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Abstract

Boosting combines a set of moderately accurate weak
classifiers to form a highly accurate predictor. Compared
with binary boosting classification, multi-class boostingre-
ceived less attention. We propose a novel multi-class boost-
ing formulation here. Unlike most previous multi-class
boosting algorithms which decompose a multi-boost prob-
lem into multiple independent binary boosting problems,
we formulate a direct optimization method for training
multi-class boosting. Moreover, by explicitly deriving the
Lagrange dual of the formulated primal optimization prob-
lem, we design totally-corrective boosting using the column
generation technique in convex optimization. At each itera-
tion, all weak classifiers’ weights are updated. Our experi-
ments on various data sets demonstrate that our direct multi-
class boosting achieves competitive test accuracy compared
with state-of-the-art multi-class boosting in the literature.

1. Introduction

Boosting has attracted much research interest recently in
computer vision due to its successful applications, among
which real-time object detection is a typical example [18].
To explain why boosting works, Schapireet al. [13] in-
troduced the margin theory, which is inspired by the mar-
gin theory in support vector machines, and suggested that
boosting is especially effective at maximizing the minimum
margin of training data. Based on this idea, LPBoost [5]
is designed to maximize the relaxed minimum margin (soft
margin) using the hinge loss.

Multi-class boosting is important in the sense that most
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classification tasks in the real world have multiple classes.
Multi-class boosting is less understood, compared to its bi-
nary counterpart. So far, most boosting algorithms are de-
signed for binary classification. The most natural strategy
for building multi-class boosting is to partition a multi-class
problem into a set of independent binary classification prob-
lems. Each binary classifier’s responsibility is to distinguish
one of the class labels against the others. Output codes
based methods belong to this category. Albeit the output
codes provide a simple and intuitive solution to multi-class
classification, they completely ignore the pairwise correla-
tion information between different classes.

In this work, we proffer a direct approach for learning
multi-class boosting. We generalize the concept of sep-
aration hyperplane and margin in boosting for multi-class
problems. This is the basis of our new multi-class boosting.
Similar ideas have been used in multi-class support vector
machines [3, 7, 19]. To our knowledge, it has not been em-
ployed to designtotally-correctivemulti-class boosting.

The key idea of our approach is that, given an exam-
ple {x, y}, the decision function with the correct label
Fy(x) must be larger than the decision function’s value
with an incorrect labelFr(x), ∀r 6= y. We then formu-
late a convex optimization problem, which tries to maxi-
mizeFy(x) − Fr(x) as much as possible in a regularized
framework. This leads to a constrained semi-infinite convex
optimization problem, which may have infinitely many vari-
ables. In order to design a boosting algorithm, we explic-
itly derive its Lagrange dual and column generation is then
used to solve the optimization problem iteratively. When
the hinge loss is used, our formulation can be viewed as
a direct extension of LPBoost [5] to the multi-class case.
We also discuss the case using the exponential loss. In the-
ory, any other convex loss function can be employed here,
same as in the binary classification case. Note that the re-
sulting optimization problems do not fit into the AnyBoost
framework [11], for which it is not clear how to cope with
multiple constraints. In short, our main contributions are
as follows. We propose a novel direct approach to multi-
class boosting formulation based on the generalization of
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the conventional “margin” in binary classification. The pro-
posed boosting is totally corrective in the sense that all the
coefficients of learned weak classifiers are updated at each
iteration. Since multi-class classification can be seen as an
instance of structured learning problems [17], the proposed
formulation may also be applicable to other structured pre-
diction problems.

