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Abstract — This paper provides an overview of the recent 
developments of finite-volume techniques for time-domain 
electromagnetic simulations. The distinctive characteristic of 
Finite-Volume Time-Domain (FVTD) algorithms is their 
applicability in non-Cartesian volume meshes. This allows 
great geometrical flexibility which is required for most EMC 
problems. Several aspects of the FVTD method are reviewed, 
its applications to EMC problems are discussed and 
illustrated by simulation examples. 

I. INTRODUCTION 
Numerical analysis tools for electromagnetic fields have 

become an indispensable tool in the design of antennas and 
microwave circuits. The rapid progress in computer 
technology has allowed a steady increase in the size and 
complexity of the structures that can be modeled. In 
parallel, there has been ongoing research focused on the 
development of sophisticated computational methods with 
enhanced performance. The coexistence of diverse nu-
merical techniques is essential since no single method can 
claim an overall superiority (in efficiency and accuracy) 
for all standard and non-standard problems encountered in 
the multitude of today’s electromagnetic systems. Con-
sidering general field solvers, great efforts are made today 
towards the improvement of the most prominent methods 
like the Finite-Difference Time-Domain method (FDTD), 
the Finite-Element Method (FEM), the Transmission Line 
Method (TLM) or the various Method of Moments (MoM) 
approaches. Besides advances in this stream of research, 
less known methods are also being investigated, such as 
the class of finite-volume techniques. 

The Finite-Volume Time-Domain (FVTD) method has 
been introduced for electromagnetic applications at the 
very beginning of the 90’s [1],[2]. The FVTD method can 
be considered in-between FDTD and the FEM applied in 
time domain. The most essential characteristic of FVTD is 
its applicability in unstructured meshes. This gives the 
method a high geometrical flexibility and a versatility that 
is best exploited for complex problems with curved 
surfaces, for devices with multiscale structures in close 
proximity, or for the treatment of high dielectric constant 
materials and their interface to other media. 

Since the FVTD method is still in its infancy, its 
potential has not been completely unfolded yet. The goal 
of this paper is to provide a snapshot of the present 
development of FVTD in view of its application to real-
world electromagnetic problems. To begin with, Sect. II 
gives a short theoretical description of the method 
fundamentals. The third section deals with the 
implementation of the algorithm, addressing the space 
discretization and the treatment of boundaries, the time 
discretization, and the hybridization with other methods. 

Other aspects relevant to the simulation of microwave 
devices and systems are also described, such as the 
extraction of generalized S-parameters, and the modeling 
of thin wires. The fourth section presents two examples of 
computation, a log-periodic antenna with a finely resolved 
feed structure, and a choked circular waveguide. The 
numerical results are compared with reference data, 
showing excellent agreement. The conclusion provides an 
outlook which aspects of the FVTD need to be addressed 
in the future to increase the applicability of the method. 

II. THE FINITE-VOLUME TIME-DOMAIN METHOD 

The FVTD method is based on Maxwell’s curl equations 
written in their conservative form [3]. Integrating the 
equations over a finite volume V  leads to the volume-
surface integrals 
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where  represents the boundary enclosing V  and nV  
the outward-pointing normal unit vector of the infinitesi-
mal surface element da . In analogy to corresponding fluid 
dynamics conservation equations, the arguments in the 
right-hand side (RHS) surface integrals of (1) represent 
fluxes through the boundary of the volume.  

For numerical implementation, the computational 
volume is partitioned in small polyhedral cells with 
volumes i . Assuming constant permittivity i  and 
permeability i  in each elementary cell, the continuous 
equations (1) are discretized to 
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The sum on the RHS of (2) is performed for the ith cell 
over its i  polygonal faces with areas kF  and normal 
vector k

N
n  ( ). The triangular brackets indicate 

spatially averaged field values over volumes (left-hand 
side, LHS) or face areas (RHS). 

