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Abstract

The Gawler Craton in South Australia consists of an Archaean to Palaeoproterozoic core surrounded 
and intruded by a series of Palaeo- to Mesoproterozoic metasediments and igneous suites. The 
region has experienced a protracted c. 1700 Myr tectonic history from the Archaean through to the 
Mesoproterozoic, experiencing numerous cycles of deformation, magmatism and basin development. 
Despite hosting a number of mineral deposits, including the immense Olympic Dam iron oxide-
copper-gold deposit, the tectonothermal evolution of the Gawler Craton remains poorly constrained. 
A significant ambiguity in our current understanding of the geological framework of the Gawler 
Craton revolves around the timing and spatial distribution of the tectonic events within the craton 
and their metamorphic evolution. This study addresses some of this ambiguity by unravelling the 
timing and tectonothermal evolution of the reworked southern Gawler Craton, using a combination 
of structural and metamorphic analysis, coupled with targeted geochronology. These methods have 
been applied to three locations representing different lithologies across the southern Gawler Craton.

Putting absolute time into structural and metamorphic analysis is a vital tool for unravelling 
the development of ancient and modern orogenic systems. Electron Probe Micro-Analysis 
(EPMA) chemical dating of monazite provides a useful method of obtaining good precision age 
data from monazite bearing assemblages. This technique was developed at the University of 
Adelaide in order to constrain the timing of reworked assemblages from the southern Gawler 
Craton. EPMA measurements carried out on samples of known age, from Palaeoproterozoic to 
Ordovician, produce ages which are within error of the isotopically determined ages, indicating 
the validity of the developed setup. This technique, together with SHRIMP monazite and titanite 
and garnet Sm-Nd geochronology, was used on selected samples from the southern Gawler Craton 
to determine the timing of high-grade metamorphism and deformation. The results show that the 
Sleaford Complex records evidence of an early D 1 event during the c. 2450 Ma Sleaford Orogeny 
recorded within structural boudins. The majority of the data indicates that the region underwent 
subsequent reworking and thorough overprinting during the 1725–1690 Ma Kimban Orogeny.

    

In the Coffin Bay region, Palaeoproterozoic peraluminous granites of the Dutton Suite are 
reworked by a series of migmatitic and mylonitic shear zones during the Kimban Orogeny. 
Peak metamorphic conditions recorded in mafic assemblages indicate conditions of 10 kbar 
at 730°C. The post-peak evolution is constrained by partial to complete replacement of garnet 
– clinopyroxene bearing mafic assemblages by hornblende – plagioclase symplectites, which 
record conditions of c. 6 kbar at 700°C, implying a steeply decompressional exhumation path.

The Shoal Point region consists of a series of reworked granulite-facies metapelitic and 
metaigneous units which belong to the late Archaean Sleaford Complex. Structural evidence 
indicates three phases of fabric development with D1 retained within boudins, D2 consisting 
of a series upright open to isoclinal folds producing an axial planar fabric and D3, a highly 
planar vertical high-strain fabric which overprints the D2 fabric. Geochronology constrains the 
D1 event to the c. 2450 Ma Sleafordian Orogeny while the D2 the D3 events are constrained 
to the 1730–1690 Ma Kimban Orogeny. P-T pseudosections constrain the metamorphic 
conditions for the Sleafordian Orogeny to between 4.5–6 kbar and 750–780 °C. Subsequent 
Kimban-aged reworking reached peak metamorphic conditions of 8–9 kbar at 820–850 °C 
during the D2 event. Followed by near isothermal decompression to metamorphic conditions 
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<6 kbar and 790–850 °C associated with the development of the D3 high-strain fabric. 

The Pt Neill and Mine Creek regions are located in the core and on the flank of the crustal scale 
Kalinjala Shear Zone, which forms the main structural element of the poorly exposed Kimban 
Orogen. Samples record a similar structural development with a dextrally transpressive system 
resulting in a layer parallel migmatitic gneissic to mylonitic KS1 fabric which was subsequently 
deformed and reworked by upright folds and discrete KD2 east-side-down sub-solidus mylonitic 
shear zones during east-west compression. Geochronology constrains the timing of deformation 
and metamorphism to the Kimban Orogeny between 1720 and 1700 Ma. Metamorphic P-T 
analysis and pseudosections constrain the peak M1 conditions in the core of the shear zone to 
10–11 kbar at c. 800 °C reflecting lower crustal conditions at depths of up to 30 km. On the 
flank of the shear zone the M 1 conditions reached 6–7 kbar at 750 °C followed by sub-solidus 
reworking during KD2 at conditions of 3–4 kbar at 600–660 °C, suggesting a maximum burial 
of <24 km. Cooling rates suggest that the core of the shear zone cooled at rates in excess of 
40–80 °CMa-1 while the flank underwent much slower cooling at < 10°CMa-1. The rapid cooling 
and inferred decompression in the core of the shear zone reflects rapid burial and exhumation of 
lower-crustal material into the mid-crust along the Kalinjala Shear Zone. The absence of evidence 
for extension indicates that differential exhumation and the extrusion of lower-crustal material 
into the mid-crust was driven by transpression along the shear zone and highlights the role of 
transpression in creating large variations in vertical exhumation over relatively short lateral extents.

Garnet is a vital mineral for determining constrained P-T-t paths as it can give both the P-T 
and t information directly. However, estimates of the closure temperature of the Sm-Nd system 
in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. 
Five igneous garnets of varying size from an undeformed 2414 ± 6 Ma garnet – cordierite bearing 
s-type granite from the Coffin Bay region, that were subjected to high-T reworking during the 
Kimban Orogeny, have been dated to examine their diffusional behaviour in the Sm-Nd system. 
Garnets were compositionally profiled and then dated. A direct correlation exists between grain 
size and amount of resetting highlighting the effect of grain size on closure temperature. Major 
element and REE traverses reveal homogonous major element profiles and relict igneous REE 
profiles. The retention of REE zoning and homogenisation of major element zoning suggests that 
diffusion rates of REE’s are considerably slower than that of the major cations, in disagreement 
with recent experimental determinations of the diffusion rates of REE in garnet. The retention 
of REE zoning and the lack of resetting in the largest grains suggests that Sm-Nd closure 
temperature in garnet is a function of grain-size, thermal history and REE zoning in garnet. 

The findings of this study provide the first temporally constrained tectonothermal model of 
the evolution of the southern Gawler Craton. The P-T conditions obtained from the earliest D1 
fabric provide the first quantitative constraints on the P-T conditions of the southern Sleafordian 
Orogeny. The P-T-t evolution determined for the 1725–1690 Ma Kimban Orogeny indicate 
it developed along a clockwise P-T path, and dominates the structural and metamorphic 
character of the southern Gawler Craton. The large variations in exhumation over short lateral 
extents reflect the exhumation of lower crustal rocks during the Kimban Orogeny driven 
by transpression during the development of a regional transpressional ‘flower structure’.
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