Related work We briefly review most relevant work on
multi-class boosting before we present our algorithms. Ad-
aBoost is the first practicalbinary boosting algorithm pro-
posed by Freund and Schapire [8]. A requirement on the
weak classifiers for binary AdaBoost is that a weak clas-
sifier’s accuracy should be higher than0.5. That is to say
that a weak classifier must be better than random guessing
in terms of classification capability. AdaBoost.M1, a direct
extension of AdaBoost to multi-class by requiring the weak
classifiers to be capable of classifying multi-class problems.
However, the requirement that a weak classifier’s weighted
error must be better than0.5 is still needed, which can be
hard to achieve for problems with many classes. For a prob-
lem with k classes, random guessing can only guarantee
an accuracy of1/k. To alleviate this difficulty, a solution
is to decompose a multi-class boosting problem into a few
binary classification problems. To this end, strategies like
“one-against-all” and “one-against-one” can be employed.
These two approaches can be viewed as special cases of
error-correcting output coding (ECOC) [4,6]. By introduc-
ing a coding matrix, AdaBoost.MO [14] is a typical ex-
ample of ECOC based multi-class boosting. The learned
classifier is multi-dimensional, with each entry boosted on
a relabeled set of training data. So, algorithms in this cat-
egory include AdaBoost.MO [14], AdaBoost.OC and Ad-
aBoost.ECC [9]. AdaBoost.OC can be seen as a variant of
AdaBoost.MO which also combines boosting and ECOC.
However, unlike AdaBoost.MO, AdaBoost.OC uses a col-
lection of randomly generated codewords. For more details
about the random codes, see [15] for details.

Transforming the multi-class classification problem into
a bunch of binary classification problems is easier to imple-
ment in that the weak classifiers are binary classifiers.

The SAMME algorithm of Zhuet al. [20] is an extension
of AdaBoost. Similar to ours, SAMME does not reduce
multi-class to multiple binary problems but instead opti-
mizes a multi-class exponential loss function. It requiresthe
weak classifiers to achieve less error than uniform random
guessing for multiple labels (1/k for k labels). Whenk = 2,
SAMME reduces to the standard AdaBoost. A condition for
SAMME is that only multi-class weak classifiers like deci-
sion trees can be used. In contrast, our proposed algorithms
use binary weak classifiers. By multi-class weak classifiers,
we mean that the employed weak hypotheses should be able
to give predictions on allk possible labels at each call. Usu-
ally they are complicated and time-consuming for training

compared with simple binary learners. A higher complex-
ity of assembled classifier also often implies a larger risk of
over-fitting the training data.

Our work here can also be seen as an extension of the
general totally-corrective boosting framework of [16] to the
multi-class case.

Notation A bold lowercase letter (u, v) denotes a col-
umn vector. An uppercase letter (U, V ) denotes a matrix.
Tr(U) is the trace of a symmetric matrix. An element-
wise inequality between two vectors or matrices likeu ≥ v

meansui ≥ vi for all i.
Let (xi; yi) ∈ R

d × {1, 2, · · · , k}, i = 1 · · ·m, be a set
of m multi-class training examples. We havek classes here.
We denoteH a set of weak classifiers (dictionary); the size
of H can be infinite. Eachhj(·) ∈ H, j = 1 . . . n, is a
function that maps an inputx to {−1,+1}. Although our
discussion works for the general case thath(·) can be any
real value, we use binary weak classifiers in this work. The
matrix H ∈ R

m×n denotes the weak classifiers’ response
on the whole training data; i.e., its(i, j) entry isHij =
hj(xi). Therefore each columnH:j contains the output of
weak classifierhj(·) on the entire training set and each row
Hi: is the outputs of all weak classifiers on theith training
datumxi. ‖W‖1 =

∑

ij |Wij | is theℓ1 norm.
Boosting algorithms learn a strong classifier of the form

F (x) =
∑n

j=1 wjhj(x) which is parameterized by a vector
w ∈ R

n. In the multi-class setting, we need to learn a
classifier for each class. So for classr, (r = 1, · · · , k), the
learned strong classifier isFr(x) =

∑n

j=1 wr,jhj(x) with
the parameterwr. We defineW = [w1,w2, · · · ,wk] ∈
R

n×k. Here we assume that the weak classifier dictionary
for each class is the same.

The remaining content is structured as follows. Section
2 presents the main algorithm of our work. In particular, we
start from deriving our algorithm from the piece-wise linear
hinge loss. Then we discuss the exponential loss case as
well and we generalize the proposed method to any convex
loss. We present our experimental results in Section 3 and
conclude our work in Section 4.