1 ik = ,...,N

The FVTD method is characterized by a large number of 
algorithm variations. The present paper considers a 
representative FVTD structure with a cell-centered, 
collocated formulation: Both the electric and magnetic 
fields are sampled in the barycenters of the elementary 
cells. Furthermore, most implementations are based on 
characteristics theory [2] and consider a flux-splitting 

17th International Zurich Symposium on Electromagnetic Compatibility, 2006 5

Authorized licensed use limited to: University of Adelaide Library. Downloaded on February 22,2010 at 19:42:44 EST from IEEE Xplore.  Restrictions apply. 



17th International Zurich Symposium on Electromagnetic Compatibility, 2006

treatment, which separates outgoing (+) and incoming (-) 
fluxes at each interface between two cells [3] 
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Among alternative algorithms, the flux average formu-
lation of [4] and the staggered formulation of [1] are 
representative of possible variations. 

III. PRACTICAL FVTD IMPLEMENTATIONS 

The practical aspects of FVTD implementations 
presented here stems mostly from [3],[5]-[7]. Most of the 
concepts are however adaptable in the general frame of 
finite-volume techniques. 

A. Space discretization, boundary conditions 
The volume integration of the conservative form of 

Maxwell’s curl equations (2) permits application in any 
polyhedral mesh. Most common practical meshes are made 
of tetrahedrons, hexahedrons or prisms. In particular, 
tetrahedral meshes are relatively easy to handle and permit 
a very accurate approximation of complex boundaries. 
Large inhomogeneities of cell sizes can be achieved over a 
relatively short distance, which proves advantageous in 
multiscale problems. However, a tradeoff between rapid 
cell size increase and high accuracy is required since 
strongly distorted meshes result in a decrease of the overall 
solution accuracy. 

Cell-centered finite-volume implementations permit a 
natural treatment of boundaries. The continuity equations 
for the tangential electric fields at material interfaces are 
satisfied, by taking into account the appropriate material 
properties in the computation of the incoming and 
outgoing fluxes [2]. The same applies to the boundary 
condition at the surface of conductors. 

For radiation problems, absorbing boundary conditions 
(ABC) are necessary to terminate the computational 
domain. The Silver-Müller ABC is a simple boundary 
condition that sets the incoming FVTD fluxes to zero at 
the outer domain boundary. Although first order in nature 
(i.e. exact for normal incidence), the Silver-Müller ABC 
can provide an efficient suppression of reflections in 
practical cases: Using a spherical outer boundary for 
radiation problems provides a near-normal incidence 
condition at the outer boundary, which results in typical 
reflection coefficients lower than -40 dB. 

B. Time discretization, stability, local time-stepping 
A discrete approximation of the time derivative in the 

LHS of (2) allows finding explicit equations for the march-
in-time iteration of the FVTD algorithm. A straightforward 
finite difference approximation corresponds to the Euler 
scheme, which benefits from its simplicity but is only first 
order in accuracy. For increased stability and accuracy, 
higher-order schemes such as the Lax-Wendroff predictor-
corrector scheme or the Runge-Kutta method are 
advantageously used [3]. For any of the explicit forms, 
stability of the computation is achieved if the Courant-
Friedrich-Lévy (CFL) criterion is fulfilled. In an 

unstructured mesh however, all the cells are different and 
the “worst” cell in the mesh sets the maximum time step 
for stability. A commonly accepted criterion for the spatial 
order one considers the minimum volume/surface ratio of 
the cells over the whole mesh according to 
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According to this criterion, it becomes clear that a high-
quality mesh avoids strongly irregular cells (i.e. needle-
shaped or flat tetrahedrons). Assuming an inhomogeneous 
mesh of good quality, the smallest cell determines then the 
time step for stability. If extremely small cells are 
necessary for resolving structural details, the length of the 
time step might be reduced dramatically. 

