

Reworking the Gawler Craton: Metamorphic and geochronologic constraints on Palaeoproterozoic reactivation of the southern Gawler Craton, Australia

Rian A. Dutch, B.Sc (Hons)

Geology and Geophysics School of Earth and Environmental Sciences The University of Adelaide

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, University of Adelaide

January 2009

Table of Contents

Abstract	i
Acknowledgements	iii
Publications and Selected Conference Abstracts	v
Declaration	vii
Chapter 1 - Introduction, Reworking the Gawler Craton	1
Thesis Outline References	9 11
Chapter 2 - In-situ EPMA monazite chemical dating at the University of Adelaide: So procedures, comparisons and application to determining the timing of high-grade de tion and metamorphism in the southern Gawler Craton.	etup, forma- 17
 2.1 Introduction 2.2 Review of EPMA monazite dating theory 2.3 Analytical method 2.3.1 SX51 operating conditions 2.3.2 Elements and standards 2.3.3 Peaks, Backgrounds and Interferences 2.3.4 Counting Times 2.4 Sample Preparation 2.5 Data Collection Strategy, Analysis and Reduction 2.6 Results of Comparative Study 2.6.1 Sample SB17 2.6.2 Sample GL4B 2.6.3 MAdel Standard 2.6.4 Sample 222 	17 19 21 22 25 28 29 30 31 31 31 32 32 32
2.7.1 Geological Setting 2.7.2 Results 2.8 Conclusions Acknowledgements References Appendix 2.1	32 34 36 36 37 44

Chapter 3 - High-grade Palaeoproterozoic reworking in the southeastern Gawler Craton, South Australia. 45

3.1 Introduction	45

3.2 Regional Geology	48
3.2.1 Tectonothermal events of the southern Eyre Peninsula	50
3.3 Structural reworking of the Coffin Bay Peninsula	51
3.4 Petrography of the Shear Zones	54
3.4.1 Petrography of the felsic shear zones	54
3.4.2 Petrography of the metabasites	55
3.5 Mineral chemistry	55
3.5.1 Garnet	55
3.5.2 Clinopyroxene	55
3.5.3 Amphibole	56
3.5.4 Mica	56
3.5.5 Feldspar	56
3.5.6 Ilmenite and Titanite	56
3.6 Thermobarometric constraints on metamorphism.	57
3.7 Age constraints on deformation and metamorphism	59
3.7.1 EPMA Monazite Chemical Dating Analytical Techniques	59
3.7.2 SHRIMP Analytical techniques	60
3.7.3 U-Pb Geochronology Results	60
3.7.4 Interpretation of geochronological results	64
3.8 Discussion	67
3.9 Conclusions	69
Acknowledgements	69
References	69
Appendix 3.1	74
Chapter 4 - Tectonothermal evolution of reworked Archaean granulite-facies	metanelites in
the southern Gawler Craton, Australia.	75
4.1 Introduction	75
4.2 Geological Setting	77
4.2.1 Tectonothermal Events of the Southern Gawler Craton	79
4.3 Lithology and Structure of Shoal Point	82
4.4 Sample Petrography	84
4.4.1 Assemblage 1	84
4.4.2 Assemblage 2	85
4.4.3 Assemblage 3	87
4.5 Mineral Chemistry	88
4.5.1 Assemblage 1	90
4.5.2 Assemblage 2	90
4.5.3 Assemblage 3	90
4.6 Geochronology	90
4.6.1 Garnet Sm-Nd Geochronology Methods	91
4.6.2 EPMA Monazite Geochronology Methods	
	91
4.6.3 Geochronological Results	91 93
4.6.3 Geochronological Results 4.7 Metamorphic Modelling	91 93 96
 4.6.3 Geochronological Results 4.7 Metamorphic Modelling 4.7.1 Effective Bulk Compositions 	91 93 96 96
 4.6.3 Geochronological Results 4.7 Metamorphic Modelling 4.7.1 Effective Bulk Compositions 4.7.2 Determining H.O Values 	91 93 96 96 99

