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The properties of the momentum-space quark propagator in the Landau gauge are studied for the

overlap quark action in quenched lattice QCD. Numerical calculations are performed over four ensembles

of gauge configurations, where three are smeared using either 1, 3, or 6 sweeps of stout-link smearing. We

calculate the nonperturbative wave-function renormalization function ZðpÞ and the nonperturbative mass

functionMðpÞ for a variety of bare quark masses. We find that the wave-function renormalization function

is slightly sensitive to the number of stout-link smearing sweeps. For the mass function we find the effect

of the stout-link smearing algorithm to be small for moderate to light bare quark masses. For a heavy bare

quark mass we find a strong dependence on the number of smearing sweeps.
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The quark propagator is one of the fundamental compo-
nents of quantum chromodynamics (QCD). Although it is
not a physical observable, many physical quantities are
related to it. By studying the momentum-dependent quark
mass function in the infrared region we can gain valuable
insights into the mechanisms of dynamical chiral symme-
try breaking and the associated dynamical generation of
mass. At high momenta, one can also use the quark propa-
gator to extract the running quark mass [1].

Lattice QCD techniques provide an avenue for the non-
perturbative study of the quark propagator. There have
been several lattice studies of the momentum-space quark
propagator [2–13] using different fermion actions. Finite
volume effects and discretization errors have also been
extensively explored in the lattice Landau gauge [12–15].

The overlap fermion formalism [16,17] realizes an exact
chiral symmetry on the lattice and is automatically OðaÞ
improved. There are many salient features of overlap fer-
mions, which include no additive renormalizations to the
quark masses, an index theorem linking the number of zero
modes of the Dirac operator to the topological charge Q,
and evading the so-called ‘‘no-go theorem,’’ etc.; however
they are rather computationally demanding. There are
many suggestions on how to reduce the computational
cost. One such proposal is the use of a more elaborate
kernel, together with a fattening of the gauge links [18–23].

The idea of any UV-filtered fermion action [24–28] is
that one will carry out the calculation on a smoothed copy
of the actual gauge field and evaluate the Dirac operator on
that background. This yields a new fermion action which
differs from the old one by terms which are both simulta-
neously ultralocal and irrelevant. The term ‘‘UV-filtered’’
indicates that such an action is less sensitive to the UV
fluctuations of the gauge background. Sometimes, one also
speaks of ‘‘fat-link’’ actions.

There is a great amount of freedom available when
generating a smoothed copy of some gauge field. One
needs to decide on the smoothing recipe (APE [29], HYP
[30], stout-link [31], etc.), on the parameter
(�APE; �HYP

1;2;3; �
SL � �) and on the number of iterations

niter. In any case, with fixed ð�; niterÞ the filtered fat-link
action is in the same universality class as the usual ‘‘thin-
link’’ version [25]. Unfortunately, if any smoothing process
is overapplied, some important properties of the theory are
lost. Therefore, one needs to find a balance between the
smoothing procedure, which will accelerate convergence
of the quark operator inversion and improve the localiza-
tion properties, at the danger of losing important physics.
Recently, Durr and collaborators [24–26] applied 1–
3 sweeps of stout-link smearing [31] to the lattice gauge
configurations and analyzed how this affected various
physical quantities. They claim that it is safe to use 1–
3 sweeps of standard stout-link smearing on the gauge
configurations. More recently, 6 sweeps of stout-link
smearing were used in the article exploring the hadron
mass spectrum [32].
In this paper, we investigate the momentum-space quark

propagator on quenched gauge configurations. We utilize
both the original lattice configurations and also the con-
figurations which are produced by one, three, and six
sweeps of standard stout-link smearing, respectively. We
compare results across all four cases, in order to explore
the effect of smearing on the quark propagator with differ-
ent quark masses, different lattice momenta, etc.
The massive overlap operator can be written as [33]

Dð�Þ ¼ 1
2½1þ�þ ð1��Þ�5�ðHwÞ�; (1)

where Hwðx; yÞ ¼ �5Dwðx; yÞ is the Hermitian Wilson-

Dirac operator, �ðHwÞ ¼ Hw=
ffiffiffiffiffiffiffi
H2

w

p
is the matrix sign func-

tion, and the dimensionless quark mass parameter � is
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� � m0

2mw

; (2)

where m0 is the bare quark mass and mw is the Wilson
quark mass which, in the free case, must lie in the range
0<mw < 2.

