section includes the data acquisition card (DAQ), which is hosted by

a personal computer, and the voltage or current sensors. The specifications of the

voltage and current sensors are presented in Tables 3.1 and 3.2 . The DAQ card used

in the system is from National Instruments@ which has the following specifications:

o 4 analog inputs; dedicated 12 bit A/D converter per channel

o Up to 10 MS/s per channel sample rate

o Analog and digital triggering

o AC or DC coupling

o 8 input ra,nges from f200 mV to +42 V

Main Vl

Process Data Save DataConfiguration File Setup Read Data

Hardware
Drive

File l/O
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Read & chafr data untll ¿n error occurs, or the stop bunon pressed

for Sàv¡nq Data

Table

Figure 3.8: Block diagram of the main VI in the monitoring system software.

o 2 analog outputs at 4 MS/s single channel or 2.5 MS/s dual channel

o 8 digital I/O lines (5 V TTL/CMOS)

o Two 24-bit counter/timers

Table 3.1: Voltage sensor specifications

Bandwidth DC to 15 MHz (-3 dB)

Input attenuation ratio Between I170,71100

Maximum allowed differential voltage +500V (DC + ÃCe.on) or 350 Vrms
(1/100)

Maximum common mode input voltage +500V (DC + ACr"on) or 350 Vrms
(t170,1/1oo)

The general schematic diagram of the developed monitoring system is depicted

in Figure 3.10. The PCC in the figure denotes the Point of Common Connection

which is the point of connection of the monitoring system.

lnterchannel

søn
LI

siâtusto read
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Figure 3.9: Front panel of the monitoring system (top), and an explanation of the
function of each the sub-panels (bottom).
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Current range

Accuracy

Dielectric strength

Output sensitivity

Frequency range

Resolution

Load impedance

Three-phase
System

Table 3.2: Current sensor specifications

2oA DC / 304 AC

t7% 2mÃ

3.7kV, 50H2, lmin

100mV/A

DC - 100kHz

f 1mA

> 100kCI

Triggered Events
Software

PCC
Voltage
Transducers

Current
Transducer

Figure 3.10: General block diagram of the monitoring system.

As stated earlier, the developed monitoring system has been tested in the labo-

ratory by monitoring a number of power quality signals. In order to generate various

disturbances, different power system configurations have been arranged in the labo-

ratory as shown in Figure 3.11. In these configurations, a4L5Y three-phase power

source is connected to different loads, such as resistors, induction motors, capac-

itors, and transformers, to investigate the effect of switching and resulting power

disturbances at the PCC point. It can be noted here that the components in the

test setup were chosen to introduce a degree of power quality events at PCC.

VT

CT

Multiple-channel
Data Acquisition
Card (DAQ)

Signal
Conditioning

Chapter 3: Detection Techniques for Power Quality Events 4I



Custom Developed Monitoring System

Transmission Line

100 m,2.5 mm'Cable

Transmission Line

100 m,2.5 Cable

Transmission Line

100 m,2.5 Cable

PCC

PCC

Capacitor
Bank

l8 - 180 uF

PCC

PCC

Resistive Load
ls-100c)3-phase Supply

415 V
50 Hz

3-phase Supply
415 V
50Hz

3-phase Supply
415 V
50 Hz

3-phase
Induction Motor
ll A, 1410rpm

Resistive Load
15-100c)

T
3-phase
Induction Motor
I I A, 1410 rpm

Resistive Load
15-100c,

Capacitor
Bank
l8 -180 uF

Resistive Load
15-100c)Transmission Line

100 m,2 5 mm2 Cable

3-phase Supply
415 V
50Hz

3-phase
Transformer
415V/2r0V

Y/Y Connection

Transmission Line
PCC

100 m,2.5 Cable

3-phase Supply

Resistive Load
15-100c)

415 V
50 Hz Capacitor

Bank

T
l8 - 180 uF

Figure 3.11: Different setup configurations used to experimentally simulate the
power quality events.

Chapter 3: Detection Techniques for Power Quality Events 42



Conclusion

3.6 Conclusron

In this chapter the performance of two widely used detection techniques in porù/er

quality monitoring systems (the root mean square and the peak values of signals)

on different power quality events was discussed. It was shown that, because power

quality disturbances can affect the voltage signals in power systems in different ways,

the existing detection strategies are not suitable for monitoring all por¡rer quality

events. Therefore, in this stud¡ an alternative detection technique is proposed

based on monitoring all three phase voltage simultaneously. This was shown to have

high sensitivity to both short and long duration events. The main advantage of the

proposed technique is its ability to monitor three phase systems and detect a wide

rânge of power quality events.

In order to test the proposed detection mechanism, a power quality monitoring

system has been developed for capturing real time power quality signals. The mon-

itoring system have been tested in the laboratory and in a real power system for

capturing por'l/er quality signals.
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Chapter 4

Feature Extraction Techniques

4.L Introduction

(^l ENERALLv, feature extraction can be defined as a unique process that trans-

\f forms the raw signals from its original form to a new form so that suitable

information can be extracted. The feature extraction step is crucial in an automatic

classification system. This is because a classifier can only operate reliably if the

features of each event are selected properly.

Therefore, to be able to distinguish and classify the different types of disturbances

in power systems, it is necessary to perform further processing on the original v/ave-

forms. However, due to the large number of events and disturbances that may be

present in modern AC power systems, it is important to study the unique features

of each event and determine the effectiveness of a selected technique in extracting

the unique features. This chapter aims to address these issues and provides compre-

hensive discussions about the features extraction techniques considered.

In the following sections of the chapter, the application of various signal-processing

techniques on real-time power quality waveforms were investigated and their perfor-

mances in extracting the features of power quality signals were studied visually. In

each technique, the effect of different parameters on the performance of the tech-

nique were also investigated. The feature extraction techniques considered in this

research are:
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o The Short Time Fourier Tbansform

o The Wavelet Transform Technique

o The S-Tlansform Technique

o The Hilbert TYansform Technique

o The Clarke Tþansform Technique

The performance of the above techniques will be presented using a number of exper-

imental power quality waveforms obtained using the setup described in the pervious

chapter. In addition, a set of test porùrer quality waveforms which are available at [70]

wiil also be utilized in the tests. All the analysis have been done in MRtLae@ etr-

vironment.

4.2 Short-Time Fourier TYansform

The Short-Time Fourier transform (STFT) has been implemented in power quality

analysis due to its applicability to analyze the non-stationary signals, as it is the

case of most power quality signals [25]. The main advantage of the STFT technique

is its ability to provide the harmonic content of a given signal at every time period

that is specified by a pre-defined window. Therefore, since the frequency contents

of the analyzed pov/er quality signals usually vary in only short period of time, it is

useful to utilize the time-frequency information.

4.2.L Theoretical Background of the STFT

The STFT of a time varying signal, u(t), is obtained by multiplying the signal with

a window function, u(t - r) Iocalized around the delay parameter, r, as shown in

Figure 4.1, and then taking the Fourier TYansform of the product as follows:

V(a,t):I (4.2.r)
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Figure 4.L: Atime varying signal u(¿), (top) and the sliding window function w(t-r),
(bottom).

where,

V (a,t) is the STFT of u(ú), and a : 2T f , where / is the frequency of the signal.

In practical applications, where the analyzed signal is in a discrete form u[k],

(where k : I, . . . ¡y', and l/ is the total number of samples of the signal), the STFT

of the discrete signals can be given by [19]:

N
Vlnu",kT"] : I rttl . ulk - kT,) . ¿-i"'"r' (4.2.2)

le:7

where,

a":2trnf f f ",
/" is sampling frequenc¡

T" is the time between colliquative samples, and

k and n:7, ... ¡ú.

Equation (4.2.2), therefore, is used to transfer the one-dimension signal, o[k], into

two-dimensions signal, Vlnu", k7]], which reserves the time and frequency informa-

tion by multiplying ulkl by a window function and taking the Fourier transform of

the results. By shifting the window function along the the signal, u[k], and repeat-

ing the above process, further time-frequency information is obtained. The whole

process is repeated for the entire length of T,,[k].
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4.2.2 Experimental Results of the STFT

The STFT has been investigated using two categories of po!¡/er quality events ac-

cording to the IEEE standard [59], transients and short duration events (Table 2.1).

The signals selected to study the above events using the STFT include a capacitor

switching event (Figure 4.2 bottom) and voltage sag due to induction motor starting

event (Figurc 4.2 top). As stated previously, the test signals were captured using

the test setup arrangements shown in Figure (3.11) at sampling rates of 16.4 kHz

for the transient event, and 6.4 kHz for the short duration event. The results of the

tests using the captured signals are given in Figures 4,3 and 4.4.
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Figure 4.2: Yoltage waveforms of the events studied: Short duration event due to
an induction motor starting (top), and TYansient event due to a capacitor switching
(bottom).

The effect of the window function length of the STFT (the Hanning window) is

investigated for the two categories studied. The results are presented in Figures 4.3

and 4.4. Figure 4.3 shows the STFT of the voltage sag signal using three different

window lengths, 5 ms (1/4 cycle), 10 ms (712 cycle), and 20 ms (1 cycle). In each

plot in the figure, the corresponding spectrogram of the window size is given, which

also include the original signal at the bottom of the corresponding tests.
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These results clearly reveals that the selection of a small window length is not

suitable for a relatively long duration events. Although, the small window length

gives a high time resolution (Figure 4.3 top), the fundamental frequency and har-

monics overlap. It can be also concluded that the most suitable window length in

this case is l-cycle as shown in Figure 4.3 (bottom), where the values of fundamental

and harmonics can be distinguished clearly.

However, when performing the test on the transient event with high frequency

components (transient oscillations), the STFT with a 1-cycle window failed in de-

tecting the transient (Figure 4.4top). It was found that it is required to reduce the

window size to aIl4 cycle to be able to detect the transient in the waveform. As

can be seen in Figure 4.4 (bottom), the result reveal that the switching transient has

a frequency between 1.0 kHz and 2.0 kHz, which occurred after about 0.05 second.

It should be noted here that, the range of the detected frequency is large due to the

low frequency resolution in this case.

It can be concluded that the selection of the window length is a trade off between

the high time resolution which is better for the short duration events, and the high

frequency resolution which is better for the long duration events.

4.3 'Wavelet Transform

In power systems applications, the Wavelet Transform (WT) has been first suggested

by Ribeiro in 1994 for analyzing harmonic distortion in power systems [66]. Since

then, the Wavelet technique has been exploited in many fields in power systems, and

in particular, in the area of power quality, as shown in Figure 4.51671.

In the previous studies, the WT has been shown to be a powerful signal processing

technique in various fields of research. The advantage of the \Mavelet transform is

its ability to preserve the time and frequency information more efficiently than other

methods such as the Fourier transform. Therefore, the main drawback of the fixed

window in the STFT is solved in the WT technique which uses a variable length

window. This makes the WT more suitable for non-stationary signals.
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Figure 4.5: Application areas of the Wavelet transform in power systems.

Generally speaking, there are two algorithms of the \Mavelet transform: the

Continuous Wavelet transform (CWT) and the Discrete Wavelet transform (DWT).

In the CWT, the raw signal is transferred from a time domain into a continuous

time-scale domain which is similar to the time-frequency domain in the STFT. The

scales in the WT correspond to the frequency contents of the signal. However, each

scale does not have a fixed relation with each individual frequency in the signal.

The DWT, in the other hand, decomposes the raw signals in terms of a specific

number of scales (discrete), providing that sufficient information can be obtained

from its analysis. In the following sections, these techniques and their applications

will be explained using a set of power quality events.

4.3.I Continuous'Wavelet Transform (CWT)

Unlike the Fourier transform, which expands the signals in terms of trigonometric

polynomials (sine and cosine waveforms), the Wavelet transform is based on the

decomposition of the signals in terms of small \ryaves (daughter Wavelets) derived

from translation (shifting in time) and dilation (scaling) of a fixed Wavelet function

called a "Mother Wavelet". This Wavelet family, (the mother and the daughters),

represents the bases functions of the Wavelet transform.
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The general formula of the Wavelet transform of a signal u(ú) is given by

vcwr(a,Ò:+l**,ur,t:,"(j)" (483)

where,

Vcwr(o,r) is the Continuous Wavelet transform of u(ú)

1þo,, is the mother Wavelet function (or bases function),

a, and T are the scaling and the translation respectively, and the asterisk in the

equation denotes a complex conjugate of the function.

There are, however, few conditions that must be met for the bases functions to

be considered as Wavelets [68]. These conditions are: must be orthogonal, must be

oscillatory, and must have amplitudes that quickly decay to zero. It can be noted

here that there are a number of functions that can meet such conditions. Some

examples of the Mother Wavelets used in this study are illustrated in Figure 4.6.

The main advantage of the CWT is the variable length of its window function,

tþo,,, which is controlled by the scale parameter, a. That is, the window function

at small scales will be more compressed than at large scales. Thus, the window

function will have a smaller length at small scales, whereas large scales will stretch

the length of the window.

In order to investigate the practical performances of the CWT as compared to

the STFT, identical real power quality events those studied in the pervious section

have been implemented here. The performance of the CWT on these events is given

in Figure. 4.7. In the figure, Daubechies-4, (db4), has been chosen as a Mother

Wavelet in the analysis. The choice of db4 Wavelet is based on the analysis that

will be discussed later in section 4.3.5.