 4.7.4 Models in the NCKFMASHTO System 4.8 Discussion 4.8.1 Evolution of the Shoal Point Metapelites 4.8.2 Tectonic Model for the Development of the southern Kimban Orogeny 4.9 Conclusions Acknowledgements References Appendix 4.1 	101 103 103 105 107 108 108 114
Chapter 5 - The tectonothermal evolution of the crustal-scale Kalinjala Shear Zone, so	uth-
ern Gawler Craton, Australia	115
5.1 Introduction	115
5.2 Geological Setting	118
5.3 Existing constraints on the Kimban Orogeny	120
5.4 Structural Development of the Kalinjala Shear Zone	122
5.4.1 Port Neill Section	124
5.4.2 Mine Creek Section	125
5.5 Sample Petrography	128
5.5.1 Port Neill Samples	128
5.5.2 Mine Creek Samples	130
5.6 Mineral Chemistry	130
5.6.1 Port Neill Samples	130
5.6.2 Mine Creek Samples	134
5.7 Age Constraints on Deformation and Metamorphism	134
5.8 Metamorphic Evolution	136
5.8.1 <i>P-T</i> Constraints from the Port Neill Section	136
5.8.2 P-T Constraints from the Mine Creek Section	138
5.8.3 Cooling Rates	140
5.9 Discussion	143
5.9.1 Tectonic Evolution of the Kalinjala Shear Zone	143
5.9.2 Implications for Exhumation during the Kimban Orogeny	147
5.10 Conclusions	147
Acknowledgements	148
References	148
Appendix 5.1	155
Chapter 6 - Retention of Sm-Nd isotopic ages in garnets subjected to high-grade therm reworking: Implications for diffusion rates of major and rare earth elements and the S	nal Sm-

Nd closure temperature.	157
6.1 Introduction	157
6.2 Geological setting	158
6.3 Petrography	160
6.4 Analytical methods	161
6.4.1 Monazite	161
6.4.2 Garnet	163
6.5 Results	164

6.5.1 Mineral Chemistry	164
6.5.2 Physical Conditions of Garnet Formation	165
6.5.3 Age of the Sir Isaac Granite	172
6.5.4 Garnet Sm-Nd Geochronology	173
6.6 Discussion	174
6.6.1 Comparison of Major and REE Diffusion Rates in Garnet	174
6.6.2 Closure Temperature of the Sm-Nd System in Garnet	177
6.6.3 The Effect of Zoning on Sm-Nd Age Retention	178
6.7 Conclusions	180
Acknowledgements	180
References	180
Appendix 6.1	186
Chapter 7 - Summary	187
7.1 Introduction	187
7.2 Thesis Summary	187
7.2.1 In-situ EPMA monazite Geochronology as a tool for constraining	event timing
in reworked assemblages	187
7.2.2 Reworking the southeastern Gawler Craton	188
7.2.3 Reworking the Sleaford Complex	188
7.2.4 Evolution of the Kalinjala Shear Zone	189
7.2.5 Garnet Sm-Nd isotope systematics	190
7.3 Constraints on the Southern Sleafordian Orogeny	190
7.4 The Evolution of the Southern Kimban Orogeny	191
7.5 Future Work	195
References	196

Supplementary Appendix 1 - Cambrian reworking of the southern Australian ProterozoicCurnamona Province: constraints from regional shear-zone systems.199

Supplementary Appendix 2 - Orogen-parallel flow during continental convergence: Numer-ical experiments and Archean field examples: COMMENT AND REPLY.213

Supplementary Appendix 3 - Adelaide Uni EPMA monazite chemical dating procedure. 215

