
PUBLISHED VERSION  

 
 
 

El Bakry Mahmoud, Ahmed Saad; Leinweber, Derek Bruce; Moran, Peter John; Sternbeck, 
André; Williams, Anthony Gordon  
String effects and the distribution of the glue in static mesons at finite temperature Physical 
Review D, 2010; 82(9):094503  

 

©2010 American Physical Society 

 

http://link.aps.org/doi/10.1103/PhysRevD.82.094503 

 

  
   

   
 

http://link.aps.org/doi/10.1103/PhysRevD.62.093023  
 
  
 

 
    
 

 
 

 
 

 

 
 
 

  

 

 
 
 

http://hdl.handle.net/2440/62867 
 
 

PERMISSIONS 

http://publish.aps.org/authors/transfer-of-copyright-agreement 

 

 

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S. 
Copyright Act, 17 U.S.C. 

§101, the employer named [below], shall have the following rights (the “Author Rights”): 

[...] 

3. The right to use all or part of the Article, including the APS-prepared version without 
revision or modification, on the author(s)’ web home page or employer’s website and to 
make copies of all or part of the Article, including the APS-prepared version without 
revision or modification, for the author(s)’ and/or the employer’s use for educational or 
research purposes.” 

 

 

 

6th June 2013 

 

http://hdl.handle.net/2440/62867
http://link.aps.org/doi/10.1103/PhysRevD.82.094503
http://link.aps.org/doi/10.1103/PhysRevD.62.093023
http://hdl.handle.net/2440/62867
http://publish.aps.org/authors/transfer-of-copyright-agreement


String effects and the distribution of the glue in static mesons at finite temperature
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The distribution of the gluon action density in mesonic systems is investigated at finite temperature. The

simulations are performed in quenched QCD for two temperatures below the deconfinement phase. Unlike

the gluonic profiles displayed at T ¼ 0, the action-density isosurfaces display a prolate-spheroid-like

shape. The curved width profile of the flux tube is found to be consistent with the prediction of the free

bosonic string model at large distances.
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I. INTRODUCTION

In the flux-tube model, the linearly rising potential
between a pair of static color sources is believed to be
due to the formation of a thin gluonic flux tube of a
constant cross-section. At high temperatures, lattice simu-
lations on pure SU(3) gauge fields [1] have indicated a
decrease of the effective string tension for the quark–
antiquark potential with the rise of the temperature. The
QCD vacuum structure around the sources is then expected
to exhibit gluonic profiles with widths variant to the zero
temperature case. The detailed geometry of the gluonic
field at finite temperature and whether it holds the constant
cross-section property is an interesting topic that has not
yet been explored in lattice quantum chromodynamics.

The low-energy dynamics of the flux tubes in the infra-
red region of a confining gauge theory can be described in
terms of an effective bosonic string. The thin flux tube
between two widely separated static color sources fluctu-
ates like a massless string. The linearly rising part of the
potential arises from the classical configuration which
corresponds to the flat world sheet of the string. The
quantum fluctuations of the string lead to a universal sub-
leading correction to the potential well known as the
Lüscher term [2]. Lattice simulations for several gauge
theories [3–7] have supported the existence and the uni-
versality of the string’s subleading effect. At high tempera-
tures, the gluonic modes come into play and the effective
string description of the temperature-dependent quark–an-
tiquark potential has been worked out in Refs. [8,9]. A
further comparison with SU(3) Monte Carlo lattice data for
temperatures beginning from T ¼ 0:8Tc [1] has shown a
good parametrizing behavior to the string picture formula
for a minimal distance of RT ¼ 0:5. On the other hand,
there have been numerical indications that the inclusion of
the higher-order string effects beyond the Gaussian ap-
proximation, e.g., the NLO string’s self-interaction term
in the Nambu-Goto effective string action, has reproduced

the correct temperature-dependent string tensions up to a
temperature scale of T ¼ 0:5Tc in the three-dimensional
gauge Z2 model [10].
The string model predictions of a logarithmic broad-

ening [11] for the width of the string delocalization have
also been observed in several lattice simulations corre-
sponding to different gauge groups [4,6,12,13]. As the
temperature increases, substantial deviations from the
logarithmic behavior are expected, and the law of broad-
ening turns eventually into a linear growth for large dis-
tances before the deconfinement is reached from below
[14]. Apart from the peculiar features in the law of the
broadening of the flux tube when the temperature is raised,
the string picture predicts an effect which is rather inter-
esting from the geometrical point of view. The width
calculated at each corresponding transverse plane to the
line joining the two quarks is found to differ from that at
the central plane by an amount that increases with the rise
of the temperature. In other words, the mesonic string
picture is implying a curvature in the gluonic profile that
becomes more pronounced as higher temperatures are
approached. The string self-interaction with the quark
line causes a noticeable difference in the delocalizations
beyond the central transverse plane and these aspects
remain to be ascertained in lattice quantum chromodynam-
ics. Moreover, revealing the whole profile of the glue at
finite temperature provides a particularly interesting source
of knowledge regarding the true geometry of the flux tube,
since, naturally, at finite temperature one need not hold to
any particular assumption for the shape of the gluonic
source-wave functions in the relevant gauge-invariant ob-
jects representing the quark states. Probing the transverse
profile of the glue might even be of relevance to the
modeling of ground-state sector of the theory where the
exact geometry of the flux tube seems to be not yet settled
[15].
In this paper, we investigate the distributions of the color

field inside a static meson at two temperatures below the
deconfinement phase, T ’ 0:9Tc, and T ’ 0:8Tc. Since the
bosonic string predictions are expected to be more relevant*abakry@physics.adelaide.edu.au
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to pure Yang-Mills theories with static color sources
(rather than QCD with dynamical sea quarks where string
breaking occurs), the lattice simulations are performed on
the SU(3) gauge group in the quenched approximation.
The field strength inside the corresponding quark system
will be revealed by correlating an improved action-density
operator [16] to the mesonic state. The static mesonic state
is accounted for by means of Polyakov-loop correlators.
Gauge smoothing [17,18], in addition to a high statistics
gauge-independent approach [19], will be employed to
enhance the signal to the noise in the flux correlation
function. This noise-reduction approach is variant to other
approaches that utilize gauge fixing [20]. The obtained
profile of the action density will then be compared to the
prediction of the mesonic string models at several distances
for the highest temperature near the deconfinement point
T ’ 0:9Tc.