From these results it was observed that, the drawback of the window length,

as mentioned in section 4.2.2, on detecting the disturbances that have different fre-

quency components has been overcome in the CWT technique. This can be seen in

Figure 4.7, where both disturbances (with low-frequency and high-frequency compo-

nents) are detected by this technique. However, the technique does not show a high
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sensitivity to the smooth variations in the signals as can be seen in Figure 4.7 (top),

as compared to its response to the transient event which is more visible, as shown in

Figure 4.7 (bottom). In addition, although in the practical calculation of the CWT

the scales are discretised, the larger number of scales used, the more accurate results

are achieved. This makes this technique redundant and more difficult to interpret

its results for the automatic classifications.
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4.3.2 Discrete Wavelet Transform (D\MT)

Instead of continuously dilation (scaling) and translation the Mother W'avelet func-

tion as in the CWT algorithm, which generates substantial redundant information,

in the DWT the parameters ¿ and r in Equation (4.3.3) are discretised as follows [69]:
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a: aT

T:nroaT

@3.aa)

(4.3.4b)

where, ¿o and To àre the sampling intervals and n'1, ànd n a,re integer numbers

Therefore, from Equations (4.3.3) and (4.3.4), the DWT is calculated as:

(4 3.5)

In the above equation, the selection of øs, and ro requires special intention so

that the family of the dilated Mother Wavelets constitutes orthonormal bases. The

simplest choice of a6, and To, which fulfill the orthonormality conclition is 2 ancl 1

respectively. Thus, in case of a discrete-time signal u[k], the calculation of the DWT

is performed as:

Vnwr(m,n) :2-*/z D rtfl .þ(2-*k - n) (4.3.6)
k

As it can be observed in this equation, the redundant computations due to the

continuous scales can be avoided when only the scales 2* are used, where rn is

called the level of the decomposition.

In Equation (4.3.6), the Wavelet coefficients at different decomposition levels are

used to reconstruct different versions of the raw signal at different frequency bands

(resolutions). This algorithm is named the Wavelet Multiresolution Analysis, which

will be explained in the following subsection.

4.3.3'Wavelet Multiresolution Analysis (MRA)

The MRA algorithm is mainly based on the reconstruction of the analysed signal

using the details (high frequencies) and approximation (low frequencies) coefficients

of the DWT. However, instead of reconstructing the original raw signal, different

versions of the raw signal at different resolution levels can be reconstructed by

Vtwr(m,n): ol*/' I*- ,U, ,þ(-#Ë)
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Figure 4.8: Three levels decomposing of signal using MRA (top), and the recon-
struction process of the the first detailed version of the signal, (bottom).

considering the coefficients at one decomposition level and setting the remaining

coefficients of other levels to zero. This can be explained in Figure 4.8 as follows.

The figure shows the block diagram of the reconstruction process of a version of

a raw signal at the first resolution level. As can be seen in the figure, two sets of

coefficients (approximation coefficients, cA, and detail coefficients, cD) are generated

by convolving the raw signal with a ìow-pass filter, g(n), and a high-pass filter, h(n),

respectively. Then the coefficients are down-sampled by 2 (shown by a downward

arrow in a circle). These coefÊcients are defined by:

cD,n -Dnfn - 2n)cA*-1 @.3.7a)
k

cA*:Dg{Jr- - 2n)cA^-1 (4.3.7b)
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where,

cD^ and cA* are the detail and the approximation Wavelet coefficients at the

decomposing level rn respectively, and å, and g are the high- and low- pass filter

coefficients.

As seen in Figure 4.8, if a rav/ signal contains of -ðl samples of data, then the

resultant signals of the low- and high- pass frlters will each have 1ú samples, and

a total of.2N samples. Therefore, the purpose of the down-sampling process is to

reduce the number of samples generated from the high- and low- filters. The flltering

and down-sampling process can be repeated multiple times. In this process, the

successive approximations are decomposed further in order to obtain more detailed

versions of the raw signal at higher decomposition levels.

In order to reconstruct a specific version ofthe raw signal at a specified resolution

level, a reverse process can be performed by using Inverse Wavelet TÌansform. In

this process, as shown in Figure 4.8 (bottom), all the coefficients are up-sampled

and replaced by zeros except the coefficient vector at the required level. As stated

above, the purpose of the up-sampling process is to restore back the original number

of samples. Generally, this process can be defined as:

cA* - | cA*+th(n - 2k) * cD**1g(n - 2k) (4.3 8)
k

Thus, if a raw signal is sampled at a sampling rate of ,f", which means the

maximum frequency in the signal will be /"/2 (Nyquist criterion), then at the first

Ievel of decomposition process, the raw signal can be expressed in terms of pair

of signals having low frequency band ranged from (0 ^ l"l4) and high frequency

band of U"l4 ^ f"l2). The former decomposed signal, with the low frequency

components, can be further processed in order to narrow the frequency bands in the

decomposed signals. Holever, in this process, the decomposed signals with the high

frequency components are always not further processed.
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4.3.4 Wavelet Packet TYansform (.WPT)

As illustrated in Figure 4.8, the decomposed signals in the MRA algorithm will

always have unequal frequency bands. This is because the reconstructed signals

from the detail coefficients are not decomposed further, while the approximations

are. However, in the WPT technique, which is in fact a generalization of the Wavelet

MRA, the details and the approximations both are decomposed further as shown

in Figure 4.9. The advantage of this technique is that the decomposed signals that

utilized the raw signals have a narrower and equal frequency bands.
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Low-pass
¡, 116u, to fslSHz

¡, 18u, to3¡, ll6Hz

3¡,/BHz b rsl4Hz

Signal

¡, l4u, to5fsl16Hz

5¡, 116u, to3¡, lSHz

High-pass 3¡, 18 Hz ¡o7 fslt6Hz

7 ¡, lt6ut to fs 12Hz

Figure 4.9: Three levels decomposing of a raw signal using WPT technique.

4.3.5 Appropriate Choice of Mother Wavelet for
Power Quality Analysis

As described previously, the Wavelet transformation process is based on window

functions having specific characteristics, known as "Mother Wavelets". Therefore, to

Filter

Raw

Filter

Chapter 4: Feature Extraction Techniques 58



'Wavelet TYansform

analyse a signal with Wavelet technique, different Mother Wavelets may be selected.

Some examples of typical Mother Waveiets were illustrated in Figure 4.6. lt can be

noted here that, in power quality analysis, the selection of a Mother Wavelet has

different impacts on the detection and analysis of the power quality events.

For example, the results given in Figure 4.10 show the effects of two different

Mother Wavelets, (Daubechies- 2 and 6), as they are applied to a real voltage sag

signal that is obtained from the test waveforms available at [70].

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

fo-
oE
Ë
õ_
E

*9 q)
c!of
(-) Ê!É ô_
oh
8<

9acÐof()È
!FOoÈ
6<

01

0

0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time (sec)

Figure 4.10: The \Mavelet MRA of voltage sag using two different Mother Wavelets

The Figure shows the detailed versions signals of the analysed signal at the

second decomposition level using Wavelet MRA with both Daubechies-2 (middle)

and Daubechies-6 (bottom) as Mother Vy'avelets. One can see from the results that

there is a clear visual differences between the two Mother Wavelets. Specifrcally,

the detailed version when using Daubechies-6 has a more obvious detection of the
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starting of the sag event, while the end of the event is more obvious when using

Daubechies-2 as a Mother Wavelet.

Therefore, it is important to investigate the proper choice of the Mother Wavelets

in order to study the performance of the Wavelet technique more accurately in porffer

quality signals analysis. In this thesis, the following Wavelet families have been used

to compare their performance.

o Daubechies with 2, 4,6,8, 10, 12 and 40 vanishing moments

o Coiflet with 1 and 5 vanishing moments.

o Symlet with 2 and 8 vanishing moments

4,3.5J Comparison Criterion for Mother'Wavelets Selection

To be able to compare the above Wavelet families, it is necessary to interpret the

results of Wavelet transforms accurately by using a measurable index which can be

used for the comparison. This is important since the visual inspection does not give

a precise comparison index. Therefore, for the comparison purposes, the energies of

the reconstructed signals from the Wavelet coefficients at different levels have been

calculated and compared for each Mother Wavelets.

The idea of calculating the energies of the decomposed signals is based on Par-

seval's theorem, which states that the energy of a signal is equal to the energies of

their transformation coefficients. Therefore, the energy of a distorted signal (8"¿snot)

can be partitioned mathematically in term of the Wavelet expansion coefficients as

follows:

E"ignot: t l"lkll, + tllr*lk)l' (4.3.e)
lemk

where ufk] and w*lkl are the approximated and detailed versions of the original

signal at level rn respectively.

The above approach has been chosen for comparison purpose, because the ener-

gies values of the reconstructed signals from the Wavelet coefficients are sensitive to
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any changes in the original signal, as reported in [3]. This is demonstrated in Figure

4.11- for two different disturbances (sag and swell events) and the energies values of

their decomposed signals at 10 decomposition levels. As shown in the figure, it is
clear that how the energies values are affected by the type of the disturbances.
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Figure 4.11: Energy values of decomposed signals from the sag and swell events at
10 decomposition levels.

However, in this research two modifications were introduced to improve the

method described in [3], as follows.

1. In [3], the energies of the decomposed signals from a fixed pure sine-wave (with

zero phase-shift) were used as references for all the other disturbed signals.

However, it was found in this study that the phase shift of the reference signal

have a significant effect on the results as demonstrated in Figure 4.12. In the

figure, the magnitudes of the decornposed signals energies of two pure signals,

having different phase shifts, are plotted at 10 clecomposition levels. It can

be concluded from the figure that the energies of the clecomposed signals at

+Sag Event

-Swell 
Event
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Ievels 9 and 10 are clearly affected by the phase shift of the reference signal.

Therefore, in this study a proposed method in which the energies of each

distorted signal are compa,red with a reference signal that should be i,n-ph'ase

with the disturbance.

2. In [3], the decomposition of the signals was based on the Wavelet MRA, where

the reconstructed signals have different frequency bands. However, in this

stud¡ the WPT has been used instead of the Wavelet MRA, where the re-

constructed all output signals will all have the same and narrower frequency

bands as stated in section 4.3.4.
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Figure 4.72 The effect of the phase shift on the energies of the decomposed signals

Therefore, the comparison criterion used in this study is based on Mother Wavelet

that give a clear difference between the energies of a distorted signal and in-phase

of a pure signal at different decomposition levels using the WPT technique.
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4.3.5.2 The Tested'Waveforms

Four test signals belong to different power quality classes have been chosen to inves-

tigate the performance of different Mother Wavelets on different classes of real power

quality events. In this section, two of the tested classes are obtained from [59], and

two remaining events tù/ere generated in the laboratory using the set-up explained in

Chapter 3.

The first class of test signal represents a sag (dip) and is shown in Figure 4.13

(top) together with its simulated in-phase reference signal, which named as Signal A.

The second class of test signal is shown in Figure 4.13 (bottom) which represents a

harmonic distortion event together with its in phase reference. This signal is referred

as Signal B. The sampling rate of the both signals are 15.36 kHz.
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Figure 4.13: The test waveforms together with corresponding in phase references:
Top, Signal A (sag), Bottom, Signal B (harmonics).

The third tested event represent a motor starting event as shown in Figure 4.14

(top). The depth of the sag was about 20% of the signal amplitude, and it lasted
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for about 0.6 second. This signal was captured at a 6.4kHz sampling rate, and the

signal is labelled as Signal C.

A capacitor switching transient was also tested. Since the superimposed fre-

quency in this event is expected to be high, the sampling frequency in this test was

increased to 16.4 kHz. This signai is labelled as Signal D and given in Figure 4.14

(bottom).
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Figure 4.I4: The test waveforms: Top, Signal C (motor starting), Bottom, Signal D
(capacitor switching)

4.3.6.3 Comparison of the test results

To analyse the test resuslts, the test signals and their relative references signals

were decomposed into 5 levels using the \MPT. Therefore, as explained previously,

the studied signals were split into 32 frequency bands. The frequency range of these

bands are depending on the sampling frequency of the signals, which is given by:

FYequency Range of Decomposed signal ": ffi (4.3.10)

where, /" is the sampling frequency and m, is the level of decomposition.
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From the above equation, it can be noted that for Signals A, and B, each de-

composed signal at the fifth level has a 240 Hz rânge, while for Signals C and D it
is a 100 Hz range and 256 Hz range respectively.

The reconstructed signals at the first five bands resulted from the decomposition

of studied signals using Daubechies-4 (db4) as a Mother Wavelet are shown in Figures

4.15 and 4.16.
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Figure 4.15: The first five bands of the reconstructed signals from Signal A (left
column), and Signal B (right column), using WPT technique.

As explained in section 2.3.5.1, for each Mother Vy'avelets studied, the energies of

the 32 decomposed signals from the test signals were calculated and compared with

the energies of the decomposed signals from their relative pure reference signals. The

percentage of the differences between the calculated energies at each decomposition

levels have been used as an indicator on how the Mother Wavelets can distinguish

between the pure and the distorted signals. The energies values of the reconstructed
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signals are given in Figures 4.I7 to 4.20 for each of the test signals using three types

of Mother Wavelets. The complete calculation tables of all the studied Wavelets

are presented in Appendix A. It should be noted here that the high values of the

percentage ratio of the energy at bands 17 and higher are attributed to the smail

values of energy contribution of the pure signals (reference signals) at the subject

bands compared to the contribution of the distorted signals. In addition, it can be

noted that, although the calculation of the average energy over all the bands may

give a general overview of energy of signal, the energy contribution of each band will

be lost.
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Figure 4.16: The first five bands of the reconstructed signals from Signal C (left
column), and Signal D (right column), using WPT technique.

The results in Figures 4.I7 to 4.20 in conjunction with the information provided

in Appendix A reveal that, different types of Mother Wavelets response differently at

different levels of the decompositions. However, some Mother \Mavelets have much

clear respond at more decomposition levels than others.

02 04 06 0B 1 1.2
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The summary of the Mother Wavelets that have generated the maximum per-

centage ratio at different bands is given in Table 4.1. It can be concluded from the

table that Daubechies family, in general, has the most clear detection of changes in

the energy of the distorted signals over the majority of the decomposition bands,

However, Coiflet and Symlet families were identified as the least suitable Mother

Wavelets for the power quality analysis. In addition, among the Daubechies fam-

ily, the db4 Wavelet has generated the maximum energy ratio in the most number

of bands, hence, it can be considered the most appropriate Mother Wavelet in the

power quality analysis.

