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Abstract time. A second possibility is that the set of entities indkixg

. . i the category label can change over time, as when new mem-
Many kinds of objects and events in our world have a strong - hers are added to a family. Another example of this is the
time-dependent quality. However, most theories about con- . .
cepts and categories are either insensitive to variatier ov  natural category abLANETS: in 2006 Pluto was officially re-
time, or treat it as a nuisance factor that produces irration ~ moved from the category, after having been originally added
order effects during learning. In this paper, we presente-ca  in 1930. The third option is that the characteristics of gem
gory learning experiment that explores people’s abilitiearn in the category can change due to some combination of the

categories whose structure is strongly time dependenigti | . ; ; :
of the results, we suggest that order effects in categeizat two: for instance, selection effects result@gmRAFFE necks

may in part reflect a sensitivity to non-stationary enviremts, becoming longer, omOTH wings getting darker.

and that understanding dynamically changing conceptsrare a In addition, categories may differ in ttierm of their vari-
important part of developing a full account of human catego-  ation over time. For instance, many dynamic categories cap-
rization. ture cyclical or sinusoidal variationMONTHS, DAYS, and
Keywords categorization, change detection, concepts, dy- HOURSare all defined in terms afherein the cycle they oc-
namics, time dependence, order effects cur as well as certain characteristic features. Sundaydeare
fined as coming after Saturday and before Monday, and may
contain features like “don’t have to work”, “go to churcht, o
“have brunch with friends.” Other categories might capture

Categorization in a Non-Stationary World other sorts of variation. For instance, the categorgaks
o ) . Jhas seen a more-or-less steady change in some of the crucial
At no two moments in time are we presented with the “same’taatures (e.g., “maximum speed”, “quietness of engine), et
world. Objects move, plants and animals are born and diggjnajly, in some categories the form of the variation ritasif
friends come and go, the sun rises and sets, and so on. Moéﬁange over time. The categarpMPUTERSshifted dramat-

abstractly, while some of the rules that describe our worlqca”y about 50 years ago, when the set of things indexed by
(.g., physical laws) are invariant in our everyday exXpeIee e japel jumped in a fairliscrete fashion from “people who
others (e.g., legal rules) are not. Given some appropifaie t - 5\cylate things” to “machines that calculate things”. cgin
scale, certain characteristics of an entity or clas_s Oﬁ"?et' then, the feature values for digital computers have changed
can change; moreover, they may tend to changgsiematic  po in discrete ways (e.g., vacuum tubes were replaced by

ways. The event category DAILY TEMPERATURES, forin-  yansistors) and continuous ways (the number of transistor
stance, has a natural yearly period and a gradual rising trer, o« grown exponentially).

over the last 100 years due to anthropogenic global warming,
in addition to geographlc variation. In the context of famri| The Importance of Order
everyday categories, people are highly sensitive to clanige
this kind: if asked to predict the temperature 6 months fromlf the world has this dynamic quality — that is, if the observ-
today, people will give quite different answers than if atke able structure of our experiences changes over time — then
to predict the temperature tomorrow. That is, people do noone of the major consequences for human learning is that the
simply modify predictions in amd hoc or senseless fashion order of our observations matters. |If told that the average
as the time of the future point draws ever more distant, as wéemperatures over recent weeks week were 21, 25, 27, 30, 29,
can tell by comparing their predictions of the temperatare i 33 and 32 (but did not know whether the scale was Celsius,
12 months to the others. Rather, they appear to be attundehhrenheit, or something else), the rising sequence makes i
to particular details of the nature of the dynamic variaiion most likely that the season &°RING if told the same tem-
category structure. peratures in reverse order, the most likely season would be
There are at least three ways that dynamic qualities mighaUTUMN. Accordingly, a sensitivity to the “dynamic” char-
emerge as categories change over time. First, the chagacteracter of categories is of considerable value to any systamm th
tics of the individual entities that make up the categoryldou seeks to reason sensibly about a changeable world.
each change over time. The social categorygfFAMILY Despite its ubiquity and utility, dynamic variation in cate
has this property, for instance: even in the unlikely eveatt gory structure is not typically taken into account in exglan
the membership does not change (no births, deaths or matiens or models of categorization. Order effects in catger
riages), family members themselves grow and change oveion are themselves well-studied, but are generally vieasd

“Nothing endures but change.” — Heraclitus

419



. A
A AA TAA ép
AAA A
0sf A A 0.8
§ |An g 5
© 0.6 A T 0.6 =
Q 1]
° AN A AN 4\ A ° E
[%] 1] (%]
2 A A = 2
p=}
£ 0.4 A A £ 0.4 E
v A A B G
A
02 A N 0.2 0.2 0© o,
A D
A A A Oé)
0 A LA 0 ’ : : : / 0 ®
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
trial number trial number trial number