The paper is organized as follows: In Sec. II, the details
of the simulation will be described. We review the predic-
tions of the bosonic string model for the q �q potential and
the width of the string fluctuations at finite temperature in
Sec. III. In Sec. IVA, we measure the quark–antiquark
potential and examine the string model parametrization
for various levels of gauge smoothing. In Sec. IVB, the
action density in mesons will be presented, and the corre-
sponding widths at several transverse planes to the tube are
then measured and set in comparison with the string model
predictions. Section V provides the conclusion.

II. SIMULATION DETAILS

A. Color field measurements

In this investigation we have taken our measurements on
500 quenched QCD gauge-field configurations for each set
of lattice parameters considered. The gauge configurations
were generated using the standard Wilson gauge action on
lattices with spatial volume of 363. We chose to perform
our analysis with lattices as fine as a ¼ 0:1 fm by adopting
a coupling of value � ¼ 6:00, with temporal extents of
Nt ¼ 8 and Nt ¼ 10 slices, which correspond to tempera-
tures T ’ 0:9Tc and T ’ 0:8Tc, respectively. The gluonic
gauge configurations were generated with a pseudo–
heat bath algorithm [21,22] updating the corresponding
three SU(2) subgroup elements [23]. Each update step
consists of one heat bath and 4 microcanonical reflections.
The measurements are taken after each 2000 of updating
sweeps.

The static mesonic state is constructed by means of a
pair of Polyakov loops corresponding to an infinitely heavy
quark–antiquark pair,

P 2Qð ~r1; ~r2Þ ¼ Pð~r1ÞPyð ~r2Þ;

where the Polyakov loop is given by

Pð~riÞ ¼ 1

3
Tr

�YNt

nt¼1

U�¼4ð~ri; ntÞ
�
; (1)

and the vectors ~ri define the positions of the quarks. The
measurements that characterize the color field are taken by
a gauge-invariant action-density operator Sð ~�; tÞ at spatial
coordinate ~� of the three-dimensional torus corresponding
to a Euclidean time t. The measurements are repeated for
each time slice and then averaged,

Sð ~�Þ ¼ 1

Nt

XNt

nt¼1

Sð ~�; tÞ: (2)

The action-density operator is calculated via a highly
improved Oða4Þ three-loop improved lattice-field-strength
tensor [16]. A dimensionless scalar field that characterizes
the gluonic field can be defined as

C ð ~�; ~r1; ~r2Þ ¼
hP 2Qð~r1; ~r2ÞihSð ~�Þi � hP 2Qð~r1; ~r2ÞSð ~�Þi

hP 2Qð~r1; ~r2ÞihSð ~�Þi ;

(3)

where h. . . . . .i denotes averaging over configurations and
lattice symmetries, and the vector ~� refers to the spatial
position of the flux probe with respect to some origin.
Cluster decomposition of the operators leads to C ! 0
away from the quarks.

B. Noise reduction

We make use of translational invariance by computing
the correlation on every node of the lattice, and averaging
the results over the volume of the three-dimensional torus,
in addition to averaging the action measurements taken at
each time slice in Eq. (2). To further improve the signal to
noise ratio in the gluonic correlation function, local action
reduction by smearing the gauge links has been performed
on the whole four-dimensional lattice. Since the main
focus in this investigation is to resolve the nature of the
flux distributions in the IR region of the theory, we have
been able to show that with an appropriate level of gauge
smoothing, effects on the large distance correlations can be
kept minor. For each distance scale, a range of smoothing
levels is seen to leave physical observables and topological
structures intact. Similar techniques have been adopted in
Ref. [24] in the determination of the large distance Q �Q
force in vacuum with different levels of hypercubic (HYP)
smearing. In Sec. IVA, it has been shown that for a given
distance scale, the measured quark–antiquark force at large
distances can be left with negligible changes for a range of
smoothing levels. Unlike [25] where the Cabbibo-Marinari
cooling has been employed, we have chosen to smooth the
gauge field by an overimproved stout-link smearing algo-
rithm [18]. The use of this algorithm should ensure that the
smoothing algorithm has a minimal effect on the topology
of the gauge field [18]. In standard stout-link smearing
[17], all the links are simultaneously updated. Each sweep
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of update consists of a replacement of all the links by the
smeared links

~U�ðxÞ ¼ expðiQ�ðxÞÞU�ðxÞ; (4)

with

Q�ðxÞ ¼ i

2
ð�y

�ðxÞ ���ðxÞÞ � i

6
trð�y

�ðxÞ ���ðxÞÞ;

and

��ðxÞ ¼
�X
���

����
y
��ðxÞ

�
Uy

�ðxÞ;

where ���ðxÞ denotes the sum of the two staples touching

U�ðxÞ which reside in the �-� plane. The scheme of

overimprovement requires ���ðxÞ to be replaced by a

combination of plaquette and rectangular staples. This
ratio is tuned by the parameter � [18]. In the following
we use a value of � ¼ �0:25, with �� ¼ � ¼ 0:06. We

note that for a value of � ¼ 0:06 the overimproved stout-
link algorithm is roughly equivalent in terms of UV filter-
ing to the standard stout-link smearing algorithm with the
same � ¼ 0:06.

III. THE BOSONIC STRING MODEL

A. Temperature-dependent quark–antiquark potential

The correlation function of two Polyakov loops on the
lattice determines the interaction potential between the
color sources,

hPð0ÞPyðRÞi ¼
Z

d½U�Pð0ÞPyðRÞ expð�SwÞ
¼ expð�VðR; TÞ=TÞ: (5)

Sw is the plaquette action and T is the physical tempera-
ture. The self-interactions of the glue exchanged between
two color sources in QCD can result in the squeezing of the
glue into a thin one-dimensional stringlike object. The
immediate consequence of this string picture is that a
functional form can be ascribed to the Polyakov-loop
correlators, namely, the partition function of the string.
The correlators are expressed as functional integrals over
all the world sheet configurations swept by the string,

hPð0ÞPyðRÞi ¼
Z
C
½DX� expð�SðXÞÞ: (6)

The vector X�ð�1; �2Þ maps the region C � R2 into R4,
with Dirichlet boundary condition Xð�1; �2 ¼ 0Þ ¼
Xð�1; �2 ¼ RÞ ¼ 0, and periodic boundary condition along
time direction Xð�1 ¼ 0; �2 ¼ 0Þ ¼ Xð�1 ¼ L; �2 ¼ RÞ,
and S is the string action and can be chosen to be propor-
tional to the surface area, i.e., the Nambu-Goto action,

S½X� ¼ �
Z

d�1
Z

d�2
ffiffiffi
g

p
; (7)

where g�� is the two-dimensional induced metric on the

world sheet embedded in the background R4,

g�� ¼ @X

@��
� @X
@��

; ð�;� ¼ 1; 2Þ; g ¼ detðg��Þ:

Gauge fixing is required for the path integral (9) to be well
defined with respect to Weyl and reparametrization invari-
ance. The physical gauge, X1 ¼ �1, X

4 ¼ �2 would restrict
the string fluctuations to transverse directions to C. In the
quantum level, Weyl invariance is broken in 4 dimensions;
however, the anomaly is known to vanish at large distances
[26]. The action after gauge fixing reads

S½X� ¼ �
Z L

0
d�1

Z R

0
d�2ð1þ ð@�1X?Þ2 þ ð@�2X?Þ2Þ1=2:

(8)

Expanding the square root in powers of �RL,

S½X� ¼ �RLþ �

2

Z L

0
d�1

Z R

0
d�2ðrX?Þ2 þ . . . ; (9)

the action decomposes into the classical configuration
and fluctuation part, and the string higher-order self-
interactions. A leading-order approximation can be made
by neglecting the self-interaction terms; the path integral
Eq. (9) is then

hPð0ÞPyðRÞi ¼ e��RL

�
det

�
� 1

2
r2

���1
: (10)

The determinant of the Laplacian on the cylinder has been
regulated using a lattice regulator in [8]. The potential is
obtained in closed form for a length scale comparable to
the thermodynamic scale in [9]. The effective potential is

VðR; TÞ ¼
�
�� 	

3
T2 þ 2

3
T2tan�1ð2RTÞ�1

�
R

�
�
	

12
� 1

6
tan�1ð2RTÞ

�
1

R

� T

2
logð1þ ð2RTÞ2Þ þ�: (11)

The limit of large string length [8] entails taking the
temperature-dependent string tension to be

�ðTÞ ¼ �� 	

3
T2: (12)

The free-string model predicts a temperature-dependent
quark–antiquark potential that is featured by the existence
of a logarithmic term in addition to a leading-order de-
crease in the string tension by an amount 	

3 T
2.

B. Width of the flux-tube fluctuations
at finite temperature

The vibration modes of the stringlike object render an
effective width for the flux tube. A well known prediction
made by Lüscher, Münster, and Weisz [11], based on the
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effective bosonic string model, has shown that the mean-
square width of the vibrating flux tube at the center plane
grows logarithmically as a function of the interquark
separation, R,

w2 � 1

	�
log

�
R




�
; (13)

where 
 is an ultraviolet scale. With the increase of the
temperature, higher-order gluonic degrees of freedom are
present and the effective width of the corresponding string
is expected to manifest an intricate behavior involving both
the distance and the temperature. The mean-square width
of the string is defined as

w2ð�; �Þ � hX2ð�; �Þi ¼
R
C½DX�X2 expð�S½X�ÞR
C½DX� expð�S½X�Þ : (14)

� ¼ ð�1; i�2Þ is a complex parametrization of the world
sheet, such that �1 2 ½�R=2; R=2�, �2 2 ½�L=2; L=2�,
with � ¼ L

R is the modular parameter of the cylinder, and

L is the temporal extent governing the inverse temperature.
Casselle et al. [6] and Gliozi [27] have worked out the
delocalization of the string for all the planes transverse to
the line joining the quark pair by the corresponding Green
function. This technique proceeds by removing the diver-
gence in the quadratic operator in Eq. (14) by the use of the
Schwinger [28] point-split regularization, then taking the
limiting action for the Nambu-Goto model as that of the
corresponding Gaussian model. The quadratic operator is
then the correlator of the free bosonic string theory in two
dimensions,

hX2ð�; �Þi � hXð�Þ � Xð�þ �Þi ¼ Gð�; �þ �Þ: (15)

This Green function is the solution of the Laplace equation
on the cylinder with a Dirichlet boundary condition,

Gð�; �0Þ ¼ �1

2	
logjfð�; �0Þj: (16)

The conformal map reads [14]

fð�; �0Þ ¼ 
1½	ð�� �0Þ=R; ��

2½	ð�� �0Þ=R; �� ; (17)

where the Jacobi 
 functions are


1ð�; �Þ ¼ 2
X1
n¼0

ð�1Þnqnðnþ1Þþð1=4Þ sinðð2nþ 1Þ�Þ;


2ð�; �Þ ¼ 2
X1
n¼0

qnðnþ1Þþð1=4Þ cosðð2nþ 1Þ�Þ;
(18)

with the nome q ¼ eð�	=2Þ�. The expectation value of the
mean-square width would then read

w2ð�1; �Þ ¼ 1

2	�
log

�
R

R0

�

þ 1

2	�
log

��������

2ð	�1=R; �Þ


01ð0; �Þ
��������: (19)

This expression converges for modular parameters close to
1, and contains in addition to the logarithmic divergence
term a correction term that encodes the dependence of the
width at different transverse planes on the modular pa-
rameter of the cylinder. At finite temperature, this term is
contributing to the width at all the planes. Figure 1 is a plot
of the mean-square width calculated at �1 values via
Eq. (19). The plot shows the profile for several modular
parameters and fixed separation between the two Polyakov
loops.
The string model predicts an increase in the width with

the increase of the temperature. The increase in the width is
maximum at the central plane which is seen as an increase
in the curvature in the profile of the string fluctuations. At
zero temperature L ! 1, Eq. (19) converges well, and the
second term in Eq. (19) still contributes to the whole shape
of the fluctuations at all planes except the middle; the
contribution of this term at zero temperature is

1

2	
log

��������cos
�
	�1

R

���������; (20)

which is seen from the plot of Fig. 1 to be subtle in the
middle region and have more pronounced effects on the
width near the quark positions.

IV. RESULTS

A. Quark–antiquark potential

The technique adopted to enhance the signal to the noise
in the correlation function which characterizes the gluon

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

-4 -3 -2 -1  0  1  2  3  4

W
2  

ξ1

τ
0.8
1.0
∞

FIG. 1 (color online). The mean-square width, Eq. (19), of the
flux tube evaluated at all planes �1 perpendicular to the quark–
antiquark line. The separation distance between the pair is
Ra�1 ¼ 10.