2. A direct formulation for multi-class boosting

In binary classification, the margin is defined asyF (x)
with y ∈ {−1,+1}. In the framework of maximum margin
learning, one tries to maximize the marginyF (x) as much
as possible. A large margin implies the learned classifier
confidently classifies the corresponding training example.
We generalize this idea to multi-class problems in this sec-
tion.

2.1. The hinge loss

Let us consider the hinge loss case, which is piecewise
linear and therefore makes it easy to derive our formula-
tion. As we will show, both the primal and dual problems
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are linear programs (LPs), which can be globally solved in
polynomial time. The basic idea is to learn classifiers by
pairwise comparison. For a training example(x, y), if we
have a perfect classification rule, then the following holds

Fy(x) > Fr(x), for anyr 6= y.

In the large margin framework with the hinge loss, ideally

Fy(x) ≥ 1 + Fr(x), for anyr 6= y, (1)

should be satisfied. This means that the correct label is sup-
posed to have a classification confidence that is larger by at
least a unit than any of the confidences for the other pre-
dictions. This extension of “margin” to the multi-class case
has been introduced in support vector machines [7, 19]. As
pointed out in [19], to formulate multi-class problems as a
pairwise ranking problem in a single optimization can be
more powerful than to solve a bunch of one-versus-rest bi-
nary classifications. The argument is that we may generate
a multi-class dataset that can be classified perfectly by the
decision rule of type (9), but for which the training data
cannot be separated with no error by one-versus-rest.

By introducing the indication operatorδs,t such that
δs,t = 1 if s = t andδs,t = 0 otherwise, the above equation
can be simplified as

δr,y + Fy(x) ≥ 1 + Fr(x), ∀r = 1, 2, · · · , k. (2)

We generalize this idea to the entire training set and in-
troduce slack variablesξ to enable soft-margin. The primal
problem that we want to optimize can then be written as

min
W,ξ

m∑

i=1

ξi + ν ‖W‖1

s.t. δr,yi
+Hi:wyi

≥ 1 +Hi:wr − ξi, ∀i, r, (3)

W ≥ 0.

Hereν > 0 is the regularization parameter.ξ ≥ 0 always
holds. If for a particularxi, ξi is negative, then one of the
constraint in (3) that corresponds to the caser = yi will be
violated. In other words, the constraint corresponding to the
caser = yi ensures the non-negativeness ofξ.

Note that we have one slack variable for each training
example. It is also possible to assign a slack variable to
each constraint in (3).

We derive its Lagrange dual, similar to case of LPBoost
[5]. The Lagrangian of problem (3) can be written as

L =
∑

i

ξi + ν
∑

j,r

Wjr −
∑

i,r

Uir·

(
δr,yi

+Hi:wyi
− 1−Hi:wr + ξi

)
−Tr(V⊤W ),

with U ≥ 0, V ≥ 0. At optimum, the first derivative of the
Lagrangian w.r.t. the primal variables must vanish,

∂L

∂ξi
= 0 −→

∑

r

Uir = 1, ∀i. (4)

Also,

∂L

∂wr

= 0 (5)

−→ ν1⊤ +
∑

r

UirHi: −
∑

i,r=yi

=1, due to (4)
︷ ︸︸ ︷
(∑

l

Uil

)

Hi: = Vr:,

which leads to
∑

i UirHi: −
∑

i δr,yi
Hi: ≥ −ν1⊤, ∀r. So

the Lagrange dual can be written as:1

min
U

k∑

r=1

m∑

i=1

δr,yi
Uir

s.t.
∑

i

(δr,yi
− Uir)Hi: ≤ ν1⊤, ∀r, (6)

∑

r

Uir = 1, ∀i; U ≥ 0.

Each row of the matrixU is normalized. The first set of
constraints can be infinitely many:

∑

i

(δr,yi
− Uir)h(xi) ≤ ν, ∀r, and∀h(·) ∈ H. (7)

We can now use column generation to solve the problem,
similar to the LPBoost [5]. The subproblem for generating
weak classifiers is

h∗(·) = argmax
h(·)

m∑

i=1

(δr,yi
− Uir) h(xi). (8)

The matrixU ∈ R
m×k plays the role of measuring im-

portance of a training example.
The following algorithm can be used to implement our

hinge loss based MULTI BOOST.