Table 4.1: The summary of the Mother Wavelets that generated the maximum
percentage ratio at different bands

Number of maximum percentage ratio bands between the
distorted and the pure signals

Mother
Wavelets

Type DSignal

db2

db4

db6

db8

db10

db12

db40

Coifl
CoifS

Sym2

SymS

6

6

4

I
2

1

0

0

2

0

2

Signal A Signal B Signal C

4

I
6

4

3

0

2

2

2

0

0

10

4

3

4

1

0

2

1

0

0

7 3

11

6

5

3

0

1

0

3

0

0
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4.4 The S-Transform

The S-transform (ST) technique is introduced by Stockwell, [71] as an alternative

to the STFT technique for time-frequency spectral localization. This technique can

be considered conceptually as a hybrid of the STFT and CWT techniques where

it provides time and frequency information similar to the STFT but at different

resolutions using variable window length as in the CWT [72].

4.4.L Theoretical Background of ST

The ST technique is derived from the CWT by modifying phase of the Mother

Wavelet function in the CV/T. Therefore, for a time series, u(t) , the ST is calculated

by multiplying Equation (4.3.3) and a phase correction function, exp(j2r f r) as

follows [71]:

Vsr(r,o, f) : r u(t) .ú (t - r,a¡ . ei2nt' . dt

where,

Vsr is the ST of u(t),

r/ is the Mother Wavelet function,

j is fT, and

/ is frequency,

Unlike the WT technique, the Mother Wavelet (the window function) for this trans-

form is chosen to be a function of the frequency contents in the signal instead of the

scale ¿. This is given below:

1

"J2tr
(4.4.12),þ(t, o, l) : e-t2f2o2 , "-i2nft

where ø controls the length of window function, and it is chosen to be proportional

to the inverse of the frequency in the signal.

The plot of this Wavelet function, Ty', at three different frequencies is shown in

Figure 4.21. This function does not satisfy the conditions of the Mother Wavelets in

(4.4.rr)
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Figure 4.21: Gaussian window function for ST at three different frequencies.

the'WT technique, which makes this transform different than the CWT technique.

Thus, if Equations (a.a.I2) is substituted in Equation (4.4.LL), the ST of u(ú) can

be given as:

Vsr(r,o, f) : I** "U, # "-(t_r)2/2o 
. 
"-i2nÍ(t-r) 

. ei2nÍr' ¿¿ (4.4.t3)

The o function in the above equation is proportional to the inverse of the frequency

contents of the signal, /, and is defined as:

Then, the above equation can be simplified as

vsr(r,o,f): [** u(r) -+ "-(t-')2/zo 
- ¿-izrÍt . ¿¿

J -æ OV Zlf
(4.4.14)

oU) -- -i-. (4.4.1b)
c + blll

where, b and c are constants, and b + 0. Note that, setting b to zero, transforms the

window function as that used in the STFT technique.
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(4.4.16)

The above equation represents a convolution of the time series signal, u(ú), with

a frequency dependant window function, l¡ltþt/n) ' e*p( - P f'12), (which is a

Gaussian window function), Therefore, as the convolution in the time domain is

a multiplication in the frequency domain, the ST can be calculated by multiplying

the Fourier transform of the analyzed signal u(t) by the Fourier transform of the

window function.

The Fourier transform of the Gaussian function is calculated as:

G(Ð: 
"-hr2a2f 

f2 (4.4.17)

where a is a constant equal to tlb in Equation (4.4.15).

It can be seen Equation (4.4.L6) that, due to the term (exp( - j2r f t)), the ST of

a signal, Vsr(",/), is a complex transform. Therefore, this equation câ,n be written

as:

Vsr(r, f) : A(r, f) e-ivî'r)

For simplicity, c is set to zero. Thus, the ST is rewritten as

exp

where,

I/ is the Fourier transform of the discrete time signal ulkTl,

7 is the time between two consecutive samples of the signal,

k, m, and r¿ are equal to 0, I,2, ... ¡/ - 1, and

l/ is the total number of samples in the signal.

/+oo 
¿l ._]4 e-þ-r)212/2u2 . 

"-iarlt 
. ¿¡vsr(r, r) : J__ 

ult) . 
b\Æ,t 

e-\ú-'I ) r

N-1
vs7fkr,fit : Ð, t#lm:o

.o(i'ffr)

(4.4.18)

where, A?, f), is the amplitude of the ST-spectrum, and p(", Í) is its phase angle.

In the discrete form, the ST is calculated as:

(4.4.1e)
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4.4.2 Experimental Results of ST

In this section, the performance of the ST with real po'wer quality events are tested

using the signals shown in Figure 4.2. ln the tests, the variation of the factor, a,

was also considered. This allowed to study the effects of the factor a on the Fourier

transform of the window function. The results given in Figures 4.22 and 4.23 are

for three values of a: 0.1, 1.0, and 3.0.

In Figure 4.22, lhe ST of the motor starting voltage sag is presented in a 3-D

plot. One can see from the plots in this figure that, the ST can detect both types

of disturbances despite the wide range of the frequencies contents covered by these

disturbances. The flgure also shows that, for the sag events, in the case of a less

than 1, the frequency resolution around the 50 Hz component is iow, (which can be

seen in the the case of a : 0.1 in Figure a.22 (top)). However, a better resolution is

achieved lor a :1.0 and 3.0 (as shown in Figures 4.22 (middle) and 4.22 (bottom)

respectively).

In Figure 4.23, it can be observed for the capacitor switching event, on the

other hand, the amplitude of the superimposed transient frequencies are inversely

proportional to a. Similarly, setting a less than 1.0 results in additional oscillations

in the ST domain, while setting it higher than 1.0 results more attenuations in the

amplitude of the transient frequency. Therefore, it is suggested that the value of o

for power quality analysis should be 1.0.

However, it can be emphasised here that, although the ST can identify the events

clearly, it suffers from a relatively long computation time. This is specifically when

the incremental step of the frequency is selected to be less than 10 Hz or when the

signal consists of a large number of samples, (which is the case of long duration sags

where the event covers more than 10 cycles).
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4.5 The Hilbert Transform

The Hilbert TYansform (HT) has been used widely in the telecommunication research

for signal modulation and demodulation, and in various medical image processing

applications. In power quality signal analysis, the HT has not been investigated,

although it shows an accurate tracking of the changes in the power quality signals.

In the following subsections, a brief background of the HT is given and its imple-

mentation details and test results are provided for power quality analysis.

4.5J Theoretical Background of the HT

The HT is a mathematicai process used to generate a complex signals from real

signals. It is obtained by convolving the real signal u(ú) with the Hilbert function

(tl(" ú)). rhat it is [73]:

(4.5.20)

where u¿¿(ú) is the HT of u(ú).

As it is known in the convolution theorem, the integration in the last equation

is calculated in frequency domain by multiplying the Fourier transform of the real

signal, u(ú), and the Fourier transform of the Hilbert function, as follows:

Vn (r) :V(r). H(r) (4.5.2r)

where,

Vn (a) is the Fourier transform of. u¡¿(t),

I/(ø) is the Fourier transform of u(ú),

I1(ø) is the Fourier transform of the Hilbert function (1/(zr ú)), and

u is 2tr f , and / is the frequency of the signal.

The Fourier transform of the Hilbert function,ll(ø), is a complex function has

an infinite amplitude in the real plane, "ô function", and either *1 or 1 in the

Imaginary plane as shown in Figure 4.24. Mathematically it can be defined as:

un,(t) :u(r) x (*) : + I _: øJ
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H(a): ¡

Imaginary Axis Real Axis

-1
+1

Frequency

a>0
ø<0

(4.5.22)

+1

Frequency

-1

Figure 4.24: Frequency response of the Hilbert function in Imaginary (left) and Real
(right) planes.

Therefore, the HT rotates the positive frequency spectral component of the stud-

ied signal (the real signal) by - j, and the negative frequency spectral component by

*j. Thus, by taking the inverse Fourier transform of the multiplication in Equation

(4.5.27), the resultant is a shifted version of the studied signal by a 90'phase shift.

4.5.2 The Analytical Signal

The analytical signal is a complex signal constructed from the HT of the studied

signal (the real signal) and the studied signal itself. I.e. the analytical signal, uo, of

the signal u(ú) can be defined as:

u"(t) : u(t) + jut(t) (4.5'23)

The polar form of u"(f) is given by:

u"(t):A(t)'¿tv (4.5.24)
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where, ,4(ú) is the envelope of the studied signal, and is equal to:

A(t): (r(¿)), + (u¡¡(t))2

and rp is the instantaneous phase of signal and equal to:

(4.5.25)

P(t) : ta -' ('n'(L)\*-'(öJ @526)

From the instantaneous phase of the signal, the instantaneous frequency f¿n" is

calculated as:

Ío*"(t):ry (4.5.27)

4.5.3 Experimental Results of the HT

In order to show the performance of the HT on real power quality events, the en-

velope of the pervious studied events (the motor sag and the capacitor switching

transient) have been calculated as shown in Figures 4.25 and 4.26.

As it can be seen from the figures, the envelope of the both signals tracks ac-

curately the disturbances in the signals. It should be noted that there is some

oscillations in the envelope, which are due to the noise in the captured signal. The

advantage of the HT over the previous studied signal processing techniques is its

simplicity in calculation and hence speed.

4.6 The Clark Transform

The Clarke transformation (CT) is commonly utilized in real-time motor control ap-

plications. This is due to the fact that in a three-phase system, the phase quantities

are not independent variables. Therefore it is possible to transform a three-phase

system to an equivalent orthogonal two-phase representation. In this section this

concept has been applied to power quality events, ¿Ìs a new pov/er quality signal pro-
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cessing technique, in order to offer an âlternative method which is able to process

all three phases of the three-phase systems simultaneously.

4.6.L Theoretical Background of the CT

The CT is based mainly on the symmetrical components theory in the three phase

systems which decomposes the three phase in the system as following:

u"(t)

uu(t)

u.(t)

11
a2a
a

1

1

1 Ug

U+

,U- (4.6.28)
,a'

where,

1)o,ub,and u" are the three-phase system's signals,

1)+,u-, and u6 are the positive, negative, and zero sequence components respectively,

a is a complex operator equal to exp(j2r/3), and

k is a constant.

The terms in Equation (a.6.28) can be written in a more compact matrical form as:

voh : S 'v" (4.6.2e)

where,

vorr is the instantaneous three-phase signals' vector,

v" is the vector of the instantaneous sequence components, and

S is the sequences transformation matrix.

The sequence components are obtained by inverting Equation (4.6.29) as

v" : S-1 'vph (4.6.30)

where,
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.1s-': 
3k

aa2
ù2a
11

1

1

1

(4.6.31)

All the information in the three-phase system's signals can be preserved when select-

ing k : Ll\/3, considering only either the real or imaginary terms of the elements in

the Equation (4.6.31) and discarding the imaginary operator j. This concept leads

to the Clarke transformation matrix, T.', as follows:

1 Re(a)

0 Im(a2)
11
'/, '/t

Re(a2)

Im(o)
1

^/õ

r -1t2:0+
11

\/2 \/2

r17L-;_;UA

n r/5 -r/5u 2 -2 u6

11L,
ææ-Jtua

_1
2

(4.6.32)

Therefore, due to the specific selection of the elements in Equation (4.6.31) which

was done by Clarke [74], the three-phase system cab be represented by two orthog-

onal phases, in addition to the zero sequence component. Thus, Equation (4.6.30)'

according to the Clarke transformation, becomes:

u"(t)

,B(t)

uo(ú)

(4.6.33)

where,

'uo anduB ate the two orthogonal phases of the three phase system, and

u6 is the zero sequence component of the three-phase system.

Note that the factor "J2ß " is ignored in the derivation of Equation (4.6.33) where

it has no impacts when using this transform for power quality signals analysis.

Therefore, as the two phase vectors, uo and up) a,re orthogonal, (similar to the

case of HT), sufÊcient information on the power quality events can be obtained by

calculating an instantaneous envelope of the three phase system's signals. The three

'/52
1

,/z
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phase envelope, Ason(t), is calculated as

(
2 ,

)Ason(t) : u"(t) ,p(t) (4.6.34)

4.6.2 Experimental Results of the CT

Similar to the previous discussion, the performance of the CT on the power quality

events has been investigated on the three-phase motor starting sag and three-phase

capacitor switching transient. In addition, in order to investigate the sensitivity of

the proposed technique, more tests have been performed on events with only one

phase or two phases of the three phase system are influenced by the event.

In Figure 4.27, the three-phase envelope of motor starting sag affecting all the

three phases in the system is shown. The results obtained are similar to that obtained

by the HT technique, however, all the three phases are involved in the calculating

in this transform. It should be noted here that more ripples were resulted in the

envelope, which can be smoothed by filtering the envelope using simple FIR filter.

In the figure, the envelope was frltered by averaging every 64 points of the envelope.

In Figure 4.28, the three-phase filtered envelopes are shown for motor starting

sags affecting one phase and two phases. One can see from the frgure how the

three-phase envelope is affected by the disturbances in each phase.

Figures 4.29 and 4.30 compare the three-phase envelopes of transients events

when the transient occul on all phases, (Figure 4.27), or when occur on one oI

two phases of the system (Figure 4.28 (top) and (bottom) respectively). It can be

concluded from the figures that the proposed CT able to respond efficiently to the

disturbances in all of the phases.
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4.7 Conclusion

In the Chapter, different signal processing techniques recently considered in the lit-

erature for extracting the features of power quality signals have been examined.