BAKRY et al. PHYSICAL REVIEW D 82, 094503 (2010)

094503-4



flux, Eq. (3), involves smoothing the gauge links by the
overimproved stout-link smearing algorithm described
above. The whole 4-dim torus has been smeared for the
consecutive levels of smearing corresponding to 20, 40, 60,
and 80 sweeps, forming four data sets for each tempera-
ture. The choice of the appropriate data set for the numeri-
cal evaluation of the expectation values in Eq. (3) at each
distance scale should be based on a compromise to simul-
taneously achieve two tasks, that the smearing level has a
minimal effect on the physical observables, and a signifi-
cant error reduction is gained. The larger the separation
distance between the quark pair, the higher the smearing
level required to gain good signal to noise in the correla-
tions in Eq. (3). However, smearing has an effect on the
observables similar to the increase of the lattice space-time
cutoff, and a large enough number of smearing sweeps will
result in a subsequent loss of the physics on the short
distance scale. The physical observable of direct relevance
to the properties of the gluonic flux tube is the quark–
antiquark potential. For each level of smearing, we nu-
merically evaluate the quark–antiquark potential and the
corresponding force. At fixed temperature T, the
Monte Carlo evaluation of the quark–antiquark potential
at each R is calculated through the Polyakov-loop correla-
tors according to

VðR; TÞ ¼ �1

T
logðhPð0ÞPyðRÞiÞ: (21)

The jackknife error analysis for the data shows a significant
decrease in the uncertainties associated with Polyakov-
loop correlators on a short distance scale when measure-
ments are taken after 20 sweeps of smearing. For large
distances, a subsequent increase of 20 sweeps would pro-
vide error reduction by factors of 1:3 � x � 1:5 for the
corresponding distances 0:6 fm � R � 1 fm. Table I sum-
marizes the factors of error reduction for the Polyakov-
loop correlator after each incremental increase of 20
sweeps of smearing [29].

To test the validity of the gauge-smoothing approach, or,
equivalently, to determine the levels of smoothing for
which the physics is left intact, one is tempted to set a
reference scale which signifies how the smeared data
would behave with respect to it. Here, we set this scale to
be the string model parametrization Eq. (11). This ap-
proach of referencing the data to the string model is
justified by the fits previously reported in Ref. [1], which

has returned good �2 and shown stability to the fit range at
large distances.
The numerical data obtained for the quark–antiquark

potential Eq. (21) on every smoothed gauge configuration
are fitted to the string picture q �q potential Eq. (11). The
effects of smearing are expected to be more pronounced at
short distances. For this reason the minimal fit distances are
taken as large as possible, R> 0:7 fm for T ¼ 0:8Tc, and
R> 0:9 fm for T ¼ 0:9Tc. The string tension has been
taken as a fitting parameter. The fits are returning good
�2 for all the smoothed data sets considered.
The q �q potential and the corresponding fits are shown in

Fig. 2. The fits to the data show almost equal slopes for all
smoothing levels. This is also manifest in Table II, where
the string tensions are measured in accord to Eqs. (11) and
(12). Within the standard deviations of the measurement,
the returned string tensions for all levels of smearing are
equal. At temperature T ¼ 0:9Tc, our measurements for

TABLE I. The error reduction factor in the Polyakov-loop
correlator Eq. (5) by the increase of the number of 20 smearing
sweeps for each smeared data set.

R/Number of sweeps 20–40 40–60 60–80

6 1.3 1.1 1.1

8 1.4 1.2 1.2

10 1.5 1.3 1.2

0.4

0.5

0.6

0.7

0.8

0.9

 5  6  7  8  9  10  11  12  13

V
(r

) 
a

n = r/a 

β= 6.0, Nt=10
80 Sweeps
60 Sweeps
40 Sweeps
20 Sweeps

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

5 6 7 8  9  10  11  12  13  14

V
(r

) 
a

n = r/a 

β= 6.0, Nt=8
80 Sweeps
60 Sweeps
40 Sweeps

(b)

FIG. 2. The quark–antiquark potential measured at each de-
picted smearing level. The lines correspond to fits of the poten-
tial obtained from the string picture of Eq. (11) for each data set
as described in the text. The upper plot is at T ¼ 0:8Tc while the
lower plot is at T ¼ 0:9Tc.
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the string tension agree for all the data sets. Moreover, this
value is in agreement with that reported in Ref. [1].

The factors of error reduction at higher temperature at
R ¼ 1 fm after 40 sweeps of smearing compare to the
corresponding one at T ¼ 0:8 after 80 sweeps. The noise
tends to decrease with the increase of the temperature. This
analysis shows that for the q �q separation distance R �
1 fm as depicted in Table II, all the smoothed configura-
tions are appropriate for revealing the gluonic field. On the
other hand, it is clear that the data points for R � 0:8 fm
shift up with the increase of the number of smearing
sweeps. The removal of short distance physics is manifest
here [31]. The difference in the regularization brought
about by the increasing of the space-time cutoff introduced
by smearing shifts the q �q potential by a renormalization
constant in Eq. (21). To illustrate the effect of smearing on
the q �q potential, the potential Eq. (21) has not been nor-
malized. The q �q force, however, can be calculated to

eliminate these constant shifts. With the definition of the
derivative on the lattice taken as in Refs. [3,32], the force is
computed as

F

�
r� a

2

�
¼ VðrÞ � Vðr� aÞ

a
: (22)

Figure 3 shows the force calculated for all smearing levels
for distances up to 1.4 fm. The force from the string picture,
Eq. (11), with a fit parameter measured at 60 sweeps in
Table II is illustrated. Inspection of Figs. 2 and 3 enables
one to estimate a distance scale beyond which effects of
smearing are negligible. For example, the results for 20
sweeps and 40 sweeps of smearing agree for R � 0:65 fm
in Fig. 3. Similar comparisons of 40 and 60 sweeps or 60
and 80 sweeps provide the results,RF, depicted in Table III.
This also can be read in conjunction with the radius of
Brownian motion or the so-called smearing radius. For the
standard APE smearing [33] this quantity can be calculated
analytically [34] (see also Appendix A), and may then be
calibrated [35] to the improved stout-link smearing algo-
rithm used here. This gives a smearing radius

Rs ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
c�ns

p
; (23)

where ns denotes the number of smearing sweeps and
c ¼ 6:15ð3Þ is the calibration constant calculated in
Appendix B. In Fig. 4 the smearing radius is plotted versus
the number of smearing sweeps. Rs describes the character-
istic scale of smearing, within which the gluon action
density has been suppressed. Values for Rs are compared
to RF in Table III, where the radius threshold for agreement
of the q �q force, RF, lies close to the smearing diameter 2Rs,

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

F
 a
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FIG. 3. The q �q force measured for all the smearing levels up to
a distance of 1.4 fm. The temperature is T ¼ 0:8Tc, and � ¼ 6.
The line denotes the force as predicted by the string model at
finite temperature, Eq. (11).

TABLE III. The characteristic radii Rs and RF at each smear-
ing level.