List of Figures

Figure 1.1. Simplified interpreted subsurface geology of the Gawler Craton, South Australia. Figure 1.2. Locations of the major rock units.	2 3
Figure 1.3. Time-space plot for the Gawler Craton.	6
Figure 2.1. Location and regional geology and TMI image of the southern Gawler Craton.	19
Figure 2.2. Cameca SX51 electron micro-probe.	21
Figure 2.3. WD scans across the U and Th region using a PET crystal.	27
Figure 2.4. WD scans across the Pb region using a PET crystal.	28
Figure 2.5. WD scans across the REE region.	29
Figure 2.6. EPMA geochronological results from the selected comparison samples.	33
Figure 2.7. EPMA monazite geochronological results for the unknown samples from Fishery	
Bay.	35
Figure 3.1. Simplified interpreted subsurface geology of the Gawler Craton.	46
Figure 3.2. Interpreted sub-surface geology of the Eyre Peninsula.	47
Figure 3.3. Coffin Bay outcrop photos.	48
Figure 3.4. Structural Map of the Coffin Bay Peninsula.	53
Figure 3.5. Sample photomicrographs.	54
Figure 3.6. Quantitative garnet cation profiles.	58
Figure 3.7. Relative probability histograms for EPMA monazite geochronology.	62
Figure 3.8. U-Pb concordia diagrams for titanite and monazite SHRIMP data.	66
Figure 3. 9. Temperature – time diagram for the western Eyre Peninsula.	68
Figure 3.10. TMI image of the Eyre Peninsula.	68
Figure 4.1. Simplified interpreted subsurface geology of the Gawler Craton.	76
Figure 4.2. Interpreted sub-surface geology of the southern Eyre Peninsula.	78
Figure 4.3. Time-space plot for the southern Gawler Craton.	79
Figure 4.4 Lithological and structural map of the Shoal Point section.	80
Figure 4.5. Outcrop photos of the Shoal Point units.	83
Figure 4.6. Regional TMI image of the southern Gawler Craton.	85
Figure 4.7. Photomicrographs of the Shoal Point assemblages.	86
Figure 4.8. Representative garnet X-ray maps.	89
Figure 4.9. Garnet Sm-Nd two point isochrons.	93
Figure 4.10 Relative probability distributions for EPMA monazite geochronology.	95
Figure 4.11. <i>T-M</i> pseudosection in the NCKFMASHTO system.	97
Figure 4.12. MnNCKFMASH pseudosection for assemblage 1.	98
Figure 4.13. NCKFMASHTO P-T pseudosection for the whole rock composition from assem	1-
blage 2.	100
Figure 4.14. NCKFMASHTO P-T pseudosection for the retrograde aluminous domains within	in
assemblage 2.	101
Figure 4.15. NCKFMASHTO <i>P-T</i> pseudosection for assemblage 3.	102
Figure 4.16. Structural cartoon for the proposed model for the development of the Shoal Point	nt
granulites.	106

Figure 5.1. Transpression Model.	116
Figure 5.2. Simplified interpreted subsurface geology of the Gawler Craton.	117
Figure 5.3. Interpreted sub-surface geology of the Eyre Peninsula.	118
Figure 5.4. Summary of Vassallo and Wilson's (2001; 2002) interpreted structural evolution	of
the southern Eyre Peninsula.	121
Figure 5.5 Structural map of the Port Neill coastline of Oussa (1993).	122
Figure 5.6. Outcrop photos of the Port Neill section.	124
Figure 5.7. Structural and lithological map of the Mine Creek section.	126
Figure 5.8. Mine Creek outcrop photos.	127
Figure 5.9. Photomicrographs from the Port Neill and Mine Creek Sections,	129
Figure 5.10. Major element compositional profiles across selected garnets from the Mine Cre	eek
and Port Neill sections.	131
Figure 5.11. EPMA X-ray maps of representative monazites used for EPMA monazite geoch	ro-
nology.	135
Figure 5.12. Relative probability distributions for EPMA monazite geochronology analyses.	137
Figure 5.13. <i>P-T</i> pseudosection for sample Mine Creek MC10.	138
Figure 5.14. <i>P-T</i> pseudosection for sample MC1.	139
Figure 5.15. Modelled cooling rates derived from retrograde X ₁ , zoning profiles from garnet	s in
contact with biotite.	142
Figure 5.16. Graphical representation of the Kimban Orogeny structures, geochronology and	l
metamorphic evolution.	145
Figure 5.17. Representation of particle flow paths and geothermal gradients.	146
Figure 6.1. Regional interpreted geology of the southern Gawler Craton.	159
Figure 6.2. A/CNK-A/NK plot of samples from the Sir Isaac Granite.	161
Figure 6.3. Photomicrographs of the Sir Isaac Granite.	162
Figure 6.4. Garnet cation and REE traverses for selected samples.	166
Figure 6.5. <i>P</i> - <i>T</i> pseudosection for the peraluminous Sir Isaac granite in the system NCKF-	
MASH.	172
Figure 6.6. Representative BSE images of targeted monazites.	173
Figure 6.7. U-Pb monazite Concordia diagram for the Sir Isaac granite.	175
Figure 6.8. Graph displaying the deviation of the garnet Sm-Nd ages retrieved from the grain	is of
different sizes from the interpreted crystallisation age of 2414 Ma.	176
Figure 6.9. Arrehenius plot of collected experimental diffusion data for major elements and REE in g	ar-
net.	176
Figure 7.1. 1st VD magnetic intensity image of the Gawler Craton with the distribution of Kimban O	rog-
eny metamorphic ages.	192
Figure 7.2. Collection of <i>P</i> - <i>T</i> and geochronology data for the southern Gawler Craton.	194