Algorithm 1: MULTI BOOSTwith the hinge loss
Initialize each entry ofU to be1/k.
loop
− Find the weak classifier by solving the subproblem

(8), and add this weak classifier to the primal problem.
− Solve the primal problem (3) using a primal-dual

interior-point LP solver such as Mosek [1], such that the
dual solution is also available.

until convergence

1Strictly speaking, this is one of the Lagrange duals of the original
primal because some transformations from the standard formhave been
performed.
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The output is the learned multi-class strong classifier.
The classification rule is

r∗ =
k

argmax
r=1

n∑

j=1

wr,jhj(x), (9)

for a test instancex.

2.2. The exponential loss

Now let us consider the exponential loss in the section.
In the case of the exponential loss, We may write the primal
optimization problem as

min
W

m∑

i=1

k∑

r=1

exp
[
−
(
Hi:wyi

−Hi:wr

)]
+ ν′ ‖W‖1

s.t. W ≥ 0. (10)

We define a set of margins associated with a training ex-
ample as

ρi,r = Hi:wyi
−Hi:wr, r = 1, . . . , k. (11)

Clearly only whenρi,r ≥ 0, will the training examplexi be
correctly classified. We consider the logarithmic version of
the original cost function, which does not change the prob-
lem becauselog(·) is strictly monotonically increasing. So
we write (10) into

min
W,ρ

log
( m∑

i=1

k∑

r=1

exp [−ρi,r]
)

+ ν ‖W‖1

s.t. ρi,r = Hi:wyi
−Hi:wr, ∀i = 1 · · ·m, r = 1 · · · k,

(12)

W ≥ 0.

The dual problem can be easily derived:

min
U

k∑

r=1

m∑

i=1

Uir logUir

s.t.
∑

i

[

δr,yi

(∑k

l=1Uil

)
− Uir

]

Hi: ≤ ν1⊤, ∀r, (13)

∑

i,r

Uir = 1, U ≥ 0.

We can see that the dual problem is a Shanon entropy
maximization problem. The objective function of the dual
encourages the weightsU to be uniform. The KKT condi-
tion gives the relationship between the optimal primal and
dual variables:

U⋆
ir =

exp(−ρ⋆i,r)
∑

i,r exp(−ρ⋆i,r)
, ∀i, r. (14)

Different from the case of the hinge loss, hereU is nor-
malized as an entire matrix. Also we can solve the pri-
mal problem using simple (Quasi-)Newton, which is much
faster than to solve the dual problem using convex optimiza-
tion solvers. Note that the scale of the primal problem is
usually smaller than the dual problem. After obtaining the
primal variable, we can use the KKT condition to get the
dual variable. The subproblem that we need to solve for
generating weak classifiers also slightly differs from (8):

h∗(·) = argmax
h(·)

m∑

i=1

(

δr,yi

(∑k

l=1Uil

)
−Uir

)

h(xi). (15)

2.3. General convex loss

We generalize the presented idea toany smooth convex
loss functions in this section. Supposeλ(·) is a smooth con-
vex function defined inR. For classification problems,λ(·)
is usually a convex surrogate of the non-convex zero-one
loss. As in the exponential loss case, we introduce a set
auxiliary variables that define the margin as the pairwise
difference of prediction scores. This auxiliary variable is
the key to lead to the important Lagrange dual, on which
the totally corrective boosting algorithms rely.

The optimization problem can be formulated as

min
W,ρ

m∑

i=1

k∑

r=1

λ(−ρi,r) + ν ‖W‖1 s.t. (11), and W ≥ 0.

(16)

The Lagrangian is

L =
∑

i,r

λ(−ρi,r)−Tr(V⊤W ) +
∑

i,r

Uir(Hi:wyi
−Hi:wr)

−
∑

i,r

Uirρi,r + ν
∑

j,r

Wjr .

