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Modeling the behavior of flow regulating devices in water distribution systems 
using constrained non-linear programming 
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1
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2
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3
 

Abstract 
Currently the modeling of check valves and flow control valves in water distribution systems is based 

on heuristics intermixed with solving the set of non-linear equations governing flow in the network. At 

the beginning of a simulation, the operating status of these valves is not known and must be assumed. 

The system is then solved. The status of the check valves and flow control valves are then changed to 

try to determine their correct operating status, at times leading to incorrect solutions even for simple 

systems. This paper proposes an entirely different approach. Content and Co-Content theory is used to 

define conditions that guarantee the existence and uniqueness of the solution. The work here focuses 

solely on flow control devices with a defined head discharge versus head loss relationship. A new 

modeling approach for water distribution systems based on subdifferential analysis that deals with the 

non-differentiable flow versus head relationships is proposed in this paper. The water distribution 

equations are solved as a constrained non-linear programming problem based on the Content model 

where the Lagrangian multipliers have important physical meanings. This new method gives correct 

solutions by dealing appropriately with inequality and equality constraints imposed by the presence of 

the flow regulating devices (check valves, flow control valves and temporarily closed isolating 

valves). An example network is used to illustrate the concepts.  

Keywords: water distribution system modeling, flow control valves, check valves, nonlinear program-

ming, variational inequalities, Content, Co-Content, subdifferential, convex analysis 
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Introduction 

The presence of flow regulating devices and pressure regulating devices in water distribution systems 

(WDSs) complicates the computer analysis of water distribution systems. This paper presents details 

of the theory and solution techniques required related to the presence of flow regulating devices in 

WDSs. The main type of devices considered in this paper are the check valve that prevents reverse 

flow (a lower limit on the flow) and the flow control valve (FCV) that limits the flow to be equal to or 

less than a set flow value (an upper limit on the flow). A “Content” approach to understanding the 

physics of these devices in water distribution systems is presented. A discussion of the Content and 

Co-Content functions for normal pipes and nodes is firstly given. Then details of the Content and Co-

Content functions for check valves and flow control valves are given and their difference in behavior 

compared to pipes is noted. Currently heuristics dominate the modeling of these devices in state-of-

the-art computer hydraulic simulation packages. In particular, the proof of existence and uniqueness of 

the hydraulic steady-state of networks with feedback devices is lacking. Difficulties arise due to the 

fact that control devices with inequality conditions (associated with check valves and flow control 

valves) have multi-valued mappings for the hydraulic functions and are not differentiable in the 

classical sense. In this paper the mathematical modeling of check valves and flow control valves is 

proposed by the use of subdifferential hydraulic laws. Then, the conditions for existence and 

uniqueness of the hydraulic steady-state as well as appropriate algorithms for the numerical calculation 

are discussed.  

A formulation of the equations in terms of unknowns of loop flow corrections is developed based on 

the Content model. Details of a constrained convex non-linear programming formulation that is 

required to properly solve the governing equations are presented. Lagrangian multipliers in the non-

linear programming formulation coming from the Content analysis are physically linked to either the 

head drop across a closed check valve or the actual head loss across the flow control valve that is 

required to produce the set flow. Case study examples are provided to demonstrate the concepts 

presented in the paper.  
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Background 

For the operation of water supply networks control devices are very important. These devices possess 

different functional characteristics and various control modes with specific hydraulic characteristics. 

Only flow regulating devices in terms of check valves, flow control valves and temporarily closed 

isolating valves are considered in detail in this paper, although the principles presented also apply to 

pressure breaker valves, pressure dependent demands and leakages. 

Two groups of different flow regulating devices are now defined as  

1. Flow regulating devices whose operational state depends on the actual flow conditions. 

Examples include check valves (CHV, also referred to as non-return valves or back flow 

preventers) and also flow control valves (FCVs) for which a set flow is selected for the valve. The 

difficulty in modeling this group of valves is that the operating status of the valve is not known a 

priori. For example, for a check valve, it is not known whether it is open or closed. For a flow 

control valve it is not known whether it is active (partly open) or inactive (fully open). The 

analytic description of the hydraulic behavior of those devices in terms of system Content and sub-

differential analysis is given in this paper. These flow regulating devices can be modeled as multi-

valued mappings resulting from lower or upper inequality conditions for the hydraulic equations.  

2. Isolating valves (CIV) may have time varying operational states in a WDS. The operational 

states are assumed to be constant during certain time intervals and are altered by the system 

operator at particular times during the day. For instance some valves may be temporarily closed at 

a certain time. These are easier to model as the operating status of the device (usually an opened or 

closed valve) is known ahead of time unlike for check valves and flow regulating valves in Group 

1 above. Closed valves invoke an equality constraint. 

In contrast to the flow regulating devices, another form of regulating device is also present in water 

distribution systems. These are referred to as distributed feedback devices or pressure regulating 

devices. Examples are pressure reducing valves (PRVs), pressure sustaining valves (PSVs) and remote 

pressure controlled variable speed pumps. The hydraulic state of these valves is operated in order to 

reach a given set pressure at the control node. The location of the control node for the pressure can 
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either be immediately downstream of the PRV or at a location that is distant from the valve – for 

example at a node that is at the extremity of the system. The hydraulic behavior of these pressure 

regulating devices cannot be modeled with a specified relationship between flow and head loss. The 

operational state of those devices depends on the actual pressure of the assigned control node which is 

controlled by the conditions in the water distribution system both upstream and downstream of the 

valve. These devices require a different approach to modeling using the Nash Equilibrium in a 

competitive non-linear programming formulation (Deuerlein 2002, Deuerlein et. al. 2005) and the 

result of the significantly more complex requirements are not considered in this paper. The stark 

difference in the fundamental behavior of flow control devices and pressure regulating devices is an 

important observation of the research. This is the reason that flow controlling devices are considered 

separately in this paper. 

A number of publications deal with modeling of flow regulating control devices. Shamir and Howard 

(1968) took into account valves and pumps for the development of hydraulic simulation models while 

Kesavan and Chandrashekar (1972) presented a graph theoretical method for the consideration of flow 

control valves (FCVs) and pressure breaker valves (PBVs). Chandrashekar (1980) modeled booster 

stations and check valves (CHVs). Convergence problems for networks that include several check 

valves and pressure reducing valves (PRVs) are mentioned and the question of existence and 

uniqueness of a solution arises. Collins et al. (1979) show examples for multiple operating points of a 

system, if the network includes pumps with non-monotone pump curves. 

A comprehensive discussion of the uniqueness of solutions for networks with distributed feedback 

devices can be found in Berghout and Kuczera (1997). The authors stated that multiple solutions had 

not been found so far, as long as the control devices were controlled locally. In other words the control 

node must be directly connected to the device. The authors claim as an 'intuitive proof' for the 

uniqueness of the solution that PRVs have balancing impacts and the downstream pressure is kept 

constant. 
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Steady-State Calculation of the Network Hydraulics 

There are a number of ways to choose the unknowns to be solved for in a water distribution system. 

