

Regulation of Gene Expression of the 25-Hydroxyvitamin D 1α-Hydroxylase (CYP27B1) Promoter: Study of A Transgenic Mouse Model

Ivanka Hendrix

School of Molecular and Biomedical Science

The University of Adelaide

South Australia

A thesis submitted for the degree of

Doctor of Philosophy

to

The University of Adelaide

March 2004

Table of Contents

Abstract		ix
Declaratio	n	xii
Acknowled	lgements	xiii
Publicatio	ns Arising	xiv
Presentatio	ons Arising	xiv
Awards Ar	ising	xv
List of figu	ires	xvi
List of tabl	les	xxi
	·	
1	Chapter 1: Activation of 25-Hydroxyvitamin D	1
1.1	Introduction	1
1.2	Vitamin D Metabolic Pathway	2
1.2.1	Vitamin D 25-Hydroxylase	2
1.2.2	25-Hydroxyvitamin D 1α-Hydroxylase	5
1.2.3	25-Hydroxyvitamin D 24-Hydroxylase	6
1.3	Actions of 1,25D	8
1.3.1	Calcium Homeostasis	8
1.3.2	Reproduction	12
1.3.3	Immune System	13
1.3.4	Cellular Growth and Differentiation	14
1.4	Renal and Non-Renal Expression of the CYP27B1 Gene	15
1.5	Regulation of CYP27B1 Expression in the Kidney	17

1.5.1	Parathyroid Hormone	17
1.5.2	1,25D	18
1.5.3	Growth and Development	19
1.5.4	Calcium	20
1.5.5	Lipopolysaccharide	20
1.5.6	Others	21
1.6	Non-Renal Sites of 1,25D Synthesis and Action	22
1.6.1	Macrophages	22
1.6.2	Brain	23
1.6.3	Bone	24
1.6.4	Testis	25
1.6.5	Skin	26
1.6.6	Intestine	27
1.6.7	Placenta	28
1.6.8	Ovary	29
1.6.9	Colon	29
1.6.10	Prostate	31
1.7	Conclusion	33
1.8	General Aims of this Thesis	34
2	Chapter 2: Regulation of Expression of the Human CYP27B1 Gene Promoter:	36
	Establishment of a Transgenic Mouse Model	

2.1	Introduction	36
2.2	Materials and Methods	38

2.2.1	Materials	38
2.2.1.1	Chemicals	38
2.2.1.2	Buffer Solutions	38
2.2.1.3	Loading Buffer for Electrophoresis	38
2.2.1.4	Formamide	39
2.2.2	Animals	39
2.2.2.1	Housing and Diet	39
2.2.2.2	Record Keeping	39
2.2.3	Preparation of DNA Fragment for Microinjection	40
2.2.3.1	Synthesis of pGL3-CYP27B1-Luciferase Vector	40
2.2.3.2	Isolation of DNA Fragment for Microinjection	40
2.2.3.3	Purification of DNA Fragment for Microinjection	43
2.2.4	Transgenesis	44
2.2.4.1	Superovulation of Female Mice	44
2.2.4.2	Embryo Retrieval	45
2.2.4.3	Pro-Nuclear Injection	46
2.2.4.4	Embryo Transfer	46
2.2.5	Genotyping of Transgenic Offspring	46
2.2.5.1	DNA Extraction from Tail Biopsies	46
2.2.5.2	Quantification of Genomic Mouse DNA	47
2.2.5.3	Preparation of a DNA Luciferase Probe	48
2.2.5.4	Genotyping of Transgenic Founders by Southern Blot Analysis	49
2.2.5.4.1	Gel Electrophoresis and Nylon Membrane Transfer	49
2.2.5.4.2	Pre-Hybridization of the Nylon Membrane	50
2.2.5.4.3	Hybridization of the Nylon Membrane with a Labeled Luciferase Probe	50

