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Special Research Centre for the Subatomic Structure of Matter (CSSM) The School of Chemistry
and Physics Department of Physics and Mathematical Physics, Adelaide University, 5005, Australia

and Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, United Kingdom

Michael R. Pennington†

Institute for Particle Physics Phenomenology, Physics Department, Durham University, Durham DH1 3LE, United Kingdom
(Received 23 April 2009; published 22 June 2009)

In principle, calculation of a full Green’s function in any field theory requires knowledge of the infinite

set of multipoint Green’s functions, unless one can find some way of truncating the corresponding

Schwinger-Dyson equations. For the fermion and boson propagators in QED this requires an ansatz for the

full 3-point vertex. Here we illustrate how the properties of gauge invariance, gauge covariance and

multiplicative renormalizability impose severe constraints on this fermion-boson interaction, allowing a

consistent truncation of the propagator equations. We demonstrate how these conditions imply that the 3-

point vertex in the propagator equations is largely determined by the behavior of the fermion propagator

itself and not by knowledge of the many higher-point functions. We give an explicit form for the fermion-

photon vertex, which in the fermion and photon propagator fulfills these constraints to all orders in leading

logarithms for massless QED, and accords with the weak coupling limit in perturbation theory at Oð�Þ.
This provides the first attempt to deduce nonperturbative Feynman rules for strong physics calculations of

propagators in massless QED that ensure a more consistent truncation of the 2-point Schwinger-Dyson

equations. The generalization to next-to-leading order and masses will be described in a longer

publication.

DOI: 10.1103/PhysRevD.79.125020 PACS numbers: 11.15.�q, 11.10.Gh, 11.15.Tk, 12.20.�m

I. INTRODUCTION

Solution of the Schwinger-Dyson equations (SDE) for
any field theory would constitute the complete determina-
tion of that theory and every possible measurable quantity
would be known. Even though it is nearly 60 years since
these field equations were first derived [1–5], we are far
from obtaining their solution even for a relatively simple
theory like QED. Progress has been hampered by the very
structure that makes field theory interesting, namely, that
the Schwinger-Dyson equations form an infinite nested set.
Each n-point function must be multiplicatively renorma-
lizable and, in a gauge theory, respects gauge invariance.
To achieve this, the solution even for the 2-point functions
(the propagators) appears to require knowledge of all the
other n-point functions. Consequently, studies in gauge
theories have resorted foremostly to a perturbative approxi-
mation, in which each Green’s function is expanded to a
given order in the coupling squared. Or as an approxima-
tion to nonperturbative physics, simple (even simplistic)
ansatz have been used for the 3-point function to allow the
fermion propagator to be investigated. In return dynamical
mass generation has been studied in the rainbow approxi-
mation [6–12] and some level of understanding of when

chiral symmetry breaking can occur has been reached.
While valuable for gaining intuition, this is no substitute
for a genuine nonperturbative study. While formal results
on gauge invariance and multiplicative renormalizability
(MR) have long been known using the gauge technique of
Salam, Delbourgo [13–15] and others, this method has not
proved useful for providing equations that can be readily
solved either analytically or numerically. Here, an alter-
native approach, an attempt to develop nonperturbative
Feynman rules, has proved more fruitful. The aim is to
write down explicit representations for the effective
n-point functions, in particular, for the 3-point function,
which ensures that the solutions of the Schwinger-Dyson
equations for the 2-point functions respect gauge invari-
ance and are multiplicatively renormalizable [16,17].
What has previously impeded the practical study of the

Schwinger-Dyson equations has been the need to handle
overlapping divergences that dramatically complicate the
renormalization of the equations. The present approach
overcomes this difficulty by requiring that the 2-point
functions must be multiplicatively renormalizable and no
overlapping divergences can thereby occur. This procedure
is genuinely nonperturbative and is not readily relatable to
attempts at summing subsets of Feynman graphs with these
same properties [11,18–23].
The first of such nonperturbative studies has been in the

case of quenched QED [12,23–35]—that is, QED in which
*akiziler@physics.adelaide.edu.au
†m.r.pennington@durham.ac.uk

PHYSICAL REVIEW D 79, 125020 (2009)

1550-7998=2009=79(12)=125020(25) 125020-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.125020


the explicit factor of NF multiplying the fermion loop
corrections to the photon propagator is set equal to zero.
Then a form for the fermion-boson vertex that satisfies the
Ward identity, the Ward-Green-Takahashi identity [36] and
renders the fermion propagator multiplicatively renorma-
lizable, has been written down explicitly [18,37]. While the
form is nonperturbative, the fact that it must agree with
perturbation theory in the weak coupling regime is a key
pointer to the ultraviolet structure, expressed in terms of
logarithms of momenta. The purpose of the present paper
is to extend this study by developing the constraints that
have to be fulfilled in the case of massless unquenched
QED to ensure both the fermion and photon propagators
are multiplicatively renormalizable (at least as far as lead-
ing logarithms are concerned).