Abstract

The Gawler Craton in South Australia consists of an Archaean to Palaeoproterozoic core surrounded and intruded by a series of Palaeo- to Mesoproterozoic metasediments and igneous suites. The region has experienced a protracted *c*. 1700 Myr tectonic history from the Archaean through to the Mesoproterozoic, experiencing numerous cycles of deformation, magmatism and basin development. Despite hosting a number of mineral deposits, including the immense Olympic Dam iron oxidecopper-gold deposit, the tectonothermal evolution of the Gawler Craton remains poorly constrained. A significant ambiguity in our current understanding of the geological framework of the Gawler Craton revolves around the timing and spatial distribution of the tectonic events within the craton and their metamorphic evolution. This study addresses some of this ambiguity by unravelling the timing and tectonothermal evolution of the reworked southern Gawler Craton, using a combination of structural and metamorphic analysis, coupled with targeted geochronology. These methods have been applied to three locations representing different lithologies across the southern Gawler Craton.

Putting absolute time into structural and metamorphic analysis is a vital tool for unravelling the development of ancient and modern orogenic systems. Electron Probe Micro-Analysis (EPMA) chemical dating of monazite provides a useful method of obtaining good precision age data from monazite bearing assemblages. This technique was developed at the University of Adelaide in order to constrain the timing of reworked assemblages from the southern Gawler Craton. EPMA measurements carried out on samples of known age, from Palaeoproterozoic to Ordovician, produce ages which are within error of the isotopically determined ages, indicating the validity of the developed setup. This technique, together with SHRIMP monazite and titanite and garnet Sm-Nd geochronology, was used on selected samples from the southern Gawler Craton to determine the timing of high-grade metamorphism and deformation. The results show that the Sleaford Complex records evidence of an early D_1 event during the *c*. 2450 Ma Sleaford Orogeny recorded within structural boudins. The majority of the data indicates that the region underwent subsequent reworking and thorough overprinting during the 1725–1690 Ma Kimban Orogeny.

In the Coffin Bay region, Palaeoproterozoic peraluminous granites of the Dutton Suite are reworked by a series of migmatitic and mylonitic shear zones during the Kimban Orogeny. Peak metamorphic conditions recorded in mafic assemblages indicate conditions of 10 kbar at 730°C. The post-peak evolution is constrained by partial to complete replacement of garnet – clinopyroxene bearing mafic assemblages by hornblende – plagioclase symplectites, which record conditions of *c*. 6 kbar at 700°C, implying a steeply decompressional exhumation path.

The Shoal Point region consists of a series of reworked granulite-facies metapelitic and metaigneous units which belong to the late Archaean Sleaford Complex. Structural evidence indicates three phases of fabric development with D_1 retained within boudins, D_2 consisting of a series upright open to isoclinal folds producing an axial planar fabric and D_3 , a highly planar vertical high-strain fabric which overprints the D_2 fabric. Geochronology constrains the D_1 event to the c. 2450 Ma Sleafordian Orogeny while the D_2 the D_3 events are constrained to the 1730–1690 Ma Kimban Orogeny. P-T pseudosections constrain the metamorphic conditions for the Sleafordian Orogeny to between 4.5–6 kbar and 750–780 °C. Subsequent Kimban-aged reworking reached peak metamorphic conditions of 8–9 kbar at 820–850 °C during the D_2 event. Followed by near isothermal decompression to metamorphic conditions

<6 kbar and 790–850 °C associated with the development of the D_3 high-strain fabric.

