

Molecular Detection of Occult Disseminated Disease in Breast Cancer Patients

Michael P Raynor, B.Sc. (Hons)

A thesis submitted in total fulfillment of the requirements for the degree of Doctor of Philosophy

University of Adelaide

Department of Medicine

The Queen Elizabeth Hospital

July, 2003

Table of Contents

Table of Contents	ii
Abstract	vii
Declaration	ix
Acknowledgements	x
Table of Tables	xii
Table of Figures	xiii
List of Abbreviations	xiv
Chapter 1 – Introduction and Literature Review	
1.1 Overview	1
1.2 Breast Cancer	1
 1.2.1 Epidemiology 1.2.2 Etiology 1.2.3 Classification 1.2.4 Staging 1.2.5 Prognosis 1.2.6 Treatment 1.2.7 Detection of disseminated disease 	1 2 3 5 5 7 7 7
1.3 Molecular Detection of Disseminated Disease	10
 1.3.1 DNA based assays 1.3.2 DNA markers of dissemination in plasma 1.3.3 RNA based assays 1.3.4 RNA markers of dissemination in plasma 1.3.5 RT-PCR and breast cancer 	10 11 13 14 15
1.4 Immunobead Based Detection Methods	16
1.4.1 Immunocytochemistry, cytomorphology, and microscopy 1.4.2 Immunobead PCR (IB-PCR) 1.4.3 IB RT-PCR	16 18 20
1.5 DNA Methylation	24
 1.5.1 CpG islands 1.5.2 Methylation and development 1.5.3 Mechanisms for repression of transcription 1.5.4 Methylation and aging 	24 25 25 26

1.6 Methods for Methylation Analysis	27
1.6.1 Southern blotting	27
1.6.2 Bisulphite modification	27
1.6.3 Methylation-specific PCR (MSP)	28
1.6.4 Methylation-sensitive single stranded conformation analysis (MS-SSCA)	28
1.6.5 Methylation-specific single nucleotide primer extension (Ms-SNuPE)	29
1.7 Methylation Changes and Cancer	29
1.8 Genes Methylated in Breast Cancer	32
1.8.1 BRCA1	33
1.8.2 E-cadherin	34
1.8.3 Estrogen receptor (ER)	34
1.8.4 Retinoic acid receptor beta 2 (RAR β 2)	35
1.8.5 p16	36
1.8.6 Mammary derived growth inhibitor (MDGI)	37
1.8.7 14-3-3σ	37
1.8.8 Twist	38
1.8.9 Cyclin D2	38
1.8.10 Adenomatous Polyposis Coli (APC)	39
1.8.11 ABO	40
1.9 Plasma DNA Methylation as a Marker of Disease	40
1.10 Aims	43
Chapter - 2 Materials and Methods	
2.1 Materials and Solutions	44
2.2 Cell Culture Methods	47
2.2.1 Thawing cell lines	47
2.2.2 Subculturing cell lines	47
2.2.3 Freezing cell lines for storage	47
2.3 Manipulation of Blood Samples	48
2.3.1 Blood sample collection	48
2.3.2 Immunobead enrichment of epithelial cells	48
2.3.3 Mononuclear cell isolation from peripheral blood	50
2.3.4 Plasma DNA extraction	50

2.4 Molecular Biology Methods

2.4.1 DNA extraction method	51
2.4.2 DNA quantitation	51
2.4.3 RNA extraction	52
2.4.4 RNA quantitation	52
2.4.5 Reverse transcription (RT)	52
2.4.5.1 Standard RT method	52
2.4.5.2 Single cell RT method	53
2.4.5.3 Immunobead RT method	53
2.4.5.4 Immunobead RT-PCR sensitivity determination	53
2.4.6 Polymerase Chain Reaction (PCR)	54
2.4.6.1 Oligonucleotide design	54
2.4.6.2 Methylation specific PCR (MS-PCR) oligonucleotide design	54
2.4.6.3 PCR method	57
2.4.6.4 Agarose gel preparation	57
2.4.6.5 Electrophoresis and visualisation	57
2.5 Methylation Methods	57
2.5.1 Bisulphite modification of DNA	57
2.5.2 Purification of modified DNA	58
2.5.3 Cloning MSP products	59
2.6 DNA sequencing	59
2.7 MSP sensitivity	60
2.8 Plasma DNA sensitivity	61
Chapter 3 - Optimisation of the RT-PCR Detection of Immunomagnetically Enriched Carcinoma Cells	
3.1 Introduction	62
3.2 Methods	63
3.2.1 Cell lines	63
3.2.2 RNA extraction	64
3.2.3 Peripheral blood mononuclear cell (PBMNC) isolation	64
3.2.4 Single cell lysis and reverse transcription	64
3.2.5 PCR analysis	65
3.3 Results	65
3.3.1 Expression of markers in breast cancer cell lines	65
3.3.2 Expression of markers in single tumour cell/100 PBMNC aliquots	66
3.3.3 Expression of markers in 100 PBMNCs	70

