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Artificial neural networks (ANNs) are a form of artificial intelligence that has proved to provide a high level of competency in
solving many complex engineering problems that are beyond the computational capability of classical mathematics and traditional
procedures. In particular, ANNs have been applied successfully to almost all aspects of geotechnical engineering problems. Despite
the increasing number and diversity of ANN applications in geotechnical engineering, the contents of reported applications
indicate that the progress in ANN development and procedures is marginal and not moving forward since the mid-1990s. This
paper presents a brief overview of ANN applications in geotechnical engineering, briefly provides an overview of the operation
of ANN modeling, investigates the current research directions of ANNs in geotechnical engineering, and discusses some ANN
modeling issues that need further attention in the future, including model robustness; transparency and knowledge extraction;
extrapolation; uncertainty.
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1. Introduction

Artificial neural networks (ANNs) are well suited to model
the complex behavior of most geotechnical engineering
materials which, by their very nature, exhibit extreme
variability. ANNs have also demonstrated superior predictive
ability when compared with traditional methods. Since the
early 1990s, ANNs have been applied successfully to virtually
every problem in geotechnical engineering. In this section,
post-2001 applications of ANNs in geotechnical engineering
are briefly examined, and interested readers are referred to
Shahin et al. [1], where the pre-2001 papers are reviewed in
some detail.

The behavior of deep (pile) and shallow foundations in
soils is complex, uncertain, and not yet entirely understood.
This fact has encouraged many researchers to apply the ANN
technique to the prediction of the behavior of foundations.
For example, ANNs have been used extensively for modeling
the axial and lateral load capacities of deep foundations
in compression and uplift, including driven piles [2–6],
drilled shafts [7, 8], and ground anchor piles [9, 10]. The
prediction of behavior of shallow foundations has also been

investigated, including settlement estimation [11–16] and
bearing capacity [17–19].

Classical constitutive modeling based on elasticity and
plasticity theories has limited capability to simulate properly
the behavior of geomaterials. This is attributed to reasons
associated with the formulation complexity, idealization of
material behavior, and excessive empirical parameters [20].
In this regard, many neural networks have been proposed as
a reliable and practical alternative to model the constitutive
monotonic and hysteretic behavior of geomaterials [21–29].

Geotechnical properties and behavior of soils are con-
trolled by factors such as mineralogy; fabric; pore water,
and the interactions of these factors are difficult to estab-
lish solely by traditional statistical methods due to their
interdependence [30]. Based on the application of ANNs,
methodologies have been developed for estimating several
soil properties, including the preconsolidation pressure
[31], shear strength and stress history [30, 32–37], swell
pressure [38, 39], lateral earth pressure [40], compaction
characteristics and permeability [41, 42], soil composition
and classification [43, 44], and properties of soil dynamics
[45, 46].
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Figure 1: Typical structure and operation of ANNs.

Liquefaction during earthquakes is one of the very
dangerous ground failure phenomena that can cause a large
amount of damage to most civil engineering structures.
Although the liquefaction mechanism is well known, the
prediction of liquefaction potential is very complex [47].
This fact has attracted many researchers to investigate the
applicability of ANNs for predicting liquefaction [47–55].

Other applications of ANNs in geotechnical engineering
include earth retaining structures [56], dams [57, 58],
blasting [59], mining [60], environmental geotechnics [61],
rock mechanics [62–67], site characterization [68], tunnels
and underground openings [69–74], slope stability and
landslides [71, 75–79], and deep excavation [80].

2. Brief Overview of Artificial Neural Networks

Many authors have described the structure and operation
of ANNs (e.g., [81, 82]), and whilst a comprehensive
description of ANNs is beyond the scope of this paper, it is
useful to provide a brief overview. ANNs are a data driven
artificial intelligence approach that attempts to mimic, in a
very simplistic way, the cognition capability of the human
brain. ANNs learn by examples of data inputs and outputs
presented to them so that the subtle functional relationships
among the data are captured, even if the underlying rela-
tionships are unknown or the physical meaning is difficult to
explain. This is in contrast to most traditional empirical and
statistical methods, which need prior knowledge about the
nature of the relationships among the data. This is one of the
main benefits of ANNs when compared with most empirical
and statistical methods.

Typically, the architecture of ANNs consists of a series
of processing elements (PEs), or nodes, that are usually
arranged in layers: an input layer, an output layer, and one
or more hidden layers, as shown in Figure 1.