The Pt Neill and Mine Creek regions are located in the core and on the flank of the crustal scale Kalinjala Shear Zone, which forms the main structural element of the poorly exposed Kimban Orogen. Samples record a similar structural development with a dextrally transpressive system resulting in a layer parallel migmatitic gneissic to mylonitic KS₁ fabric which was subsequently deformed and reworked by upright folds and discrete KD₂ east-side-down sub-solidus mylonitic shear zones during east-west compression. Geochronology constrains the timing of deformation and metamorphism to the Kimban Orogeny between 1720 and 1700 Ma. Metamorphic P-T analysis and pseudosections constrain the peak M_1 conditions in the core of the shear zone to 10-11 kbar at c. 800 °C reflecting lower crustal conditions at depths of up to 30 km. On the flank of the shear zone the M_1 conditions reached 6–7 kbar at 750 °C followed by sub-solidus reworking during KD₂ at conditions of 3-4 kbar at 600-660 °C, suggesting a maximum burial of <24 km. Cooling rates suggest that the core of the shear zone cooled at rates in excess of 40–80 °CMa⁻¹ while the flank underwent much slower cooling at $< 10^{\circ}$ CMa⁻¹. The rapid cooling and inferred decompression in the core of the shear zone reflects rapid burial and exhumation of lower-crustal material into the mid-crust along the Kalinjala Shear Zone. The absence of evidence for extension indicates that differential exhumation and the extrusion of lower-crustal material into the mid-crust was driven by transpression along the shear zone and highlights the role of transpression in creating large variations in vertical exhumation over relatively short lateral extents.

Garnet is a vital mineral for determining constrained *P-T-t* paths as it can give both the *P-T* and t information directly. However, estimates of the closure temperature of the Sm-Nd system in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. Five igneous garnets of varying size from an undeformed 2414 ± 6 Ma garnet – cordierite bearing s-type granite from the Coffin Bay region, that were subjected to high-T reworking during the Kimban Orogeny, have been dated to examine their diffusional behaviour in the Sm-Nd system. Garnets were compositionally profiled and then dated. A direct correlation exists between grain size and amount of resetting highlighting the effect of grain size on closure temperature. Major element and REE traverses reveal homogonous major element profiles and relict igneous REE profiles. The retention of REE zoning and homogenisation of major cations, in disagreement with recent experimental determinations of the diffusion rates of REE in garnet. The retention of REE zoning and the lack of resetting in the largest grains suggests that Sm-Nd closure temperature in garnet is a function of grain-size, thermal history and REE zoning in garnet.

The findings of this study provide the first temporally constrained tectonothermal model of the evolution of the southern Gawler Craton. The *P*-*T* conditions obtained from the earliest D_1 fabric provide the first quantitative constraints on the *P*-*T* conditions of the southern Sleafordian Orogeny. The *P*-*T*-*t* evolution determined for the 1725–1690 Ma Kimban Orogeny indicate it developed along a clockwise *P*-*T* path, and dominates the structural and metamorphic character of the southern Gawler Craton. The large variations in exhumation over short lateral extents reflect the exhumation of lower crustal rocks during the Kimban Orogeny driven by transpression during the development of a regional transpressional 'flower structure'.

Acknowledgements

Firstly I would like to thank my supervisors Martin Hand and David Kelsey. They have both provided me with excellent supervision and guidance and their support and stimulus throughout made it a thoroughly rewarding experience. Karin Barovich has also provided invaluable support and assistance.

A huge thankyou goes to Martin for numerous reasons including; for being such a good honours supervisor that I actually wanted to continue working with him on my Ph.D, for providing incredible guidance and always being there (except when he was away) with help and suggestions, for teaching me how to do field work properly, for giving me a new appreciation of metamorphic petrology (I now understand why he uses words like spiffy and sexy when referring to garnets), and most importantly for having faith in me to actually get there in the end.

Honourable mentions need to go to Angus Netting, Peter Self and John Terlet from Adelaide Microscopy. Their massive help and good humour made many long hours (days) in the med. school basement more than just bearable but fun.

David Bruce for all his help (and patience) with garnet Sm-Nd geochronology. Anthony Reid for his significant help and guidance with South Australian geology and his suggestions and improvements to this thesis. Pete Kinny for guidance and expertise with the SHRIMP geochronology done at Curtin University of Technology. David Steel for all his help in getting me up to speed with the ins and outs of setting up EPMA monazite dating and for providing (free of charge) new single element standards.