Figure 1: Data from the three categories used in the expati(MeDEPENDENT (left), SINUSOIDAL (middle) andDISCRETE JUMP(right)).
All three consist of the same set of stimuli organized adegrdb different kinds of sequential structure. The coni@nbdf using triangles
to depict theNDEPENDENTCategory, squares for tt@NUSOIDAL category and circles for theISCRETE JuMPcategory will be maintained
throughout the paper.

resulting from imperfections in memory and learning (e.g., Experiment
Kruschke, 2006; Sakamoto, Jones, & Love, 2008). Whethegr experiment is loosely inspired by the approach taken by

these process limitations are seen to emerge_due to the U8 kamoto et al. (2008), in which simple unidimensional cat-
of ad hoc (Anderson, 1990) or rationally motivated (San- gqories are used, and the various category distributidfes di
born, Griffiths, & Navarro, 2006) computation strategiés, i gnjy in terms of the order in which people observe the stim-
is implicitly assumed that in most cases people shooide ji “we extend the design by (1) allowing for a broader range
sensitive to order information when learning new categorie ¢ sequential dependencies, (2) constraining the categsc
While this is undoubtedly true in many cases, and we imagingnat the sequential dependencies become necessary to diffe
that in general processing limitations play an importai 1o gniate the categories, and (3) using a predict-the-nektza
during learning, it need not be universally the case. In,fact,ye|| a5 a classification task. The rationale for incorpogti
there are a number of cases in which these “limitations” mighyy,e prediction task is to see if people are not just sensitive
actually be sensible adaptations: for instance, forggtid  gequential dependencies, but also able to extrapolatenthe u
information is a reasonable strategy in a changing world (An gerjving trends to the future. In short, we seek to discover
derson & Schooler, 1991), as is deliberately downgradieg thhe extent to which people can uncover and exploit category-
value of such information (Welsh & Navarro, 2007). dependent variations in their observations about the world
As this discussion illustrates, one of the central assump-
tions in most descriptions of order effects is that they grmer M ethod

because of the nature of the cognitive mechanisms or goasyrticipants. Thirty-two people were recruited from a paid

of the learner, rathe;r th_an primarily due to.the; dynamlccst(u participant pool largely consisting of undergraduate psyc

ture of the categories in the world. That is, in a categorizapgy students and their acquaintences. The experiment took
tion context, order effects are assumed to be arbitrary. Iibjace as part of a series of three unrelated studies, whith to

contrast, some recent research has suggested that the-temg@proximately 1 hour to complete. Participants were pait $1
ral structure of observations is crucial for rational léagn  for their time.

loosely mirroring ideas from the memory literature (Ander- o _ ) )

son & Schooler, 1991), when training data are autocorrélateCategory structures.  Stimuli consisted of lines of different

in some fashion, then order effects are a hallmark of goodengths presented on a computer screen; lengths varied from
reasoning, not bad (Yu & Cohen, 2009). However, even thigPProximately 1cm (stimulus location “0”) to 5cm (stimulus
does not capture the important insight that categoriesrdiff ~ location “1”).> Al categories made use of the ambiguous
theform of that autocorrelation, and that a reasonable learneflistribution of category locations shown in Figure 2, buthwi
should be sensitive to those dynamics as well. three d|ff_erent orderl_ngs of stlmu_ll. (T_hat is, in all cates,

In this paper we present data from an experiment in whicf]fheI locations 0; thﬁ |tecrjns.wer§ identical; qategorlﬁs_ chifle
people are presented with unidimensional stimuli that vary only In terms of when during the presentation each item was
particular time-sensitive ways. We show that people are, inS10Wn). In t(REINDEPENDENT category, there was no time-
deed, sensitive to this dynamic variation in category $tmec dependent structure: the stlm_ul| were ordered_randomly. In
in some instances the sequential structure leads people FaeD'SCRETE Jumpcategory, items from the middle of the

(correctly) believe that the environment is highly prealie, Ocation distribution were shovx_/n first, followed by items to
while in other cases the structure can (again, correctid le ward the upper end, and then items from the lower end, with

people to suspect that future observations will be unrelate the final three items being chosen from the top end. Finally, i

the past. These results suggest that a full understanding OF 1\ that for half of the participants the mapping was resgrs

human categorization will require an understanding of howstimulus location “0” corresponded to the longer lines, nwtion
people think about dynamic as well as static categories. “5" to the shorter lines.