The Q-H Formulation where the combined unknown head and flow equations are used (made up of 

continuity equations for each node and a head loss equation for each link in terms of the unknown 

nodal heads at each end of the link related to the discharge through the link) is the basis of the Todini 

and Pilati (1988) algorithm. This algorithm is the basis for many government (EPANET, Rossman 

2000) and commercially available computer hydraulic solvers.  

Consider a water distribution network of links and nodes in which the system has m links (for example 

pipe, pumps and valves), n variable-head nodes, r fixed-head nodes (for example, reservoirs or tanks) 

and a total of l loops and independent paths and also assume the network is completely connected. For 

simplicity pumps will not be included in the analysis although they can be easily incorporated. The 

relevant vectors are: 

 q = (q1,q2, . . .,qm )
T
 , where qj is the unknown flow for the j-th link, 

 h = (h1,h2, . . .,hm )
T
 , where hj is the head loss for the j-th link, 

 r = (r1, r2, . . . , rm )
T
 , where rj is the resistance factor for the j-th link (for example based on 

Darcy-Weisbach or Hazen-Williams). 

 H = (H1,H2, . . .,Hn )
T
 , where Hi is the unknown head for the i-th node. 

 Q = (Q1, Q 2, . . ., Qn )
T
 , where Q i is the known demand at the i-th node. 

Three topology matrices for the network need to be defined. First, each link in the network needs to 

have a direction assigned to it (see Figure 1). The first topology matrix is the unknown head node 

incidence matrix A of dimension m x n that defines the node identifiers at the ends of links such that: 

A(j, i) = −1 if link j leaves node i; A(j, i) = 0 if link j does not connect to node i; and A(j, i) = +1 if link 

j enters node i. 

The second topology matrix that is required is the fixed head node incidence matrix AR of dimension 

m x r that defines the fixed head node identifiers at the end of links such that: AR (j, m) = −1 if link j 
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leaves fixed head node m; AR (j, m) = 0 if link j does not connect to fixed head node m; and AR (j,m) = 

+1 if link j enters fixed head node m. 

The third topology matrix is the loop and independent path incidence matrix C that is of dimension m 

x l that defines which links are in each loop in the network such that: C(j, k) = −1 if the link j is in loop 

k where the defined direction of the link is opposite to the assumed loop direction (see Figure 1); C(j, 

k) = 0 if link j is not part of loop k; and C(j, k) = +1 if the link j is in loop k where the defined direction 

of the link is in the same direction as the assumed loop direction. 

The continuity equations in matrix form in terms of the unknown flows q can be expressed as (Nielsen 

1989):  

QqA T
      (1) 

The energy equations are: 

                  RR HAAHh       (2) 

Finally the head loss-flow relationships for the links in the network are 

 qh f
      

(3) 

Eq. (2) and Eq. (3) are formulated in terms of the link head losses. These head losses could have easily 

been eliminated. However they are presented in this form to explain the nonlinear relationship between 

the head loss and the discharge and are important for the later development of the Content and Co-

Content for the system. 

The Loop Flow Correction Formulation of the Pipe Network Equations 

Based on the definition of topology matrices A and C (Todini and Pilati 1988, Deuerlein 2002) it 

holds that A
T 

C = 0 and therefore C
T
 A = 0 (Nielsen 1989). Multiplication of Eq. (2) by C

T
 yields the 

equations for zero head loss around the loops or the head difference between fixed head nodes for the 

independent paths: 

  0HADqC0HACADqCDqC  RRRR
TTTT      (4) 
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with D being a diagonal matrix with non-zero elements defined as 
1




jjjj qrD , j = 1,.., m, where  

is the head loss exponent that depends on the type of head loss equation being used (for the 

Darcy-Weisbach equation, 1.852 for Hazen-Williams). This formulation is a flow formulation in 

terms of the unknown flows q only and does not contain the nodal heads H. For the calculation of the 

m unknown flows in vector q the total number of loops and independent paths is given by l=m-n 

equations. Thus the system of equations in Eq. (4) is underdetermined. 

The flow vector q can be written as sum of the flows of an arbitrary flow vector 0q  that solves the 

continuity equation (Eq. (1)) and a loop flow correction vector u: 

Cuqq  0       
(5) 

For the example network in Figure 1 there are two loops and one independent path between the 

reservoirs and thus three loop flow corrections u1, u2 and u3. One way of calculating the flow vector 

0q  is to select one of the fixed grade nodes as a reference node and to compute the vector 0q  by 

solving the linear system of continuity equations for a spanning tree of the network (spanning tree 

matrix At):  

QAq
1T

t0 ][ 
      

(6) 

The flows q of Eq. (5) satisfy the continuity equations (Eq. (1)) independently of the choice of u. The 

stationary point calculation is reduced to the solution of the nonlinear equation system in the loop 

correction vector variables u: 

0HACDCuCDqC  RR
TT

0
T

      (7) 

Eq. (7) represents the formulation of the unknown loop flow correction (u) equations based on the 

head loss equations around loops and along independent paths between fixed head nodes. Thus the 

sum of head losses around each loop must be zero. 

Nodal equations  

Journal of Hydraulic Engineering. Submitted July 31, 2008; accepted May 29, 2009; 
  posted ahead of print June 1, 2009. doi:10.1061/(ASCE)HY.1943-7900.0000108

Copyright 2009 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

- 8 - 

Alternatively, the hydraulic equation can be obtained by the elimination of the vector of unknown 

flows q in Eq. (1) with use of Eq. (3). If the condition 0D jj   holds for all network links then the 

equality RRHADqAH   of Eq. (2) can be solved for q and applied to the continuity equation 

(Eq. (1)). As result the equation of the hydraulic steady-state calculation of pipe networks follows 

formulated in the variables of the unknown heads H: 

QHADAAHDA  
RR

1T1T      (8) 

Analytical Approach for Problem Formulation Based on Variational Calculus 

Formulation of a Nonlinear Optimization Problem without Constraints 

An alternative solution approach for the various formulations above is based on nonlinear 

minimization methods (NLP). Birkhoff and Diaz (1956) and Birkhoff (1963) have shown that the 

calculation of the looped electrical circuit systems with consideration of the first and second laws of 

Kirchhoff is equivalent to the minimization of a convex function. These principles can be applied to 

solving the pipe network equations. Based on the work of Cherry (1951) and Millar (1951) for the 

calculation of electrical networks, Collins et al. (1978) applied the minimization of the so called 

Content and Co-Content functions to the calculation of the steady-state for hydraulic networks. The 

minimization of the Co-Content refers to the variational principle of Birkhoff (1963) who proved 

conditions for the existence and uniqueness of a solution to the problem. Two assumptions are 

introduced in this paper. The first is: 

Assumption A: For each link of the hydraulic model there exists a (i) continuous and (ii) a (strictly) 

monotonically increasing relation of the vector form )(qh f  which represents a functional relation 

between the flow q and the head loss h.  