This included: the Short-time Fourier Tþansform, (STFT), Continuous and discrete

Wavelet transforms, (including the Multiresolution analysis and Wavelet Packet

transform), and the S-Tfansform, (ST). In addition, the Hilbert Ttansform, (HT),

and Clarke TYansform, (CT) were introduced as a new po'wer quality feature extrac-

tion techniques. In order to investigate the practical implementation of the studied

technique, real power quality signals belong to two different categories according to

the IEEE standard have been used in the study. The advantages and disadvantages

of implementation of each technique have been discussed.

Among the studied techniques, the STFT and the CWT techniques were found

to be the least preferable alternatives for power quality analysis. The main disad-

vantage of the former technique was the frequency and time resolution trade off due

to its fixed window. The main drawback of the CWT technique is its redundancy

in using large number of scales which make it more difficult to interpret its results,

while its discrete version (DWT) can offer sufficient information about power qual-

ity disturbances using only limited number of scales. However, because the Wavelet

technique decompose the signals in terms of non-trigonometric functions known

as mother wavelets, different mother wavelets can have different impacts on the

power quality events gives different results. Therefore, the most appropriate mother

wavelet have been examined based on the sensitivity of the energies of the decom-

posed signais to the disturbances. The study showed that the Daubechies, db4, was

the most appropriate mother wavelet for analysing the power quality signals using

the Wavelet technique.

In addition, the ST technique was investigated with different values of the Gaus-

sian window factor. It was shown that the setting of this factor to 1.0 is an ap-

propriate selection for analysing the power quality signals using the ST technique.

Furthermore, the performance of the newly introduced power quality feature ex-
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traction techniques was sho,,¡/n to be sufficient for tracking the disturbances in the

signals as compared with the previous techniques which will be investigated further

in the upcoming chapters.
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Chapter 5

Distinguishing Capability of the

Feature Extraction Techniques

5.1 Introduction

fTIHE primary step for improving the power quality in a particular power system

I * to monitor the voltage and current signals to identify the type of distur-

bances, and thus, the correct preventative action can be taken. However, due to

a large amount of data that can be captured during monitoring and saving power

quality data, it is necessary, to separate the types of events in order to identify the

causes of the disturbances. Therefore, in order to differentiate the pov/er quality

events, it is necessary to define specific characteristics which distinguish each event

from others. This can be achieved using an appropriate feature extraction technique.

Unlike the previous conducted studies which were based on examining a single

signal processing technique to evaluate its performance for automatic classification of

power quality events, this thesis investigates combinations of different features using

different techniques (or different features from the same technique). This approach

aims to demonstrate the capability of the techniques considered in distinguishing

different power quality events. The techniques studied in this chapter are based on

the most appropriate techniques for power quality feature extraction examined in

Chapter 4.
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5.2 Distinguishing Features of Power Quality
Events

To be able to examine the distinguishing capability of the feature extraction tech-

niques, it is necessary to interpret the results so that the characteristics of the power

quality events can be described in terms of specific features. Therefore, the follow-

ing subsections propose several features using four techniques: the Wavelet Packet

multiresolution, S-Tbansform, Hilbert transform, and Clarke transform, which will

be impiemented and examined to investigate their distinguishing capability.

5.2.L Distinguishing features of 'Wavelet Packet Transform

The energy of a signal that is based on the Wavelet transform can be defi.ned in

terms of its details and approximation energies as:

E"i.gnot: D l"lk)l'+ t l|U,^lk)\', (5.2.1)
km'k

where z[k] and -,"1k) are the approximated and detailed versions of the original

signal at level rn respectively.

The first term in Equation (5.2.1) is the energy of the reconstructed approximated

version ofthe signal, while the second term represents the energy ofthe reconstructed

detailed version of the signal. Therefore, if the raw signal is decomposed into m.

levels, a vector of the energies of the reconstructed detailed signals at each level of

the decomposition can be formed as:

E,fm]: ll,,lli ll.,ll7 ll,*ll7 (5.2.2)

where,

ll*^lli is the eneïgy of the reconstructed detailed signals at level m, and

E"l^) is a vector of the energies of the reconstructed detailed signals.

The vector E, is represented statistically by defining two features, Fl and F2

that represents the Wavelet Packet technique (WPT) as following:
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,t: hDu,l*l (5.2.3)

(5.2 5)

m

i,+(u''*t- #+"r-r)
2

trlq- (5.2.4)

where,

F1, and F2 are the mean and standard deviations of Eo respectively, and

M represents the number of decomposed levels

5.2.2 Distinguishing features of S-TYansform

The S-TYansform of a discrete-time signal u[k], as explained in the Chapter 4, can

be rewritten as:

/V-1
vsyltcr,fit : F_, t#l "*r(i'ffr)exp

where,

Vlm, + nlN) is the Fourier transform of the discrete time signal ulkTl,

? is the time between two consecutive samples of the signal,

lc, m, and n, are equal to 0, 1,2, .. . ¡/ - 1, and l/ is the total number of samples in

the signai.

As discussed in the previous chapter, the output from the S-TYansform ,Vs'rlkT, ft)
is a complex matrix. The rows of this matrix represent the frequency content of the

signal, whereas its columns represent the corresponding time. Therefore, the ampli-

tudes of the frequency contents of the signal versus time can be calculated from the

S-TYansform matrix as [44]:

,s[k] : max vrrlk,k) (5.2.6)

where S[k] is the frequency amplitude vectors
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The proposed features that will be used for investigating the distinguishing ca-

pability of the S-Tlansform technique are based on the vector S[k] by taking its

standard deviation and mean value as follows:

Alkl: un lk]

(5.2.7)

(5.2.e)

(5.2.10)

"r: + Dst,rl
k

#;(''o-i;,t*r)
where, ll is the length of the vector S

F4: (5 2.8)

5.2.3 Distinguishing features of the Hilbert Tbansform

The features that can be used to examining the distinguishing capability of the

Hilbert transform are the mean value and the standard deviation of the Hilbert

transform envelope of the target discrete-time signal u[k]. The envelope, ,4[k], of

the signal was given in Chapter 4 as:

2

)
2,lkl +

where, u¿¿[k] is the Hilbert transform of the target signal u[,k]

Hence two features are defined as:

F5: # t rr*l
k

F6: (5.2.11)

5.2.4 Distinguishing features of the Clarke Transform

Similar to the Hilbert Tbansform, however, for a three-phase system, the three-phase

envelope for the target discrete-time signal is calculated as:

#ç(,'o-#; oþt)

where, l/ is the length of the target signal, and k :7,2, ' ' ¡f
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2 2

)At nllrl: u"lkl 'Blkl
(5.2.r2)

(5.2.13)

(5.2.15)

where,

uo and uB are the a and p components that can represent athree phase system, and

Aso¡, is the three-phase envelope of the three-phase signals.

Similar to the previous discussions, two distinct features can be defined to exam-

ine the Clarke transform, which are selected based on three-phase Clark's envelope.

This envelope is represented statistically by calculating its mean value and standard

rleviation as below:

,r: *DA,,nlkl
k

#; (o,urt- #; o*^*t)F8: (5.2.14)

where, .^/ is the length of the target signal.

It should be noted here that although in the Clarke transform technique the

three-phase signals are transformed into two-phase components, individual phase

information is still available from the measured instantaneous voltages (or currents)

and the angle of the three phase envelope. For example, in the case of a single-phase

(or two-phase) disturbance, the distorted phase (or phases) can be estimated in two

steps as follows:

o The angle of the three phase envelope, ?¡sr¡is calculated as:

îAsoh : arctan
up

'üa

o Then the three-phase voltages (or currents) signals are estimated by using this

angle as:
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l)üEst : Vorno cos(0 ¡ton¡

'ub E"t : Vo*, cos(0 ¡srn - 2r f 3)

'tJCEst : Vo^, cos(0 ¡3eh + 27T f 3)

(5.2.16)

where, uúEst, ub1"t, ucBs¿ ã,rê the instantaneous estimated three phases' ancl

Vo*, is the amplitude of the three phase system.

o Finally, by comparing the instantaneous values of the measured three-phase

signals with the estimated values from Equation (5.2.16), the distorted phase(s)

can be identified, which is the one(s) furthest from the estimated value.

Table 5.1 summarise the above features which are utilized to determine all pos-

sible combinations of pairs for the optimum feature selection in the po!ù/er quality

event classifications.

Table 5.1: Summery description of the proposed features based on four different
signal processing techniques.

Feature Description

FT Mean value of the energies of the reconstructed signals using WPT

F2 Standard deviation of the energies of the reconstructed signals using
WPT

F'3 Mean value of the magnitude-time spectrum using S-Tlansform

F4 Standard deviation of the magnitude-time spectrum using S-
TÌansform

F5

F6

F7

F8

Mean value of the signal envelope using Hilbert transform

Standard deviation of the signal envelope using Hiibert transfornt

Mean value of the 3-phase envelope using Clarke transform

Standard deviation of the 3-phase envelope using Clarke transform
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In the following section, different power quality events belonging to several classes

will be simulated in order to investigate the ability of the signal processing technique

to distinguish type of the events.

5.3 Power Quality Events Simulation

The power quality events studied in this chapter have been classified into the fol-

Iowing nine classes:

o Pure signal.

o Sags (dips) due to short circuit faults.

o Sags due to motor starting.

o Swells.

o TYansients due to capacitor switching

o Harmonic distortions.

o Sags contaminated with harmonics

o Flicker

o Interruptions

In practical porù/er systems, due to the nature and the causes of an event, the

characteristics of of the above events vary significantly. Therefore, in this thesis, to

be able to study the effects of all possible variations in the power quality events, 500

random events each having different characteristics have been generated for each

power quality event.

A set of sample waveforms which are given in Figure 5.1 demonstrates the char-

acteristics of the studied power quality classes as a function of time. For each class,

different events were obtained by randomly varying four parameters that character-

ize each event. These parameters are defined as follows:
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Figure 5.1: A set of sample'ü/aveforms showing the profile of the power quality
classes studied.

¡ The depth of the event: defined as the changes in the amplitude of a signal.

o The angle: represents the phase shift at which the signal is captured.

o The starting time: defined as the time at which the event starts

o The duration: defined as the time period of the event

In the simulated data, it is assumed that the total length of the signals is 20

cycles, and the sampling frequency is chosen to be 16.4 kHz Although these pa-

rameters have been varied randomly, specifi.c constraints were adopted to generate

realistic signals reference to the international standards. For example, for the sag

events, four parameters were randomly varied as illustrated in Figure 5.2. As can be

seen in the figure, the depth of the sag is varied from 10% to g0% of the magnitude

of the pure sine waveform. The angle of the signal is varied from 0%o to 100% of

the entire period (which is a realistic assumption since the captured waveforms in a

practical monitoring system could have a phase shift that may vary from 0 to 2r).
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In addition, the starting time'of the sag is varied from 0% to 80% of the total length

of the signal. Moreover, the duration of the sag is varied from 5To to 100% of the

total length of the waveform.

As stated above, each of the simulated event accommodated 20 cycles of the

signals. Therefore, a duration of 5% corresponds to one cycle of the waveform. In

addition, all the events were contaminated with noise level changing randomly from

40 dB to 30 dB.

For the motor sag events, the recovery pattern of the sag was simulated using an

exponential function of. Aexp(ka); where A is a constant representing the depth of

the motor sag, and k is an index that varied from 0 up to the length of the sag. The

sag duration is assumed to be equal or greater than 10 cycles (which is a realistic

value for industrial motor drives), and the depth of the sag was varied from g0% to

70% of the signal amplitude.
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Figure 5.2: Random changes of the parameters characterizing 500 events.
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For the interruption and the swell events, the four parameters (depth, angle,

starting time and duration) were also varied as described above. However, the

amplitude of the pure sine waveform was increased between 70% and g0%.

For the harmonics events, the 2nd, 3'd, 5'h, 7'h, 9'h, and 11úh harmonics are used

to randomiy contaminate the ideal waveforms. During the generation of such events,

the total harmonic distortion (THD) of each waveform was kept greater lhan íYo,

as suggested in [61], by applying the following condition:

ÐnØu)
A?

> 5To, 'i:2,3, 5, 7, 9, 11

where A¿ is the amplitude of the iúå harmonic in the signal.

Therefore, if the THD of a waveform rvr/as less than 5'/o, the waveform is regarded as

a pure sine waveform.

In the case of the flicker events, the amplitude of the simulated signals was

changed periodically to introduce the effect of a flicker. To achieve this, the mag-

nitude of the target waveform was varied as a function of another sine wave as

follows:

'u¡ticker: (1 + a¡ sin(But)) ' u,"¡ (5.3.18)

where,

a¡ is a constant that is equal to 0.2,

B is a random variable varying between 0.5 and 0.7.

a :2rf, and / is the signal frequency, and

ur.¡ is the reference pure signal.

The above equation results an oscillation in the amplitude of the target waveform,

which varied randomly from 50% to 70% of the fundamental frequency.

The parameters which were varied randomly in the case of transient events are

the oscillation frequency of the transients (varied from 10 times to L5 times of the

fundamental frequency) and the amplitude of the overshoot (varied up to 150% of

the amplitude of the pure signal).

(5.3.17)
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5.4 Features Scattering of Power Quality Events

The scatter piot provides a useful insight for understanding the correlation between

the two features, which may demonstrate the performances of one or more tech-

niques. Therefore, in this section, the proposed features will be scattered together

to investigate the distinguishing capability a technique under investigation. The

principal idea behind this approach is that the scatter graphs provide "event specific

regions" that show the distinguishing capability of a technique.

As mentioned earlier, unlike the previous studies which were based on examining

a single technique to evaluate its performance, this study investigates and combines

different features using different techniques (or different features using same tech-

nique). In the following paragraphs, the scatter graphs are given for a selected

number of pairs of features, which aims to demonstrate the distribution of the nine

classes considered.

6.4.I Scattering of features using a single technique

This section investigates the distinguishing capability of using combinations of fea-

tures from a single technique. The distinguishing capability of the nine studied

power quality classes using the proposed features are shown in Figures 5.3 to 5.10.

