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Summary 19 

Predications about the ecological consequences of oceanic uptake of CO2 have been 20 

preoccupied with the effects of ocean acidification on calcifying organisms, particularly those 21 

critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing 22 

echinoderms). This focus overlooks the direct effects of CO2 on non-calcareous taxa, 23 

particularly those that play critical roles in ecosystem-shifts. We used two experiments to 24 

investigate whether increased CO2 could exacerbate kelp loss by facilitating non-calcareous 25 

alga that we hypothesised: (1) inhibit the recovery of kelp forests on an urbanised coast; and 26 

(2) form more extensive covers and greater biomass under moderate future CO2 and 27 

associated temperature increases. Our experimental removal of turfs from a phase-shifted 28 

system (i.e. kelp to turf-dominated), revealed that the number of kelp recruits increased, 29 

thereby indicating that turfs can inhibit kelp recruitment. Future CO2 and temperature 30 

interacted synergistically to have a positive effect on the abundance of algal turfs, whereby 31 

they had twice the biomass and occupied over four times more available space than under 32 

current conditions. We suggest that the current preoccupation with the negative effects of 33 

ocean acidification on marine calcifiers overlooks potentially profound effects of increasing 34 

CO2 and temperature on non-calcifying organisms.  35 

36 
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1. INTRODUCTION 37 

A vexing challenge to ecological research is to identify the perturbations that cause systems 38 

undergo shifts from one state to another (Scheffer et al. 2001). Shifts in systems often occur 39 

quite suddenly because their drivers can be insidious and combine to alter interactions or 40 

competitive relationships between key species (Suding & Hobbs 2009). Factors that subtly 41 

undermine the resilience of systems are generally unrecognised (Scheffer et al. 2001) and we 42 

have an incomplete understanding of the effects of long-term perturbations (e.g. marine 43 

eutrophication and switches in algal dominance; Smith & Schindler 2009). Nonetheless, 44 

ecosystems continue to change, and the need to understand how future conditions (e.g. 45 

climate) may contribute to this change has become a fundamental area of ecological research.  46 

 47 

The role of global environmental change in driving habitat shifts in marine ecosystems has 48 

received heightened attention (e.g. Hoegh-Guldberg et al. 2007; Hughes et al. 2007). Marine 49 

waters currently absorb approximately 30 % of the anthropogenic derived CO2 from the 50 

earth’s atmosphere and the resulting ocean acidification has been predicted to have drastic 51 

effects over the next 100 years (Feely et al. 2004; Orr et al. 2005). Unsurprisingly, research 52 

on the effects of climate change has a disproportionate focus on the effects of ocean 53 

acidification on calcareous organisms that form habitats (i.e. coral reefs’, Hoegh-Guldberg et 54 

al. 2007; Anthony et al. 2008; Kuffner et al. 2008) or maintain habitats (e.g. grazers Fabry et 55 

al. 2008; Byrne et al. 2009). However, research into the role of the changing climate in the 56 

loss of marine habitats has been largely restricted to tropical waters (i.e. coral reefs) while in 57 

temperate systems the focus has centred on individual organisms (e.g. Dupont et al. 2008; 58 

Parker et al. 2009). This focus has, to date, overlooked historical and continuing deforestation 59 

of algal canopies across the world’s temperate coastline (Eriksson et al. 2002; Airoldi & 60 

Beck 2007; Connell et al. 2008).  61 
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 62 

Kelp forests occur along the majority of the world’s temperate coastlines and are among the 63 

most phyletically diverse and productive systems in the ocean (Mann 1973). On many coasts 64 

where humans have altered chemical and biological conditions, however, canopies of algae 65 

(e.g. kelp forests) have been replaced by mats of turf-forming algae (Eriksson et al. 2002; 66 

Airoldi & Beck 2007; Connell et al. 2008). While kelp canopies inhibit turfs (Irving & 67 