2.2.5.4.4	Washing of the Nylon Membrane and Visualization of the Radioactive Signal	51
2.2.5.5	Genotyping of Subsequent Transgenic Offspring by PCR	52
2.2.6	Analysis of Reporter Gene Expression	54
2.2.6.1	Tissue Collection	54
2.2.6.2	Preparation of Tissue Homogenates	54
2.2.6.3	Measurement of Luciferase Activity	54
2.2.6.4	Measurement of Protein Content	56
2.2.7	Characterization of the Transgenic Lines	57
2.3	Results	58
2.3.1	The Transgenic Construct Used in this Project	58
2.3.2	Transgenic Founders	60
2.3.3	Inheritance Pattern of the Transgenic Construct	61
2.3.4	Tissue-Specific Reporter Gene Expression in Line 3042	63
2.3.5	Tissue-Specific Reporter Gene Expression in Line 3039	63
2.3.6	Tissue-Specific Reporter Gene Expression in Line 2992	66
2.4	Discussion	66
3	Chapter 3: Regulation of Reporter Gene Expression in the Kidney by the	72
	CYP27B1 Promoter	
3.1	Introduction	72
3.2	Materials and Methods	74
3.2.1	Animals	74
3.2.1.1	Transgenic Animals	74
3.2.1.2	Housing	75

3.2.1.3	Diet	75
3.2.1.4	Semi-Synthetic Diet	75
3.2.1.5	Blood Sample Collection	78
3.2.1.6	Record Keeping	78
3.2.2	Blood Biochemistry	79
3.2.2.1	Serum 25-Hydroxyvitamin D ₃	79
3.2.3	Statistical Analysis	79
3.2.3.1	One-Way Analysis of Variance	79
3.2.3.2	Tukey's Post-Hoc Test	79
3.2.4	Chemicals	80
3.2.5	Effect of Aging	80
3.2.6	Effect of Dietary Calcium and Vitamin D Manipulation	80
3.2.7	Effect of Lipopolysaccharide Administration	81
3.2.8	Enzymatic Luciferase Activity and Protein Assays	82
3.2.9	Analysis of Endogenous Gene Expression	83
3.2.9.1	Total RNA Extraction	83
3.2.9.2	Quantification of Total RNA	84
3.2.9.3	First-Strand DNA Synthesis	84
3.2.9.4	Quantitative Real-Time Reverse Transcriptase–Polymerase Chain Reaction	85
3.2.10	Immunohistochemistry	88
3.3	Results	89
3.3.1	Serum Biochemistry	89
3.3.2	Effect of Aging on Gene Expression in the Kidney	90
3.3.3	Effect of Dietary Calcium on Gene Expression in the Kidney	90
3.3.4	Effect of Vitamin D-Deficiency on Gene Expression in the Kidney	91

3.3.5	Effect of Lipopolysaccharide on Gene Expression in the Kidney	95
3.3.6	Immunohistochemistry	95
3.4	Discussion	95
4	Chapter 4: Effects of Aging, Lipopolysaccharide Administration and Dietary	104
	Calcium and Vitamin D on Reporter Gene Expression in Extra-Renal Tissues	
4.1	Introduction	104
4.2	Materials and Methods	105
4.2.1	Animals	105
4.2.1.1	Transgenic Animals	105
4.2.1.2	Housing	105
4.2.1.3	Diet	106
4.2.1.4	Semi-Synthetic Diet	106
4.2.1.5	Blood Sample Collection	106
4.2.1.6	Record Keeping	106
4.2.2	Blood Biochemistry	106
4.2.2.1	Serum 25-Hydroxyvitamin D_3	106
4.2.3	Statistical Analysis	107
4.2.3.1	One-Way Analysis of Variance	107
4.2.3.2	Tukey's Post-Hoc Test	107
4.2.4	Chemicals	107
4.2.5	Effect of Aging	107
4.2.6	Effect of Dietary Calcium and Vitamin D Manipulation	108

4.2.7 Effect of Lipopolysaccharide Administration

109

4.2.8	Enzymatic Luciferase Activity and Protein Assays	109
4.2.9	Analysis of Endogenous Gene Expression	110
4.2.9.1	Total RNA Extraction	110
4.2.9.2	Quantification of Total RNA	110
4.2.9.3	First-Strand DNA Synthesis	110
4.2.9.4	Quantitative Real-Time Reverse Transcriptase–Polymerase Chain Reaction	110
4.2.10	Immunohistochemistry	111
4.3	Results	111
4.3.1	Effect of Aging on Reporter Gene Expression in Non-Renal Tissues	111
4.3.2	Effect of Dietary Calcium on Reporter Gene Expression in Non-Renal Tissues	122
4.3.3	Effect of Vitamin D-Deficiency on Reporter Gene Expression in Non-Renal	122
	Tissues	
4.3.4	Effect of Lipopolysaccharide Administration on Reporter Gene Expression in	128
	Non-Renal Tissues	
4.3.5	Immunohistochemistry	128
4.4	Discussion	133
5	Chapter 5: Summary and Conclusions	143
	Bibliography	149