Number of sweeps RF (fm) Rs (fm) 2Rs (fm)

20 0.55 0.27 0.54

40 0.65 0.38 0.76

60 0.75 0.47 0.94

80 0.95 0.54 1.04
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FIG. 4. The diameter of smearing 2Rs versus the number of
sweeps ns [Eq. (23)] for the improved stout-link algorithm with
� ¼ 0:06 [Eq. (23)].

TABLE II. The string tension measured on all data sets corre-
sponding to various levels of link smearing. The measurements
are obtained from the fits to Eqs. (11) and (12).

Number of sweeps �a2 Fit range n ¼ R=a

T ¼ 0:8Tc

20 0.047(3) 8–12

40 0.050(2) 8–12

60 0.0493(9) 8–12

80 0.0478(6) 8–12

T ¼ 0:9Tc

40 0.0385(8) 10–13

60 0.0377(9) 10–13

80 0.0373(8) 10–13
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which is the minimal distance between two diffuse links in
Polyakov-loop correlators. Therefore, a conservative range
of trust for distance scales where the essential features of
the confinement remain unchanged for a given level of
gauge smoothing can be provided by

� ¼ 2Rs: (24)

A combination of a large number of Monte Carlo up-
dates followed by link averaging has been performed in
Ref. [1] to evaluate the q �q potential for a range of tem-
peratures above and below the confinement phase. This
involves a large number of updating sweeps and measure-
ments which makes it rather expensive in terms of the CPU
time. This is particularly true for the evaluation of the
gluonic flux distribution, since this concerns the
Monte Carlo evaluation of not only the Polyakov-loop
correlator, but also the three-point correlation function in
the numerator of Eq. (3). Gauge smoothing is chosen as a
cheap and effective method in this case to reveal the
general topological features of the flux distribution which
can be confronted with the predictions of the string model.
We have been able to show in this section the ranges of the
validity of this approach, through the measurements of the
physical observables that have been previously reported in
[1], i.e., the q �q potentials and the string tension.

B. Action density

1. Tube profile (qualitative picture)

The lattice operator which characterizes the gluonic field
is usually taken as the correlation between the vacuum
action density Sð ~�; tÞ, and a gauge-invariant operator rep-
resenting the quark states. At finite temperature this must
be a pair of Polyakov lines. The action-density operator is
calculated through anOða4Þ improved lattice version of the
continuum field-strength tensor. Discretization errors are
reduced by combining several clover terms complemented
by tadpole improvement [16]. We take our measurements
with a three-loop field-strength tensor given by

FImp
�� ¼ X3

i¼1

wiC
ði;iÞ
�� ; (25)

where Cði;iÞ is a combination of Wilson-loop terms corre-
sponding to loops with lattice extent i used to construct the
clover term and wi are weights [16]. The reconstructed
action density,

Sð ~�Þ ¼ �
X
�>�

1

2
TrðFImp

�� Þ2; (26)

is accordingly measured on 20 sweeps of stout-link smear-
ing. This has the effect of the removal of the divergence in
the action density in the neighborhood of the quark posi-
tions. It is, however, very beneficial in obtaining a good
signal to noise to display the flux strength.

The correlation function Eq. (3) provides Cð ~�Þ> 0, and
C ’ 0 away from the quark position. The scaled flux

distribution �Cð ~�Þ ¼ 1� Cð ~�Þ in the plane of the q �q pair
is plotted in Figs. 5 and 6, for several q �q separation
distances R ¼j ~r1 � ~r2 j , at temperature T ¼ 0:8Tc. The

FIG. 5 (color online). The flux-distribution �Cð ~�; ~r1; ~r2Þ as
given by the characterization Eq. (3) in the plane of the
quark–antiquark pair ~�ðx; y; z ¼ z0Þ, for separation distances R
(a) 0.5 fm, (b) 0.6 fm, and (c) 0.7 fm at T ¼ 0:8TC. The spheres
refer to the position of the quark and antiquark.
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Polyakov-loop correlator is measured on 40 sweeps of link
smoothing. The distribution shows a peak in the middle
point between the q �q pair at small separation distance
R ¼ 0:5 fm. As the two quarks are pulled apart, the
distribution Cð ~�Þ decreases rapidly, the peak behavior

diminishes, and the distribution is almost constant at
R ¼ 0:8 fm. The qualitative description of these density
plots suggests a two-dimensional Gaussian-like behavior;
however, as we will see in the next section, careful mea-
surements of the widths at each perpendicular plane to the
q �q line yield different widths for large distances.
The behavior of the flux distribution around the outer

edges of the density profile does depend on finite volume
[36]. As a by-product of performing the simulations on
large lattice sizes to gain high statistics in a gauge-
independent manner, the two lattices employed in these
investigations are of a typical spatial size of 3:63 fm3

which does minimize the volume effect.
The curvature in the flux lines is manifesting itself as is

evident from the flux-contour plots in Fig. 7. The contour
plots reveal the form of the flux tube just before the
deconfinement phase T ¼ 0:9Tc, for q �q sources separated
by R ¼ 0:9 fm and R ¼ 1 fm, respectively. A similar plot
of the action-density isosurface at R ¼ 0:9 fm in Fig. 8
displays a three-dimensional version of Fig. 7 (prolate-
spheroid-like shape) for the flux tube. This geometrical
form of the density plot manifests itself at temperature T ¼
0:8Tc, which is known to be near the end of the plateau of
the QCD-phase diagram [37].
It is worth noting, nevertheless, that at zero temperature

the correlation of the action density with the Wilson loop
taken as a mesonic operator does not reveal this curvature
of the flux lines in the inner region between the q �q pairs at
large separation distance [4]. Thus we have illustrated how

FIG. 7 (color online). The flux-contour-line distribution in the
plane of the quark–antiquark pair z0, for separation distances of
(a) 0.9 fm, (b) 1.0 fm. The spheres denote the position of the q �q
pair, T ¼ 0:9TC.

FIG. 8 (color online). The flux isosurface passing through the
quarks, plotted together with a surface plot for the density
distribution in the q �q plane (inverted). The measurements are
taken on 80 sweeps of smearing for separation distance R ¼ 9a,
and T ¼ 0:8Tc. The lattice spatial extent is 363, � ¼ 6.

FIG. 6 (color online). Similar to Fig. 5 for source separation
distances R ¼ 0:8 fm.
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thermal effects show up in the action-density correlations
for the first time to the best of our knowledge [38].