Connell 2006; Russell 2007), developing theory explains shifts from canopy to turf-68 

domination as a function of reduced water quality that enables the cover of turf to expand 69 

spatially and persist beyond its seasonal limits (Gorman et al. 2009), subsequently inhibiting 70 

the recruitment of kelp and regeneration of kelp forests. Unlike kelps, many turf-forming 71 

species are ephemeral and require increased resource availability to enable their physiology 72 

and life history to be competitively superior to perennial species (Airoldi et al. 2008). It is 73 

critical, therefore, to identify future conditions that would have positive effects on turfs, 74 

thereby exacerbating the loss of algal canopies. 75 

 76 

Although recent studies have identified the effects of anticipated levels of acidification on 77 

calcareous temperate algae (e.g. Martin & Gattuso 2009; Russell et al. 2009), none has 78 

examined the effects of elevated CO2 and temperature on non-calcareous species such as 79 

algal turfs. Therefore, the purpose of our study was two-fold, to determine; (1) if turfs do in 80 

fact inhibit the recruitment of kelp under human mediated conditions (i.e. on a metropolitan 81 

coast), and if so; (2) to determine if future conditions could exacerbate the currently observed 82 

shift from kelp to turf-dominated reefs. We tested the hypotheses that (1) the removal of turfs 83 

on a metropolitan coast would cause greater recruitment of kelp, and (2) the abundance of 84 

turfs would increase under combined future conditions (i.e. elevated CO2 and temperature).  85 

 86 
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2. METHODS 87 

(a) Ability of turfs to inhibit kelp recruitment 88 

We first tested the prediction that the removal of algal turfs from turf-dominated ecosystems 89 

(i.e. degraded systems; Connell et al. 2008) would enable recruitment of kelp (Ecklonia 90 

radiata) to increase. Algal turf and associated sediment were removed from 12 replicate 1 m2 91 

plots to expose the underlying substrate. These plots and 12 replicate controls (1 m2 92 

untouched plots) were positioned within 5 m of remnant patches of canopy, which acted as a 93 

source of recruits. This procedure was repeated at three sites (separated by > 1 km) that were 94 

associated with both extensive covers of turfs and remnant patches of canopy on the Fleurieu 95 

Peninsula, South Australia. The number of kelp recruits in plots was quantified in April 2008, 96 

~12 months after turfs were removed.   97 

 98 

(b) Effect of future conditions on turfs 99 

Algal turfs were exposed to current and predicted future concentrations of CO2 (380 ppm and 100 

550 ppm, respectively) in crossed combination with ambient and elevated temperatures (17ºC 101 

and 20ºC, respectively) in a mesocosm experiment over 14 weeks from March – June 2008. 102 

Both future CO2 and temperatures were based on IS92a model predictions for the year 2050 103 

(Meehl et al. 2007), with the ambient temperature being the summer maxima at the algal 104 

collection site. There were two replicate mesocosms per combination of treatments (n = 5 105 

replicate turf specimens per mesocosm). 106 

 107 

The response of turfs to experimental conditions was assessed using three response variables; 108 

percentage cover and dry mass of algae recruiting to initially unoccupied substrate (5 × 5 cm 109 

fibreboard tiles), and effective quantum yield of algae on the original rock substrate. The 110 

percentage cover of algae was visually estimated to the nearest 5 % at the end of the 111 
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experiment (n = 5 tiles per mesocosm) as suggested by Drummond and Connell (2005). Dry 112 

mass of algae was measured by carefully scraping all algae from a standard area on each tile 113 

(6.25 cm2) into a pre-weighed aluminium tray, which was then rinsed with fresh water to 114 

remove excess salt and dried at 60°C for 48 hours. Fibreboard tiles were used as unoccupied 115 

substrate to remove confounding by any differences in either percentage cover or mass of 116 

algal samples that were placed into the experiments. Further, the tiles were placed into 117 

mesocosms with the rough side uppermost as turfs readily recruit to this surface (Irving & 118 

Connell 2002), which has similar roughness to basalt rock at the collection site.  119 

 120 

Chlorophyll fluorescence, a relative measure of the photochemistry of Photosystem II (Genty 121 

et al. 1989), was measured under the experimental light conditions using a Pulse Amplitude 122 