We can again write its Lagrange dual as

min
U

k∑

r=1

m∑

i=1

λ∗(−Uir)

s.t.
∑

i

[

δr,yi

(∑k

l=1Uil

)
− Uir

]

Hi: ≤ ν1⊤, ∀r, (17)

whereλ∗(·) is the Fenchel dual function ofλ(·) [2]. Note
thatλ∗(·) is always convex even if the original loss function
λ(·) is non-convex. The difference is that the duality gap
is not zero whenλ(·) is non-convex. The KKT condition
establishes the connection between the dual variableU and
the primal variable at optimality:

Uir = −λ′(ρi,r). (18)

So we can actually solve the primal problem and then re-
cover the dual solution from the primal. From (18), we
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Toy data

(a) data (b) AdaBoost.MO, 100 iterations (c) AdaBoost.ECC, 100 iterations

(d) MULTI BOOST-hinge, 100 iterations (e) MULTI BOOST-exp, 100 iterations (f) AdaBoost.MO, 5000 iterations

(g) AdaBoost.ECC, 5000 iterations (h) MULTI BOOST-hinge, 5000 iterations (i) M ULTI BOOST-exp, 5000 iterations

Figure 1: Figure (a) shows a toy data set, which contains 4 classes and atotal of 200 sample points. Boosting algorithms
are trained on this set using decision stumps. Plots (b)-(e)illustrate the decision boundaries made by (b) AdaBoost.MO, (c)
AdaBoost.ECC, (d) MULTI BOOST-hinge and (e) MULTI BOOST-exp with the number of training iterations being100. For
comparison, plots (f)-(i) illustrate the decision boundaries of these algorithms, respectively, when the number of iterations is
5000. (f) and (g) apparently suffer from over-fitting.

know that the weightU is typically non-negative for clas-
sification problems because the classification loss function
λ(·) is monotonically decreasing and its gradient is non-
positive.

3. Experiments

We have performed a few sets of experiments to com-
pare the boosting algorithms that we proposed with pre-
vious multi-class boosting algorithms. For fair compar-
ison, we focus on the multi-class algorithms using bi-
nary weak learners, including AdaBoost.MO and Ad-
aBoost.ECC, which are still considered as the state-of-the-
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dataset AdaBoost.MO AdaBoost.ECC MULTI BOOST-hinge MULTI BOOST-exp

thyroid 0.005±0.001 0.005±0.001 0.005±0.001 0.004±0.001
dna 0.059±0.005 0.064±0.005 0.057±0.007 0.061±0.004
wine 0.036±0.025 0.034±0.029 0.032±0.018 0.030±0.029
iris 0.062±0.017 0.073±0.021 0.068±0.022 0.057±0.022
glass 0.232±0.047 0.242±0.053 0.234±0.046 0.315±0.086
svmguide2 0.213±0.039 0.214±0.030 0.222±0.052 0.206±0.040
svmguide4 0.192±0.018 0.191±0.018 0.207±0.018 0.214±0.027

Table 1: Test errors of four boosting algorithms on UCI data sets. Theaverage results of 10 repeated tests are reported. Weak
classifiers are decision stumps. MULTI BOOST-exp is the best on 4 out of 7 data sets.

art.
For AdaBoost.MO, the error-correcting output codes are

introduced to reduce the primal problem into multiple bi-
nary ones; for AdaBoost.ECC, the binary partitioning is
made at each iteration by using the “random-half” method,
which has been experimentally proven better than the op-
timal “max-cut” solution [10]. Decision stumps are cho-
sen as the weak classifiers for all boosting algorithms, due
to its simplicity and the controlled complexity of the weak
learner.

Convex optimization problems are involved in MULTI -
BOOST-hinge and MULTI BOOST-exp. To solve them, we
use the off-the-shelf Mosek convex optimization package
[1], which provides solutions for both primal and dual prob-
lems simultaneously with its interior-point Newton method.