The input from each PE in the previous layer xi is
multiplied by an adjustable connection weight wji. At each
PE, the weighted input signals are summed and a threshold
value θj is added. This combined input I j is then passed
through a nonlinear transfer function f (·) to produce the

output of the PE yj . The output of one PE provides the input
to the PEs in the next layer. This process is summarized in (1)
and (2) and illustrated in Figure 1.

I j =
∑

wjixi + θj summation, (1)

yj = f
(
I j
)

transfer. (2)

The propagation of information in an ANN starts at the
input layer, where the input data are presented. The network
adjusts its weights on the presentation of a training data
set and uses a learning rule to find a set of weights that
will produce the input/output mapping that has the smallest
possible error. This process is called “learning” or “training.”
Once the training phase of the model has been successfully
accomplished, the performance of the trained model needs
to be validated using an independent testing set. The main
steps involved in the development of an ANN, as suggested
by Maier and Dandy [83], are illustrated in Figure 2. Several
of these steps are discussed in some depth in the following
section.

3. Current Development and Future Directions
in Utilization of ANNs

One issue that needs to be addressed in order to improve the
performance of ANN models is the utilization of a systematic
approach in their development. Such an approach needs to
address major factors, including the determination of ade-
quate model inputs, data division and preprocessing, choice
of suitable network architecture, careful selection of some
internal parameters that control the optimization method,
stopping criteria, and model validation. For example, in
relation to the second step of choice of data sets, method for
data division, Shahin et al. [84] provided guidance using
a geotechnical engineering example, and recommended the
use of three, statistically consistent but independent data
sets, one for each of training, testing, and validation. In this
context, Shahin et al. [84] have introduced three approaches
so that data division can be carried out in a systematic
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Figure 2: The main steps in ANN model development [83].

manner, including trial-and-error, self-organizing maps, and
fuzzy clustering. For a detailed treatment of each of the steps
in the model development process, interested readers are
referred to Shahin et al. [85].

Other key issues in relation to ANN modeling that have
received recent attention and require further research in
the future include developing approaches that (i) ensure
the development of robust models, (ii) increase model
transparency and enable knowledge to be extracted from
trained ANNs, (iii) improve extrapolation ability, and (iv)
deal with uncertainty. Each of these is discussed in what
follows.

3.1. Model Robustness. Model robustness is the predictive
ability of ANN models to generalize over a range of data
similar to that used for model training. Kingston et al. [86]
stated that if “ANNs are to become more widely accepted and
reach their full potential. . ., they should not only provide a good
fit to the calibration and validation data, but the predictions
should also be plausible in terms of the relationship modeled
and robust under a wide range of conditions.” and that “while
ANNs validated against error alone may produce accurate
predictions for situations similar to those contained in the
training data, they may not be robust under different conditions
unless the relationship by which the data were generated has
been adequately estimated.” This is in agreement with the
investigation into the robustness of ANNs carried out by
Shahin et al. [87] for a case study of predicting the settlement
of shallow foundations on granular soils. Shahin et al. [87]
found that good performance of ANN models on the data
used for model calibration and validation does not guarantee
that the models will perform well in a robust fashion over a
range of data similar to those used in the model calibration

phase. For this reason, Shahin et al. [87] proposed a method
to test the robustness of the predictive ability of ANN
models by carrying out a sensitivity analysis to investigate
the response of ANN model outputs to changes in its inputs.
The robustness of the model can then be determined by
examining how well model predictions are in agreement with
the known underlying physical processes of the problem in
hand over a range of inputs. In addition, Shahin et al. [87]
advised that the connection weights should be examined as
part of the interpretation of ANN model behavior, using, for
example, the method suggested by Garson [88]. On the other
hand, Kingston et al. [86] adopted the connection weight
approach of Olden et al. [89] for a case study in hydrological
modeling in order to assess the relationship modeled by
the ANNs, as Olden et al. [89] found that this approach
provided the best overall methodology for quantifying ANN
input importance in comparison to other commonly used
methods, though with a few limitations.