2. Tube profile (quantitative aspects)

Usually studies carried out on the flux-tube laws of
growth focus their measurements on the central plane trans-
verse to the q �q line. At T ¼ 0, it seems also that there is a
wide belief that the tube has almost a constant cross-section
with a uniform energy-density profile for large q �q separa-
tions. Nevertheless, at high temperature where the string
tension is reported to decrease by a value around 10% at
T ¼ 0:8Tc [1], our calculations of the flux chromostrength
inside the meson (Figs. 5, 6, and 8) display a nonuniform
action-density pattern around the whole q �q line.

It was conceived a long time ago [40–42] that the QCD
vacuum behaves like a dual superconductor, and the color
field generated by a pair of quark sources is squeezed into a
thin stringlike object dual to the Abrikosov vortex by the
dual Meissner effect. It has been conjectured that this
squeezed flux tube [2] can vibrate as a free string. At
high temperature, one would expect higher modes relevant
to the collective degrees of freedom of the stringlike object
to give rise to new, interesting measurable effects, which
seem not only to be related to the law of the growth of the
tube’s width [14], but also to the width’s profile itself. The
string model’s solution, Eq. (19), informs us about how the
tube would behave behind its symmetry point in the
middle, and together with the observed chromofield profile
(Figs. 5–8), one is tempted to investigate this string effect
and establish a quantitative comparison between the model
and the glue profile in QCD. This is the aim of this section.

Different possible components of the field-strength ten-
sor in Eq. (25) can separately measure the chromoelectric
and -magnetic components of the flux. The action density,
however, is related to the chromofields via 1

2 ðE2 � B2Þ and
is the quantity of direct relevance to the comparison with
the string fluctuations [Eq. (14)]. The width of the flux tube
may be then estimated through fitting the density distribu-
tion Cð ~�Þ [Eq. (3)] in each selected transverse plane
~�ðxi; y; z0Þ to a Gaussian [6,11].
The width of the tube is defined as

w2ðxiÞ ¼
R
d2��2e�ð�2=w2ÞR
d2�e�ð�2=w2Þ : (27)

� is the set of vectors perpendicular to the q �q line in the xi
plane. The flux calculations with Polyakov lines as a
mesonic operator are well known to be distorted by statis-
tical noise. To take reliable measurements to reveal the
tube’s fine structure, we choose to perform our analysis on
the tube’s width at the highest temperature T ¼ 0:9Tc

where the scalar field Cð ~�Þ has smaller jackknife error
bars, even at very large distances. To further increase the
signal to noise ratio, the number of measurements has been
increased by a factor of 4. This has been done by updating
each raw gauge configuration 3 times each separated by 70

sweeps of Monte Carlo updates as described in Sec. II. To
avoid artificial reduction of the error bars, each set of four
configurations (original configuration together with three
new ones) has been included in the same jackknife sub-
ensemble, such that the variances are calculated with re-
spect to decorrelated bins (see also Ref. [1]). The density
distributions have been symmetrized around all the sym-
metry planes of the tube; the resultant average density Cð ~�Þ
is fit to a Gaussian of the form AðxiÞe�ðy�y0Þ2=w2

, with y0 on
the q �q line (see. e.g., Fig. 9). The Gaussian fits to the data
are for several transverse planes between two sources
separated by a distance of R ¼ 12a.
Table IV summarizes the measurements on both the

widths w2ðxiÞ and the amplitudes AðxiÞ of the flux tube,
in accord to these Gaussian fits at each transverse plane xi
to the q �q line. The coordinates xi are lattice coordinates
(lattice units) and are measured from the quark position
x ¼ 0. The uncertainties in width measurements at each
transverse plane are the standard asymptotic errors in the
Gaussian fits and are correlated. The flux-density measure-
ments at each source separation are taken on all smeared
sets of configurations. We will be mainly discussing results
for the set of configurations corresponding to 40 sweeps of
smearing. According to Sec. IVA, this level of gauge
smoothing leaves the q �q potential and force with insignifi-
cant effects for R> 0:6 fm. We also discuss the effects of
smearing on the gluonic profile. For a fixed source sepa-
ration, the measured values in Tables IVand V (taken on 40
smearing sweeps) are indicating, generally speaking,
changes in the tube width along the q �q line. The maximum
width is measured at the tube’s symmetry point in the
middle. At relatively small separations R< 0:9 fm, the
change in tube width along the planes is subtle. The
variation in the tube’s width, however, is more pronounced
at large source separation distances (see, e.g., Table V) in

 0
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FIG. 9 (color online). The density distribution Cð ~�Þ for sepa-
ration distance of R ¼ 12a, T ¼ 0:9Tc, plotted for the transverse
planes x ¼ 1, x ¼ 3, and x ¼ 6. The lines correspond to the
Gaussian fits to the density in each plane ~�ðxi; y; z0Þ.
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general qualitative agreement with the predictions of the
string picture Fig. 1. The growth in width with the increase
of the source separation is also maximum at the tube’s
center point. Since we focus here on comparing the tube
geometry to the string profile rather than the laws of
growth, we circumvent any ambiguity in measuring a

model’s fit parameters [Eq. (19)] by measuring the change
in the width of the tube at each corresponding plane with
respect to the central plane x0,

�w2 ¼ w2ðxiÞ � w2ðx0Þ: (28)

TABLE V. Similar to Table. IV, the widths of the flux tube are measured at each of the consecutive transverse planes xi from the
quark to the middle of the q �q line. The measurements for sources’ separation distances R ¼ 10a to R ¼ 13a.

Plane x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4 x ¼ 5 x ¼ 6
n ¼ R=a w2a�2 w2a�2 w2a�2 w2a�2 w2a�2 w2a�2

10 18.8(7) 19.4(6) 20.0(6) 20.4(6) 20.6(6)

11 19.4(7) 20.3(7) 21.3(7) 22.0(7) 22.3(8)

12 19.7(7) 21.0(7) 22.4(7) 23.4(8) 23.9(8) 24.1(9)

13 19.5(6) 21.0(7) 22.9(7) 24.4(8) 25.4(9) 25.8(9)

TABLE IV. The width and the amplitude of the flux tube at each of the consecutive transverse planes xi from the quark to the middle
of the q �q line. The measurements for sources’ separation distances R ¼ 6a to R ¼ 9a, for the temperature T ¼ 0:9Tc.