Modulated (PAM) fluorometer (Walz, Germany). Effective quantum yield (Y) was calculated 123 

using the equation Y = (F’m – F)/F’m (Genty et al. 1989), where F’m is the maximal 124 

fluorescence, and F the minimal fluorescence, under illuminated conditions (van Kooten & 125 

Snel 1990). F was measured by holding the fiberoptics of the PAM fluorometer in contact 126 

with the algal sample (in situ in mesocosms) and exposing it to a pulsed measuring beam of 127 

weak red light (0.15 µmol m -2 s-1, 650 nm) followed immediately by a pulse of saturating 128 

actinic light (0.8 s, 6000 µmol m-2s-1) to measure F’m (Beer et al. 1998). Each yield value 129 

used in the analyses was a mean of three replicate measurements taken on different parts of 130 

each algal sample so that yield was not underestimated due to recovery of the photosystems 131 

from repeated saturating light pulses.  132 

 133 

Turf specimens used in experiments were collected from a rocky reef at Victor Harbour, 134 

South Australia (35.57126ºS 138.61221ºE) at 2 m – 4 m depth. The turf assemblages used 135 

were comprised mainly of Feldmannia spp., which form densely packed mats of filaments up 136 
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to 2 cm in height. Turfs were collected still attached to their rocky substrate (approximately 137 

the same size; ~ 5 cm × 5 cm) and allowed to acclimate in holding mesocosms for two weeks 138 

before the experiment commenced. During acclimation, physical conditions in the 139 

mesocosms were similar to those at the collection site (i.e. 17ºC and current atmospheric CO2 140 

concentrations). Algae were then randomly re-assigned to mecosms in which experimental 141 

conditions were gradually increased over a further 2 week period until they reached their pre-142 

designated levels. All mesocosms were aerated at 10 L min-1, with either current atmospheric 143 

air or air enriched with CO2. Future concentrations of CO2 in water were maintained at 550 144 

ppm CO2 (pH 7.95, based on the IS92a model for 2050; Meehl et al. 2007) using pH probes 145 

attached to automatic solenoids (Sera, Heinsberg, Germany) and CO2 regulators. Probes were 146 

temperature compensated and calibrated using NBS calibration buffers on a daily basis. 147 

Elevated temperature was achieved by using heaters in the 20ºC treatment mesocoms. Total 148 

alkalinity (TA) of the seawater in mesocosms was measured on a weekly basis to monitor 149 

CO2 and bicarbonate (HCO3
-) concentrations (see online supplementary material for more 150 

detail).  151 

 152 

Each mesocosm system consisted of a 40 L experimental aquarium connected to a 200 L 153 

reservoir tank with water recirculated in a closed loop, ensuring that all replicate mesocosms 154 

were independent of each other. To ensure quality of the growing conditions in mesocosms, 155 

one-third of the water was removed from reservoir tanks and replaced with fresh seawater 156 

weekly (see Russell et al. 2009). Lighting was supplied in a 12:12 light:dark cycle by pairs of 157 

fluorescent lights directly above each mesocosm (see online supplementary material for more 158 

detail).   159 

 160 

(c) Statistical analyses 161 
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The effect of turf on kelp recruitment was analysed using a two-factor ANOVA, with factors 162 

of turf (turf present v. turf removed) and site (three sites). Both factors were treated as 163 

orthogonal, ‘turf’ as fixed, ‘site’ as random (n = 12 replicate plots). Data were Ln (X + 1) 164 

transformed before analysis to conform to assumptions of homogeneity. 165 

 166 

Analysis of the mesocosm experiment proceeded in two steps. First, three-factor ANOVAs 167 

were used to identify if there was any difference in experimental effects between replicate 168 

mesocosms for all measures (percentage cover, dry mass and effective quantum yield). Both 169 

CO2 and temperature were treated as fixed and orthogonal, with two levels in each factor, and 170 

two replicate mesocosms were nested within both CO2 and temperature (n= 5 replicate 171 

samples of algae per mesocosm). No differences were detected between replicate mesocosms 172 

within treatments (i.e. no “tank” effects). Therefore, to avoid pseudoreplication within 173 

mesocosms, data for the five algal specimens within each mesocosm were averaged, and data 174 

reanalysed using two factor ANOVAs; CO2 and temperature were again treated as fixed and 175 

orthogonal, with mesocosms as replicates. Where significant treatment effects were detected, 176 