Support vector machines (SVMs) are an alternative data-
driven modeling approach that is claimed to provide better
generalization capabilities and higher accuracy than ANNs
and are therefore worth further consideration in relation to
achieving improved model robustness [90]. Interested read-
ers are referred to A. T. C. Goh and S. H. Goh [91] for a good
overview of this technique. Recent applications of SVMs in
the field of geotechnical engineering include the prediction
of liquefaction potential [90, 91], analysis of slope stability
[92], and modeling friction capacity of driven piles [93].

3.2. Model Transparency and Knowledge Extraction. Model
transparency and knowledge extraction are the feasibility of
interpreting ANN models in a way that provides insights
into how model inputs affect outputs. Figure 3 shows the
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Figure 3: Graphical classification of modeling techniques (adapted
from [94]).

classification of modeling techniques based on colors [94]
in which the higher the physical knowledge used during
model development, the better the physical interpretation
of the phenomenon that the model provides to the user. It
can be seen that the color coding of mathematical modeling
can be classified into: white-, black-, and grey-box models,
each of which can be explained as follows [95]. White-box
models are systems that are based on first principles (e.g.,
physical laws) where model variables and parameters are
known and have physical meaning by which the underlying
physical relationships of the system can be explained.
Black-box models are data-driven or regressive systems
in which the functional form of relationships between
model variables is unknown and needs to be estimated.
Black-box models rely on data to map the relationships
between model inputs and corresponding outputs rather
than to find a feasible structure of the model input-output
relationships. Grey-box models are conceptual systems in
which the mathematical structure of the model can be
derived, allowing further information of the system behavior
to be resolved.

ANNs belong to the class of black-box models due to
their lack of transparency and the fact that they do not con-
sider nor explain the underlying physical processes explicitly.
This is because the knowledge extracted by ANNs is stored
in a set of weights that are difficult to interpret properly, and
due to the large complexity of the network structure, ANNs
fail to give a transparent function that relates the inputs
to the corresponding outputs. Consequently, it is difficult
to understand the nature of the input-output relationships
derived. This issue has been addressed by many researchers
with respect to hydrological engineering. For example, Jain
et al. [96] examined whether or not the physical processes
in a watershed were inherent in a trained ANN rainfall-
runoff model. This was carried out by assessing the strengths
of the relationships between the distributed components

of the ANN model, in terms of the responses from the
hidden nodes, and the deterministic components of the
hydrological process, computed from a conceptual rainfall
runoff model, along with the observed input variables, using
correlation coefficients and scatter plots. They concluded
that the trained ANN, in fact, captured different components
of the physical process and a careful examination of the
distributed information contained in the trained ANN can
be informative about the nature of the physical processes
captured by various components of the ANN model. Sudheer
[97] performed perturbation analysis to assess the influence
of each individual input variable on the output variable
and found it to be an effective means of identifying the
underlying physical process inherent in the trained ANN.
Olden et al. [89], Sudheer and Jain [98], and Kingston et al.
[99] also addressed this issue of model transparency and
knowledge extraction.

In the context of geotechnical engineering, Shahin et al.
[12] and Shahin and Jaksa [9] expressed the results of
the trained ANNs in the form of relatively straightforward
equations. This was possible due to the relatively small
number of input and output variables, and hidden nodes.
Neurofuzzy applications are another means of knowledge
extraction that facilitate model transparency. Neurofuzzy
networks use the fuzzy logic system to store knowledge
acquired from a set of input variables (x1, x2, . . . , xn) and the
corresponding output variable (y) in a set of linguistic fuzzy
rules that can be easily interpreted, such as IF (x1 is high AND
x2 is low) THEN (y is high), c = 0.9, where (c = 0.9) is
the rule confidence, which indicates the degree to which the
above rule has contributed to the output. Examples of such
applications in geotechnical engineering include Ni et al.
[100], Shahin et al. [16], Gokceoglu et al. [62], Provenzano
et al. [19], and Padmini et al. [18].