Figure 5.3 shows the scatter plot of the mean value (F1) and the standard devia-

tion (F2) of the 10 levels reconstructed signals' energies obtained using the Waveiet

coefficients. In this study, Daubechies wavelet (dba) is chosen as an appropriate

mother Wavelet as discussed in the previous chapter. One can see from the figure

that the swell events can be distinguished among the events studied. However, it

was found that, although, the sags, the motor sags, the interruptions, and the sags

with harmonjcs events are separated from the other events, they overlap each other

due to their similar characteristics.

The locations of the harmonics, the flicker, tlte transienús, and the pure signal

events are illustrated more clearly by an enlarged view of the scatter graph shown in

Figure 5.4. It can be seen in this figure that the harmonics and the transient events
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Figure 5.3: Scatter plot of features Fl and F2.
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overlap in some regions, which can lead to possible errors in the classification of the

events. In addition, it is visible that the pure signals spreads over a relatively large

area and overlaps with the other "event specific regions". This is because of the fact

that the energies of the reconstructed signals are sensitive to the phase angle of the

signal. As a result of such overlap, the harmonic distortions or the transients can

be mistakenly classified as the pure signals, or vice versa.

The scatter plot of Figure 5.5, shows the mean value, F3, and the standard

deviation, F4, of the S-Transform spectrum. This result reveals a better separation

of harmonics and transient events than the previous features. However, as shown in

the figure, the sag, the swe.ll, and the intercuption classes still overlap each other.

25

2

st¡

0.1 o.2 0.3 0.4 0.5 0.6 0.7
F3

Figure 5.5: Scatter plot of the features F3 and F4

The results also show that, with these features, the pure signal, the motor sag,

and flicker classes occupy a small area in the event specific regions, as compared to

the other events, as shown in a zoomed view in Figure 5.6. This figure illustrates
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that there is a good distinguishing of the motor sag events from the sag and sag

with harmonic classes despite the similarities between these classes. In addition, as

expected the pure signal class overlapped the sag and swell events.

The scatter plot of combining the features from the Hilbert Transform (Fb and

F6) is illustrated in Figure 5.7. In this scatter plot, unlike the previous results,

the swel/, the inteuupúion, the fl.icker, and the pure classes can be separated from

the other classes. In addition, although the sag and the sag with harmonics events

can mostly be separated from the rest of the classes, they are overlap each other

due to the similarity of these events. Furthermore, in spite of the motor sag events

are being embedded inside the sag and the sag with harmonic region, they occupy

a defined area which distinguishes them from the sag and the sag with harmonic

events. The only two classes in this case which were largely overlapped are the the

sag and sag with harmonic classes, which is attributed to the high similarily of these

two classes.
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Figure 5.6: Zoomed view of Figure 5.5 to hightight the pure, the motor sag, and the
flicker events.
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Figure 5.7: The scatter plot of features the F5 and F6

In the case of the features defined by the Clarke transform, a number of different

cases was examined. In the fi.rst case, the events were assumed to occur on a single

phase. The scatter plot of the features F7, and F8 is shown in Figure 5.8. As can

be seen in the fi.gure, the events distribution using these features is similar to the

case when using the features from the Hilbert transform. This was expected because

of the similarities of the two techniques in the principle of representing the studied

signal(s) in terms of two orthogonal phases. However, they differ since the Hilbert

transform is applied for single phase systems while the Clarke transform is applicable

to three phase systems.

The scatter plots of the cases that assumes the events occur in two and three

phases are shown in Figures 5.9 and 5.10 respectively. As can be seen in the figures,

the responses of the features to the events in both cases are similar. However, the

specific region for the events in each phase were found to occupy different areas.

Although the feature from the two new proposed techniques (the Hilbert trans-

form and the Clarke transform) have shown overall better distinguishing capabilities
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Figure 5.10: The scatter plot of the features F7 and F8 for events occurring on all
three phases.

for the studied po'ù¡er quality events than the previously discussed techniques, the

results presented in this section reveal that, some classes can be distinguished easily

using the previous techniques such as the sag with harmonjcs class utilizing features

from the S-tansform.

5.4.2 Scattering of features from different techniques

As it was shown in the previous sections, the combinations of features from single

techniques respond differently to each of the classes studied. Therefore, in order to

cover the possible combinations of the proposed features, the distinguishing capabil-

ity of combinations of the features from different techniques will be examined in this

section. Thus, out of the eight proposed features, there is 24 possible combinations

of features that belong to different techniques. However, the focus in this section

will be on some combinations of the features only, which display better capabilities

to distinguish.
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The scatter plot in Figure 5.11 shows the events specific regions when combining

the features F2 and F3 from the Wavelet Packet transform and the S-Transform

respectively. Although a slight improvement in distinguishing the sag with harmonic

events (compared to the features using only Wavelet Packet transform in Figure

5.3) were observed, there is a significant improvement in the swell events region

(compared to the features from the S-TYansform technique only in Figure 5.5). In

addition, in this combination of features, the Transients and the Flicker events were

found to occupy only a small region compared to the other events. This compacted

distribution make these events distinguished from others.

0 0.5 1.5 2 2.5 J 3.5 4
F2

Figure 5.11: The scatter plot of the features F2 and F3

However, it was observed that, combining the features using the Wavelet Packet

transform and the Hilbert transform or the Clarke transform techniques have not

resulted any significant improvements to distinguish the studied events. Some of

the case studies are presented in Figures 5.12 and 5.13, which show the response

of combining the \Mavelet Packet transform with the Hilbert transform and the

Clarke transform respectively. It should be mentioned here that when considering

the features using the Clarke transform, the events were simulated only in one phase.
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Figures 5.14 and 5.15 demonstrates some selected cases showing the response of

using combinations of the features from the S-Transform technique with the Hilbert

transform (Figure 5.14) or the Clarke transform (Figure 5.15). A unique observation

from these figures is the ability of the combinations considered which distinguish the

sag and the sag with harmonics events in spite of the similarity between these two

classes.

The final case presented in this section considered the features form Hilbert

transform and Clarke transform. Although these combinations of features provide

distinct regions for dissimilar events, they fail to distinguish between the similar

events such as the sag, the sag with harmonics, or the motor sag. A selected case is

given in Figure 5.16.

In addition to the results given above, further scatter plots were also produced

to investigate all the possible combinations the proposed features described above.

The distinguishing capability of the possible pairs of all the features is summarized

in Table 5.2.

In this table, each pair of the features used to generate the scatter plots are

given in the left column under the label, "Features". The numbers in the cells of

the table indicate the events that overlap. The rows with bold fonts denotes the

features pairs that belonging to single technique. In addition, the dash sign, "-", in

some cells means the regions of these classes are totally separated from the other

events.

For example, when combining the features Fl and F2, (shown as "Fl F2" in the

table) the Pure signal classes region (event class (1)) in the scatter plot overlaps

with the regions of the event classes 5, 6, and 8, which ate Tansient, Harmonics,

and Fficke¡ events respectively. Similarly, the numbers in the second cell of the first

row, (3, 7, and 9), indicate that these classes' regions (Transient, Sag with harmonic,

and Interruption) are overlap with the event class 2 region (The sag).

It can be concluded from the table that, the Pure class is the most distinguished

class for most of the features, except for the features defined by the Vy'avelet tech-
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nique. The reason for this is attributed to the sensitivity of the \Mavelet technique

to the phase shift of the signal which enlarges the Pure class specific region and

consequently, increases the chances of overlapping with other events. On the other

hand, the sag related classes, (the sag, the motor sag, and the sag with harmon-

ics), are the least distinguished events. This is primarily due to the high degree of

similarities among these classes.
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Figure 5.16: The scatter plot of the features F6 and F7
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Conclusion

5.5 Conclusion

As the performance of the automatic clustering systems, (which will be discussed

in Chapter 6), depends mainly on how distinctive the selected features are, this

chapter investigates the distinguishing capability of the Wavelet transform and the

S-Tlansform techniques. In addition, the Hilbert transform and the Clarke trans-

form were introduced as new pov/er quality signal processing techniques for single

phase and three phase systems respectively. The detailed investigations were per-

formed by interpreting the results using these techniques in terms of eight proposed

features presented in this chapter. In these investigations, scatter plots were usecl

to demonstrate how the proposed features can be used to distinguish among nine

classes of power quality events.

Furthermore, in order to assess their capabilities to distinguish between different

types of power quality events using the features proposed, it was passible to examine

the ideal combination features either from single technique or from different tech-

niques. When using only a single signal processing technique, it was found that the

feature defined by the Hilbert transform and the Clarke transforms have a better

distinguishing capabiiity than the other techniques. This was clear from the least

numbers of overlapping events in each class. However, it was observed for the sag

related classes, combining two techniques gives a better distinguishing results. For

example, the sag with harmonics class is best distinguished when selecting the pairs

of features (F3 and F6), or (F3 and F7), and for the motor sag events, the pairs F3

and F6 have the best distinguishing results.
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Chapter 6

Automatic Clustering of Power

Quality Events

6. 1 Introduction

¡T\HE clustering of the power quality events monitored during the tests is the

I prir"ipal step to analyse the causes of these events. However, due to a large

number of data that may be collected in a power system, manual inspection of

the events is not a practical option. Therefore, it is desirable to have an automatic

analysis tool which can be integrated into the monitoring system and can be utilized

to handle a large database for automatic clustering.

The principle block diagram of the automatic monitoring process can be illus-

trated in Figure 6.1. As shown in the figure, the distortions that represent the power

quality events, can be captured using voltage and/or current signals. Then, the

features that distinguish the captured signals are extracted using a suitable signal-

processing technique in the 'Feature Extraction' block. Finally, the disturbânces are

separated automatically by applying a suitable decision-making technique(s) on the

extracted features. At this stage, the decisions of the automatic monitoring sys-

tems can be further specified based on the underlying events, rather than the type

only. However such approach requires a large amount of data that belong to known

SOUTCES
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Nearest Neighbour Recognition Technique

Di$itised
Distorted
Signals

Distinct
Features of the
Disturbances

Voltage
and

Current
signals

Data
Acquisition
System

Feature
Extraction
Techniques

Decision
Making

Techniques

Figure 6.1: The principle block diagram of an automatic recognition system.

Therefore, this chapter investigates the automatic clustering of power quality

events. The k-Nearest Neighbour technique is suggested in this study as a decision-

making technique based on the features discussed in the previous chapter. The

optimum seiection of the number of neighbours to minimize the classification errors

is also investigated.

6.2 Nearest Neighbour Recognition Technique

Although the Nearest Neighbour (NN) technique requires a large memory size to

store the training data, this technique can be considered as a good candidate in

automatic recognition of power quality events. This is primely due to the recent

developments in the semiconductor memory technologies and reduced cost.

The main advantage of the NN technique is that it is a nonparametric technique

which is simple, yet, effective in many cases [78], where no prior statistical knowledge

about the data is required. The classification decisions in the NN technique are made

based on a set of training features that represent all of the expected classes of power

quality events. Therefore, any unknown pattern, Ø, is compared with all cases of

the training features of data. This is done by calculating the distances between the

unknown pattern and all other features, and then the unknown pattern is assigned

to a class with a minimum distance. This can be written as below [75].

r e W¿ itr d,(t¡,r): min (açt,,"¡) (6.2 . 1)

where,
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I4l¿ is the patteïn class, the operator, iff, is a mathematical abbreviation for "if and

only if', ú¡ is the training data sample within the class W¿, and d is the distance

between the unknown pattern r, and ú¡. The distance d is calcuiated as:

J

N 1/2

d,(t¡, r) : l1i - ")' (6.2.2)

(6.2.4)

where, lú is the total number of the samples within the class I4l¿

It can be noted here that the k-Nearest Neighbour (,k-NN) technique is similar

to the NN technique, except that the k-NN algorithm finds the first k minimum

distances d, and the decision is made based on the class which has the majority

of minimum distances. However, to apply the k-NN, an appropriate number of

neighbours should be chosen prior to the classification, since the accuracy of the

classification depends on this number.

In order to demonstrate the performance of the /r-NN classifiers, the so called

"confusion matrix" can be constructed using a set of test data as given below [76]:

An arn

confusion matrix:
anl ann

where the diagonal entries a¿¿ of the confusion matrix denote the number of elements

from the test data whose true class is i, and n is the total number of classes.

In this structure of the confusion matrix, the diagonal entries represent the cor-

rect classes, while the off-diagonal entries represent the misclassifierl classes. There-

fore, the classification error and the accuracy can be calculaterl using the confusion

matrix as follows [35].

N.orr""t:Do,u (6.2.3)
N

i:1

NN
N.rro, DD,"ut V i,+ i

i:L j:I
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N.rro,Error :'-ff x I00 % (6.2 5)

Accuracy:ryit x 7oo% (6'2'6)

where, N"orr""t àrrd Nerror are the number of correctly classified and misclassified

events respectively, l/ is the total number of tested events, and j and i represent

the class indexes.

6.3 Optimum Number of Neighbours in the k-NN

Technique

The k-NN technique was used in this study as a decision making technique for clus-

tering power quality events automatically. The technique was tested with the most

appropriate signal processing techniques as discussed in Chapter 4. Therefore, four

classifiers were constructed for the investigation: the k-NN Wavelet Packet TYans-

form, k-NN S-Tlansform, k-NN Hilbert TYansform, and k-NN Clarke Tlansform

classifiers. The last two classifiers are proposed in this study as new classifiers for

single-phase and three-phase systems respectively.