To address this problem, a time-stepping scheme has 
been introduced in [6] which permits to save computer 
resources by adapting the duration of the time step locally 
to match the spatial discretization. The separation in sub-
domains with different time steps is performed 
automatically on the basis of the geometrical and material 
characteristics of the mesh. Special care has to be taken at 
the boundary between domains to avoid numerical 
reflection caused by time inconsistencies. Using an 
increment (or decrement) by a factor of two in (local) time 
steps between adjacent sub-domains permits to limit 
unphysical reflection to under -50 dB while increasing 
strongly the efficiency of the computation. 

Pushing the idea further, the use of different time-
stepping schemes in different areas of the computational 
domain might lead to additional increase in efficiency. For 
example, an implicit unconditionally stable time-stepping 
scheme could be applied advantageously in the sub-
domains with the smallest cells, trading the stability 
condition (4) for an accuracy-based criterion.  

The multi-domain approach exploits the advantage of 
various time-stepping schemes (remaining in the frame of 
FVTD) where they perform best. This principle can be 
extended to different numerical methods in so-called 
hybrid approaches. 

C. Hybridization 
Hybridization of FVTD with other methods represents 

an attractive strategy to improve the CPU time and 
memory requirements. Along this line, examples have 
been published combining finite volumes and finite 
differences, which merge easily (e.g. [3],[8]). 

FVTD and FDTD are local methods for which the 
evaluation of the fields in each cell only requires the value 
of the fields located in the surrounding cells. Con-
sequently, the hybridization is performed by defining a 
transition area between the two schemes, in which field 
values are exchanged. In practice, FVTD with an un-
structured conformal mesh is used to describe conformally 
the scatterer and its immediate neighbourhood with 
relatively few cells, whereas FDTD on a Cartesian grid is 
used for the remaining part of the computational domain. 
The transition area is composed of hexahedral cells 
(Fig. 1). The hybridization process is carried out using one 
or more overlapping cell layers where the boundary fields 
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for each scheme are interpolated in space and time from 
fields calculated with the other method. 

 
Fig. 1. Transition area for the hybridization of FV/FDTD. 
Interpolation of the electrical field given by FDTD (respectively FVTD) 
is performed on surface SB (respectively SA). 

This hybridization method keeps on one hand the 
efficiency of the FDTD in the major part of the 
computational domain and permits the use of efficient 
ABCs (as PML) developed for this scheme. On the other 
hand, FVTD provides the conformity of the studied objects 
which is fundamental for modelling wires or resonant 
structures. Nevertheless, considering hexahedral cells, the 
CFL number for the FVTD scheme (4) is more restrictive 
than for the FDTD method. This difference in time steps is 
reinforced by the fact that tetrahedral cells are generally 
smaller than the cubic cells. Therefore, to improve the 
efficiency of the hybridization in terms of CPU time, a 
different time stepping can be introduced for the two 
domains according to their CFL condition. The two 
domains are linked by performing adequate time 
interpolation at their interface. Figure 2 shows an example 
of a hybrid mesh. 

 
Fig. 2. Hybrid FV/FDTD mesh showing the structured and 
unstructured domains. 

D. Application to devices: S-parameter extraction 
Scattering parameters are a very important tool to 

evaluate microwave devices, and thus the accuracy of their 
extraction in a numerical simulation is crucial. To be able 
to extract a generalized scattering matrix, a port plane, 
defining a phase reference for the incident and the 
reflected wave, has to be introduced, either as a meshed 
surface inside the FVTD grid, or as an imaginary plane 
grid of interpolation points. 

In the port plane, the outgoing +  and the incoming 
 flux, inherently computed in the frame of the FVTD 

algorithm, are connected to the incident and the reflected 
wave in the simulated device [9]. The tangential fields in 
the port, required for the S-parameter extraction, are 
retrieved from the separated fluxes through 
 

// E
tE n µ

++ = ×  . (5) 
Once the tangential fields are known, the mode 

amplitude  of the considered mode can be extracted, 

provided that the mode template vector e

/A+

 and h  are 
known and adequately normalized 
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K

kt
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where k  is the area of the th face of the port plane 
consisting of K  triangles. Knowing the mode amplitudes, 
the generalized scattering matrix can be extracted. 