Abstract

The enzyme 25-hydroxyvitamin D 1α -hydroxylase or CYP27B1 is the key enzyme in the two-step activation process by which vitamin D is converted to its biologically active form 1,25-dihydroxyvitamin D (1,25D). The actions of a number of regulators on the renal CYP27B1 enzyme activity have been recognized for some years, although the underlying molecular mechanisms remain largely unknown and the DNA regions involved in the *in vivo* regulation of gene expression by these factors have not been delineated as yet.

In order to identify the regulatory regions through which these factors control CYP27B1 expression in the kidney *in vivo* and to study the spatial and temporal expression of the CYP27B1 gene during development, a transgenic mouse model was established. This model was developed using pro-nuclear injection of a DNA construct containing the firefly luciferase reporter gene under the control of the 1541 bp region of the human CYP27B1 promoter.

Following pro-nuclear injection, three transgenic founders were obtained and bred to establish three independent transgenic lines. In all three lines, a very similar expression pattern of the luciferase reporter gene was detected. High levels of luciferase activity were detected in the kidney, brain, testis, skin and bone. Lower levels of luciferase activity were detected in heart, lung, liver, distal small intestine, skeletal muscle and spleen extracts. No reporter gene expression could be detected in the proximal small intestine. This animal model was used to identify the ability of the 1541 bp promoter region of the CYP27B1 gene to respond in the kidney to a number of physiological challenges including dietary calcium, vitamin D and the immunomodulator LPS. In addition, the temporal expression of the reporter gene was studied by sacrificing animals at 6 different time points (2, 4, 6, 8, 12 and 64 weeks of age). The functionality of the CYP27B1 promoter was verified by comparing the regulation of the expression of the reporter gene with that of the endogenous CYP27B1 gene. The expression of endogenous CYP27B1 mRNA levels was therefore determined using Real-Time RT-PCR.

The expression of the reporter gene and the endogenous CYP27B1 mRNA levels in the kidney were increased during early development (2 week old animals) and fell with increasing age. Reporter gene expression and CYP27B1 mRNA levels were down-regulated in response to increasing amounts of dietary calcium in a dosedependent manner. Vitamin D-deficiency resulted in an increase in both the reporter gene and CYP27B1 expression. However, the increase in CYP27B1 mRNA levels was substantially higher than the increase in reporter gene expression, suggesting that other regulatory elements are required to maximize the effect of vitamin D-deficiency. LPS administration did not affect the expression of either luciferase or the endogenous CYP27B1 gene in the kidney.

Immunohistochemistry was used to identify the cell-specific location of the luciferase and the endogenous CYP27B1 protein in the kidney in kidney sections of vitamin D-deficient animals. Both luciferase protein and the endogenous CYP27B1 protein were identified in the proximal tubular cells of the kidney.

The regulation of the expression of the reporter gene was also studied in the transgenic mouse model in a number of extra-renal tissues that have been shown to express CYP27B1 and to be responsive to 1,25D. These tissues include heart, liver, lung, femora, bone marrow, skeletal muscle, testis, skin, brain, spleen and proximal and distal small intestine. Although in most tissues, the expression of luciferase was highest in the 2 week old animals and fell with increasing age, in the testis, the expression levels were low in the developing animals and increased with increasing age.

No physiological significant effects were detected in any of the extra-renal tissues examined in response to dietary calcium and vitamin D, suggesting that these factors control CYP27B1 expression in a kidney-specific manner. In addition, no physiologically significant effect of the LPS administration could be detected in these tissues.

Future studies employing transgenic animals which express transgenic constructs containing both the CYP27B1 promoter and upstream and/or intronic sequences are required to identify the factors that regulate CYP27B1 expression in the different tissues and to delineate the DNA regulatory regions through which these factors exert their effects *in vivo*.