In addition, to ensure the highest possible accuracy, the k-NN classifiers have

been investigated by changing the number of neighbours for the decision, (k), from

1 to 50 neighbours. Therefore, the results given below demonstrate the optimal num-

bers of neighbours for given features that can minimise the classification error. In

this study, all the classifiers were tested on a total of 4500 events which were divided

into nine different classes as described in the pervious chapter, (pure sinewaves, sags,

motor starting sags, swells, transients, harmonics, sag with harmonics, flicker, and

interruptions). In addition, another set of the same number of events belonging to

the known classes of events 
"ryere 

generated and their features r,¡¡ere calculated and

used as training or reference data for the studied classifiers,
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6.3.1 /c-NN Wavelet Packet Classifier

The decisions in the ,k-NN 'Wavelet Packet classifier are based on combining the

features Fl and F2 (the mean value and the standard deviations of the energies of

the reconstructed signals) as described in the previous chapter. The performance

of the k-NN Wavelet Packet classifier based on classifying 4500 events assuming

different number of neighbours is demonstrated in Figure 6.2 and Table 6.1.

In Figure 6.2, the average of the classification errors were plotted against the

number of neighbours utilized for the classification decisions. This figure indicates

that a minimum average error of 25.58%, (see Figure 5.3 which shows why this

error is high), which is obtained when the classification decision is made based on

6 neighbours. However, because the even number of neighbours may not indicate

a confldent classification. Therefore, the best number of neighbours is considered

5, which also indicates an error around the similar value, 25.64%. The confusion

matrix at the best number of neighbours (5 neighbours) is shown in Table 6.1.
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Figure 6.2: Average classification errors of k-NN Wavelet Packet (%) using the
features Fl and F2.
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Table 6.1: Confusion Matrix of ,k-NN Wavelet Packet Classifier

Pure Sag

Pure 478 0

Sag

Motor Sag 0

Swell 0 0

Sag
Motor

0

0

Swell

0

Harm-
onics

Flicker Interr-
uption

Trans- Sag +
ient Harm

190 107 0

82 390 0

0 0

0 0

021

0

0

I 131 70

027
0

0

0

0

0 111 261

0

047202800
Harmonics 12

Flicker 0

0

0

04590290
049600
6604000Transient 34 0 0

4

0

Sag +
Harmonics

Intemrption

119 890 0

0

0420088
08840

In Table 6.1, the column headings represent the true classes of the pot¡/er qua,lity

signals, and the row headings represent the classiflcation results of the classes. For

example, the number 478 in the first column and row indicates that among the 500

cases of pure sine\r/ave signals, the k-NN classifier could classify 478 cases correctly.

Although the classification error may be considered high in Figure 6.2, as indicated

above, this is an average error including all the nine events, which could be reduced

significantly, if similar events, such as sag, motor sag, and sag with harmonics, are

excluded in the calculations of the classifier average error.

6.3.2 k-NN S-Tlansform Classifier

In the k-NN S-TYansform Classifier, the training data are constructed to be based

on the features F3 and F4 (the mean value and the standard deviation of the S-

Tlansform spectrum). The average classification error for this classifier at different

number of neighbours is presented in Figure 6.3. As the results show, the minimum

average error in this case is 17.78% which occurred when the decision was based on

5 neighbours.
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Similarly, the corresponding confusion matrix results for this classifier based on 5

neighbours are given in Table 6.2. Although the average error is still considered high,

it can be noted that the /c-NN S-TYansform classifier has better classification results

than the previous /c-NN Vy'avelet Packet Classifier. For example, in this classifi.er,

the classification of the sags due to faults, the motor starting sags and the sags

with harmonics have been improved significantly, whereas the classification error of

classifying the swell event has increased.
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Figure 6.3: Average classification errors of k-NN S Tþansform (%) using the features
F3 and F4.
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Table 6.2: Confusion Matrix of k-NN S-Transform Classifier

Pure

sag

Motor Sag

Swell

Harmonics 0

Flicker 0

Transient 0

48620

Swell Harm-
onics

Flicker

12 0 0 0

18

Pure Sag
Motor

0

0

Trans- Sag +
ient Harm

Interr-
uptionSag

0 0

16 235 3 159 0

004560
34 139 l0 308 0

11 57

0 44 0

0

0

0 0

5 04
240
0

9 425

0

8

0

04760
041 04s90

0

0

l1 0 0 048405
0 371 4lSag +

Harmonics

Intem.rption

0 0

7

80 0

00320 26

6.3.3 k-NN Hilbert TYansform Classifier

Figure 6.4 is given to illustrate the classification error of the k-NN Hilbert Tbansform

Classifier based on the features of F5 and F6 (the mean value and the standard of

signal envelope) at different numbers of neighbours. In this classifier, a better overall

classification accuracy is achieved as compared to the pervious classifiers, where the

minimum average classification error is reduced to 10.8%. The number of neighbours

which generated the minimum accuracy error was 1 neighbour.

The results of the confusion matrix for 1 neighbour are shown in Table 6.3. It
can be concluded from this table that most of the classification errors in the k-NN

Hilbert TYansform are due to the pure sag events and the sag with harmonics, while

the errors in classifying the motor sag events were slightly increased. Moreover,

the error in the swell events was reduced considerably as compared to the k-NN

S-Tlansformer Classifier.
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Figure 6.4: Average classification errors of ,k-NN Hilbert Tbansform (%) using the
features F5 and F6.

Table 6.3: Confusion Matrix of k-NN Hilbert Tþansform Classifier

Swell Harm-
onics

Flicker
Interr-
uption

Trans- Sag +
ient Harm

0

0

0 0

0

0

00 0 0

6 0

0

sag

Motor Sag 0

Swell 0

Harmonics 0

Flicker 0

Transient

0 264 15

0

0 02147
649400

05000
0

0

0

0

00

0

0

04940

0

0

0

0 0

0 05000
0 0 0 6 0 494

0Sag +
Harmonics 0 191 9 00 0 274 26

Intemrption 0 0 0 00 0
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6.3.4 k-NN Clarke Transform Classifier

The proposed k-NN Clarke Tþansform classifier is constructed based on the features

F7, and F8 (mean value and standard deviations of signal three-phase envelope).

It should be emphasised here that, since the Clarke Tþansform is a three-phase

technique, three-phase systems were also considered in the tests.

The average classification error of the k-NN Clarke Tlansform Classifier versus

number of neighbours is shown in Figure 6.5. As can be seen from the figure, the

minimum average error for this classifier is 11.5% which was based on one neigh-

bour. It is clear from the trend of the graph that increasing the selected number of

neighbours results in higher classiflcation error.
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Figure 6.5: Average classification errors of k-NN Clarke Tþansform (%) using the
features F7 and F8.
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The confusion matrix with the optimal number of neighbours (one neighbour) is

given in Table 6.4. Although the average error with the optimal number of neigh-

bours, in this classifier is slightly higher as compared to the performance of the k-NN

Hilbert Tlansform classifier, a better classification for the motor starting sag events

was achieved. It can be seen from the table that the main source of the average error

is due to misclassifying the sags and the sag with harmonics events, where almost

half of these events were wrongly classified.

Table 6.4: Confusion Matrix of k-NN Clarke Transform Classifier

Pure Sas Motor Swell" sag
Harm-
onics

Flicker

0

0 0

0

0

0

0 0

0

Interr-
uption

0

499

Trans- Sag +
ient Harm

Pure

Sag

Motor Sag

Swell

5000000 0

0 250 11 0 02390
0 0

0

0

0

0

0

0

0

14990
0048s15

0 0

0

0

0 0 0

0

Intemrption

Harmonics

Transient

0

0

0

Flicker

Sag +
Harmonics

0 24980
0 0

0 0

0s000
0s000

0 231 12 02s25
0 0 0 0 0 0
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6.4 Practical Implementation of k-NN Classifiers

In order to test the two proposed classifi.ers (k-NN Hilbert TYansform and k-NN

Clarke Transform classifiers) on real power quality events, Pelican-Point power gen-

eration station, in South Australia, has been monitored using the monitoring system

described in chapter 3. The monitoring system was installed to monitor the voltage

supply of a 160 kW, 3-phase cooling pump. The schematic diagram for the busbar

metering panel in the station is presented in Figure 6.6, where the voltage sensors

were installed on E1, 82, and E3 lines which are the motor feeders.

In addition, due to the inability to capture all the possible po\¡/er quality classes

at the selected site, previously collected real time data have been also included for

testing the classifier. The tested classes ofevents are sag due to faults on single phase

or three phases, sags due to motor starting, transients, and interruptions. Samples of

these events are given in Figures 6.7 and 6.8. The performance of both classifiers on

all tested real data was encouraging where all tested events were correctly classified.

vl
1l-

v2

¡l t
V3

Voltage Transformer (415 V side) Under/Over Voltage Relay

N

I

N
Pumps
Terminals

3

El0
830
E50

I 3

Monitoring
El E2 E3 Psinl5

Metering Switches

Figure 6.6: Basic wiring diagram of the monitored site in Pelican Point Power Station
in South Australia.
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Figure 6.7: Monitored sample of real-time signals: interruption (top), and two sag
events at different times (middle and bottom).
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Analysing the Classified Events

6.5 Analysing the Classified Events

Once the captured data is classified, further information about the event is usually

required, which can be used for analysing the source of the events. This section

shows the use of the three-phase signal envelope obtained from the Clarke transform

for extracting the events characteristics such as the start (and the end), the duration

and depth (or height) of the event automatically.

As will be shown in the next figures, the start, the end, and hence the duration

of the events can be readily specified using the three phase envelope of the distorted

signal. However, the depth (or height) of the event is not directly related to the

three-phase envelope. The following figure (Figure 6.9) shows the relation between

the depth of the sag events in each phase and the depth of the three-phase envelope

of the signal. According to the figure, if the disturbance occurs on only one phase,

the minimum value of the three phase envelope will be L.0635 pu which is equivalent

to interruption on a single phase. Similarly, in case of two phases are affected, the

minimum three phase envelope will be 0.637 pu when any two phases of the three-

phase system are entirely interrupted.

1.5

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Event depth (pu)

Figure 6.9: Effects of three-phase envelope on the depth of the sag events
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Analysing the Classified Events

Therefore, three regions can be defined from the curves in the figure that can be

used for distinguishing between the events on the three phases. In the first region,

if the value of the three-phase envelope is less than 0.637 pu, then all the three-

phases are affected by the disturbance. The second region is when the three-phase

envelope is between 1.0635 pu and 0.637 pu. In this case the event could be either

on two phases or three phases, but not on one phase. The third region is where

the disturbance could be in either one, two, or three phases. The same discussion

applies to the height of the event as shown in Figure 6.10.
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Figure 6.10: Effects of three-phase envelope on the height of the swell events.

The above discussion can be illustrated more in the following two case studies.

The first case study, which shown in Figure 6.11(top), is a three phase voltage sag

on the three phases. This signal was classified as an sag event by the Clarke-k-NN

classifier. The sag starts at 0.53 s and ends at 1.63 s. The minimum depth of the

three-phase envelope is 0.163 pu. Since the depth of the three-phase envelope is

below 0.637 pu (which lies in the bottom region in Figure 6.9), it can be concluded

- - --- -- Events on Singlephæe

----- Events on Twopbæes

- 

Events on Three-phæes
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Analysing the Classified Events

from the three-phase envelope directly that events are occurred on all phases. In

addition, as the three-phase envelope was dropped to 0.163 pu during the sag period,

the depth of the sag can be specified directly for the three-phase envelope as 0.9 pu

by referring to three phase curve in Figure 6.9.
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1

205 I
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Figure 6.11: Real-time voltage sag (top), and its three-phase envelope (bottom)

The second case study in Figure 6.12 (top) represents a deep sag on one phase.

This signal was classified correctly as a sag event using the ,k-NN Clarke transform

classifrer. The three-phase envelope of this signal is shown in Figure 6.12 (bottom).

The starting and ending times of the event are directly identified by the envelope

as 0.27 s, and 1.45 s respectively. In this case, the three-phase envelope is dropped

to 1.02 pu which lies in the all-phases possibility region (between 1.5 and 1.0 pu) as

shown in Figure 6.10. This means that, according to Figure 6.10, the disturbance

could be one of three cases; 0.18 pu deep three phases sag, 0.3 pu deep two phases

sag, or 0.8 pu single phase sag. In this case, the three-phase envelope alone is

insuffi.cient to specify the exact phase(s) that is (are) affected by the disturbance.
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However, the instantaneous value of the three phase voltages during the event period

can be used to identify the exact disturbed phase as discussed previously in section

5.2.4.
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Figure 6.12: Real-time single phase sag event (top), and its three-phase envelope
(bottom).

6.6 Conclusron

In the chapter, two new feature extraction techniques 'vl¡ere examined with the k-NN

technique to construct two classifiers for power quality data clustering. The /r-NN

Hilbert transform classifier was developed for the single phase analysis of the polver

systems, while the k-NN Clark transform was offered for three phase systems. The

performance of these two techniques were also compared with the Wavelet Packet

Tlansform and S-TYansform techniques, using the k-Nearest Neighbour pattern

recognition technique.
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It was concluded that, the k-Nearest Neighbour based technique can offer an

effective automatic classification of power quality events. However, it is required to

identify the best number of neighbours for classifying the events accurately. There-

fore, as demonstrated, to ensure a highest accuracy in each classifier, the number of

neighbours was varied. This provided an error versus number of neighbour pattern

where a clear conclusion could be drawn based on the increasing or decreasing pro-

file of the average error. The results were demonstrated for a number of neighbours

varying between 1 to 50 neighbours. It was observed that, above 50 neighbours,

the profile of the average error follows the same pattern, which means no accuracy

improvement would be expected for higher number of neighbours. In the study, a

total of 4500 events were considered in testing each classifier, which were obtained

from nine different types of events, each containing 500 different classes. In addi-

tion, the proposed classifiers were tested on a number of real-time signals, and the

classification results were encouraging.

From the results of each classifier, it was demonstrated that the proposed two

new classifiers (k-NN Hilbert Tþansform and k-NN Clarke Tlansform) were found to

be very effective classifiers compared with the k-NN S Tlansform and k-NN Wavelet

Packet Transform classifiers, except in the case of the sag with harmonic events,

where the k-NN S Tlansform offers better solution. The classiflcation accuracy of

each individual class of event using the techniques studied are summarized in Table

6.5. For example, I00% of accuracy in the table indicates that the confidence about

the classification of an event using a given technique is 100%. The table also includes

the best number neighbour for each classifier, which is always less than 5 neighbours.