Plane x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4
n ¼ R=a A w2a�2 A w2a�2 A w2a�2 A w2a�2

6 0.160(3) 14.6(5) 0.191(3) 14.4(5) 0.202(3) 14.4(5)

7 0.165(3) 15.8(6) 0.199(3) 15.6(4) 0.218(4) 15.7(5)

8 0.165(3) 16.9(6) 0.199(3) 17.0(5) 0.221(4) 17.1(5) 0.229(4) 17.2(5)

9 0.162(3) 17.9(6) 0.195(3) 18.2(6) 0.217(4) 18.6(6) 0.228(4) 18.8(6)
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FIG. 10 (color online). The width difference �w2 ¼ w2ðxiÞ � w2ðx0Þ for q �q separations (a) 0.7 fm, (b) 0.8 fm, (c) 0.9 fm, and
(d) 1 fm, � ¼ 6, T ¼ 0:9TC for each depicted smearing level. The line denotes the width difference �w2 as predicted by the string
model Eq. (19). The lowest smearing level provides the best estimate of the width difference.
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This can provide a measure on how rounded or squeezed
the flux tube would be compared to the width of the string
fluctuations. Figure 10 shows the change in the tube width
calculated for separation distance R ¼ 0:7 fm to R ¼
0:9 fm, with uncertainties taken such that the standard
errors in the Gaussian fits are correlated, i.e., j eðxiÞ �
eðx0Þ j . In contrast with the predictions of the string
model, the tube has an almost constant width at R �
0:8 fm. The measured changes in width at the plane x ¼
1 deviate from that of the model at R ¼ 0:9 fm by a large
value of 75%. The deviations decrease as the sources are
pulled apart to 50% at R ¼ 1:0 fm, 25% at R ¼ 1:2 fm,
and good agreement between both profiles is reached at
R ¼ 1:3 fm and R ¼ 1:4 fm as can be seen in Fig. 11. The
change of the width measured at the inner-transverse
planes, however, agrees with the model at shorter dis-
tances, R ¼ 1:2 fm for the plane x ¼ 2 and x ¼ 3. In
general, the four plots in Fig. 11 show significant improve-
ment with respect to the model predictions compared to the
four plots at shorter distances in Fig. 10. The flux tube
shows an almost constant cross-section for R ¼ 0:8 fm in
disagreement with the string picture. At distances
0:8 fm<R< 1:1 fm, the lattice gluonic-distribution pro-
file is, geometrically speaking, more squeezed than the
free-string picture would imply. As the sources are pulled
farther apart, the disagreement decreases gradually and the
profiles of the glue and the string both compare well for
sources’ separations R * 1:2 fm.

To show the effects of smearing on the tube profile, the
data corresponding to all smearing levels are included in
Figs. 10 and 11. The lattice data indicate similar topology
for the flux tube for the analysis on 20 and 40 sweeps of
smearing at distance R ¼ 0:7 fm. For smearing levels of
40 and 60 sweeps, the measurements are revealing the
same topolgy for R * 0:9 fm. All smearing levels are
yielding the same flux-tube structure as can be seen in
Fig. 11 for distance scales R * 1:1 fm. This is consistent
with our earlier assertion of a general distance scale,
� ¼ 2Rs, which commences 2 times the radius of the
Brownian motion Eq. (23), as a range which is free of
smearing effects. For source separations where the tube
geometry is clearly affected by smoothing, as can be seen
in Fig. 10, the largest deviations from the model predic-
tions do occur at the lowest level of smearing where the
short distance physics is best preserved. The increase in
agreement between the model prediction and lattice data
at short distances 0:6 � R � 1:0 fm for measurements
taken on highly smoothed gauge configurations is, how-
ever, an interesting observation in its own right with physi-
cal implications that will be studied in detail elsewhere
[31].
The thermal effects are manifest in the gluonic profile,

giving rise to nonuniform widths. The string picture can
parametrize these profiles only at large distances. At short
distances on the other hand, the free-string picture does not
model the gluonic interactions on the scale of short
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FIG. 11 (color online). Similar to Fig. 10, the change in width is plotted for q �q separations (a) 1.1 fm, (b) 1.2 fm, (c) 1.3 fm, and
(d) 1.4 fm.
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distances which may become even more relevant in the
thermal regime [31].

3. Tube growth in width

The measured values in Tables IV and V indicate a
growth in the tube’s mean-square width at all transverse
planes xi as the color sources are pulled apart. The growth
in flux-tube width at each selected transverse plane can be
compared to the corresponding growth in the string fluc-
tuation Eq. (19); this comparison can be performed by
fitting the formula of Eq. (19) to the tube measured widths.
Table VI summarizes the resultant measurements of the fit

parameter and the corresponding �2
dof at four consecutive

transverse planes x ¼ 1 to x ¼ 4. The fits show strong
dependency on the fit range if the points at small sources’
separations are included. The highest value of �2 is re-
turned when fits include the whole range of sources’ sep-
arations, i.e., R ¼ 6a to R ¼ 13a. With the first four points
excluded from the fit, the returned �2

dof is smaller, indicat-

ing that only the data points at large source separation are
parametrized by the string model formula. The value of the
�2
dof gradually decreases as we exclude points at short

distance separations, and stability in the fit is reached
for widths measured for the plane x ¼ 1 at sources’

TABLE VI. The resultant measurements of the scale R0 for the first four consecutive transverse planes xi in accord to the fits of the
tube width to the string model formula Eq. (19). The values of the fit parameter, R0, and the corresponding �2

dof are presented for a

variety of fit ranges.

x ¼ 1 x ¼ 2 x ¼ 3 x ¼ 4
Plane fit range R0a

�1 �2
dof R0a

�1 �2
dof R0a

�1 �2
dof R0a

�1 �2
dof

6–10 0.017(4) 7.3 0.030(6) 8.2 0.040(9) 8.7

6–13 0.013(3) 9.5 0.023(5) 12.9 0.029(7) 15.6

7–13 0.010(2) 4.9 0.019(3) 8.3 0.024(6) 12.1

8–13 0.0093(8) 2.5 0.016(3) 6.1 0.019(4) 7.9 0.018(4) 8.9

9–13 0.0082(8) 1.1 0.013(1) 2.7 0.016(3) 4.2 0.016(3) 6.7

10–13 0.0074(4) 0.3 0.011(1) 1.0 0.013(1) 1.7 0.013(3) 4.9
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FIG. 12. The width w2ðxiÞ for q �q separations R ¼ 6a to R ¼ 13a at four consecutive planes (a) x ¼ 1, (b) x ¼ 2, (c) x ¼ 3, and
(d) x ¼ 4. � ¼ 6, T ¼ 0:9TC. The line denotes the string model, Eq. (19), fit of R0 to the data as described in the text.
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separations R> 0:7 fm, and at R> 0:8 fm for the plane
x ¼ 2. The fits are returning good �2

dof values for fits at the

planes x ¼ 3, 4 for sources’ separations R � 0:9 fm. In the
regions where the fits are returning good �2

dof , the values of

the fit parameters are almost equal for the planes in the
middle, x ¼ 2, 3, 4. However, at the closest plane to the
sources, x ¼ 1, the value of the returned parameter, un-
surprisingly, deviates from the corresponding one at other
planes. This is another manifestation of the above observed
deviations in the change in tube widths at this plane com-
pared to the central plane as emphasized in the discussion
surrounding Figs. 10 and 11.