The hydraulic equations that represent the bilateral relation between head loss and flow within a link 

have to be continuous (Assumption  A
(i)

) which guarantees the differentiability of the above mentioned 

Content and Co-Content functions (being the sum of the integrals of the headloss function) and strictly 

monotonically increasing (Assumption A
(ii)

) which guarantees the strict convexity of the Content and 

Co-Content functions. 
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Minimization of the Co-Content Function for Pipes and Unknown Head Nodes 

Co-Content for water distribution systems may be specified in an analogous way to which Millar 

(1951) proposed definitions for electrical networks. First, define the function   as the Co-Content for 

both the pipes and unknown head nodes in the network as (Birkhoff 1963):  

 
 

m

1j

n

1i
ijΠ VW       (9) 

The quantity jW  for pipe j (j=1,2,…,m) is defined as the integral of the curve )h(g jj q  in Eq. (3) 

and is shown in Figure 2 (a) (Cherry 1951, Millar 1951): 

       






jj h

0

1

j
1

j

j
1

1
j

h

0
j hr

1

r
dhhsignhrdhh 








gW     (10) 

where hj is the head loss in pipe j, rj is the pipe resistance factor. The Co-Content value iV  is for node i 

(i=1,…,n) with an unknown nodal head and is defined as the integral of the non increasing function 

FH,i that describes the demand – head relationship at node i (Birkhoff (1963)): 

 
iH

iHi dxxFV
0

,
       (11) 

Figure 2 (b) shows the characteristics for a unknown head node with a given demand (FH,i = constant).  

There is a one to one correspondence for a pipe between flow and head loss and between nodal 

demand and head in Figure 2 (a) and Figure 2 (b), respectively. Later, we will see that this is not the 

case for check valves and flow control valves and as a result subdifferential calculus will need to be 

used.  

Birkhoff (1963) has shown, in his Theorem 1, that the condition 0Π  is equivalent to the nodal 

equations (according to Eq. (1)). If the hydraulic equations )(hq g  are monotonically increasing 

functions and FH,i, i=1,2,…,n monotone decreasing, then Π  is convex (Theorem 2 in Birkhoff, 1963). 

If, for both, the condition of strict monotonicity holds then Π  is even strictly convex (Theorem 3, 

Birkhoff 1963). In this case there exists at the most only one solution to the problem, that is, the 
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solution is unique. This outcome of existence and uniqueness of solutions is especially important to 

the development of this paper.  

The Co-Content Rn:Π R can be formulated in terms of the unknown heads: 

         QHHAAHDHAAHHH
RH

T
RR

1T

RR

m

1j

n

1i
ij

1
ΠwithΠ

n



  

  


VWmin

       

(12) 

Since )Π(H is a continuously differentiable function that is defined on the whole n
R  the gradient 

 HΠ  can be calculated. It is necessary for a minimum H* of Π that it solves the variational 

equation  

    0ΠΠ  
HHH

T
     

 (13) 

where HH  is an arbitrary variation H . The condition of Eq. (13) is valid for arbitrary variations 

H , if  

0QHADAAHDA  

RR

11Π TT

  
  (14) 

Eq. (14) corresponds to the formulation of the nodal equations (Eq. (8)). Therefore the minimization of 

the Co-Content function is equivalent to the steady-state calculation (based on Proposition 2, Collins 

et al. 1978). Assumption A
(i)

 guarantees the differentiability of the objective function )Π(H . 

Assumption A
(ii)

 is sufficient for the (strict) convexity of )Π(H  (Collins et al. 1978). For h = 0, in 

Figure 2 (a), the slope of the curve is infinite, which causes problems in the iterative solution of the set 

of nonlinear nodal H-equations (Todini 2006). 

Minimization of the Content Function for Pipes and Fixed Head Nodes 

Now define the function 
cΠ  as the Content for the pipes and fixed head nodes in the network as 

 
 

m

1j

r

1k

c
k

c
j

c ZWΠ

          

(15) 

For the calculation of the Content-function R: lc R  the integrals 
c
jW  for each of the pipes are 

required. The value c
jW  for pipe j (j=1,2,…,m) is defined as the area under the curve of head loss 
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versus flow )q(h jj f  and is shown in Figure 3 (a) (Cherry (1951), Millar (1951)): 

     
  2

j

1q

0
jj

1

j

q

0

c
j qqr

1

1
dqqqrdqq

jj







 





fW

   
(16) 

where hj is the head loss in pipe j, rj is the pipe resistance factor. The value c
kZ  for a fixed head node k 

(k=1,…,r) is defined as the integral of the constant known head difference along the independent 

paths: 

  
ku

0
ekbk

c
k dxHHZ ,,

                   

(17) 

where Hk.b is the beginning (fixed grade) node of the independent path k and Hk.e is the end (fixed 

grade) node of the independent path k.  

In the Content model the nodes with fixed given demands do not contribute to the Content function 

Here, in addition to the nodes with functional relation between demand and head (pumps, pressure 

dependent demands) the Content of the fixed grade nodes (Figure 3 (b)) has been included within the 

total system content. In contrast to Collins et al. (1978) in this paper the continuity equation Eq. (1) is 

not considered as a constraint of the minimization problem. Here, it is assumed that a flow distribution 

vector has already been found that solves the continuity equation (Eq. (1)) (for example - the flow 

vector of a spanning tree q0 as defined previously is determined by Eq. (6)) and based on this 

assumption the minimization problem is now formulated in terms of the unknown loop flow 

corrections u to minimize the system’s Content: 

        RR
TT

0

T

0

m

1j

r

1k

c
k

c
j

cc

1

1
ZΠwithΠ

l
HACuCuqDCuquu

Ru




 
  

Wmin    (18) 

A solution for the loop flow corrections u
*
 must necessarily solve the variational equation 

    lTcc 0 Ruuuu       (19) 

Implying that for arbitrary variations  uuu  the vector 
u  is a solution of the following 

equation system:  
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     0HACuqDCu  RR0
Tc     (20) 

Eq. (20) refers to the loop flow correction equations of Eq. (7). Thus the minimization of the system 

Content is equivalent to the calculation of the hydraulic steady-state (see Proposition 1, Collins et al. 

1978). From Assumption A
(i)

 it follows that the integrals of the headloss functions can be calculated. 

Consequently the Content function as the sum of the resulting integrals is differentiable. Assumption  

A
(ii)

 of this paper guarantees the (strict) convexity of the Content function cΠ  (Collins et al. 1979 and 

Collins et. al. 1978). Thus, there exists a unique solution for the minimization of the system Content. If 

according to Assumption A
(ii)

 strict monotonicity of all the hydraulic equations of the system features 

holds then it follows that there is strict convexity of the Content function cΠ . Therefore there exists at 

the most one unique solution to the problem. Due to the continuity and coercivity of cΠ  

(   


u
u

cΠlim ) it is guaranteed that there exists at least one solution to the hydraulic equations 

for the network system.  

Systems including Flow Regulating Devices 

In the following section, flow regulating control devices within water supply systems that have 

hydraulic laws complying with the subdifferential of a convex function are considered. The results are 

used for the development of an extended mathematical model of the hydraulic simulation of water 

supply networks. Eventually, the Content of control devices with subdifferential hydraulic laws in 

combination with the Content of conventional (not subdifferential) hydraulic equations for pipes and 

contributions of inflows and outflows of the system yields the Content cΠ  of the system.  

