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Abstract 

 
Informative Vector Machine (IVM) is an efficient fast   

sparse Gaussian processs (GP) method previously 
suggested for active learning. It greatly reduces the 
computational cost of GP classification and makes the GP 
learning close to real time.  

We apply IVM for man-made structure classification (a 
two class problem). Our work includes the investigation 
of the performance of IVM with varied active data points 
as well as the effects of different choices of GP kernels. 
Satisfactory results have been obtained, showing that the 
approach keeps full GP classification performance and 
yet is significantly faster (by virtue if using a subset of the 
whole training data points). 

1 Introduction 
 
We aim to develop an efficient way of classifying 

man-made structures from natural scenes by applying the 
fast GP approximation as an online learning method.  

Gaussian Process (GP) classification models the 
posterior directly, thus relaxing the strong assumption of 
conditional independence of the observed data (generally 
used in a generative model). However, GP has )( 3NO  
computational complexity with respect to the number of 
training data points N .  

Different approaches have been proposed to deal with 
this problem. Csato and Opper developed a sparse 
representation by minimization of KL divergences 
between the approximate posterior and a sparse 
representation [1]. Snelson and Ghahramani presented a 
sparse approximation method with M pseudo-input points 
which are learnt by a gradient based optimization [2]. 
Lawrence, Seeger and Herbrich proposed a sparse GP 
method that employs greedy selections to choose the 
subset of the training data points maximizing a 

differential entropy score [3] (which is more simple and 
efficient to implement compared with other similar 
methods). Using this enables us to tackle the issue of 
kernel selection and to begin to tackle the questions of 
construction of on-line learning support (such as active 
data selection). 

For man-made structure classification on 2D image 
data, typical approaches are based on Bayesian generative 
models as proposed in [4] and [5]. The generative model 
[4, 5] models the joint probability of the observed data 
and the related labels. Data is conditionally independent 
given the class labels  [4] which is not true for man-made 
structures with obvious neighbouring dependencies. The 
TSBN generative model described in [4] is more for 
outdoor general scene segmentation rather than for man-
made structure specifically. Hebert and Kumar [5] 
proposed a generative Multi-Scale Random Field (MSRF) 
model  which extracts image block features that capture 
the general properties of the man-made structures. 
Observed data dependency is modelled by a pseudo-
likelihood approximation. It yields better results 
compared with most other approaches.  

We adopt a similar feature extraction procedure as in 
[5] but we replace the generative model approach with a 
discriminative GP model approach, to capture the 
dependencies between the block features by directly 
modelling the posterior over labels. Moreover, its kernel 
based non-parametric nature makes GP more flexible 
compared with parametric models.  

The paper is structured as follows. GP Classification is 
introduced in Section 2 and a description of IVM is given 
in Section 3. In Section 4, experiment details and results 
are presented. Section 5 gives out the main conclusions of 
the work.  

 
2 Gaussian Processes for classification 
 
2.1 GP 
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A GP is a collection of random variables, any finite 
number of which has a joint Gaussian distribution [6]. It 
is fully specified by its mean function m(x) and 
covariance function k(x, x’) , expressed as: 

),(~ kmGPf                        (2.1) 
which defines a distribution over it covariance functions. 
The inference can be cast directly into the GP framework 
by learning a covariance function from training data.  
 
2.2 GP regression 

 
GP regression aims to recover the underlying process 

from the observed training data. Following the exposition 
in [7]: we have a dataset D  with n observations 

},...,1|),{( niyxD ii == ,  where x is the input vector 
of dimension d and y is the scalar output. Input data are 
put in d x n matrix X and the targets/output in vector y, 

),( yXD = . 
Typically, given noisy observations ),( yXD =  

where ε+= fy  and additive noise ε ~ ),0( 2IσΝ , 
the condition GP mean predictive distribution can be 
expressed as  

yIXXKXXKf n
12

** ]),()[,( −+= σ              (2.2) 

where ),( * XXK  denotes the covariance matrix of 
training and test points and ),( XXK  is the training 
data covariance.  