We also need to set the regularization parameterν for
these two algorithms using cross validation. For each run,
a five-fold cross validation is carried out first to determine
the bestν. Notice that the loss functions in MULTI BOOST-
hinge and MULTI BOOST-exp may have different scales,
we choose the parameter from{10−4, 10−3, 5 · 10−3, 0.01,
0.02, 0.04, 0.05} for the former, and the candidate pool
{10−8, 10−7, 5 · 10−7, 8 · 10−7, 10−6, 2 · 10−6, 4 · 10−6,
8 · 10−6, 10−5} for the latter.

Toy data In the first experiment, we make the compari-
son on a toy data set, which consists of 4 clusters of planar
points. Each cluster has 50 samples, which are drawn from
their respective normal distribution. As shown in Figure
1(a), the centers of the circles indicate where their means
are, and the radii depict the different deviations. We run
the boosting algorithms on this toy data set and plot the
decision boundaries on thex-y plane. Figures 1(b)-(e) il-
lustrate the results when the number of training iterations
is set to be100. In this case, it is hard to state which
model is better. However, if we increase the iteration to
5000 times, the planes in (f) and (g) are apparently over
segmented by AdaBoost.MO and AdaBoost.ECC. On the
contrary, the decision boundaries of (h) MULTI BOOST--
hinge and (i) MULTI BOOST-exp seem closer to the true de-
cision boundary. Unlike the others, models trained by Ad-

aBoost.MO are more complex, since this learning method
assemblesℓ weak classifiers rather than one at each iter-
ation if ℓ-length codewords are used. Empirically we see
that AdaBoost.ECC also seems susceptible to over-fitting.

UCI data sets Next we test our algorithms on7 data
sets collected from UCI repository. Samples are randomly
divided into75% for training and25% for test, no matter
whether there is a pre-specified split or not. Each data set
is run10 times and the average results of test error are re-
ported in Table 1. The maximum number of iterations is
set to500. Almost all the algorithms converge before the
maximum iteration. Again the regularization parameter is
determined by 5-fold cross validation.

Table 1 reports the results. The conclusion that we can
draw on this experiment is: 1) Overall, all the algorithms
achieve comparable accuracy. 2) our algorithms are slightly
better in terms of generalization ability than the other two
on 5 out of 7 data sets. MULTI BOOST-exp outperforms
others in4 data sets. 3) Also note that the performance
MULTI BOOST-hinge is more stable than MULTI BOOST--
exp, which may be due to the fact that the hinge loss is less
sensitive to noise than the exponential loss.

Handwritten digits recognition To further examine the
effectiveness of our algorithms, We have conducted another
experiment on a handwritten digits data set, which is also
from UCI repository. The original data set contains5620
digits written by a total of43 people on32 × 32 bitmaps.
Then the bitmaps are divided into4 × 4 non-overlapping
blocks, and an8 × 8 descriptor is generated by calculating
the sum of0-1 pixels in each block. For ease of exposition,
only 3 distinct digits of “1”, “6” and “9” are chosen for
classification. Figure 2(a) illustrates the mean images of
their training data examples of the three digits. The index
of each block (feature) is also printed on Figure 2(a) for the
convenience of exposition.

We train multi-class boosting on this data set. The num-
ber of maximum training iterations is set to500. 75% data
are used for training, and the rest for test. Again5-fold cross
validation is used. We still use decision stumps as the weak
classifiers. Boosting learning with decision stumps implies
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(a) mean images of “1”, “6” and “9”

(b) AdaBoost.ECC

(c) MULTI BOOST-hinge

(d) MULTI BOOST-exp

Figure 2: Plot (a) shows the mean images of the samples
belonging to digits “1”, “6” and “9”. Each block is a fea-
ture and is numerically indexed. The remaining plots illus-
trate the classification models trained on this data set by (b)
AdaBoost.ECC, (c) MULTI BOOST-hinge and (d) MULTI -
BOOST-exp. Red circles indicate that weak classifiers on
these features should take large values; Green crosses indi-
cate small values should be taken on these features in or-
der to make correct classification. The width of a mark is
proportional to the weight of the stump. We can see that
MULTI BOOST-hinge is slightly better than AdaBoost.ECC,
e.g., on the43-th and21-th features.