It will be shown that the minimization of cΠ  is equivalent to the solution of the hydraulic equations 

with consideration of equality and inequality constraints for the flows. The system Content cΠ  as a 

sum of convex functions is always convex (Rockafellar1970, Theorem 5.2). The problem can then be 

solved by using methods of constrained convex programming. For detailed information on the 

theoretical background of subdifferential calculus and convex analysis the reader is referred to 

Rockafellar (1970), Rockafellar and Wets (1998) and Hiriart-Urruty and Lemaréchal (1993). 
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In order to distinguish network features (for example nodes and links of the network graph) that have a 

certain property from the other features, the indicator matrix PI  of features with property P with 

respect to the set M is introduced (see Definition 5, Appendix A) 

An Extended Mathematical Model for Systems with Flow Regulating Devices 

Preliminary requirements 

The application of subdifferential calculus allows the extension of the mathematical model of 

hydraulic simulation of water supply networks by using hydraulic relations that can be assigned to a 

subdifferential according to Definition 3, Appendix A. Those relationships appear if flow regulating 

devices have to be considered. The hydraulic equations (q)h f and (h)q g  
are replaced by the 

subdifferential formulations Wq  and ch W . Assumption A is replaced by the following: 

Assumption B: There exists for each link j of the model a hydraulic law in the form of a 

subdifferential mapping jj
c
j hq: W  ( jjj qh  :W ), which satisfies the specifications of a 

strictly monotone mapping according to Definition 4, Appendix A.  

With Assumption B it follows (Theorem 12.17 of Rockafellar and Wets 1998) that the related system 

Content function is convex. The hydraulic equations of the previous section (normal pipes) are 

included in the subdifferential formulation as a special case     qq c

jj

c

j WW   and 

    hh jjj WW  . 

Control Devices Having Subdifferential Hydraulic Laws 

Overview 

In the following section, various control devices and their subdifferential formulations of the hydraulic 

equations are presented together with the related Co-Content and Content functions. The variational 

equations presented in Eq. (13) and Eq. (19) being necessary conditions of a minimum of the Co-

Content function Π  and Content function cΠ  in this case are replaced by inequalities. The definition 

of the subdifferential of a general non-differentiable function can be found in the Appendix A 

(Definition 3).  
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Check valves 

Check Valves (CHV) are a one-way valve primarily used in combination with pumps to prevent 

reverse flow from draining the upper tank. Such valves appear as non-return flaps, non-return valves, 

check valves and membrane valves. In steady-state calculations the hydraulic operational state of the 

check valve, either opened or closed, is not known a priori. In fact the state depends on the water 

distribution systems’ conditions both upstream and downstream of the check valve. The flow through 

the check valve is subject to inequality constraints and must satisfy the inequality for the flow through 

the check valve 0qCHV  . If 0qCHV  then the check valve head loss will be the minor loss associated 

with the check valve in a fully open position.  

2
CHVCHV2

CHV

2
CHV

2

CHV qk
gA2

q
ζ

g2

v
ζh 

    

 (21) 

where ζ is the minor head loss coefficient, ACHV is the cross section area and kCHV is the coefficient for 

the head loss equation of the check valve. For example the link 8 in the example network of Figure 1 

can be considered to be a check valve that prevents a flow from node “d” to node “e”. If the head He at 

the exit or end node increases and finally exceeds the head of the entrance or initial node Hd, the flow 

direction would change, which is then prohibited by the closure of the check valve. In this case an 

arbitrary head difference hCHV = He -Hd < 0 across the closed valve can be observed that is not related 

to the hydraulic relation of check valve. There is a lack of a functional relation between flow and head 

drop across a closed check valve that complies with the described behavior. In that case the mapping 

hq is multivalued in contrast to the one to one correspondence of a normal pipe. In the following, 

the subdifferential hydraulic laws and the calculation of the convex Co-Content and Content functions 

of a check valve are described.  
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The Co-Content for a Check Valve 

The subdifferential mapping of the hydraulic function of a check valve RR:)h(qCHV   and the 

related Co-Content CHVW  are (Theorem 12.17, Rockafellar and Wets 1998) (see also Figure 4):  

   









0hkh

0h0
hhq

CHV
CHVCHV

,/

,
W

   

 (22) 

 
 





















0h

k

h

3

k2
dhkh

0h0

h 2

3

CHV

CHV
h

0

2

1

CHV

CHV
,/

,

W    (23) 

 

In Eq. (22) and Figure 4 (a) there are two regions of interest for the check valve when the Co-Content 

of the function is considered including: 

1. Where the check valve is closed ( 0qCHV  ) the head drop across the valve is equal to or less 

than zero (in the region of 0hCHV  ). Note that the term “head drop” is used here rather than 

“head loss” as there is no flow occurring. For this case the discharge is zero along the negative 

x-axis. The amount of head drop across the closed check valve depends on the difference in 

head on the upstream side of the valve (Hd  in Figure 1) and the head on the downstream of the 

valve (He).  

2. Once the head loss across the check valve is positive ( 0hCHV  ) corresponding to a positive 

flow, the relationship between flow and head loss for the check valve becomes like a normal 

minor loss caused by the fully opened valve. This behavior is represented by the upper right 

hand quadrant of Figure 4 (a).  

Note in Figure 4 (a) the discontinuity in slope of the function at 0h  , while in Figure 4 (b), 

integration to obtain the Co-Content function has led to a function with continuous slope at 0h  . 
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The Content for a Check Valve 

The dual formulation of the Content c
CHVW  follows from the inversion of the hydraulic relationship 

 hq g  with consideration of 0qCHV  . The head across the check valve in terms of the 

subdifferential of the Content function and the Content function itself are defined as:  

     
















0qdqqk

0q0

0q

hqh
2

CHV

c
CHVCHV

,

,,

,

W     (24) 

 







 



 q

0

3
CHV

2
CHV

c
CHV 0qqk

3

1
dqqk

0q

q
,

,

W      (25) 

In Eq. (24) and Figure 5 (a) there are also two regions of interest when the Content of the function is 

considered. These include: 

1. When the flow is positive ( 0qCHV  ) through the check valve the head loss varies as normal 

for the case of the minor loss through a fully opened check valve. This zone is the upper right 

hand quadrant Figure 5 (a).  

2. When the flow is zero the head difference across the check valve can vary anywhere in the 

range from  0, along the negative-y axis depending on heads on either side of the check 

valve being the upstream head (Hd Figure 1) and the downstream head (He). The mapping is 

multi-valued along the negative y-axis. 