The GP mean prediction in equation (2.2) can either be 
regarded as a linear combination of the observations y or 
the linear combination of kernel functions, each centred 
on a training point. 
 
2.3 GP classification 
 

In our application, we need a binary classifier to 
discriminate between man-made structure and non-
structure so our dataset is ),( yXD = , where X are 
input training image features and y  the class labels -1/+1.  
GP binary classification is done through a latent function. 
After calculating the distribution over latent function: the 
output of regression is ‘squashed’ through a sigmoid 
transformation to guarantee the valid probabilistic value 
within the range of [0,1]. Since class labels are discrete in 
binary classification the Gaussian likelihood is no longer 
valid, and so approximation is needed for calculation. EP 
approximation is generally used (see Algorithms (3.5) and 
(3.6) in [7]). 

 
2.4 GP kernels 
 

The GP kernel is the crucial part of GP learning, since 
it incorporates the prior smoothness assumption.  

The typical covariance functions, studied in this paper, 
include [7]: 

1) Radial Basis Function (RBF), also called as 
Squared Exponential (SE) function or Gaussian 
function 

)
2

exp()( 2

2

l
rrkRBF −=                               (2.3)        

               where 'xxr −= , x and 'x are input pairs,  
               l is the characteristic length-scale. 

2) Matern class of covariance functions 

)5exp()
3
551()( 2

2

2/5 l
r

l
r

l
rrk −++==ν   

                                                                       (2.4) 
3)  Linear kernel 
         ')',( 2

0 xxxxk •+= σ                              (2.5) 

where x and 'x are input pairs. 
 

3 Fast sparse Gaussian Process – the 
Informative Vector Machine (IVM) 
 
IVM [8, 9] selects only a small subset of the dataset: 

the most informative d  points out of the total N training 
points, thus reduce the computation complexity from 

)( 3NO  to )( 2NdO . IVM greedily minimise the 
entropy of the posterior by including only the most 
informative data points that most reduce the entropy in a 
sequential manner. The selected d points form the so 
called ‘active set’ [3].  

Following Eq (A.20) in [7], the entropy of a 
Gaussian ),( ΣµN   in D dimensions can be expressed as:   

[ ]),( ΣµNH = )2(loglog 22
1 eD π+Σ                (3.1) 

For the greedy algorithm deciding which points are 
taken into the active set I, Lawrence [3] proposed to 
choose the next point for inclusion into the active set 
being the one that maximizes the differential entropy 
score [ ] [ ]i

new
i QHQH − , where iQ  is the Gaussian 

approximation of the posterior ),|( yXfp at site i as 

described in Section 2.3, [ ]iQH  is the entropy at site i  

and [ ]new
iQH  being the entropy at site i  once the 

observation at this site is included. By involving Eq (3.1), 
the differential entropy score can be written as: 

[ ] [ ]i
new
i QHQH − i

new
i Σ−Σ= loglog 2

1
2
1  
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i

new
i

Σ
Σ

= log2
1         (3.2) 

Thus, it is proportional to the log ratio between the 
variances of the new

iQ and iQ . The change of the entropy 
after including a point is equivalent to the reduction in the 
level of uncertainty.  

Choosing the inclusions (d of them) forces the 
resulting model to be sparse. Moreover, IVM uses an EP 
style approximation of the posterior and, as shown in Eq 
(3.51) in [7], the likelihood term can be ignored if its site 
values are very small. In this way a sparse model is 
obtained and computation efficiency is gained. Details of 
IVM implementation can be found in [3, 10]. 
 
4 Experiments and results 
 
4.1 Orientogram features 
 
A feature vector is computed at each 16×16 block.These 
features are designed to capture the lines and edges 
patterns in man-made structure [5] [11]. 