A recent technique that belongs to the class of grey-
box models, and therefore does not suffer from the problem
of model transparency and knowledge extraction, is genetic
programming (GP). Several researchers (e.g., [34, 50, 101–
104]) have recently used the GP technique as an alterative
to ANNs in order to obtain greatly simplified formulae for
some geotechnical engineering problems. GP is a computing
method that attempts to mimic the biological evolution
of living organisms. GP makes use of the principles of
genetic algorithms (GAs) for parameter optimization in
which a population of expressions (or computer programs)
for a function F, coded in tree structures of variable size,
is generated and executed. The generated expressions are
then modified by means of artificial evolution in order to
perform a global search to arrive at the best fit mathematical
expression for F that solves a certain problem. Additional
advantages of GP over ANNs are that the structure and
network parameters of ANNs (e.g., number of hidden layers
and their number of nodes, transfer functions, learning
rate, etc.) should be identified a priori and are usually
obtained using adhoc trial-and-error approaches. However,
the number and combination of terms, as well as the values
of GP modeling parameters, are all evolved automatically
during model calibration. However, hybrid approaches can
also be used, in which genetic algorithms are used to evolve
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optimal ANN structures and connection weight values.
It should be noted that while white-box models provide
maximum transparency, their construction may be difficult
to obtain for many geotechnical engineering problems,
where the underlying mechanism is not entirely understood.

3.3. Model Extrapolation. Model extrapolation is the ability
of ANN models to predict well outside the range of the
data used for model calibration. It is generally accepted
that ANNs perform best when they do not extrapolate
beyond the range of the data used for calibration [105–107].
Whilst this is not unlike other models, it is nevertheless an
important limitation of ANNs, as it restricts their usefulness
and applicability. Extreme value prediction is of particular
concern in several areas of civil engineering, such as hydro-
logical engineering, when floods are forecast, as well as in
geotechnical engineering when, for example, liquefaction
potential and the stability of slopes are assessed. Sudheer et
al. [108] highlighted this issue and proposed a methodology,
based on the Wilson-Hilferty transformation, for enabling
ANN models to predict extreme values with respect to peak
river flows. Their methodology yielded superior predictions
when compared with those obtained from an ANN model
using untransformed data.

3.4. Model Uncertainty. Finally, a further limitation of ANNs
is that the uncertainty in the predictions generated is seldom
quantified [109]. Failure to account for such uncertainty
makes it impossible to assess the quality of ANN predictions,
which severely limits their efficacy. In an effort to address
this, a few researchers have applied Bayesian techniques to
ANN training (e.g., [110–113]) in the context of hydrological
engineering and Goh et al. [7] with respect to geotechnical
engineering. Goh et al. [7] observed that the integra-
tion of the Bayesian framework into the back-propagation
algorithm enhanced neural network prediction capabilities
and provided assessment of the confidence associated with
network predictions. Research to date has demonstrated the
value of Bayesian neural networks, although further work
is needed in the area of geotechnical engineering. Shahin
et al. [13, 114] also incorporated uncertainty in the ANN
process by developing a series of design charts expressing the
reliability of settlement predictions for shallow foundations
on cohesionless soils.

4. Discussion and Conclusions

In the field of geotechnical engineering, it is possible to
encounter some types of problems that are very complex and
not well understood. In this regard, ANNs provide several
advantages over more conventional computing techniques.
For most traditional mathematical models, the lack of
physical understanding is usually supplemented by either
simplifying the problem or incorporating several assump-
tions into the models. Mathematical models also rely on
assuming the structure of the model in advance, which may

be suboptimal. Consequently, many mathematical models
fail to simulate the complex behavior of most geotechnical
engineering problems. In contrast, ANNs are a data driven
approach in which the model can be trained on input-output
data pairs to determine the structure and parameters of the
model. In this case, there is no need to either simplify the
problem or incorporate any assumptions. Moreover, ANNs
can always be updated to obtain better results by presenting
new training examples as new data become available. These
factors combine to make ANNs a powerful modeling tool in
geotechnical engineering.

Despite the success of ANNs in geotechnical engineering
and other disciplines, they suffer from some shortcomings
that need further attention in the future, including model
robustness, transparency and knowledge extraction, extrap-
olation, and uncertainty. In addition and according to Flood
[115], ANNs in civil engineering, including geotechnical
engineering, were used mostly as simple vector mapping
devices for function modeling of applications that require
rarely more than a few tens of neurons without higher-
order structuring. Together, improvements in these issues
will greatly enhance the usefulness of ANN models and
will provide the next generation of applied artificial neural
networks with the best way for advancing the field to the
next level of sophistication and application. Until such an
improvement is achieved, the authors agree with Flood and
Kartam [105] that neural networks for the time being might
be treated as a complement to conventional computing
techniques rather than as an alternative or may be used
as a quick check on solutions developed by more time-
consuming and in-depth analyses.
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