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HThL ABSTEACT

Noisy excitation of nonlinear oscillator arrays

MW Hamilton, T Hill and L. Stamatescu,

Department of Physics and Mathematical Physics,
The University of Adelaide, Adelaide SA5005, Australia

Abstract: We measure the composition of collective mode resonances in the intensity fluctuations
of a multimode laser by separating the laser modes with Fabry-Perot interferometers and applying
transfer function and cross-spectrum techniques. Comparison of the transfer function with the
power spectrum of the fluctuations in individual cavity modes shows features that are attributable to
the difference between single frequency excitation and noisy excitation of the collective mode
resonances. These data together with the cross-spectra of the modal intensity fluctuations, highlight
a need for greater understanding of the mechanisms of noisy excitation of a nonlinear oscillator
array.

Although this conference is about unsolved problems of noise, this paper is in
many ways more about opportunities than problems. The two are really just opposite
sides of the one coin. It is well known and not particularly surprising that noise has an
important effect on the dynamics arrays of nonlinear oscillator arrays. To begin with,
the nonlinearity implies frequency mixing effects whereby all components of the noise
contribute to the excitation of any particular collective mode resonance of the array.
In a different context the concept of attractor crowding [1] has been identified as
making large arrays very sensitive to the presence of noise. However well-controlled
experiments in which quantitative measurements are made of the dependence of array
behaviour on the statistics of the noise are lacking. This is the main point that we wish
to make in this paper.

In nonlinear dynamics experiments with noise fall into two broad categories;
first is those experiments where intrinsic or ambient noise is known to be present, the
noise being introduced and adjusted in the modelling to explain the data [2]. The
second category is those experiments in which noise is deliberately added to the
experiment and its effects noted. It is in the latter that the statistical properties of the
noise can actually be changed experimentally and the response of the system to
changing statistics checked. There have been some experiments of this latter type, but
by and large they have been confined to analogue electronic circuits [3] with only a
few exceptions such as in optical bistability [4]. This type of experiment has been
used in studies of nonlinear spectroscopic processes with some success. For example,
the different effects of random telegraph and Gaussian noise on two photon processes
in the microwave [5] and optical regimes [6] have been measured. Optical processes
lend themselves to this type of experiment because it is relatively easy to control the
external influences. However there is a limitation in using optical processes in that
one cannot follow the dynamical evolution directly because of the short timescales
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(~1fs) involved. In this paper we describe an experiment in which we apply this
approach to a nonlinear oscillator array where the characteristic timescale is of order
1ps, so that dynamical changes can be directly recorded.

We use a continuous wave multi-mode neodymium laser as a nonlinear
oscillator array to study the composition of the collective mode resonances; i.e. how
much each cavity mode of the laser contributes to the amplitude of each collective
mode. A laser cavity mode is defined essentially by mA/2 = L, where m is an integer
mode index, 4 is the wavelength and L is the optical path length between the mirrors
which constitute the cavity. (All modes of interest have the same transverse mode
structure.) The cavity mode responds to a sudden change in its operating conditions
by oscillating about its new operating point; these are relaxation oscillations. In a
multi-mode laser the relaxation oscillations constitute an array coupled by gain sharing
and in some cases by processes such as four wave mixing. For the laser to be
considered useful these oscillations must be reasonably well damped so that the
system relaxes quickly to its operating point. In many lasers (such as Nd3+ or COj)
modulation of the input power, or some other parameter, near the natural frequency of
the relaxation oscillation can drive the laser into limit cycle or chaotic operation [7].

Since the cavity modes have different wavelengths they can be separated with
filters (Fabry-Perot interferometers in our experiment), which enables transfer function
and cross-spectral techniques to be applied to the individual modes while they are still
part of the array. We illustrate this idea in figure 1, where two Fabry-Perots are
shown, each isolating a single laser mode. To obtain a transfer function we modulate
the power of the pump (i.e. the diode laser which drives the Nd laser) at a frequency
that is scanned from about 4 kHz to 55kHz. If we are willing to eschew the phase of
the transfer function, the maximum frequency is about 100kHz. This modulation
could be applied to a different parameter of the laser but the pump power is a very
convenient choice. The response of either the total laser intensity, or one the modes
extracted from the beam with a filter, is detected with a photodiode connected to a
signal analyser (Hewlett-Packard HP35670A) which measures the strength of the
response and its phase with respect to the modulation. It is this phase information
which is crucial in being able to say whether, for a given collective mode, the
relaxation oscillations of two laser modes constructively or destructively interfere.

pump
laser

Nd: YAG rod

FIGURE 1 A schematic drawing of a multimode Nd laser, end pumped by a laser diode, illustrating
the filtering of individual modes by Fabry-Perot interferometers (FP). The photodiode detectors (D) are
shown but electrical connections are omitted. The shaded lines represent totally or partially reflective
optical coatings. The cavity is defined by the coatings shown on the Nd:YAG rod and the mirror.
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Destructive interference in this context, where the constituent oscillators are either in
phase or 180° out of phase, is known as antiphasing. By fitting the measured complex
transfer function to a sum of partial fractions, the pole-residue representation of the
transfer functions, we are able to "unravel” the collective modes, determining how
much each laser mode contributes to each collective mode and with what phase [8].
This is information that we cannot get from the intensity noise power spectra of the
individual laser modes. Almost all experiments with multi-mode lasers have
considered only power spectra [9] which by nature, or definition, lack phase
information. One exception to that is an early work where the transfer function
magnitude (but not phase) was presented [10].