In Figure 5 (a) the slope of the Content function is discontinuous at 0q  . In fact, the flow versus 

head loss relationship is not a one to one function anymore but is rather a multivalued mapping. In 

Figure 5 (b) integration of the subdifferential to obtain the Content function also leads to a function 

that has a discontinuity in both value and slope at 0q   (unlike the Co-Content function in Figure 4 

(b)). In the terminology of convex analysis the Content function is lower semi-continuous. It is 

important to note that it is also convex.  
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Constraints of a Non-Linear Optimization Problem for a Check Valve 

In contrast to the Co-Content function CHVW  whose subdifferential is defined on the entire domain of 

(-∞, +∞), the Content function c
CHVW  is defined as c

CHVW  for negative flows q < 0 where 

 c
CHVW . For that reason in convex analysis the effective domain (see Definition 1, Appendix A) 

 c
CHVdom W  of the Content function is introduced with      CHV

c
CHVCHV

c
CHV qWRqdomW  

(see for example Rockafellar 1970, Theorem 3.4). If the indicator matrix as defined by Eq. (52) of the 

set MCHV of links that include check valves is denoted by ICHV, the constraints of the nonlinear 

optimization model in terms of the link flows, the loop incidence matrix C and the unknown loop flow 

corrections u are:  

  0CuqI 0
T
CHV      

 (26) 

It is assumed that the positive direction of the independent path coincides with the direction of flow. In 

the last part of the paper an example of the formulation of the non-linear programming problem for a 

check valve is given. 

Flow Control Valves 

Flow Control Valves (FCV) are used to limit the flow to be a maximum value maxq  (called the set 

flow). The flow through the valve is monitored. If the flow exceeds maxq  then the valve closes to 

create an additional head loss to reduce the flow to be equal to maxq and the FCV is in an active state. 

If the flow is less than the set flow maxq  then the valve opens to try to achieve the set flow. For flows 

of maxqq  the FCV will be totally opened and the behavior will be like a minor loss element 

corresponding to the fully opened FCV. Assume the minor loss coefficient for the fully open valve 

kOPEN (see Figure 6) is the same for flow in either direction through the valve. 

The Co-Content Function for Flow Control Valves 

For the Co-Content function, Figure 6 shows the subdifferential for an FCV expressed in terms of 

discharge through the FCV as:  
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     


























0max

0

2

1

FCV
FCVFCV

hhq

hhhsign
k

h
hhq

,

,W

           

(27) 

 

 

   





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


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
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
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










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
















0

2

3

FCV

0FCV
0max

h

h
max

h

0

2

1

FCV

0

2

3

FCV

FCV
h

0

2

1

FCV

FCV

hh
k

h

3

k2
hhqdhqdhhsign

k

h

hh
k

h

3

k2
dhhsign

k

h

h

0

0

,

,

W      (28)  

In Eq. (27) and Figure 6 (a) there are three regions of interest for the operation of a FCV including: 

1. When the head loss ( h  as a minor loss) across the FCV is negative ( 0hFCV  ) then the valve 

will be fully open and the reverse discharge will only be determined by the flow through the 

FCV (the lower left quadrant of Figure 6 (a)). 

2. To the right of the vertical line 0FCV hh   on the x-axis where the discharge is constant given 

by the maxFCV qq   line, the FCV (active mode) is causing a head loss due to its partly closed 

position such that the minor head loss factor k is greater than the k value when the FCV is 

fully opened. The flow is constant and is maintained at the set value of maxq .  

3. In the region where the head loss across the valve is in the range ( 0FCV hh0  ) where q  
is 

positive but less than maxq the FCV is full opened (inactive mode) and the flow through the 

valve is like a normal minor loss due to the FCV being fully open.  

In each of these regions in Figure 6 (a) where the valve is fully opened it is assumed that a minor loss 

occurs across the FCV itself. In Figure 6 (a) the slope of the function is discontinuous at 0hh  . In 

Figure 6 integration of the subdifferential to obtain the Content function leads (Figure 6 (b)) to a 

function that has no discontinuity in value and slope at 0hh   (unlike the Content function in Figure 7 

(b)). 

The Content Function for Flow Control Valves 

For the Content function, Figure 7 shows the subdifferential for an FCV expressed in terms of head 

loss across the valve as:  
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     














 

max

max0

xmaFCV

FCV
c

FCV

qq

qqh

qqqqk

qqh

,

,

,

W ,

   

(29) 

 









 


max

max

q

0

2
FCVFCVc

FCV

qq

qqqqk
3

1
qdqqk

q

,

,
W    (30) 

In Eq. (29) and Figure 7 (a) there are three zones of interest including: 

1. For ( 0qFCV  ), there is reverse flow through the FCV, the FCV is fully opened and the flow 

is governed by the minor head loss coefficient for reverse flow. 

2. For maxFCV qq  , the head loss ( FCVh ) through the FCV can vary anywhere in the range 

 ,0h  along the maxFCV qq   vertical line above the horizontal line 0FCV hh  . This 

mapping is multi-valued. The head loss is created by the amount by which the FCV is closed 

to ensure it delivers only the set value of xmaq . 

3. For the region between 0qFCV   and maxFCV qq   the FCV is fully opened. The set flow 

cannot be achieved. The head loss across the FCV is the minor loss for the fully opened FCV.  

Constraints of a Non-Linear Optimization Problem for a Flow Control Valve 

For the minimization of the system-Content (see Figure 7) within the effective domain the following 

constraints have to be considered for FCV ( FCVI : Indicator matrix of the set FCVM  of links that 

include FCVs): 

  max0
T
FCV qCuqI        (31) 

Temporarily Closed Isolating Valves 

In addition to control devices considered earlier in the paper, water supply networks often include a 

number of valves that may be used for total closure of particular links. The valves are closed for 

instance during rehabilitation or control of the system. Temporary closure of isolating valves can also 

be useful for calibration in order to provide different flow distributions. The information that is gained 

from pressure measurements is thus increased.  
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For modeling of temporarily closed isolating valves (CIV) the related links can be removed from the 

graph. For the minimization of the system Co-Content  this can be realized easily by removing the 

columns of those links from the incidence matrix of the network graph. With regard to the 

minimization of the system Content function c  the effort would be much more complex because the 

loop matrix also has to be modified. For this case it is more efficient to model the temporarily closed 

valves with equality constraints that are added to the mathematical model:  

  0CuqI 0
T
CIV        

(32) 

Matrix ICIV is again the indicator matrix of the set of isolating valves that are temporarily closed. 