The bare quark propagator in coordinate space is given
by

Sbareðm0Þ � ~D�1
c ð�Þ; (3)

where

~D�1
c ð�Þ � 1

2mw

~D�1ð�Þ and

~D�1ð�Þ � 1

1��
½D�1ð�Þ � 1�:

(4)

When all interactions are turned off, the inverse bare
lattice quark propagator reduces to the tree-level version,
and in momentum space is given by

ðSð0ÞÞ�1ðpÞ � i

�X
�

Cð0Þ
� ðpÞ��

�
þ Bð0ÞðpÞ; (5)

where p is lattice momentum. One can calculate Sð0ÞðpÞ
directly by setting all links to unity in coordinate space,
doing the matrix inversion, and then taking its Fourier
transform. It is then possible to identify the appropriate
kinematic lattice momentum q directly from the definition

q� � Cð0Þ
� ðpÞ: (6)

The form of q�ðp�Þ is shown and its analytic form given in

Ref. [11]. Having identified the appropriate kinematical
lattice momentum q, we can now define the bare lattice
propagator as

SbareðpÞ � ZðpÞ
iq6 þMðpÞ : (7)

This ensures that the free lattice propagator is identical to
the free continuum propagator. Because of asymptotic
freedom the lattice propagator will also take the continuum
form at large momenta. In the gauge sector, this type of
analysis dramatically improves the gluon propagator [34–
36].

The two Lorentz invariants can then be obtained via

Z�1ðpÞ ¼ 1

12iq2
Trfq6 S�1ðpÞg; (8)

MðpÞ ¼ ZðpÞ
12

TrfS�1ðpÞg: (9)

Here ZðpÞ is the wave-function renormalization function
andMðpÞ is the mass function. The above equations imply
that ZðpÞ is directly dependent on our choice of momentum
q, while MðpÞ is not.

Standard stout-link smearing, using an isotropic smear-
ing parameter �sm, involves a simultaneous update of all
links on the lattice. Each link is replaced by a smeared link
~U�ðxÞ [31]

~U�ðxÞ ¼ expðiQ�ðxÞÞU�ðxÞ; (10)

where

Q�ðxÞ ¼ i

2
ð�y

�ðxÞ ���ðxÞÞ � i

6
Trð�y

�ðxÞ ���ðxÞÞ;
(11)

with

��ðxÞ ¼ �sm

Xf1� 1 loops involving U�ðxÞg: (12)

Wework on 163 � 32 lattices, with gauge configurations
created using a tadpole improved, plaquette plus rectangle
(Lüscher-Weisz [37]) gauge action through the pseudo-
heat-bath algorithm. The lattice spacing a ¼ 0:093 fm is
determined from the static quark potential with a string
tension of

ffiffiffiffi
�

p ¼ 440 MeV [38]. The number of configu-
rations to be used for each ensemble in this study is 50. The
first smeared ensemble is created by applying one sweep of
stout-link smearing to the original configurations with a
smearing parameter of � ¼ 0:10. The second smeared
ensemble is created using three sweeps of stout-link smear-
ing with the same value of �. We work in an
Oða2Þ-improved Landau gauge, and fix the gauge using a
conjugate gradient Fourier acceleration [39] algorithm
with an accuracy of � � P j@�A�ðxÞj2 < 10�12. The im-

proved gauge-fixing scheme was used to minimize gauge-
fixing discretization errors [40].
Our numerical calculation begins with an evaluation of

the inverse of Dð�Þ on the unfixed gauge configurations,
where Dð�Þ is defined in Eq. (1). We then calculate the
quark propagator of Eq. (3) for each configuration and
rotate it to the Landau gauge by using the corresponding
gauge transformation matrices fGiðxÞg. We then take the
ensemble average to obtain Sbareðx; yÞ. The discrete Fourier
transformation is then applied to Sbareðx; yÞ and the
momentum-space bare quark propagator SbareðpÞ is finally
obtained.
We use the mean-field improved Wilson action in the