As described in [11] , a 14 component feature vector is 
generated at  different scales: 1×1, 2×2, and 4×4 blocks. 
These features are derived from “orientograms”: 
histograms of gradient orientations in a region weighted 
by gradient magnitudes. The 14 features include: 

1) The first heaved central-shift moments (three scales) 
2) The third heaved central-shift moments (three scales) 
3) The absolute location of the highest bin (three scales) 
4) The relationship of two most dominant orientations  

  at the three scales expressed as  
     )sin(rd_intra 21 δδ −=                             (4.1) 

where 1δ  and 2δ are the two dominant orientations. 
5) The relationship of the dominant orientations  

between adjacent scales, which is  
1(2cosrd_inter +−= ii δδ                               (4.2) 

where  iδ  and 1+iδ are dominant orientations at 
adjacent scales i  and i+1. 

We only keep the eight features in 1), 4) and 5) which 
cover more general properties of man-made structures. 

 
4.2 Experiments and results 

 
The proposed approach was trained and tested using 

the Corel images that Kumar [5] used1. To increase the 
variation and to test the generalization ability, we used 
some images, collected by the authors around our campus, 
for testing as well All images are cut to the size of 

                                                
1 http://www.cs.cmu.edu/~skumar/manMadeData.tar 

256x256 and divided into non-overlapping 16x16 pixels 
blocks which are labelled as one of the two classes, i.e. 
building or non-building blocks.  

We used a training set of 11 Corel images, containing 
407 structured blocks and 1768 non-structured blocks. 
Testing is implemented on 43 images, including 33 Corel 
images and 10 self-collected images. All test images do 
not appear in the training set. 

For IVM GP classification, we run Lawrence’s 
program [9] 2 . Rasmussen and Williams’s GP 
classification program is applied for standard GP 
classification [7]3. The inclusion training point number, d , 
is set to 660 in our test. This is a compromise between 
speed and performance considering the time complexity 
being proportional to 2d . 

The RBF kernel is the most frequently used in 
applications of GP learning. Kernels allow for 
incorporation of prior knowledge, therefore it makes little 
sense to apply the same kernel to different applications.  
Thus we also investigated a variety of GP kernels, 
including RBF, RBF with ARD (Automatic Relevance 
Determination) [12], RBF with linear function, etc. The 
Rational Quadratic (RQ) and Neural Network (NN) 
functions were also tested: However these two functions 
yield less satisfactory results, and are not listed in the 
comparison figures. 

Figure 1 shows some of the test results for IVM GP 
classification (using the Matern kernel and RBF kernel 
respectively) and standard GP classification as well as 
Kumar’s MSRF results. GP classification with Matern 
kernel tends to cover more building blocks and have less 
false detections.  

Specifically, we have compared our results with that of 
Kumar’s[5] on group of test images– Table 1. Despite 
using only 1/20 number of training data compared with 
his (and only 8 of the 14 feature types he used), the results 
on Corel images are almost equivalent to his results. 
Moreover, we do not impose spatial coherence in image 
space (unlike the MSRF of Kumar). The results on the 10 
images added by the authors have a relatively lower 
detection rate and similar false positives which implies 
that our campus building may not well represented by the 
buildings in the Corel data set. Nevertheless, clearly there 
is significant generalisation to different architectural types. 
The overall results on all 43 test images: with a detection 
rate of 70.65%, the false positive rate is 1.49 block/image. 
One can increase the detection rate at the cost of more 
false positives: The false positives go up to 2.53 with a 
higher detection rate of  78.59%.  

                                                
2 http://www.cs.man.ac.uk/~neill/ivm/downloadFiles/ 
3 http://www.gaussianprocess.org/gpml/code/matlab/doc 
   /classification.html 
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 (e)                                    (f) 

 
 (g)                                    (h) 

 (i)                                     (j) 
 

Figure 1. Classification results. (a)(b) original images 
(c)(d) Kumar’s results (e)(f) IVM Matern kernel results 
(g)(h) IVM RBF kernel results (i)(j) GP RBF kernel 
results. 

 

    
   (a)                                   (b) 

  
     (c)                                   (d) 

 
  (e)                                  (f) 

(g)                                     (h) 

Figure 2. Classification results. (a)(b) original images 
(c)(d) IVM Matern kernel results (e)(f) IVM RBF kernel 
results (g)(h) GP RBF kernel results. 

 
In Figure 2, results on our campus images again shows 

that IVM GP classification with Matern kernel is better 
although no campus images have been included in our 
training set yet.  