Student-Newman-Keuls (SNK) post-hoc comparison of means was used to determine which 177 

factors differed. Percentage cover data were arcsin transformed prior to analysis to remove 178 

heterogeneity (Underwood 1981). 179 

 180 

3. RESULTS 181 

(a) Ability of turfs to inhibit kelp recruitment 182 

The removal of turfs resulted in the greater recruitment of kelp at all three phase-shifted sites 183 

(Fig. 1a). While there was significant difference in the number of kelp recruits among the 184 

three replicate sites, the number of kelp recruits was consistently greater in removal plots 185 
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than plots were turfs were left intact (turf removal × site interaction: F2,66 = 6.10, p = 0.0037; 186 

SNK: turf removal > turf intact at all three sites).  187 

 188 

(b) Effect of future conditions on turfs 189 

CO2 and temperature had an interactive effect on the percentage cover of turf-forming algae 190 

that recruited to available space (Fig. 1b; CO2 × temperature interaction, F1,4 = 7.73, p = 191 

0.0498).  Under current CO2 concentrations, temperature had a positive effect on the 192 

percentage cover of turfs that recruited to available space (Fig. 1b;  SNK test of CO2 × 193 

temperature interaction). In contrast, future CO2 had no effect on the cover of turfs at ambient 194 

temperatures (17ºC). When future CO2 and elevated temperature were present in 195 

combination, however, turfs occupied > 80 % of available space (Fig. 1b). Importantly, this 196 

represented a synergistic effect whereby turfs occupied 25 % more space than would be 197 

predicted by the independent effects of CO2 and temperature. 198 

 199 

Both elevated CO2 and temperature had positive effects on the dry mass of turfs (Fig. 1c; F1,4 200 

= 19.20, p = 0.0119 and F1,4 = 11.39, p < 0.0279, respectively). There is no graphical 201 

evidence of an interaction between these factors (Fig. 1c) as the increase in mass by CO2 is 202 

proportionally similar between the CO2 treatments, and vice versa. This interpretation is 203 

supported by the lack of a significant interaction term between these factors (F1,4 = 0.41, p = 204 

0.5558; power = 0.08) as shown by the effect of temperature in each CO2 treatment 205 

(approximately double the mass), and the effect of CO2  in each temperature treatment 206 

(approximately double the mass) (Fig. 1c).  Hence, the combined effects of CO2 and 207 

temperature are approximately four times greater than ambient conditions. 208 

   209 
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The effects of these factors on quantum yield were relatively small; yield of turfs was 5 % 210 

greater under future CO2 concentrations (Fig. 1d, ANOVA: F1,4 = 14.11, p = 0.0198) but 3 % 211 

less under elevated temperature (Fig. 1d, F1,4 = 16.73, p = 0.0150). Again, the proportional 212 

influence of each factor was similar within each level of the crossed factor (Fig 1d) as also 213 

indicated by the lack of a significant interaction term between these factors (F1,4 = 1.24, 214 

p = 0.3276; power = 0.14).  Whilst we report low power for non-significant interactions, we 215 

consider the combined effects of temperature and CO2 are indeed additive rather than 216 

multiplicative.  217 

 218 

4. DISCUSSION 219 

A substantial part of research into global environmental change centres on the negative 220 

effects of ocean acidification and increasing temperature on organisms that form calcareous 221 

structures (e.g. Fabry et al. 2008; Jokiel et al. 2008; Kuffner et al. 2008). While elevated CO2 222 

can be beneficial to plants in terrestrial systems (Ainsworth & Long 2005), there is little 223 

recognition of the positive effects on some non-calcareous marine species. Here, we show 224 

that predicted moderate concentrations of CO2 and temperature had a synergistic positive 225 

effect on the abundance of non-calcareous algal turfs. Yet, it is important to recognise that 226 

such positive effects could act as perturbations in ecological systems. Turfs form a natural 227 

component of the early successional stages of kelp-dominated landscapes. Under natural 228 

conditions algal canopies inhibit these algae (Irving & Connell 2006; Eriksson et al. 2007; 229 