Variational Inequalities and the Nonlinear Optimization Formulation 

In this section the general formulations for the minimization of the system Content and system Co-

Content for networks that include features with subdifferential hydraulic laws shall be derived. It is 

assumed that the hydraulic equations of subdifferential type for pipe or control device j are known. Let 

    Rhhh jjjj  ,Ws  and 
jhM  be the feasible range for the head loss of link j. Then, the Co-

Content is given by (see Remark 4.2.5, Hiriart-Urruty and Lemarechal 1993) 

     














j

j

j

hj

hj

h

a
j

jj

Mh

Mhdxxa
h

,

,sW
W

    

(33) 

for all  b,ax . Correspondingly the function for the Content of link j can also be stated. Let 

    Rqqq jj
c
jj  ,Wt and jQ  be the set of admissible flows of link j. It follows that the Content 

function is as follows: 

     














jj

jj

q

a

c
j

j
c
j

Qq

Qqdxxa
q

j

,

,tW
W     (34) 

for all  b,ax . It is further assumed that the possibly multivalued hydraulic relation satisfies the 

requirements of a strictly monotone subdifferential mapping (see Assumption B and Definition 4, 

Appendix A). Since the Content (and the Co-Content) functions are proper and lower semicontinuous 
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(see Definition 2, Appendix A), it follows that they are convex (Theorem 12.17, Rockafellar and Wets 

1998). With Assumption B, the equations (33) and (34) are due to the definition of the subdifferential 

(see Definition 3 of the Appendix A) equivalent to the variational inequalities for both the Co-Content 

and Content 

     jjjjjjjjjjj hqhqhhh WWWW      (35) 

and 

     jc
jjjjj

c
jjj

c
j

c
j qhqhqqq WWWW       (36) 

The hydraulic equations of the j-th link  jjj hq g  with a continuous and strictly monotone 

increasing function RRj :g  are replaced by the more general subdifferential conditions 

 jjj hq W  and  jc
jj qh W , respectively, which is equivalent to the inequalities of Eq. (35) and 

Eq. (36) where  jj hW  (  jc
j qW ) is the subdifferential of the proper, convex and lower semi 

continuous (see Definition 2 of Appendix A) Co-Content function  jj hW  (Content function  jc
j qW ).  

Following the same ideas as in the previous section as to systems without control devices the total 

systems Co-Content function can be calculated as the sum of the Co-Content functions of the 

particular network features.  

According to Eq. (12) the minimization problem of the Co-Content function of systems including 

features with non-differentiable but sub-differentiable hydraulic laws can be stated as 

)(Πmin
n

H
RH

~


      (37) 

In contrast to Eq. (12) the objective function in Eq. (37) is not twice continuous differentiable which is 

indicated by the tilde. A necessary condition for a minimum 
H  is that it solves the variational 

inequality: 

  nT 0)(Π RHHHH  ~
    (38) 
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In an analogous way, the minimization problem of the Content function is derived. As shown 

previously, the check valve and FCV control devices have subdifferentiable, possibly multivalued 

hydraulic laws that include the indicator functions of the convex sets that represent the unilateral 

behavior of the control devices. If the contributions of the indicator functions (see Appendix A, 

Definition 6) are removed from the objective function and replaced by inequality conditions then the 

problem can be formulated as a nonlinear minimization problem of a twice continuously differentiable 

objective function over a polyhedral set instead of a minimization problem of the unconstrained 

subdifferentiable convex function   RΠ lc Ru :
~

. Note that due to the monotonicity properties of the 

hydraulic laws of the different network features (pipes, check valves, FCVs) both the function cΠ
~

and 

c are convex. In addition since the flow is subject to friction everywhere in the system both 

functions are even strictly convex. For example the content of the check valve (Eq. (25)) can be 

written as the sum 

qqk
3

1
CHVC

c
CHV

CHV
 IW

     
(39) 

 0qqCCHV   represents the convex feasible set for the flow through a check valve and 
CHV

CI  is the 

indicator function (Definition 6, Appendix A) of the set CHVC . For the minimization of the total 

system Content function the unconstrained minimization problem of Eq. (18) is replaced by: 

)(Πmin c
u

Uu
      (40) 

The feasible set U consists of a convex polyhedral subspace of l
R  and is defined by:  

  ll )(h,)(g R0u0uRuU        (41) 

The function )(ug  refers to the flow inequality constraints due to check valves (Eq. (26)) and FCVs 

(Eq. (31)): 

        0qICuqIIu  max
T

0
T

FCVFCVCHVg    (42) 

Temporarily closed valves are modeled with the equality constraints of Eq. (32):  
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      0CuqIu  0

T

CIVh                (43) 

The Content function cΠ  is the sum of the single Content-functions of control devices, pipes and 

linear contributions of inflows and outflows at the fixed grade nodes. In contrast to the Co-Content 

function Π , the Content function without the terms belonging to the indicator functions of the flow 

constraints is twice continuous differentiable. The necessary condition for a solution of the problem in 

Eq. (40) can be stated as a variational inequality (see Harker and Pang, 1990, page 165):  

    Uuuuu   0Π
Tc

    
(44) 

Application of Nonlinear Optimization 

Overview 

For the calculation of the hydraulic steady-state with consideration of control devices using 

subdifferential hydraulic laws, the methods of constrained nonlinear optimization are applied. The 

minimization of the system Co-Content Π  as well as the minimization of the system Content cΠ  is 

presented. For both of these, a nonlinear convex objective function has to be minimized over a 

polyhedral set that is defined by linear constraints. The objective function for the Co-Content 

formulation Π  (Eq. (37)) is defined in a piecewise way and is only one times continuous 

differentiable (see hydraulic laws of check valves and FCVs) whereas the objective function for the 

Content formulation cΠ of the second problem (Eq. (40)) is twice continuous differentiable over the 

total feasible range U. This will be seen to be clearly advantageous. 

Minimization of the Co-Content Function 

The total Co-Content of the system is composed of the sum of the Co-Content of the individual links 

and nodes. One significant discrepancy in the formulation of the system Co-Content according to Eq. 

(12) consists of the lack of twice differentiability (e.g. check valves and FCVs) of the Co-Content 

contributions. With consideration of the control devices of subdifferential hydraulic type, the hydraulic 

steady-state is completely described by the following Convex Optimization problem with the convex 

nonlinear objective function Π over the feasible set R
n 
 
 
(Abbreviation:  ΠCO n ,R ): 
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   H
~

:
~

,R
RH

ΠminCO
n

n


      (45) 

    QHHAAHDHAAH
T

RR

T

RRwith 


 1~

1
Π
~

:



 

Thus the outcome here is an unconstrained optimization problem in terms of unknown nodal heads. 

The difficulty is that the matrix D
~

 is made up of pipes, check valves and flow control valves. In 

contrast to the formulation of the hydraulic steady-state that contains no control devices with 

subdifferential hydraulic laws (see matrix D in Eq. (12)), 1~ 
D  contains piecewise defined functions 

RR:di  that are not continuous for the whole range R (see for instance relation  CHVCHV hq  or 

 FCVFCV hq ). 

Minimization of the Content Function 

In contrast to the Co-Content function  , the objective function for the Content c  of systems 

including control devices as described above is twice continuously differentiable. The minimization of 

the system Content according to Eq. (18) extended by the linear constraints of the control devices 

complies with the dual formulation of the minimization of the Co-Content (see Eq. (45)): 

   

 

  0u

0u

uU
u





h

g:

Πmin:Π,

thatsuch

CO cc

     (46) 

    RR
TT

0

T

0
c

1

1
Πwith HACuCuqDCuq 





:  

Thus the outcome here is a constrained optimization problem in terms of loop flow corrections, but the 

objective function cΠ  is twice continuously differentiable (thus the D matrix is in terms of functions 

that are continuous). In addition, the check valves, FCVs are dealt with as inequality constraints. The 

Lagrangian multipliers turn out to be the local head losses (FCVs) or head drops (check valves) of the 

control devices. As a result the Content model is selected for implementation. 