that we select features at the same time. In other words, de-
cision stumps select most discriminative blocks for classify-
ing these digits. The four compared algorithms have similar
performances on this test with nearly98% test accuracy. We
plot the models of AdaBoost.ECC, MULTI BOOST-hinge
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Figure 3: Test accuracy curves of four boosting algorithms
on 5 categories of Caltech-256 images. The weak classifiers
are decision stumps and the number of training iterations is
500. The average results of10 runs are reported. Each run
randomly selects75% data for training and the other25%
for test.

and MULTI BOOST-exp in Figures 2(b)-(d). AdaBoost.MO
can be hardly illustrated as it involves a multi-dimensional
coding scheme. Notice that a decision stump divides the
value range of the feature into two parts, on which there
are necessarily two different attributions, we use red cir-
cles and green crosses to represent the positive and negative
parts. For example, if a decision stump on the10-th fea-
ture isx10 > τ and assigns a set of weights{0.5, 0.2, 0.8}
to three labels, we mark10-th block in the third digit im-
age with a red circle, and10-th block in the second digit
with a green cross; if the stump isx10 < τ with the same
weights, we do the opposite marks. In other words, red cir-
cles indicate the decision stumps should take bigger values
on these blocks, while green crosses indicate these classi-
fiers should take some values as small as possible. The
width of a mark stands for the minimal margin defined in
Equation (11), that is, in thei-th digit, the width is pro-
portional toh(x)wyi

− max{h(x)wr}, ∀r 6= yi. Some
features may be selected multiple times, which divide the
value range into several segments. In this case, we neglect
all the middle parts.

Clearly, all the results of three algorithms on feature se-
lection make sense. Most discriminative features are tagged
with circles or crosses. Some blocks that contain significant
information on luminance are tagged with thick marks, such
as the22-th and43-th features in digit “6”, and the22-th and
11-th in “9”. If taking a close look at the figure, we can find
MULTI BOOST-hinge is slightly better than AdaBoost.ECC.
For example, on the43-th feature the green cross should be
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Figure 4: Some examples of correctly classified (top two rows) and misclassified (bottom row) images by MULTI BOOST--
hinge. The categories are “cartman”, “headphones”, “iris”, “paperclip” and “skunk”. The accuracy of this test is71.2%. No
image is falsely classified into the category of “paperclip”.

marked on digit “9” instead of “1”. Also in “1”, the21-
th feature should be tagged with a relatively thicker circle.
However, MULTI BOOST-exp’s results are not as meaning-
ful as MULTI BOOST-hinge.

Object recognition on a subset of Caltech-256 Finally,
we test our algorithms on the data set of Caltech-256, which
is one of the most popular multi-class benchmarks. We ran-
domly select5 categories of images.75% of them are ran-
domly selected for training and the other25% for test. A de-
scriptor of1000 dimensions is used, which combines quan-
tized color and texture local invariant features (also called
visterms[12]). The maximum number of iterations is still
set to500. The averaged test accuracies of10 runs are re-
ported in Figure 3. Again, we use the simplest decision
stumps as weak classifiers. We can see that all the four
boosting algorithms perform similarly, except that MULTI -
BOOST-exp performs worse than the other three. It may be
due to the fact that we have not fine tuned the cross valida-
tion parameter. We show some images correctly classified
and falsely classified by MULTI BOOST-hinge in Figure 4.

4. Conclusion

In this work, we have presented a direct formulation for
multi-class boosting. We derive the Lagrange dual of the
formulated primal optimization problem. Based on the dual
problem, we are able to design totally-corrective boosting
using the column generation technique. At each iteration,
all weak classifiers’ weights are updated.

Various experiments on a few different data sets demon-
strate that our direct multi-class boosting achieves compet-
itive test accuracy compared with other existing multi-class
boosting.

Future research topics include how to efficiently solve
the convex optimization problems of the proposed multi-
class boosting. Conventional multi-class boosting do not
need to solve convex optimization at each step and thus
much faster. We also want to explore the possibility of
structural learning with boosting by extending the proposed
multi-class boosting framework.
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