Russell 2007), but under altered environmental conditions turfs expand (Connell 2007; 230 

Russell & Connell 2007) by inhibiting kelp recruitment (i.e. eroding resilience of forests). 231 

Our results indicate that kelp loss may be exacerbated on human-dominated coasts, by the 232 

positive effects of increasing CO2 and temperature on kelp inhibitors, motivating the need to 233 

assess such switches on coasts that are currently considered unaffected by human activity.  234 
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 235 

Recruitment that replenishes lost habitat-forming individuals is key to resilience against 236 

phase shifts in ecosystems founded on habitat-forming species (Pickett & White 1985). 237 

Disturbance is part of the dynamics of kelp forests which would otherwise fully occupy space 238 

(e.g. storms Dayton et al. 1984). We recognise that it is not so much the direct effects of 239 

climate stressors on kelp forests that may affect their future abundance, but rather the indirect 240 

loss of kelp via their competitors or inhibitors. Altering global (i.e. CO2) and local (i.e. 241 

eutrophication) stressors in combination can allow turfs to expand to more rapidly occupy 242 

available space (Russell et al. 2009). It is noteworthy that our experimentally increased CO2 243 

and temperature, two inherently linked global stressors, enabled turfs to occupy nearly five 244 

times more space than under current conditions. While it may be possible to mitigate the 245 

effects of climate-driven environmental change by removing nutrient inputs (e.g. recycling 246 

wastewater and sewage, Russell & Connell 2009), such actions would not be possible in the 247 

case of synergistic effects between multiple global stressors. Indeed, understanding the 248 

degree to which these factors will combine to accelerate and expand ecosystem-shifts is of 249 

key concern (Scheffer et al. 2001; Suding & Hobbs 2009). 250 

 251 

Increasing temperatures are commonly predicted to result in changes in marine communities 252 

because of a shift in the geographic ranges of species (e.g. Fields et al. 1993; Poloczanska et 253 

al. 2008). While community shifts have been observed, local conditions and competitive 254 

interactions may alter the outcomes (Helmuth et al. 2002; Poloczanska et al. 2008). In such 255 

cases, taxa that are natural components of a system may play substantially altered roles in 256 

their maintenance and disruption (Suding & Hobbs 2009). In Australia, Ecklonia radiata 257 

canopies have high rates of natural turnover, and their maintenance relies on rapid 258 

recruitment and replenishment into canopy-gaps in the winter months (Kennelly 1987b). 259 
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While turfs are a natural component of these kelp-dominated systems (Irving et al. 2004) they 260 

are ephemeral, rapidly occupying available space in summer but declining in cover and 261 

biomass over the colder months (Russell 2007; S.D. Connell, B.D. Russell, D. Gorman, A. 262 

Airoldi, unpubl. data). Importantly, Ecklonia radiata produce gametophytes, the smallest and 263 

therefore more susceptible stage of the life cycle, in the colder months when turfs are at their 264 

lowest abundance. Yet, we show that turfs increased in abundance under elevated 265 

temperatures, suggesting that future increases in temperature could allow turfs to be 266 

increasingly abundant throughout periods of naturally low abundance (i.e. winter). Similarly, 267 

turfs exhibit a phenological shift due to elevated nutrients (S.D. Connell, B.D. Russell, D. 268 

Gorman, A. Airoldi, unpubl. data), possibly leading to habitat shifts on urbanised coasts 269 

(Gorman et al. 2009). As algal turfs can inhibit kelp recruitment (Kennelly 1987a; this study), 270 

any phenological shift that allows turfs to persist though periods of kelp recruitment is likely 271 

to reduce the resilience of kelp forests to disturbance. While it is accepted that such habitat 272 

shifts are common on human-dominated coasts (Airoldi 2003; Connell 2007), temperature, 273 

unlike nutrients, will increase even on “pristine” coasts, potentially causing habitat shifts in 274 

the absence of local human populations.  275 

 276 

Loss of canopy-forming algae can be a consequence of overgrazing by increasing urchin 277 

populations (Estes et al. 1998), but in many parts of the world, including most of southern 278 