Thanks goes to all the other past and present CERGers who have made doing a Ph.D so much fun. To Payney (a co-starter and fellow Gawler-ite), Wadey (e-bayer extraordinaire), Lachy and Clarky (CERGers mark I) and Swainy (the bushman from Hahndorf). A huge thanks goes to Mike Szpunar for his assistance with field work and his constant discussions which have made me a better geologist.

A big thankyou needs to go to my family. Especially my Mum and Dad for all the support and assistance that you have given me over the years, I hope I've made you proud. My brothers and sister, Nana and Grumps and Kathy and Wayne, for always being there and giving me such a great family to be a part of. A huge thanks needs to go to my parents in-law, Tom and Anne. Joining your family has been a great experience and I thank you for all your support and assistance over the years.

Outside of Uni life I'd like to thank Allan and Lauren Cadd (and now Imogen) for being such great friends. Also my Ultimate team mates in the Flycatchers and Karma clubs for being such a great bunch of people to play with. I've really enjoyed playing Ulti with you all and haven't minded missing months of Ph.D time going away to play tourneys. My sport has provided a great escape from Uni and most likely kept me sane.

Most importantly I want to thank my beautiful wife Bron. She has been with me right from the start and has provided me with incredible support and motivation, getting me back on track during the slow, tough periods. I kept saying once I had this monkey off my back I'd be less distracted and I hope I can live up to that promise. I really am the luckiest bloke around.

> Thus, the task is, not so much to see what no one has yet seen; but to think what nobody has yet thought, about that which everybody sees. -Erwin Schrodinger (1887-1961)

Publications and Selected Conference Abstracts

Journal Articles

Philips, G., Kelsey, D.E., Corvino, A.F. and **Dutch, R.**, In Review. Continental reworking associated with overprinting orogenic events—A chemical (Th+U)–Pb monazite dating and phase equilibria study from the southern Prince Charles Mountains, East Antarctica. Journal of Petrology.

Dutch, R., Hand, M. and Kinny, P., 2008. High-grade Palaeoproterozoic reworking in the southeastern Gawler Craton, South Australia. Australian Journal of Earth Sciences, 55: 1063-1081.

Dutch, R., Hand, M. and Reid, A., 2007. Orogen-parallel flow during continental convergence: Numerical experiments and Archean field examples: COMMENT and REPLY. GEOLOGY, doi: 10.1130/G24419C.1.

Dutch, R.A., Hand, M. and Clark, C., 2005. Cambrian reworking of the southern Australian Proterozoic Curnamona Province: constraints from regional shear-zone systems. Journal of the Geological Society, London, 162: 763-775.

Selected Conference Abstracts

Dutch, R.A., Hand, M. and Kelsey, D.E., 2008. Tectonothermal evolution of the Kimban Orogeny, southern Gawler Craton; evidence for extrusional tectonics during the development of a transpressional orogen. Australian Earth Sciences Convention: Geological Society of Australia Abstract No, 89: 86.

Dutch, R., Hand, M. and Barovich, K.M., 2007. Retention of Sm-Nd isotopic ages in garnets subjected to high-grade reworking; constraints on the Sm-Nd closure temperature. Geological Society of Australia Specialist Group: Tectonics and Structural Geology 'Deformation in the Desert' conference abstracts.: 21.

Dutch, R., Hand, M. and Kinny, P., 2006. On the Kimban overprint: New geochronological constraints on high-grade metamorphism from Eyre Peninsula, southern Gawler Craton. In: Denham, D (ed). Australian Earth Sciences Convention 2006. Geological Society of Australia Conference Abstract series, ISSN 0729-011x: 76.

Dutch, R., Hand, M., Thomas, J., Swain, G. and Teasdale, J., 2005. EPMA monazite geochronological constraints on high-grade metamorphism in the western Gawler Craton, South Australia; evidence for regional scale tectonic events at 1650 and 1600 Ma. In: Hancock et al. (eds). Structure, Tectonics and Ore Mineralisation Processes. EGRU Contribution 64.: 43.

Dutch, R. and Hand, M., 2003. Delamerian metamorphism in the Curnamona Province: Constraints from the prograde "retrograde" shear zones. In: Pelajo, M. (Comp.). Broken Hill Exploration Initiative: Abstracts from the July 2003 conference. Geoscience Australia, Record, 2003/13: 36-41.

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying.

Rian A. Dutch