The numbers in bold, in the table, indicate the highest accuracy that was achieved

for a given event and a classifier.

As it was expected, the classification accuracy of pure sag events and sag with

harmonics were low, mainly due to the similarity of these two events. Howevet, a

significant improvement have been achieved with the two proposed classifiers (k-NN

Hilbert Tþansform and k-NN Clarke Tlansform) in distinguishing the pure sag events

as compared to the other classifiers. As it can be seen from table 6.5, although in
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case of the sag with harmonics events the k-NN S TYansform has performed better

than others, its performance with swell events was the lowest.

Therefore, as an overall performance, the two new proposed classifiers, for sin-

gle phase and three phase systems, have provided improvements in classifying the

por¡rer quality events considered, except the sag with harmonic events. It should be

mentioned that more accurate results can be obtained if considering more than one

of the examined classifier studied in this chapter. In this case, the decision on each

class will be based on the majority decision of each classifier. However, this will

costs more memory, where in this case more memory for the training data of each

classifier will be required.

Table 6.5: k-NN Performance with Different Feature Extraction Techniques

Classification Accuracy in o/o

Class
k-NN Wavelet

Packet
&-NN S

Transform
k-NN Hilbert

Transform
È-NN Clarke
Transform

Pure 95.6 97.2 100 100

sag 38 47 52.8 50

Motor Sag 78 9t.2 98.8 99.8

Swell 94.4 61.6 100 97

Harmonics 91.8 95.2 98.8 99.6

Flicker 99.2 91.8 r00 100

Transient 80 96.8 98.8 100

Sag with Harmonics 40 74.2 54.8 50.4

Intemrption 52.2 85 98.8 99.8

Number of Neighbors 5

In addition it was clemonstrated that once the capturerl data is classified, further

information about depth (or height) of the event can be extracted automatically

from the three-phase envelope of the signal. This was demonstrated by using the

envelope versus depth (height) curves.

5
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Chapter 7

Conclusions and Future Work

7.L Conclusrons

fltue 
work presented in this thesis investigates the application of digital signal

I processing techniques in the power quality automating classification fi.eld, and

thus, an optimized automatic monitoring system with an improved accuracy is pro-

posed. The proposed monitoring system involved three main steps; detecting the

po',¡/er quality events, extracting the distinctive features that characterise each event,

and clustering automatically the similar events into a pre-defined categories. The

main conclusions in each step are summarised in the following subsections.

7.L.L Detection of power quality events

It was shown in the study that, because po\ /er quality disturbances can affect the

voltage signals in power systems in different ways, the existing detection strategies

are not suitable for monitoring all power quality events. Therefore, in this study,

an alternative detection technique is proposed which is based on monitoring all of

the three-phase signals in power systems simultaneously and has high sensitivity to

both short and long duration events. A developed monitor system that implements

the proposed detection technique was tested on real time signals.
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7.L.2 Extraction of Power Quality Features

Based on the recent literature on feature extraction techniques, four techniques

widely implemented are: the Short Time Fourier TÌansform (STFT), the Contin-

uous Wavelet Tiansform (CWT), the Wavelet Multiresolution Technique (MRA)

(or the more generalised form of the technique, the Wavelet Packet Tlansform,

(WPT)), and the S-TYansform (ST). In this study, the practical implementations of

these techniques are investigated using real power quality signals belong to different

categories according to the IEEE standard [59]. The advantages and disadvantages

of each technique have been discussed.

Among the studied techniques, the STFT and CWT were found to be the least

preferable alternatives for power quality analysis. The main disadvantage of the

STFT technique was the frequency and time resolution trade off due to its fixed

window size. The main drawback of the CWT technique was its redundancy in

using a large number of scales which make it more difficult to interpret its results,

while its discrete version (MRA) can offer sufficient information to identify pol'¡/er

quality disturbances using only a limited number of scales.

In addition, the Hilbert Tlansform, (HT), and Clarke Tlansform, (CT), are in-

troduced as new power quality techniques and compared with the previous power

quality techniques. The HT technique is used for analysing single phase signals,

whereas the CT technique is used for anaiysing three-phase signals. In both tech-

niques changes in the calculated envelope signal(s) is used to monitor disturbances

in the signals.

In orcler to be able to examine the clistinguishing capability of the rlifferent

feature extraction techniques, several features have been proposed based on the

WPT, ST, HT, and CT. The ability of the proposed features to distinguish between

nine types of power quality events was tested. The test data set included types of sag

events such as sag due to faults, sag due to starting induction motors, and sag with

harmonics. Scatter plots were used to demonstrate how the proposed features could

be userl in combinations, (either from a single technique or different techniques),
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to distinguish between the nine classes. When using features from a single signal

processing technique, it was found that the features defined by the HT and CT have

a better distinguishing capability than the other techniques. This was clear from

the least numbers of overlapping events in each class. However, it was observed that

for the sag related classes, (i.e. sag due to faults, sag due to motor starting, and sag

with harmonics classes), combining features from ST technique with the proposed

techniques gives better results.

7.1.3 Automatic Clustering of Power Quality Events

The ,k-Nearest Neighbour pattern recognition technique, (k-NN), was used in this

study as a decision-making technique. Although the k-NN technique requires a large

capacity of memory to store the training data, due to the recent developments in

semiconductor memory technologies, it is a good candidate in automatic recognition

of power quality events. The main advantage of the k-NN technique is that it is

nonparametric technique which is simple, yet, effective in many cases, as no prior

statistical knowledge about the data is required. The k-NN was used with the

proposed features from the HT and CT techniques to construct two new classifiers

for single-phase systems and three-phase systems respectively. As the number of

neighbors affects the accuracy of the decisions, the optimum number of neighbors in

each classifier was determined.

The performance of the proposed classifiers rvr/as compâred with k-NN classifiers

that use WPT and ST techniques. FYom the results of each classifier, it was demon-

strated that the proposed two new classifiers (k-NN HT and k-NN CT) were found

to be very effective classifiers compared with the k-NN ST and k-NN WPT classi-

fi.ers, except in the case of the sag with harmonic events, where the k-NN ST offers a

better solution. Based on tests on 4500 simuiated cases, the overall accuracy of the

k-NN CT was 88.5% and k-NN HT was 89.2% as compared with 74.4% and 82'2%

for k-NN WPT and k-NN ST classifiers respectively. It should be noted that the

accuracy is calculated based on all nine studied power quality classes, and could be

increased significantly if the detailed classes were excluded from the calculations.
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7.2 F\.rture 'Work

One advantage of the proposed classifiers (for single phase system and three-phase

system) is their ability to be readily used in classifying other classes of power qual-

ity events. In this study, nine classes of power quality events have been considered.

However, more work can be done to enhance the ability to determine the underlying

cause of the disturbances. To achieve this, a sufficiently large database of measure-

ments which has been classified by cause is required. For example, for harmonic

distortion, the order and amplitude of the harmonics can indicate the source of the

harmonics. In addition, a knowledge of the operating characteristics of the system

that is being monitored (e.g. protection system, voltage control methods, load char-

acteristics) can be incorporated into the knowledge-base of the classifier to improve

the decisions making process.

F\rrthermore, other information that can be of interest is the determination of

the location of the power quality events in power system. One way to achieve this

is by using the measured voltage and current signals to calculate the power flow in

the power system which may used to identify the location of the events.
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Calculation Tables for Choosing

Appendix A

an appropriate Mother \Mavelet

The following tables (Tables 4.1 to 4.4), shows the percentage difference between the

calculated energies at 32 decomposition levels of tested signals described in section

4.3.6.2, (Signals A, B, C, and D) to their reference pure signals. These values are

used as an indicator on how the mother wavelet can distinguish between the pure

and the distorted signals. In the tables 11 mother wavelets are included in the

comparison, The last column shows the mother wavelet which gives the maximum

difference in the energies.
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Table 4.1: Energy values of 32 reconstructed signals form Signal A using WPT

Name MAXdbz

o.43805
0.36387
o.26'975
6.2351
o.12842
3-7242
21 .422
11.362
o.9962
8.0526
18.793
10.701
36.304
14.429
19.243
3.9955

0.41 915
1.2997
4.2777
1.4074
7.0031
7j732
7.4667
1.9455
8.1105
10.686
41 .23
12.116
I O.955
6.9493
15-542
11.O34

db2
db6
db8

db40
db1 0
coifl
coifl
dbz
db6

db40
db6
coif5
db2
db6
db2
db6
db8
dbl o
db6
db8
db,4
db4

coif5
db8
db4
db4
db4
db4

dbr o
db4
db'4
db4

C¡¡qIt

Total Max

o.43805
8-49

a.7929
6.6688
24.494
24.523
24.592
11.362
57.6,49
1a.204
42.703
30.722
36.304
21 .959
19.243
22.O95
791 .24
192.61
r 05.66
339.04
74.44
70.735

92.7
78.793
125.45
185.5
127.24
176'.76
56.213
72.805
143.99
98.895

symS

o.43288
3.4062
2.1963
2.6054
12.452
4.7042
1.1224

o.43074
26'.499
13.275
I 1 -516
10.'t34
10.922
10.18

6.0073
17.O88
712.O7
103.09
67.766
71.197
14.117
18.274
59-819
23.899
18.672
11.493
9.2799
5.5803
15.O23
19.03

14.476
6.8173

sym2

o.43805
o.36387
o.26975
6.2351
o.12442
3.72A2
21 .422
11.362
o.9962
8.O526
18.793
10.701
36.304
14.429
19.243
3.995s
o-41915
1.2997
4.2777
1.4074
7.OO31
7.1732
7.46,67
1.9455
8.1 105
I O.686
41 .23
12.116
10.955
6.9493
15.542
11.O34

coef5

o.43476
1.6655
3.988
1.9194
17.477
12.336
5.88r I
3.Or 81
22.105
16.163
26.103
30.722
7.1345
4.1314
12.263
9.7451
r 55.68
113.O7
67.691
90.93

36.573
62.OO4

92.7
36'.427
17.53
I1.o83
21 .52

24.61A
24.067
23.69

'1 1.985
21 .322

co¡f 1

o.43407
0.070615
o.24322
5-3496
o.93212
28.523
24.592
4.5482
0.9821
4.2232
7.275
6.68

28.603
6.'t708
3.6581
1.A927
1.4591
3.4851
15.941
19.725
21 .16,6
8.1 601
7.6893
2.OO5
19.05

14.6,6,4
a.2194
4.558

31 .O29
11.432
16.753
3.4074

db40

o.4347
3.6242
2.9658
6.6688
8.1211
7.96.24
4.2a17
2.3116
23.48,4
1A.204
21 .796,
18-616
21 .934
13.681
9.6323
15.599
493.59
127.31
69.939
72.655
45.437
30.68

64.O33
34.712
12.233
13.321
11.336
12.O43
32.759

18.6
1 8.1 91
20-453

db12

o.43537
2.2299
8.6104
1.2752
7.1 605
6.4883
1.5194
2.655
14.995
7.3849
16.257
16.163
7.7442
9.1175
7.4145
8.6085
565.27
155.83
53-875
r 05.97
1 5.1 08
27.96,6
47.323
22.705
121 .O2
74.325
29.381
40.434
29.576
30.65
19.976
15.412

dbl o

o.43317
3.9679
4.9577
2.0556
24.494
9.2666
2.74O7
5.2489
22.104
6.6964
12.399
12.424
12.734
19.O23
13.506
20.775
420.41
192.61
64.277
174.27
25.76
34.321
67.497
36.005
34.61

17 -595
22.067
31 .473
56.213
39.299
26.227
63.505

db8

o.43493
3.O23

4.7929
4.5313
6.46r 5
5.8678
5.4242
3.7747
44.37

9.4747
15.662
12.O32
12.634
5.656
9.4926
13.993
791 .24
172.46
69.72

339.04
4'1 .O83
30.81
34.83

74.793
9.8392
6.1 968
9.O575

11.3
33.256
29.763
4.4148
4.o219

db6

o.43419
8.49

3.9683
4.8959
14.474
5.16'44
6.4407

o.9191 1

57.6,49
8.6418
42.703
14.506
24.965
21.959
11.752
22.O95
75.467
42.529
105.66
61.'l 58
21 .471
15.542
52.972
35.953
26.529
12.47

'1 5.759
14.44

I O.894
16.679
14.191
3.8167

db4

o.434
2.6312
5.0489
3.5875
3.6418
4.5652
3.6953
2.37

5.8356
12.659
13.415
11.713
6.7233
2.5566
8.3197
11.629
85-67

61 .432
56,.O77
95.124
78.44

70.735
51.654
64.859
125.45
185.5

127.24
176.76
44.712
72.AO5
143.99
98.895
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Table 4.2: Energy values of 32 reconstructed signals form Signal B using WPT

Name MAXdb2

o-25399
3.3905
2.454
25.749
2.4205
16.597
36.132
35.O82
2.9449
18.468
54.229
36.352
27.156
I O.96
1a.417
7.2613
o.43274
3.8224
9.1 203
4.6,677
8.5925
3.4033

9.03
4.0331
3.5238
7.2445
22.434
6.4822
7.1605
5.7095
a.6702
4.6729

db2
db6

db12
db4

db1 0
co¡f'l
coifl
db2
db6
dbz
db2
db2
dbz
db6
db2

db1 0
db8

db10
db6
db8
db,4
db4

co¡f5
db8
db'4
db'4
db4
db4

db1 0
db'4
clb4

b4

H
C^to

o.25399
30.o12
22.91A
28.O17
19.862
51 .297
43.062
35.O82
20.94
18.468
54.229
36.352
27.156,
26.254
1A.417
8.5564
740.94
167.11
90.124
299.O7
63.936
5A.612
89.591
74.546'
34.816
r 03-09
90.437
74.062
50.71
37.35