Figure 12 shows data points and the corresponding best
fits to the string model at each plane; the string model at
finite temperature poorly describes the lattice data at short
distances. The plots depict the fact that the flux tube
observed in lattice gauge theory has a more suppressed
profile than the fluctuations of the free string would imply
at short distances. On the other hand, the growth of the
flux-tube diameter is manifest in the lattice data.

V. CONCLUSION

The gluonic distribution inside the static meson has been
revealed at finite temperature. The Monte Carlo simula-
tions have been performed on the SU(3) gauge group for
temperatures T ’ 0:8Tc and T ’ 0:9Tc. Noise reduction
has been achieved by a gauge-independent high statistics
approach, in addition to the employment of adequate levels
of gauge smoothing that preserve the relevant physics at
large distances. This method is variant to noise reduction
by Abelian gauge fixing. The flux tube, characterized as a
correlation between the action density and the mesonic
operator (Polyakov lines), has been displayed up to dis-
tances of 1.4 fm. The flux isolines and isosurfaces display a
curved profile along the tube. The profile is showing a
nonuniform action-density pattern unlike that observed
using Wilson’s loop as a mesonic operator at T ¼ 0. The
flux-tube width profile is compared to the corresponding
mean-square width of the free bosonic string fluctuations at
all planes between the color sources. For source separation
distances R> 0:8 fm, measurements of the tube cross-
section at each selected transverse plane show a nonconst-
ant width for the tube, with maximum width at the sym-
metry point of the tube. At small q �q source separations
0:8 fm<R< 1:1 fm, the tube is seen to yield a more
compact (squeezed) form than the string model would
predict. The deviations of the tube width profile from the
corresponding string profile decrease gradually as the
source separation increases. The profiles compare well at
R ’ 1:2 fm.

The gluonic profiles displayed in this investigation are
geometric manifestations of thermal effects on the q �q
potential (the measured decrease in the string tension).
Moreover, the squeezed gluonic profile in comparison to
the rounded string fluctuations provides a geometrical

interpretation for the deviations of the predicted string
tension based on the free-string picture from the corre-
sponding lattice results [1].
This study is motivating further investigations of the

energy-density and chromoelectromagnetic distributions
with methodological improvements that minimize the
number of smearing sweeps and increase the number of
measurements. It would also be interesting to confront
these profiles with the bosonic string profiles in the context
of string self-interactions. The string’s geometrical effects
(curved profiles) ought to be addressed in other gauge
groups. Work is progressing in these directions, in addition
to the detailed investigation of the thermal hadronic
gluonic distributions by straightforward generalizations
of the calculations presented here to baryons [43,44].
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APPENDIX A: SMEARING RADIUS

In the standard APE smearing, a smearing sweep con-
sists of a replacement of the link variableU�ðxÞ (� ¼ 1, 2,

3, 4) by the SUð3Þc projected link �U�ðxÞ that maximizes

the trace

Re Trf �U�ðxÞUy
s;�ðxÞg; (A1)

where

Us;�ðxÞ ¼ ð1� �ÞU�ðxÞ þ �

6

X
���

fU�ðxÞU�ðxþ �̂Þ

	Uy
� ðxþ �̂Þ þUy

� ðx� �̂ÞU�ðx� �̂Þ
	U�ðxþ �̂� �̂Þg; (A2)

where� is the smearing parameter. Consider, by analogy, a
scalar field �ðr; nþ 1Þ similar to the (nþ 1)th smeared
gauge link in the� direction. It is related to the scalar field
’ðr; nÞ at the n smearing time by correspondence to
Eq. (A2) via

�ðr; nþ 1Þ ¼ ð1� �Þ�ðr; nÞ þ �

6

X
���

ð�ðrþ a�̂; nÞ

þ�ðr� a�̂; nÞÞ: (A3)

Introducing a smearing time � ¼ na� with a spacing a�,
the finite difference smearing operator can be approxi-
mated by �n ’ a�@�. Applying this operator into
Eq. (A3) yields
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@��ðr; �Þ ’ a

a�

�

6

X
���

ð@��ðr; �Þ þ @��ðr� a�; �ÞÞ:

(A4)

It follows that

@��ðr; �Þ ¼ Dr2�ðr; �Þ;
with the diffuseness,

D � �

6

a2

a�
: (A5)

The unsmeared field corresponds to source,

�ðr; n ¼ 0Þ ¼ �ðrÞ: (A6)

The solution of the above initial value problem, Eqs. (A6)
and (A5), is a Green function of the heat equation Eq. (A5).
This gives the evolution of the scalar field in the smearing
time,

Gðr; �Þ ¼ 1

ð4	D�Þ3=2 exp

�
� r:r

4D�

�
: (A7)

The diffuse field is Gaussian distributed through a sphere
with a characteristic radius,

Rs �
�R

d3rGðr; �Þr2R
d3rGðr; �Þ

�
1=2 ¼ a

ffiffiffiffiffiffiffi
�n

p
: (A8)

APPENDIX B: CALIBRATION OF
SMOOTHING ALGORITHMS

Calibrating different smearing algorithms can proceed
via comparing the respective number of smearing sweeps
in each smearing schemewith respect to a certain threshold
[35]. The reconstructed action density [16] normalized to a
single instanton action S=S0 is the threshold adopted here.
Figure 13 shows the relative number of smearing sweeps
for different values of the stout-link smearing parameter �
compared to that at � ¼ 0:06 in the improved stout-link
smearing algorithm [18], with � ¼ �0:25. Assuming that
the number of smearing sweeps scales with the smearing
parameter as

nsð�2Þ
nsð�1Þ

¼
�
�1

�2

�
�
; (B1)

the fit of the logarithm of both sides in Eq. (B1) to a straight
line yields a slope � ¼ 1 as is depicted in Fig. 13. The
number of sweeps in the improved stout-link smearing,
therefore, scales inversely with the smearing parameters.
The standard APE smearing shows also the same scaling
behavior [35] and both algorithms can be calibrated
through

�napeð�Þ
�nsð�Þ

¼ c: (B2)

Calibration with respect to APE smearing at � ¼ 0:7
yields the proportionality constant c ¼ 6:15ð3Þ. Using
Eq. (A8) gives Rs ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
�cns

p
.
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