Comparison of the power spectrum for a mode with the transfer function of the
same mode shows intriguing differences. For one laser mode extracted from the beam
during five mode operation, we illustrate this difference in Fig. 2. This mode is the
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FIGURE 2. Collective mode resonances for a laser operating in five longitudinal modes. a) power
spectrum of intensity for mode 3 (third to pass threshold) b) magnitude of transfer function for mode
3. Note the different horizontal scales between a) and b). The four peaks in b) correspond to the four
labelled peaks of the same frequencies in a). The ordinates of each graph have a arbitrary linear scales.
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third to reach threshold as the pump power is increased to the operating point. In Fig.
2a, we show the power spectrum of intensity noise. The five peaks between 10kHz
and 100kHz are the collective mode resonances. The highest frequency one (labelled
“5”) is what is usually regarded as the relaxation oscillation peak; indeed if this were
the power spectrum for the total intensity, this would be the only peak visible and only
vestiges of the other four would survive because of destructive interference between
the oscillators. For such a spectrum to be measurable, the array is excited by ambient
noise, such as vibrations, and by intrinsic noise such as spontaneous emission. Figure
2b shows a measured transfer function for the same mode as in Fig. 2a, giving the
magnitude of the complex response to a single-frequency perturbation of the pump
strength. The phase of the transfer function is not shown. The scale is expanded to
show only the four lowest frequency collective resonances. The heights of the four
peaks in the group between 10kHz and 40kHz, with respect to each other, are
dramatically different between Figs. 2a and 2b, especially for those peaks labelled “1”
and “2”. This is one instance of the problem to which this paper is directed, namely
how noise affects the contributions of the constituent oscillators to the collective
modes of an array. Before discussing how one might attack this question
experimentally, we shall briefly examine another aspect of the problem.

A different technique which we have developed to look at antiphasing is that of
measuring cross-spectra between the fluctuations of pairs of laser modes. The modes
are separated by filters as in the transfer function technique, and the intensity
fluctuations of two modes are recorded simultaneously with a fast analogue to digital
converter. The cross spectrum, which is the Fourier transform of the cross-correlation
function, is then calculated on a computer. This is a complex valued quantity. An
example of a cross spectrum between two laser cavity modes is shown in figure 3.
Peaks at the collective mode frequencies are seen in the magnitude of the cross
spectrum, and the relative phases can be used to deduce whether the two laser modes
are contributing to collective modes in phase or out of phase.

Given the cross spectra of the other cavity mode pairs, one can quite easily
deduce the “pattern” of antiphasing; i.e. which cavity mode pairs exhibit constructive
or destructive interference at a given frequency. However one would like also to be
able to quantitatively measure the makeup of the collective modes. At first glance it
might appear that this can be done from the peak heights in the magnitude of the cross
spectrum, but in the light of Fig. 2, it is not clear whether this is true, since in the
measurement of a cross spectrum the excitation of the array is by ambient noise.

How should we proceed from here? What we intend to do is to apply noise
(random telegraph noise in the first instance) to the modulation of the pump intensity
and thus provide a random component to the excitation of the array. Then by varying
the strength and the statistics of the noise we will be able to measure the effect of
noise on the system. However important experimental questions remain: To what
variable should we apply noise?; are transfer functions and cross spectra the best
quantities to measure?

Another worthwhile question to ask is, can these techniques be applied to other
types of nonlinear oscillator array? What makes the Neodymium laser attractive for
this work is the fact that its relaxation oscillation frequency is relatively low, so that
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FIGURE 3. An example of the cross spectrum of the intensity fluctuations of two laser modes, in three
mode operation of the laser. In this case the fluctuations in modes 1 and 3 are recorded. The numbering
of the laser modes is as for Fig. 2. The three peaks in the magnitude correspond to the three collective
mode resonances. The rightmost peak corresponds to the relaxation oscillation peak that would be seen
in the power spectrum of the intensity fluctuations in the total power. The phase in the cross spectrum
for this peak corresponds to constructive interference: the phase for the other two peaks differs by 180°
and thus indicates that modes 1 and 3 destructively interfere at these two collective mode frequencies.

high resolution (12 - 16 bit) analogue to digital recorders can easily follow the
dynamical evolution. Of great technological significance are diode lasers which are
multi-longitudinal mode devices, even though only one mode may have any
significant intensity. To account for the dynamical properties of these lasers it is
essential to recognise that other longitudinal modes may become dynamically
populated with photons. Even in continuous operation these other modes do have
some photons and it is the antiphase dynamics of these modes that is one source of the
interesting sub-Poissonian noise statistics of these lasers. A problem is that the
characteristic frequency of the relaxation oscillations is ~2GHz, so that heterodyne
techniques would be necessary to record phase information in the intensity
fluctuations.

Another aspect of diode lasers that makes them interesting as nonlinear arrays
is the technique of making high power devices by laying several low-power diodes
side by side in a “bar”. Several bars can then be stacked to make an even higher
power device. The low-power diodes in such an array are coupled because of
transverse light leakage from one diode junction to a neighbouring junction. Recent
advances in the “fibre-pigtailing” of such arrays, where a bundle of fibres collects the
light from the junctions could perhaps be extended so that an individual fibre would be
associated with an individual junction to enable the separation of a single array
element from the total output. (This is analogous to the technique of using filters to
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select particular longitudinal modes from the Nd laser output.) One would then be in a
position to use the transfer function and cross-spectrum techniques as a diagnostic for
the further development of these arrays. A third important nonlinear array in physics
is the array of Josephson junctions. Tt was in studies of these arrays that the
phenomenon of antiphasing was first noted [11] and other phase relationships between
the oscillators, such as splay phase states, were identified. ~The characteristic
frequencies involved in this case are very high, ~50GHz, so that heterodyne
techniques to record the phase of a transfer function would again be necessary.
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