58.552
55.912

Total MaxsymB

o.20974
18.259
9.6147
17.067
10.566
9.4201
5-1634
2.9495
7.9074
6.2774
3.1376'
1.405
8.491

7.4494
3.1026
6.2247
675.87
92.539
63.665
67.651
11.679
12.575
6l .965
19.697
9.5525
5.2409
9.2537
3.7782
16.774
12.954
8.3472
5.4758

sym2

o-25399
3.3905
2.458
25.749
2.4205
16.597
36.132
35.082
2.9489
18.468
54.229
36.352
27.156
10.96

1A.417
7.26,13
o.83274
3.8224
9.1203
4.6,677
8.5925
3.4033

9.03
4.0331
3.5234
7.2445
22.438
6.4A22
7.1605
5.7095
8.6702
4 6729

coef5

o.24232
11.405
19124
4.6065
13.978
r 9.o01
r 5.395
7.a2

7.7717
7.7924
4.9273
6.9685
3.9899
3.3024
2.48'45
2.144
145.56
108.41
76.754
7A.548
37.84

53.895
89.591
24.977
6.8557
5.7776
22.811
14.446
17.949
15.253
4.s249
15.133

co¡f1

o.20188
1.3005
1.3497
17.354
2.54A9
51 .297
43.06.2
25.476
3.O129
12.279
12.744
14.99
18.244
7.3112
9.7286,
4.1721
2.6167
a.a254
27.172
29.49
17.998
7.5415
10.89

4.8911
9.3944
4.9436
6.7075
3.0101
27.531
7.9863
4.9176,
2.24A9

db40

o.22544
14.547
13.449
24.6,6,4
6.O858
13.155
I O.O57
10.249
7.2304
5.3885
4.591 5
3.8683
15.924
6.4774
1.36,12
2.6'949
475.48
125.87
65.61 I
64.OO1
37.346
28.424
62.822
30.548
5.8561
4.0202
1 1 -111
12.262
29.275
11.a23
22.747
12.497

db12

o.23474
11.111
22.918
7.7757
4.67o2
12.836
9.7056
9.0289
10.147
2.7264
2.8729
3.3502
6.3175
6.4379
o.64587
2.7816
546.66
137.2

48.421
98-348
l1-649
21 .605
50.66

20.638
30.854
44.82
24.249
21 .833
25.918
22.178
15.391
12-26

db1 0

o.21337
18.631
14.201
12.993
19.862
12.65

18.637
25.631
9.781

2.3046
4.8478
2.3506
12.112
8.4616
3.066

8.5564
400.1 9
16'7.11
64.835
180.O1
21 .505
33.301
57.469
30.159
11.O12
11 .99

18.861
19.92
50-71

22.068
22.O42
38.61

db8

o.24839
19.375
21 .246
r 5-388
9-222

9.6346
27.464
14.969
11.006
4.4636
2.9863
2.6'49

4.9576
4.0927
1.9191
7.7724
740.94
158.36
73.165
299.O7
36.446
30.067
33.O45
74.546
6.2098
41345
9.64'1 8
9.1125
27.22
17.5A3
5.2719
3.46'71

db6

o.21301
30.o12
13.557
l8-s5

I O.654
10.455
24.532
4.9425
20.94

5.6143
23.76,1
4.9324
23.442
26.254
5.2462
8.0915
73.454
40.006
90.124
51 .516
21 .249
17.O75
63-544
29.627
10.o77
6.3359
16.506
6.5009
7.0889
11.187
6.30s5
2.5667

db4

o.23549
15.489
20.571
24.O17
3.8073
I 1.188
10.926
7.2409
3.4888
9.91 l1
16.873
5.0441
3.9627
4.A546
a1452
8.496.2
83-418
62.6,47
53.909
79.69

63.936
58.612
4A-554
43.686
34.816
I 03.09
90.437
74.062
37 -15
37.35

58.552
55.912
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Table 4.3: Energy values of 32 reconstructed signals form Signal C using WPL

Name MAXdb2

0.035594
o.034214
o.085063
0.38573

o.082078
0.r 3673

7.951
6.8655

o.020088
0.069285
4-5619
3.8796
13.675
3.8994
a.9249
o.7493

0.o42988
0.023608

1.1311
o.077497
2.7125
1.O87

4.8171
o.2211
o.415
1.36.2

7.2544
0.62699
2.O941
1.3719
1.9085

db4
dbl 0
db8

db40
db1 0
coif5
db6
db2
db6
coifS
db6
dbz
db6
db6
db2
db8
db8

dbl 0
db6
db8
db4
db4
coif5
db8
db4
db4
db4
db4
db4
db4
db4

o.

g¡
-ir

Total Max

0.036865
o.67975

4.A31
3.2066
9.7656
4.1454
1 0.1 68
6-8655
4.5735
1.6775
10.477
3.8796
16.522
7.2101
a.9249
2.0247
123.37
30.068
14.551
53.216
15-275
12.729
13.456
I 1.591
I O.696
25.237
19.468
16.681
10.433
8-3768
17.574
9.6208

syme

o.o35053
o.086l2l

r.0958
0.67089
5.2263
1.5142
1.9346

o.078013
1.7865
1.5243
1.387

0.2899
4.4A58
2.3385
o.98015
o.89441
I 15.35
15.O71
9.7138
11.O32
1.551 1

1.8859
8.2449
2-A262
1.446,5

o.69029
o.a3677
o.24566
2.1345
1.7402
'l .4181

o.66902

sym2

0.035594
o.034214
o.085063
0.38573
o.o82078
o.13673

7.951
6.8655

o.020088
o.069285
4.5619
3.8796
l3-675
3.8994
4.9249
o.7493

o.o429AA
o.023608

1.1311
o.o77497
2-7125
1.O47

4.8171
o.2211
o.415
1.362

7.2544
o.62699
2.0941
1.3719
1.9085

0.38692

0.035379
o.34554
2.7923
o.87319
5.6076
4.1454
4.5921
r.091

1.7016
1.6775
3.3523
1.4205
2.3663
o.77947
1.4001

o.28352
23.334
18.089
10.278
13.908
5.O348
7.4066
13.456
4.5204
1.0167
o.5522
2.6941
2.8682
3.1472
2.51A9
1.0262
2.4961

coefsco¡f1

o.03226,4
o.080401

o.r 026
o.080021
o.13828
o.s9391
7.4721
2.0624

0.016904
0.02386r
4.7854
2.4614
8.OO57
2-209

2.4406
o.llB34

0.012936
0.050022

6.2264
5.5125
5.7842
1.Aa22
2.6528
0.31866
1.5432
1.0829
1.3975

o.22717
9.7464
2.O414
13547

o.10829

db40

o.03524
0.39913
1.9759
3.2066
2.6,479
2.6293
3.4O12
1.OO84
1.4769
1.1795
1.5877

o.82795
9.7437
1.2542
0.9889
o.75037
77-293
20.6.21
9.3901
10.993
5. I 331
3.891 I
9.6178
4.4675
o.59261
0.99895
0.90865
1.5451
5.1522
1-9052

3.12
l.aog1

dh12

0.035178
o.22ao5
4-O733

o.54343
2.2727
2.OOO2
2.2873
1.2103
1.4757

o.41463
1.6658

0.60344
2.9806
1.3947

o.64613
o.38897
89.916
23.OO4
7.3313
16.555
1.4636
3.12e,6
6.7094
2.7625
9.4373
9-1893
3.6,017
3.5201
3.9447
3.7624
2.204
1.6272

db1 0

0.035383
o-67975
3.5193
o.95277
9.7656
3.904

4.6,415
2.7427
1.7485

o.28246
1.99r 5

0.53004
5.4475
3.1241
1.9345
1.4525
6,4.337
30.068
9.433

29.331
3.4829
4.4745
9.0691
4.5399
2.1703
2.O34

2.6723
3-1813
7.7554
4.06,46,
3.8309
6.6371

db8

o.035137
o.046309

4.831
2-6153
4.4024
2.407
9.6185
1.5304
3.3237
o.78553
1.a112
0.453
4-0337

0.61169
0.89664
2.0247
123.37
26.979
9.8582
53.216
5.9724
3.9306
4.9536
11.591

o.59674
0.36035
l.o93l
1.145

4.4026
2.A874
o.43545
o.33246

db6

o.o347A
o.1 6887
2.5855
1.293

5.5653
1.6'042
10-168

o.75514
4.5735
0.82898
10.477

0.68343
16'.522
7.2101
3.7624
1.7598
11.446
6.001
14.551
9.r 906
3.1245
1.9345
8.5632
4.4087
1.9001

0.65357
2.1964

1.1
1.O79

1.5352
1.0707

o.22341

db4

0.036865
o.10202
0.68021
1.3641
1.346,4

0.56378
4.9306
o.59979
o.36089
o.926,4
6.39r 8
1.0501
1.959

1.0812
2-7295
1j292
12.641
9.5386
8.1321
13.945
15.275
12.729
8.9301
7.9324
I O.696
25.237
19.468
16.681
10.433
8.3768
17.574
I 6208
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Table 4.4: Energy values of 32 reconstructed signals form Signal D using WPL

Name MAXdb2

o.o1808
0.09642
0-33106
11.062
16-O88
77.697
26.624
314.73
14.367
36.95

247.57
394.6
'105.9

39.539
89.258
93.112
22.564
12.933
47.743
8l .936
39.46,4
73.584
6.2.295
36.211
a4349
156.8
423.9
14A.42
124.25
490.11
377.49
121 .62

db2
db6
db8
db2
db6
coif5
dbz
dbz
db8
db8
db6
dbz

symS
db6

symS
dbl 0
db8
db12
db8
db8
db8
db8
coif5
db8
db4
db4
db4
db4
dbl 0
db2
db'4

H
æ

Total Max

o.01808
1.5824
12.143
11.062
207.99
r 68.66
26.6.24
314.73
617.12
568.2
1818.5
394.6

461.36
590.92
232.17
319.22
23574
7549.8
2673.5
5067.5
1205.5
1122.3
1647.4
a24.O7
1032.6
2650.9
633.47
692.67
728.44
490.11
1534.5
1001 .2

symS

0.o17898
o.94263
4.8839
1.9614
45.237
3a.527
2.1203
3.8365
207.18
232.72
141 .36
1 10.91
461.36
138.96
232.17
281 .64
12731
3000.8
1808.1
906.32
87.658
174.79
455.79
192.44
9.6462
14-125
17.421
11.O25
346.77
132.O3
102.76
63.OO8

sym2

0.01808
0.o9642
0.33106
11.062
16.088
77.6,97
26.624
314.73
14.367
36.95

247.57
394.6
105.9

39.539
89.258
93.112
22.56,4
12.933
47.743
81.936
39.46,4
73.58,4
62.295
36.211
a4.349
156.8
423.9
148.42
128.25
490.11
377.49
121 .62

coef5

o.o17997
o.2a992
2.2637
o.61759

59.13
168.66
15.935
19.157
197.95
275.95
163.26
182.88
107.35
198.82
170.47
a3.732
4559.1
153r -9
76,4.A6
1063.9
445.46
939.89
16,47.4
617.A3
49.94

36'.787
288.88
2o2.1
55.208
207.2
58.979
159.35

o.o17a67
o.11797
0.35507
4-8631
3.4172
66.089
25.445

10.5
17.866
67.68
36.8

17.464
273.76
171.31
60.774
8.15'1 3
30.152

7A-5
53.379
329.89
28.O94
76.467
82.712
38.555
142.2

68.242
30.665
48.857
279.33
125.44
68.154
22.364

coifldb40

o.o179A2
o.80662
2.1571
2.0722
103.48
103.47
8.8958
30.296
199.9'1
168.62
157.92
r 86.78
109.62
12514
135.18
r 93.99
9833.1
1598.9
I 0l 8.1
1049.9
47A.OA
351 .24
1615.6
366.37
129.35
157.62
94.506
205.55
26'9.O2
145.54
262.64
117.45

db12

o.o17991
o.32137
9.5038

o.66208
a7.764
85.376
3.5886
32.696
147.62
98.966
136.95
332.14
52.956
140.36
98.81
147.96
19575
7549.8
702.4
136'4.7
57.362
293.69
330.O5
202.33
717.5
1121 .3
259.36
267.27
329.33
312.O2
211.35
138.04

db1 0

o.o17905
0.99969
9.3261

0.76968
84.6,75
78-434
13.064
59.583
98.602
125.35
247.94
17a.22
268.56
189.31
229.74
319.22
1 869r
6759.9
987.65
2545.3
95.99

279.51
941.O1
424.79
496.86
514.9

303.53
531.31
724.44
475-94
393.07
406.99

db8

o.o18034
o.69052
12-143

0.97583
110.32
84.594
14.546
34.437
617.12
568.2
129.2

88.628
79.667
7A.193
86.018
16.2.6
23578
5500.1
2673.5
5067.5
1205.5
1122.3
861 .43
824.O7
142.O3
111 .21
93-24
176.09
544.42
284.64
70.493
44-447

db6

o.o17922
1.5424
4.1925
2.5452
207.99
95.598
12.461
13.175
595.1 4
169.4

1818.5
71.836
362.8

590.92
56.221
84.534
2999.9
1417.4
2252.6
2123

163.11
127.14
880.89
409.7

130.78
147.78
29.333
137.73
20.143
45.469
60.9e5
19.303

db4

o.o17949
o.51065

4.68
1.6651
13.757
12.997
5.3667
1 3.1 66
3A.179
134.24
49.901
47.824
85.474
111.37
113.41
107.81
3974.5
1173

34O.42
1724.5
832.65
1115.7
913.28
754.91
I O32.6
2650.9
633.47
692-67
124.12
248.O1
1534.5
1001 .2
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