420



ever, participants were explicitly told that the “prograemst

in the cover story had no clear intention about what should
come next, and were primarily interested in soliciting epin
ions rather testing any explicit idea about what the “right”
answer should be.

10

Prediction condition. In the prediction condition, partic-
ipants were shown the stimuli in all three categories (i.e.,
including theINDEPENDENT category as well as theiNu-
SOIDAL andDISCRETE JUMPcategories). On every trial they
were shown a line and its accompanying label (eithex,
WUG or FAF) and asked to predict the length of the next line,
which would be a member of the same category.
Instructions in this condition were thus similar to the in-
structions in the categorization conditions, except that t
opening scenario involverhFs as well asvuGsandDAXES.
Also, instead of asking people to make classification deci-
sions, the stimuli were labelled, and participants weredsk
to predict the length of the next observation of each. Specifi

) cally, they were told that they would
the SINUSOIDAL category, the line lengths changed smoothly

according to a sinusoidal function. The three categories ar
shown most clearly in Figure 1, which shows the data presen-
tation as a function of time for each of them.

frequency

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
stimulus location
Figure 2: The marginal distribution of the locations of tlaegory
members is a noisy arcsin variate with additional mass near
The intent when constructing this distribution was thagtitself
somewhat ambiguous, and easy to convert to the three categor
used in this experiment and shown in Figure 1.

be shown a coloured “WUG” line on the screen, and you'll be
asked to guess how long the next WUG will be, which you
can do by positioning the crosshairs on screen and clicking the
mouse. You'll see a series of 50 DAXES, followed by 50 WUGS

.. . and then 50 FAFS, so in total you'll need to make 150 decisions.
General procedure. Participants were randomly assigned

either to a categorization condition or to a prediction dend After being shown all 50 items in each series, participants

tion. In both conditions, the cover story was constructealto  were asked to predict the lengths of the next 5 members, but
low for time-varying categories without explicitly dravgmt-  were not given feedback.

tention to the non-random ordering of items. The line leagth

were tied to a pseudo-artifact cover story (a computer gamé?eSUHS

that suggested the existence of systematic rule-goveated ¢ We consider the categorization data first, which present an
egories. odd puzzle, and then turn to the prediction data, which help

Categorization condition. The training phase for the cate- to resolve it.

gorization condition was a standard supervised learnisky ta
The instructions in this condition were:

Categorization condition. Figures 3 and 4 shows the gen-
eral pattern of results for the categorization conditiome T

Imagine that you're helping with the alpha testing for a new plot on the left hand side of the Figure 3 shows a con-

iPhone game. When finished, the game is going to involve
things called WUGS and things called DAXES, and players of
the game will need to learn which is which. At the moment, the
developers don't have any flashy graphics, but they are testing
some ideas about how DAXES and WUGSdiffer. So, for the mo-
ment, they're trying to figure out how hard or how easy different
“DAX—-WUG rules” are. With that in mind, they've put together a
demo in which DAXES and WUGS are just lines on the screen,
and they’d like you to try to figure out which is which, using the
length of the line as a cue.

The onscreen display was designed to mimic the appea
ance of a mobile phone. Participants were shown a line an
asked to guess the label. They responded using the keyboa

densed description of the training data in which white-oedo
markers denote trials in which people performed better than
chance, and black markers display trials in which perfor-
mance was below chance (trials that were indistinguishable
from chance are not shown). Figure 4 expands this some-
what, plotting the average probability of a correct resjgons
for every trial in the experiment.

To determine which trials were at chance, which were
above and which were below, we used a simple Bayesian
flata analysis method involving three hypotheses alqtite
grobability of a correct response on trt3d The chance hy-

Rpthesis iHy : 6 = % while the two non-chance hypotheses

and received immediate feedback as to the correct labell. HahreH.;. : % <B<landH_:0<6< % For the two non-

of the lines belonged to theINUSOIDAL category, and half
to theDISCRETE JuMPcategory. These items were randomly
interleaved: the complete sequence of 100 items is shown i
the left panel of Figure 3.

chance hypotheses, we assume a uniform prior over the ad-
missable values 0® (which makes the model a incomplete
beta-binomial model, and straightforward to evaluate; see
e.g., Gelman, Carlin, Stern, and Rubin (1995)). We assume

After the training phase was complete, participants wereghat each hypothesis is equally likedypriori, and choose the

asked to classify an additional 15 transfer item®A&sES or

one that is most likely having observed the data. It is this

WUGS, and in this case no feedback was given. The transfeanalysis that produces the colorings shown in Figure 3.