F k

In non-TEM structures, a correction factor has to be 
introduced for computation of the tangential fields in (5) to 
assure the correct power flow in the port plane [9]. An 
example for the extraction of the scattering parameters of a 
waveguide discontinuity is depicted in Fig. 3. 

S (dB)11

S (dB)21

Frequency (GHz)Frequency (GHz)

FVTD
MM

 
Fig. 3. Scattering parameters of a waveguide discontinuity. The 
FVTD simulation is benchmarked with Mode Matching (MM) results. 

E. Application to systems: wire/cable models 
In EMC as well as in studies of antennas, it is often ad-

vantageous to introduce a specific technique to model thin 
wires. In the FDTD method, thin-wire formalism was 
proposed by R. Holland [10]. This formalism is used for 
wires of very small diameter compared to the mesh size. In 
standard FDTD, wires are generally parallel to the cell axis 
and when this is not the case, the staircase approximation 
modifies the length of the wire and hence its resonance 
frequencies. This formalism has been extended to FVTD 
[5]. As in FDTD, the volume of the wire then does not 
require to be meshed. The wire is split into several 
segments in the middle of which current I and charges q 
are estimated at the same times. Then in a similar way as 
for the spatial fields, the wire equation (without source) 
can be cast into a conservative form as follows 

A
t l
+ = 0   where and  .  (7) 

I
q=

c
A =

20

1 0

Therefore a finite volume discretization can be applied 
to (7). The coupling between space and wire is obtained by 
the tangential electric field around each wire segment. In 
the discretized FVTD domain, wires run along the edges of 
the elementary cells. In order to ensure good coupling, 
prism-shaped cells are used around the wires as illustrated 
in Fig. 4. 

This thin wire formalism has been successfully applied 
in FVTD [3] and it is likely that other formalisms like 
multi-wire or thin slots will be developed in the future. 

 
Fig. 4. Detail of the specific mesh around a wire segment. 
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IV. APPLICATION EXAMPLES 

Traditional applications of the FVTD method have 
considered scattering problems for the determination of 
radar cross-section (e.g., [2],[5],[11]). In the present paper, 
two examples of antennas are presented. 

V. FUTURE DEVELOPMENTS AND CONCLUSION 

This paper has reviewed recent developments of the 
FVTD method mainly in view of its use for EMC 
problems. The main advantage of the method consists in 
its use of an unstructured mesh. This allows the resolution 
of arbitrarily-shaped structures for complex 
electromagnetic problems. 

The FVTD method, as a relatively new method, still has 
potential for improvement. Among the many different 
variations of finite-volume algorithms, efforts are directed 
towards finding the algorithms exhibiting the best spatial 
convergence of the solutions, i.e. allowing the use of larger 
elementary cells. This might also be achieved using higher 
order algorithms (e.g. discontinuous Galerkin method). 

Although the FVTD method allows to reduce the 
number of cells necessary to mesh complex structures, the 
memory and CPU requirements per cell remain high in 
comparison with FDTD. Therefore, efforts are also 
required towards the development of acceleration and 
hybridization techniques. Model Order Reduction (MOR) 
in conjunction with finite-volume techniques [12] 
represents also a promising track of exploration. 

A. Log-periodic antenna 
The first example considers a trapezoidal-tooth log-

periodic antenna for 1-12 GHz shown in Fig. 5. The use of 
the unstructured tetrahedral mesh is advantageous to 
resolve the oblique arms of the antenna, the thickness of 
the metal and dielectric parts as well as the fine coaxial 
feeding structure. The results of the simulation show a 
very good agreement with measured data over the full 
frequency range. As illustration, radiation patterns are 
shown in Fig. 6 for two sample frequencies. 

 
Fig. 5. Trapezoidal-tooth log-periodic antenna for 1-12 GHz. The 
light gray parts represent the metallic arms and the darker gray parts 
dielectric plates that provide mechanical stability. The inset shows a 
magnified view of the triangulated feed. 
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