overlap fermion kernel. The value � ¼ 0:19163 is used in
the Wilson action, which provides mwa ¼ 1:391 for the
Wilson regulator mass in the interacting case [11]. We
calculate the overlap quark propagator for 15 bare quark
masses on each ensemble by using a shifted conjugate
gradient solver. The bare quark mass m0 is defined by
Eq. (2). In the calculation, we choose the mass parameter
� ¼ 0:009, 0.010, 0.012, 0.014, 0.016, 0.018, 0.021, 0.024,
0.030, 0.036, 0.045, 0.060, 0.075, 0.090, and 0.105. This
choice of � corresponds to bare quark masses, in physical
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units, of m0 ¼ 53, 59, 71, 82, 94, 106, 124, 142, 177, 212,
266, 354, 442, 531, and 620 MeV, respectively.

The partial results for the mass function MðpÞ and the

wave-function renormalization function ZðRÞðpÞ � Zð	 ;pÞ
on a 163 � 32 lattice without any smearing in the Landau
gauge were reported in Ref. [13]. Here we focus on a
comparison of the behavior of the overlap fermion propa-
gator when using different numbers of stout-link smearing
sweeps. All data are cylinder cut [34]. Statistical uncer-
tainties are estimated via a second-order, single-
elimination jackknife.

In a standard lattice simulation, one begins by tuning the
value of the input bare quark mass m0 to give the desired
renormalized quark mass, which is usually realized
through the calculation of a physical observable.
However, smearing a lattice configuration filters out the
ultraviolet physics and the renormalization of the mass will
be different. To some extent, the effect is similar to that of

an increase in the lattice spacing a. After smearing, the
same input m0 will therefore give a different renormalized
quark mass. The input bare quark mass must then be
retuned in order to reproduce the same physical behavior
as on the unsmeared configuration.
Wewish to directly study how the quark propagator SðpÞ

is affected by smearing, through a calculation of the mass
MðpÞ and wave-renormalization ZðpÞ functions. In order to
replicate the retuning procedure described above, we begin
by first calculating MðpÞ and ZðpÞ for all values of m0

listed previously, over all four types of configurations. We
then select a value of the bare quark massm0 to investigate,
and force the mass functions MðpÞ to agree at a given
reference momentum 	 . This is achieved by interpolating
MðpÞ, for the smeared configurations, between neighbor-
ing values of the bare quark masses, in order to determine
the required effective bare quark mass. Any reasonable
choice of 	 should suffice. By reasonable, we mean any

FIG. 1 (color online). The interpolated mass MðpÞ and renormalization ZðRÞðpÞ functions for the small bare quark mass m0 ¼
53 MeV with three choices of 	 . The effective bare quark masses are given in square brackets. There is good agreement inMðpÞ for all
choices of 	 with up to six sweeps of stout-link smearing. A small splitting in the UV region of ZðRÞðpÞ is apparent after three sweeps of
smearing. This leads to a disagreement in ZðRÞðpÞ for a large choice of 	 ¼ 6:0 GeV.
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point out of the far infrared or ultraviolet (UV) momentum
regions, where lattice artifacts will spoil the results.

In comparing the renormalization function, we first in-
terpolate ZðpÞ to the effective bare quark mass, obtaining

ZðIÞðpÞ. We then multiplicatively renormalize ZðIÞðpÞ to

ZðRÞðpÞ � Zð	; pÞ, subject to Zð	; 	Þ ¼ 1.
We begin with a comparison of the functions MðpÞ and

ZðRÞðpÞ for a small bare quark mass, with three choices of
the reference momentum 	 ¼ 2:0, 3.9 and 6.0 GeV. The
interpolated mass functions for the smallest bare quark
mass m0 ¼ 53 MeV are given in Fig. 1. We note the
significant reduction in the statistical error, even after a
single sweep of smearing. For all choices of 	 , the mass
functions display strong agreement over all four levels of
smearing, with the only differences occurring in the most

infrared points. For the function ZðRÞðpÞ the effect of
smearing is also subtle; however the link smearing does

introduce a minor splitting in the UV region. This splitting
leads to small differences in the lower momentum regions

of ZðRÞðpÞ when we select 	 ¼ 6:0 GeV.
Next we consider a moderate bare quark mass of