items were presented in a random order, and covered most of The central point is that the sequential dependencies are
the range of possible line lengths in the task (though due to alearly strong enough for the distinct categories to be dis-

coding error the transfer items were slightly “off-centes8e  tinguishable from each other, even though they both consist
right panel of Figure 3). Before these were presented, howef the exact same set of entities. This is in part because on
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Figure 3: Categorization condition results. Data from tléning phase (left) and transfer phase (right). For thieitng data, circles denote

items belonging to theISCRETE JuMpPcategory, and squares show items belonging t&tRe@sOIDAL category. The white-colored markers
correspond to trials in which participants’ classificat@etisions were better than chance, whereas the blackecbtoarkers display those
trials where people performed below chance. On some tr&af®pnance was statistically indistinguishable from dwlevels: no markers

are plotted for those trials. Despite the fact that bothgmries index the exact same collection of objects (Figuran®) are differentiated

only by the time-dependent order effects, participantegly perform well. For the transfer data (right panelk tirey squares denote
stimuli that people classified as belonging to heuSOIDAL category, with dots marking the other trials.

any given trial the conditional distribution over the cunte 1
observation for the two categories is negatively corrélate
(r = —.47), which provides some basis for distinguishing be-
tween the two. However, in order for people to exploit this
correlation, they need to be able to predict correathgre at
least one of the categories is currently generating dather-ot
wise the correlation is useless. The sequential depenetenci
are critical for this purpose, and people are clearly ab&xto
ploit them, as illustrated on the left panel of Figure 3. That
is, the fact that most markers are white-colored implie$ tha
on most trials people possessed some knowledge about tt
category label.

Despite the evidence that participants appear to exploit or
der effects during learning, the transfer data appear on firs —0— sinusoidal
glance to suggest that they fail to do so during transfer. The % 10 20 @ 40 s s 70 8 s 100
columns in the right panel of Figure 3 show the transfer clas- tfial number
sifications of each participant. As is evident, most partic-Figure 4: Probability of a correct classification, as a fiorcof trial
ipants produce internally consistent transfer data in tvhic number and category. Chance is 50%.
shorter lines are assumed to belong to one category andrlonge
lines to the other — but there is no conseriseiween partici- ~ whatever learning has taken place does not seem to lead to
pants as to which is which. any consistent pattern of discrimination between the cate-

These results present us with something of an oddity. Owgories on transfer. To resolve this anomaly, we turn to the
the one hand, people must be able to uncover and use thfata from the prediction condition.
sequential (_jep_endenmes, since they are clearly able tio IeaPrediction condition.
the categorization rules during the training phas¢owever,

0.5

probability correct

probability correct
o
[$2)

Figures 5-7 shows the average pre-
dictions made by people during the training phase (left pan-
—— ) els) and their typical predictions in the transfer trialglit
eacr']\‘g;?ethg: tgﬁa?natgsdgvg?tti?neetegpIr?w%rvgrettrr:gtr grer%%fe:eﬁggth%anels). In each figure, the solid line in the left panel indi-
learned ruglje gbOUDAg(ES andwueéflips. Eit¥1er way, peopl% are cates participants’ predlqtlons at each pomt;_the pr&_mst
sensitive to time-dependent variation, so we leave theeigfuhe ~ Made on the 5 transfer trials are summed up in the histogram

precisenature of this sensitivity for future work. in the right panel. For instance, the right panel of Figure 5
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Figure 5: Prediction conditiontNDEPENDENT category. The left
panel shows the average sequential prediction strategiyhyspeo-
ple (solid line) and corresponding 95% confidence inter{dtsted

lines), plotted against the true locations (circles). Tigatrpanel
shows the distribution over predictions made on the tranisfe

als. Not surprisingly, the average prediction on a triatrial basis
shows no pattern. What matters, however, is that the tratrédiés

fairly closely reproduce the marginal distribution in Fig2.