The Lagrangian function of the convex optimization problem ),(CO cU  is:  
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        





d

1j
jj

s

1i
iiRR0

T

ΠCO
hg

1

1
c uuHACuqDCu

U


),(
L

 

 (47) 

where iμ := Lagrangian multipliers of the inequality constraints for the check valves and FCVs (i = 

1,…, s), jλ := Lagrangian multipliers of the equality constraints for the temporarily closed isolating 

valves (j=1,…,d), s is the number of control devices with inequality constraints and d is the number of 

temporarily closed links with equality constraints. The twice continuous differentiability of cΠ  with 

respect to the variables u allows the calculation of the gradient 
),(

L cΠCO Uu  and Hessian matrix 

),(
L cΠCO

2

Uu  of the Lagrangian 
),(

L cΠCO U
. Using the gradients of the linear constraints   1Guu  g  

and   Huu  h , the derivatives of the Lagrangian can be written as: 

   λHμGHACuqDC
Uu

TT
1RR0

T

ΠCO c 
),(

L    (48) 

DCC
Uu

T

ΠCO

2
c 

),(
L         (49) 

A necessary condition for a solution of the problem ),(CO cU  are the Kuhn-Tucker conditions of 

nonlinear programming, which can be written as: 

  

      0s1i0ii

TT
1RR0

T

ΠCO c





μu0u0u

0λHμGHACuqDC
Uu

;,,,g;h;g

L
),(


   

(50) 

Assumption B guarantees the positive definiteness of the Hessian matrix (Eq. (49)).  

The assumed strict monotonicity of the mappings 
c

jW  and jW  (compared with Assumption B) 

implies strict convexity of the functions cΠ and Π , which by theorems in nonlinear programming 

guarantees that the problem ),(CO cU
 
has at most one unique local (and hence global) optimal 

solution.  If in addition U  the existence of a unique solution is proven. Sufficient for the 

uniqueness of the Lagrangian multipliers is the Linear Independence Constraint Qualification (LICQ) 

of Nonlinear Programming that requires that the gradients of the active inequality constraints together 

with the gradients of the equality constraints are linearly independent at the solution point. 
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As a result of the development of this constrained nonlinear optimization formulation, the correct 

operating status of check valves and flow control valves can be determined and guaranteed by the 

solution process. Use of the Content function approach ensures that the solution to the nonlinear 

optimization problem gives a unique solution that has been shown to exist. This represents a 

significant improvement over the current use of heuristics in combination with solving the non-linear 

equations for simulation of water distribution systems. Examples of problems with the heuristic 

approaches have been described by Simpson (1999) and Deuerlein et al. (2008). 

Example Systems 

For illustration of the solution of the constrained minimization problem ),(CO cU for the Content of 

a system, the network presented in Figure 1 serves as an example. It consists of two supply areas that 

are each supplied by one storage tank. The zones are connected by a pipe including a FCV between 

nodes a and c, which restricts the possible flow from S1 to S2 up to a certain maximum set flow 

( xmaq ) and a check valve in link 8 between nodes d and e that only allows flow from supply area 1 

(S1) to supply area 2 (S2). Two different scenarios are considered. In the first case the demand Qc at 

node c is less than the set value of the FCV and a feasible solution exists. In the second case the 

demand at node c is increased such that it exceeds the set value of the FCV. Since the CHV prohibits a 

flow from S2 to node c, a feasible solution does not exist in this case.   

The necessary conditions for a minimum of the Content function for the system without flow control 

devices according to Eq. (20) are: 

  QAqHACCuqDC
1T

t0RR
T

0
T with)(


  

where 0q  denotes the flow distribution of the spanning tree. The iterative calculation can be carried 

out by application of the Newton-Raphson-method for the solution of the nonlinear system: 

    1kk1kRRkk
T

1kk
T 1

  CuqqHAqDCuDCC


,  
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Case 1: Demand at Node c is less than FCV flow setting (qmax > Qc) 

Two additional inequalities have to be considered, which in this example is equivalent to 08 q
 
and 

max4 qq  . The necessary conditions for the solution of the problem are expressed by the Kuhn-

Tucker conditions of nonlinear optimization including the derivative of the Lagrangian function, the 

constraints and the complementary slackness condition: 

 

 
    0;0;0

;0;0;0

CHV28,0CHV28,0

max24,0FCVFCVmax24,0

RR

T

CHVCHV

T

FCVFCV

T

0

T











uquq

quqquq

HACμICμICCuqDC

    (51) 

where u is the vector of loop flow corrections and the Lagrangian multiplier FCV and CHV are the 

local headloss of theactive flow control valve and head drop across the check valve, respectively. 

Assuming that in iteration k the FCV is inactive (open) and the check valve is closed (active) the 

following system of equations for the system in Figure 1 has to be solved: 

k

LIII

LII

LI

kk

h

h

h

u

u

u

dddd

ddddddddd

dddd
























































































00010

00

1

00

1CHV

3

2

1

4315

5118653213

31043



where for pipes 
1

jjj qrd





 and for check valves qk
2

d CHVj


 . If in the solution the check valve is 

closed that means that the inequality condition for the flow through link 8 is fulfilled with equality 

08 q . In that case the Lagrangian multiplier of the constraint is positive and represents the head drop 

across the check valve in Figure 1 of μHH ed  . 

Case 2: Demand at Node c exceeds the FCV flow setting (qmax < Qc) 

Now the FCV link 4 is considered to be active. The necessary conditions for the solution of the 

problem expressed by the Kuhn-Tucker are the same as in Eq. (51). In this case the system of linear 

inequalities q0,4  + u2 - qmax  ≤ 0 and - q0,8 - u2  ≤ 0 has no solution (from the continuity equation it 

follows that q0,4  - q0,8 - Qc = 0). Consequently there is no feasible solution to the nonlinear optimization 

problem. Existing hydraulic solvers that are based on heuristics fail to calculate proper results for this 
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system. For example, EPANET finds an incorrect solution, in which both set flows are exceeded 

(which is incorrect) and 50% of the excess flow is allocated to both the FCV and the CHV. Thus the 

fact that a solution to the problem did not exist was not detected by the heuristic approach. The new 

computational procedure for FCVs based on NLP described in this paper is able to compute the correct 

answer. At the beginning of the iterative procedure, a point in the interior of the feasible set U (Eq. 

(41)) is calculated by use of a modified Simplex Algorithm guaranteeing that all of the inequality 

constraints are in an inactive state and that the multiplier vector is zero. In case 2, the non-existence of 

a feasible flow vector is detected before the iterative calculation takes place. In case 1 (with this initial 

flow distribution) the system of equations, resulting from the Kuhn-Tucker-conditions is solved for the 

new flows by using a modified Newton-Raphson-algorithm. After each iteration it is checked as to 

whether the new calculated iteration point is within the feasible set U or outside its boundary. If the 

new point is outside of U, it is reset to the intersection of the line that connects xn+1 and xn with the 

constraint that is violated first. Consequently at the most, one constraint can become active within 

each iteration step. In contrast, the heuristic procedure in the EPANET-algorithm checks after each 

second iteration all constraints simultaneously and modifies the system at places where the constraints 

are violated, which may lead to non-convergence or the incorrect solution. 