177 MeV, for which the functions MðpÞ and ZðRÞðpÞ are
shown in Fig. 2. As in the case of a small bare quark mass,
we find that the mass function appears independent of the
choice of reference momentum; however the discrepancy
at the most infrared point is no longer apparent. The
renormalization function displays the same splitting in
the UV region. The effect of smearing on the quark propa-
gator still appears to be relatively minor at this value ofm0.
Finally we consider a larger choice of the bare quark

mass m0 ¼ 531 MeV. A consideration of the mass func-
tions MðpÞ given in Fig. 3 reveals a strong dependence on
the choice of reference momentum 	 . We see that a choice
of either 	 ¼ 3:9 or 6.0 GeV leads to large discrepancies in

FIG. 2 (color online). The interpolated mass MðpÞ and renormalization ZðRÞðpÞ functions for the moderate bare quark mass m0 ¼
177 MeV with the three choices of 	 . The effective bare quark masses are given in square brackets. As with the small bare quark mass,
the mass function displays good agreement for all choices of 	 , and there is also a small splitting apparent in the UV region of ZðRÞðpÞ.
We note that the differences in ZðRÞðpÞ appear to be independent of the bare quark mass.
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both the low and moderate momentum regions. With a
choice of 	 ¼ 2:0 GeV we are able to obtain agreement
in the low momentum region.

The dependence of MðpÞ on 	 indicates that the sup-
pression of ultraviolet fluctuations by the smearing algo-
rithm has spoiled the physics of the theory above
�2–3 GeV, for this value of m0. These effects are clearly
visible after just a single sweep of smearing at this heavy
bare quark mass. We further note that in the case of
6 sweeps and 	 ¼ 6:0 GeV, the mass function drops to
the bare quark mass. This is a clear indication that the
Compton wavelength of the quark is small enough to reveal
the void of short-distance interactions following 6 stout-
link smearing sweeps.

The renormalization functions ZðRÞðpÞ for a heavy bare
quark mass of m0 ¼ 531 MeV are also provided in Fig. 3.

Apart from the small splitting in the UV region, ZðRÞðpÞ

still appears to be mostly unaffected by the smearing

algorithm. In Fig. 4 we show the differences in ZðRÞðpÞ
between the smallest and largest bare quark masses, where
in order to examine the UV splitting we choose 	 ¼
2:0 GeV. Figure 4 shows that the magnitude of the splitting

in ZðRÞðpÞ introduced by the smearing algorithm is unaf-
fected by the input bare quark mass.
The stout-link smearing procedure can save a large

amount of compute time in the calculation of hadronic
physics. Not only is the Dirac operator easier to invert
but statistical errors are reduced significantly. The conclu-
sion drawn from this study is that up to six sweeps of stout-
link smearing induces rather small effects on the quark
propagator for small and moderate bare quark masses, as
claimed by Durr et al. [24–26]. After an appropriate re-
scaling of the bare quark mass, the renormalized quark
propagator displays the same physics as the untouched

FIG. 3 (color online). The interpolated mass MðpÞ and renormalization ZðRÞðpÞ functions for the heavy bare quark mass m0 ¼
531 MeV for the three choices of 	 . The effective bare quark masses are given in square brackets. We see that for this value of m0, the
choices 	 ¼ 3:9 and 6.0 GeV lead to large differences in the moderate and infrared momentum regions ofMðpÞ. This indicates that the
physics above approximately 3 GeV has been spoiled by the smearing algorithm. In ZðRÞðpÞ we again find that the stout-link smearing
algorithm introduces a small splitting in the infrared region.
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configuration. The only notable exceptions are order 2%
discrepancies in the renormalization function for all quark
masses and the most infrared point of the lightest quark
mass function. There an effect approaching 2� is revealed.

These subtle effects provide some evidence of a link
between small topologically nontrivial gauge field configu-
rations linked to dynamical chiral symmetry breaking
through their production of approximate zero modes in
the Dirac operator. Upon smearing this short-distance
physics is modified.

Certainly the effects are subtle. However, they may
require further investigation in the event that fermion
actions, in which all links of the action are smeared,
become the action of choice for calculating the physics
beyond the standard model.
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