Figure 6: Prediction conditionSINUSOIDAL category. The left
panel shows the average sequential prediction strategytyspeo-
ple during training, and the right panel shows the corregpan
transfer generalizations. People accurately track theseidal vari-
ation as one might expect, but more importantly the distigiouon
transfer has a genuingredictive quality, since the typical transfer
location prediction is lower than the location of items ir timost
recent trials.

shows the modal prediction to be between location 0 and 0.few trials’ worth of data after that shift, making it uncless

A comparison of Figures 5-7 provides a robust indicationto Whether those datapoints indicate a “real” shift (like th
that participants are successfully categorizing on thestifs ~ On€ that occurred around trial 30) or not. This uncertainty
the time-dependent presentation of items (if such depenyden iS evident in the transfer data, which show a high degree of
exists). Results from theyDEPENDENT category, shown in  €ntropy. The transfer predictions do not match the original
Figure 5, demonstrate that when there is no time-dependefftcation distributions (as in Figure 2), suggesting thatipa
dictions, whether during training or transfer. Indeed,diee o not reflect coherent beliefs about the future (as insthe
tribution of predictions aboutitem location during thetséer ~ NUSOIDAL category shown in Figure 6). o
trials closely matches the distribution of item locationsidg _This may explain performance in the categorization con-
training (as shown in Figure 2): participants are not irifggr ~ dition, where we observed that most participants produced
any additional pattern. internally consistent data and tended to assume that shorte

By contrast, results from theinusoIDAL andpiscreTe  lInes could be classified into one category and longer lines
JUMP categories indicate that participants were sensitive tdto another. As Figure 6 makes clear, participants leaened
the distinct time-dependent category structure of each- Fi Nighly consistent predictive model for future data gerextat
ure 6 illustrates that people clearly understood the sidaso TOM the SINUSOIDAL category, but did not appear to do so
structure of the category during training, and their perfor for the DISCRETE JuMPcategory (Figure 7). Presumably,
mance on the transfer trials demonstrates that they are ul1€ fact that the future behavior of the category was well-
ing this structure to correctly predict what they would seeinderstood by people only in one case made the transfer task
next. The transfer performance is especially interestieg b I the categorization condition quite difficult.
cause simple heuristics like “predict what has been happen- . .
ing” would not capture what humans are doing here, since General Discussion
they (correctly) extrapolate that the next items should berhese results demonstrate that human learners are quite sen
found at a location lower than any of the most recent ones. sitive to time-dependent variation in category structaieg

Figure 7 is interesting because it demonstrates an apparewe suggest that this sensitivity is not always a result ofcha
divergence between training and transfer performance, (an@cteristics of memory and learning, such as processing lim-
thus, an explanation of participant behavior in the categoitations or rational discounting of past information. Rath
rization condition). The training data indicates that jgart  because the observable structure of our experiences change
pants were able to induce the time-dependent structuresof thover time, a rational learner should be attuned to that varia
category reasonably well, although they showed considierabtion and be able to use it where it is relevant. Our experiment
uncertainty about the sudden shift occurring at the very endffers a demonstration that at least in this very simple ,case
of the sequence. This is sensible, because there are onlyhamans are surprisingly successful at doing this.
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observable features. The idea that categorization can also
occur on the basis of regularities ov@me may provide a

O true location

average prediction way to synthesize areas in cognitive science that are thypica
1 seen as distinct. For instance, the study of linguistic Know

edge and use is focused on understanding how humans cate-
08 gorize a particular sort of time-dependent variation (nigme

sequences of words or phonemes). Regardless of whether
the same sorts of cognitive abilities that underlie categer

tion of non-linguistic time-dependent regularities algplg

to linguistic ones the answer promises to add a great deal to
our understanding of language as well as categorization.

0.6

stimulus location
prediction

0.2 Conclusion

In sum, these results show that human learners are capable of
0 learning time-dependent category structure. We suggast th
a rational learner should be sensitive to such structunegesi
5 T R TR o 10 2 sequential structure is an essential characteristic df bat-

trial number frequency ural categories (e.gsSPRINGandAUTUMN) and created cat-
egories (e.g.BULL MARKETS andBEAR MARKETS). More-

Figure 7: Prediction conditiorniSCRETE Jumpcategory. The left  Over people are appropriately influenced by tbem of the
panel shows the average sequential prediction strategyhyspeo- ~ dependency — assuming th@dMPUTERSchange likeSEA-

ple during training, and the right panel shows the corredjmn ~ SONSwould be inappropriate. As a consequence of this sen-
transfer predictions. The predictions in this case areortsle,  sitivity, we suspect that order effects in categorizaticstym
though it is clear that there is considerable uncertainyualbhe  not always be entirely due to processing or memory limita-
sudden shift that occurs at the end of the sequence: thegavpra-  tions. As we move toward a fuller understanding of human

diction at the end is regressed a long way to the middle. Timis u ot , P ; infati
certainty is reflected in the transfer predictions, whicidoreflect ﬁgfc?s tr(l)zggoenx’pﬁsagg s sensitivity to this sort of 'on

either the marginal distribution (as per Figure 5) or anyereht be-
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