We focus on a comparison between Matern kernel and 
RBF kernel, since these have the best performance, 
compared with other kernels, in our application. The 
Matern kernel with IVM is compared with RBF with IVM 
(shown in Figure 3). The RBF kernel used in a standard 
GP is compared to the IVM Matern (shown in Figure 4). 
Results in Figure 3 shows a clear advantage of Matern 
kernel over RBF kernel on detection rate (and a similar 
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rate of false positives). Compared with the RBF kernel, 
the Matern kernel with IVM  has a similar detection rate 
with less false positives as shown in Figure 4. In Figure 5 
(a), the Matern kernel is compared with several kernels in 
an IVM implementation. It has better performance in that 
either the false positives are low under similar detection 
rate or the detection rate is higher with similar false 
positives. In Figure 5 (b), performance is compared on the 
Corel images only. Overall, the Matern kernel seems to 
yield the best performance. 

Tests have also been done in extending the IVM 
inclusion points from 660 to 1060 as well as enlarging the 
training data sets up to 8000 points. Results are all similar 
as to that of 2000 training points with 660 included. This 
implies that the IVM approach is not only efficient in 
terms of computation time but also can capture the 
information well with limited inclusion points.  

Results in Figure 6 are obtained from the computer 
with Intel 1.66GHz+980MHz CPU. It can be seen that the 
computational time of GP increases drastically with the 
growth in the number of training data points. In case of 
8000 training points, the standard GP is almost 
prohibitive. IVM  times are consistent with )( 2dNO ⋅ . 
 

                                  (a) 

                                 (b) 

Figure 3. Comparison of IVM Matern kernel 
and IVM RBF kernel on test data. (a) Detection 
rate of IVM Matern vs IVM RBF. (b) False 
positives of IVM Matern vs IVM RBF. 

 
 

 
                                (a) 

 
                               (b) 

Figure 4. Comparison of IVM Matern kernel 
and GP RBF kernel on test data. (a) Detection 
rate of IVM Matern vs GP RBF. (b) False 
positives of IVM Matern vs GP RBF. 

 

                                 (a) 
 

                                 (b) 

Figure 5. (a) Detection rate and false positives comparison 
of different kernels on all test images. (b) Detection rate 
and false positives comparison of different kernels on 
Corel test images only. 
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5 Conclusions 
 
We have described the application of IVM (which is an 

efficient sparse approximation of GP classification) to 
man-made structure classification. With IVM GP 
classification, performance is maintained with only a 
fraction of the training data. Moreover, since this affords 
experimental kernel tuning, the resulting structure can be 
more accurately trained. Future work will involve the 
investigation of active data selection (seeking parts of the 
images to improve the classification in regions where the 
GP indicates most uncertainty, and asking the user to 
verify the classification, for example) for semi-supervised 
learning and other facets that will facilitate on-line 
learning of building detection in image data. 
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IVM 
GP 

8min 14min 22min 35min 

GP 40min 320min 2560min 20480min*  
Figure 6. Comparison of computational time between 
IVM GP and GP. 
* Estimation only. 

 

 
Kumar’s 
MSRF 
model 

Our IVM GP model with Matern 
kernel 

Training 
set 

Corel 
images  Corel images 

Training 
data 
scale 

108 
images 
(3004 

structured 
blocks + 
36269 
non-

structured 
blocks) 

11 Corel images with 407 structured 
blocks and 1768 non-structured blocks 

Testing 
set 

Corel 
images  

Images from Corel Photo Stock as 
well as varied pictures collected by 

the authors in the campus 
Data 
scale 

129  
images 

43 images (33 Corel images + 10 
random collected images) 

33 
Corel 

images 

10 
collected 
images 

All 43 images Detection 
rate 72.13% 

71.69% 61.11% 70.65%/78.59% 
33 

Corel 
images 

10 
collected 
images 

All 43 images False 
positives 1.46 

1.42 1.54 1.49/2.53  
Table 1. Comparison of our IVM GP approach with Kumar’s  
MSRF model. 
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