51

3.3.3 Expression of markers in 100 PBMNCs

Chapter 4 – Immunobead RT-PCR Analysis of Breast Cancer Patient Blood Samples

4.1 Introduction	81
4.2 Materials and Methods	83
4.2.1 Patient samples	83
4.2.2 Methods	84
4.3 Results	84
4.3.1 Sensitivity experiment	84
4.3.2 Immunobead RT-PCR analysis of blood samples	84
4.3.3 Expression of RT-PCR markers by stage	87
4.3.4 Expression of markers by tumour size	87
4.3.5 Expression of markers by lymph node status	88
4.3.6 Expression of markers by grade	88
4.3.7 Expression of markers by grade	89
	89
4.3.8 Expression of markers by ER/PR status	
4.3.9 Individual RT-PCR Marker expression	90
4.4 Discussion	93
Chapter 5 – DNA Methylation Analysis of Normal Individuals	
5.1 Introduction	105
5.2 Materials and Methods	106
5.2.1 Normal Individual Blood Samples	106
5.2.2 Methods	106
5.2.3 Statistical Methods	106
5.3 Results	107
5.3.1 MSP Sensitivity	107
5.3.2 Confirmation of Complete Conversion after Bisulphite Modification	109
5.3.2.1 DNA integrity	109
5.3.2.2 Modification conditions	109
5.3.2.3 Confirmation of complete conversion by cloning and sequencing	110
5.3.3 DNA Methylation Analysis of Normal Individuals	112

5.3.3.1 Bisulphite modification control	112
5.3.3.2 Individual gene methylation analysis	112
5.3.4 Statistical Analysis	116
5.3.4.1 Association of gene methylation and sex	116
5.3.4.2 Association of number of genes methylated with age	116
5.3.4.3 Associations of individual gene methylation with age	117
5.3.4.4 Associations between RAR β 2, APC, ABO, ECAD, Twist, CycD2 and BRCA1	119
5.4 Discussion	120

Chapter 6 - Plasma DNA Methylation and IB MSP Analysis of Breast Cancer Patient Blood Samples

6.1 Introduction	127
6.2 Materials and Methods	128
6.2.1 Patient Samples	128
6.2.2 Methods	129
6.3 Results	129
6.3.1 Plasma DNA Extraction Sensitivity	129
6.3.2 Plasma DNA Methylation	131
6.3.3 Plasma DNA Methylation and IB-RT-PCR Association	134
6.3.4 Plasma DNA Methylation and Prognostic Markers	134
6.3.5 Immunobead MSP Analysis	136
6.3.6 IB RT-PCR, Plasma DNA, and IB MSP Associations	138
6.4 Discussion	139
Chapter – 7 Final Discussion and Future Directions	144
7.1 Final discussion and future directions	144
Bibliography	152

Abstract

A major clinical dilemma in the management of patients with early stage breast cancer is determining which patients are at risk of subsequent recurrence so that these patients may be offered adjuvant therapies. Currently, the major prognostic factors used in determining prognosis including nodal status and tumour size fail to identify up to 30% of patients classified as having low risk disease who subsequently recur with breast cancer. Therefore, there is a great need for new methodologies that can sensitively and specifically identify disseminated disease.

During this study, the major aims were to use immunobead-based and methylation-based methods for the detection of occult disseminated disease in peripheral blood samples obtained from breast cancer patients. Firstly, an RT-PCR assay was developed that identified a panel of gene specific markers that could be used for sensitive and specific detection of any circulating epithelial cells with minimal risk of false positive results from contaminating haematopoietic compartment cells. These gene markers were used to assess breast cancer patients using immunobead enrichment prior to RT-PCR (IB RT-PCR) and resulted in the detection of circulating epithelial cells in 21/57 peripheral blood samples. Importantly, some of these patients had been deemed lymph node negative and at low risk of relapse.

Furthermore, it was decided to screen for gene promoter region methylation in freely circulating DNA in the plasma fraction, and in DNA from the nuclei of epithelial cells captured using the immunomagnetic enrichment method. The analysis of gene loci methylation of patient samples was conducted concurrently with the analysis of the frequency of gene loci methylation in mononuclear cells from normal individuals. Surprisingly, a high proportion of normal individuals were methylated at high frequency at gene loci that have

previously been reported to be tumour specific. This finding had implications for the concurrent study using methylation as a marker of occult disseminated disease in breast cancer patients.

The analysis of blood samples using the methodology presented in this thesis for the early detection of breast cancer dissemination, has the potential to be developed to a point where it can be introduced into the clinical setting. Once fully developed and validated, this minimally invasive methodology, that causes little discomfort to the patient, could help to improve breast cancer staging, and provide important prognostic information ensuring the identification of those early stage breast cancer patients with the greatest risk of relapse and in most need of adjuvant therapies.