Australia, such deforestation is not possible because of the types and sparse densities of 279 

herbivores (Connell & Vanderklift 2007; Connell & Irving 2008).  Nevertheless, canopy-280 

forming algae has long been disappearing from human dominated coasts lacking strong 281 

herbivory, but experiencing strong water pollution (Eriksson et al. 2002; Airoldi et al. 2008; 282 

Connell et al. 2008), yet the specific mechanisms underlying this loss are often a point of 283 

conjecture and contention. Previous studies have demonstrated that some more erect forms of 284 
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turf-forming and foliose algae can dominate available space and inhibit canopy recruitment 285 

(Kennelly 1987a; Airoldi 2003) but, to our knowledge, ours is the first study to show that the 286 

removal of filamentous turfs can enhance the recruitment of kelp. By removing turfs from the 287 

substrate we created more available space for kelp recruits to settle and become established. 288 

As the creation of new space is a prerequisite for community change (Pickett & White 1985; 289 

Airoldi & Virgilio 1998), it is unlikely that these phase-shifted reefs (i.e. from kelp to turf 290 

dominated; Connell et al. 2008) will be able to return to domination by kelp canopies until 291 

the environmental conditions on these coasts revert to their more natural state (e.g. nutrients; 292 

Gorman et al. 2009). Nevertheless, we demonstrate that the removal of turfs can create the 293 

space necessary for the recruitment and recovery of kelp and that the observed phase-shift 294 

(Connell et al. 2008) may not be permanent. 295 

 296 

While the productivity of terrestrial plants stands to increase with predicted future CO2, 297 

especially in plants which utilise C3 photosynthesis (Ainsworth & Long 2005), there is still 298 

debate on whether this will be the case in marine algae. Most marine algae have carbon 299 

concentrating mechanisms (CCMs) which allow them to use bicarbonate for photosynthesis, 300 

meaning that photosynthesis is carbon saturated at current concentrations (Gao & McKinley 301 

1994; Beardall et al. 1998). Experiments have so far been inconclusive, with some species 302 

showing carbon saturation at current CO2 (e.g. Beer & Koch 1996; Israel & Hophy 2002), 303 

others demonstrating increased photosynthetic production with increasing CO2 (e.g. 304 

Holbrook et al. 1988), and yet others switching the source of carbon with greater CO2 305 

availability (e.g. Johnston & Raven 1990; Schmid et al. 1992). Yet, general consensus within 306 

the literature seems to be that algae with CCMs will not increase productivity under future 307 

conditions (see review by Beardall et al. 1998). It is no surprise, then, that the positive effects 308 

of CO2 on algae have not been a substantial part of the climate change literature; if 309 
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productivity is not enhanced by elevated CO2, then why look for ecological effects? Our 310 

experiments do not clarify this issue with respect to photosynthetic activity of algae; we 311 

found a small increase (~ 5 %) in the effective quantum yield of turfs under future 312 

concentrations of CO2, but this seemed to be counteracted by elevated temperature. 313 

Nevertheless, it seems that elevated CO2 conditions can cause an increase in the growth 314 

(Kubler et al. 1999) and abundance (Andersen & Andersen 2006; Kuffner et al. 2008; Russell 315 

et al. 2009) of non-calcareous algae and this deserves more attention. We propose that 316 

elevated inorganic carbon has positive effects on some taxa, and that the non-uniform effects 317 

among alternate taxa (review by Gao & McKinley 1994) have relatively unexplored 318 

ecological consequences, particularly if growth is limited by sources of inorganic carbon.  319 

 320 
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Figure Legend 492 

Figure 1. (A) The inhibitory effect of turf on recruitment of kelp at three phase-shifted sites 493 

(i.e. kelp-domination to turf-domination) with treatments of turf presence and turf removal, 494 

and the effect of forecasted CO2 and temperature on turfs as observed by (B) recruitment to 495 

available space (percentage cover), (C) biomass (dry mass), and (D) effective quantum yield. 496 

Note: “0” in A signifies no kelp recruits. 497 

 498 

499 
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