The new NLP solution method as proposed in this paper has been implemented for a number of 

networks ranging from theoretical systems to real networks with more than 20,000 nodes and pipes. 

Compared with EPANET, in most of the tested cases the calculation requires more time depending on 

the number of flow control devices. However, the new algorithm in this paper always provides the 

correct solution to the flow distribution in contrast to EPANET which on some of these networks gave 

the wrong solution.   

Conclusions 

This paper presents a theoretical framework for the correct simulation of water distribution system 

networks that contain flow controlling devices comprising check valves, flow control valves and/or 

temporarily closed isolation valves. The new method presented in this paper replaces the existing 

approach where heuristics are used to determine the operating state of check valves and flow control 
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valves during the iterative process in which the nonlinear pipe network equations are solved. An 

important observation about flow regulating valves is that the flow versus head relationship is clearly 

defined for these devices, which is in stark contrast to pressure regulating devices. 

In this paper, a Content and Co-Content approach has been considered. Subdifferential analysis has 

been introduced due to the head versus flow relationships for check valves and flow control valves not 

being twice continuously differentiable. This leads to the definition of a convex problem that is proven 

to have a solution that both exists and is unique. The uniqueness proof is an important advantage in 

framing the solution as a constrained nonlinear optimization problem with inequality constraints 

(check valves, FCVs) and equality constraints (temporarily closed isolating valves) rather than just the 

solution of a set of non-linear equations. The new method based on an optimization approach based on 

the Content function appropriately deals with the equality and inequality constraints associated with 

flow regulating devices thereby enabling the correct solutions for the operating status of valves to be 

found for the hydraulic flows and heads in networks containing these devices. The Lagrangian 

multipliers arising in the approach have been shown to have a unique physical interpretation. For a 

check valve and a temporarily closed isolation valve the Lagrangian multiplier is the head drop across 

the closed valve. For a flow control valve, the Lagrangian multiplier is the head loss created by the 

valve maintaining the flow through the valve at the set flow. The non-linear constrained optimization 

formulation based on the Content model has been implemented. Two cases for an example network 

configuration containing a check valve and a flow control valve have been investigated. The 

methodology presented here represents a significant improvement over the current methods used in 

hydraulic modeling that are based on heuristics for dealing with flow control valves.   

Appendix A: Definitions 

For the following definitions the function   ,f R:R: n R  is considered. For reference see 

Rockafellar and Wets (1998). 

Definition 1 (Domain): The domain of the function is defined as   (x):x:dom ff .  

Definition 2 (Properties of the function f (proper, convex, lower semi-continuous)):  
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(a) A function is called proper if it is never equal to   and :dom f .  

(b) A function R: n Rf  is convex if for all Ryx ,  and for all  10,  it holds that 

        y1xy1x fff   .  

(c) A function R: n Rf
 
is called lower semi-continuous at a point x , if    xxinflim

xx

ff 


. 

Definition 3 (Subgradients, Subdifferential): The set of regular subgradients  xf̂  of a function 

RR: f  is the set of all points   
such that 

     
0

xx

xxxfx
inflim

T

xx,xx








f
. The subdifferential 

  Rfofx n  R:f  is the set of all cluster points of elements of  xf̂  for xx .  (see Figure 8) 

For convex functions it coincides with  xf̂ .  

Definition 4 (Monotonicity): The subdifferential mapping  xx f  is monotone if 

    0
T

 yxvu  for all n
Ryx ,  and all    yvxu f,f   and strictly monotone if 

    0
T

 yxvu  for all 
n

Ryx ,  and all    yvxu f,f  . 

Definition 5 (Indicator matrix): Consider the index set M of the total set of elements mM  and 

the index set MP of elements having property P with kP . The )km(   matrix PI is denoted as 

indicator matrix of the set P with respect to M and is defined by:  



 


else,0

jandiif,1

)j,i(P

PM
I      (52) 

Definition 6 (Indicator function of the convex set C): A convex set C can be analytically 

represented by its convex indicator function:  

  n
C

for

for0
Rx

Cx

RCx
x 








 ,I . 
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Appendix B: Notation 

A  (m x n) incidence matrix of unknown head nodes 

ACHV  cross section area of a check valve 

AR   (m x r) incidence matrix of fixed grade nodes  

C  (m x l) loop incidence matrix 

D   (m x m) diagonal matrix of derivatives of head loss functions 

d  number of links with equality flow constraints  

H  n vector of heads at unknown head nodes 

HR  r vector of heads at fixed grade nodes 

H
*
  heads at minimum point 

h m vector of head losses of the links  

IP indicator matrix of subset of links having property P (P = CHV, FCV or CIV) 

kv valve head loss coefficient 

l  number of loops plus independent paths 

jhM   feasible range for the head loss of pipe j 

m  number of links 

n  number of nodes with unknown head 

qmax  set flow of flow control valve 

q   m vector of link flows of the network  

q0   n vector of flows of a spanning tree 

Q   n vector of nodal demands 

r  number of nodes with fixed head 

r   m vector of resistances of the links  

s  number of links with inequality flow constraints 

u  l vector of loop flow corrections,  

u
*
  loop flow corrections at minimum point 

U   polyhedral set of feasible loop flows 
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iV   Co-Content of unknown head node i 

jW   Co-Content of pipe j 

c
jW   Content of pipe j 

c
kZ   Content of fixed grade node k 



   exponent in head loss equation 

λ   d vector of Lagrange multipliers of equality constraints 

μ   d vector of Lagrange multipliers of equality constraints 

   system Co-Content  

c   system Content 

c
jW   Content of pipe j 

   loss coefficient 

   subdifferential operator 

 LIh   sum of headloss in loop I 

 

CIV  temporarily closed isolating valve 

 cΠCO ,U  convex optimization problem of the function cΠ  over the feasible set U 

FCV   flow control valve  

KKT  Karush-Kuhn-Tucker conditions 

PRV   pressure reducing valve 

PSV   pressure sustaining valve 
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Figure 1: A 7-pipe and 2-reservoir example network with a valve (R = reservoir, S1, S2 are supply 

areas, the roman numerals indicate the loops and independent path) 

Figure 2: Hydraulic head loss equations, Co-Content functions of (a) pipe j and (b) demand node i 

Figure 3: Hydraulic head loss equation, Content functions of (a) pipe j and (b) fixed head node i  

Figure 4: (a) Hydraulic mapping FCVCHV qh   and (b) Co-Content CHVW  for a check valve  

Figure 5: Hydraulic mapping (a) CHVCHV hq   and (b) Content c
CHVW  for a check valve 

Figure 6: Hydraulic mapping (a) FCVFCV qh  and (b) Co-Content FCVW  for an FCV 

Figure 7: Hydraulic mapping FCVFCV hq  and Content 
c

FCVW  for an FCV 

Figure 8: Subdifferential of a non differentiable but subdifferentiable function RR: f  
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