In general, the full fermion-boson vertex has 12 compo-
nents, all of which are in principle independent, though one
is forced to be zero by gauge invariance. The fermion and

photon propagators do not require complete knowledge of
the full complexity of this structure, but just two projec-
tions that arise in the Schwinger-Dyson equations for these
2-point functions. We present a simple solution to the
constraints from multiplicative renormalizability. While
the general structure of the full vertex is not complete,
the projections within the SDEs for the 2-point functions
have no freedom.
While it is clear that the full 3-point function must

involve knowledge of the 4-point kernel and higher-point
functions, as far as its role in the equations for the propa-
gators is concerned, this is not the case. Thus it can be that
the effective 3-point function involves only the full 2-point
functions. A clue to this is provided by the Ward-Green-
Takahashi [38–40] identity, which tells us that part of the 3-
point vertex (often called the longitudinal part) is precisely
fixed by the fermion propagator alone. Moreover, a hint
that the remaining transverse part may be similarly con-

G
I I

SDE

SDE

FIG. 1. Flow diagram of the Schwinger-Dyson calculation presented here.
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strained is the fact that the vertex and fermion wave
function renormalization have common renormalization
factors (Z1 ¼ Z2) as a consequence of gauge invariance.
Thus the transverse part must know about the fermion
propagator functions too. How, this works in full QED is
what we investigate in this paper.

In Sec. II we consider the structure of the fermion-boson
vertex and its ultraviolet behavior. In Sec. III we compute
the Schwinger-Dyson equations for the fermion and boson
propagators. In Sec. IV we deduce the ultraviolet structure
imposed by multiplicative renormalizability. Section V
gives the constraints on the vertex imposed by MR con-
ditions. The pattern of constraints indicates a general ana-
lytic form for the transverse part of the vertex structure. In
Sec. VI we deduce a solution to these constraints involving
the full fermion wave function renormalization. The vertex
in the weak coupling limit is studied in Sec. VII and the
restrictions it imposes derived. In Sec. VIII we conclude
and outline a program for future work. Since this procedure
is rather complicated, we show in Fig. 1 a flow diagram of
this calculation.

II. VERTEX AND PROPAGATORS AND THEIR
RENORMALIZATIONS DEFINED

The two key constraints on the fermion-boson vertex are
provided by the gauge invariance of the theory and by
multiplicative renormalizability. Here we begin with the
first of these and describe the importance of the Ward-
Green-Takahashi identity [38–40]. Though this is well
known, it forms the essential background allowing us to
establish our notation.

The vertex, displayed in Fig. 2, is a function of the two
independent momenta flowing through the vertex. We take
these to be the fermion momenta, k and p. The vertex
function is ��ðk; p;qÞ with q ¼ k� p. It is well known
that the coupling of two spin-1=2 particles to a spin-1
boson involves 12 independent vectors; of these, eight
are transverse to the boson momentum q. The structure
of the four (longitudinal) components are constrained by
the Ward-Green-Takahashi identity (WGTI)

q���ðk; p; qÞ ¼ S�1
F ðkÞ � S�1

F ðpÞ; (1)

where SFðpÞ is the full fermion propagator carrying mo-
mentum p. In general

iSFðpÞ ¼ i
Fðp2Þ

p6 �Mðp2Þ ¼ i
1

Aðp2Þp6 �Bðp2Þ ; (2)

where Fðp2Þ [or Aðp2Þ ¼ 1=Fðp2Þ] is the fermion wave
function renormalization and Mðp2Þ [or Bðp2Þ ¼
Mðp2Þ=Fðp2Þ] is its mass function. The bare fermion
propagator is just S0FðpÞ ¼ 1=ðp6 �m0Þ. From the form of
this propagator, the Ward-Green-Takahashi identity,
Eq. (1), contains terms with both one and no gamma
matrices, so that the vertex component involving two
through ��� � 1

2 ½��; ��� must be zero. Thus in a gauge

theory there are in fact 11 independent nonzero vectors in
terms of which to decompose ��ðp; k;qÞ. Of these, six
occur if the fermions are massless as we consider here, i.e.
Mðp2Þ ¼ 0. Equation (1) has a well-known zero photon
momentum limit; the Ward identity:

��ðp; p; 0Þ ¼ lim
k!p

��ðp; k; qÞ ¼ @S�1
F ðpÞ
@p�

: (3)

The full vertex can be divided into longitudinal and trans-
verse components

��ðp; k; qÞ ¼ ��
L ðp; k;qÞ þ ��

T ðp; k; qÞ; (4)

where
q��

�
T ðp; k; qÞ ¼ 0: (5)

We demand that the longitudinal part alone is responsible
for the vertex satisfying both Eqs. (1) and (3). This means
that each component must be separately free of kinematic
singularities, so that

�
�
T ðp; p; 0Þ ¼ 0: (6)

The longitudinal part is then defined, following Ball-Chiu
[36], to be

��
L ðp; k; qÞ � ��

BCðp; k; qÞ;¼
X4
i¼1

�iðp2; k2; q2ÞL�
i ðp; k;qÞ;

(7)

where

�1ðp2; k2; q2Þ ¼ 1

2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
; L

�
1 ðp; k;qÞ ¼ ��;

�2ðp2; k2; q2Þ ¼ 1

2

1

ðk2 � p2Þ
�

1

Fðk2Þ �
1

Fðp2Þ
�
; L�

2 ðp; k; qÞ ¼ ðk� þ p�Þðk6 þ p6 Þ;

�3ðp2; k2; q2Þ ¼ � 1

ðk2 � p2Þ
�
Mðk2Þ
Fðk2Þ �

Mðp2Þ
Fðp2Þ

�
; L

�
3 ðp; k; qÞ ¼ ðk� þ p�Þ;

�4ðp2; k2; q2Þ ¼ 0; L
�
4 ðp; k;qÞ ¼ ���ðk� þ p�Þ: (8)

q

p

k

FIG. 2. Fermion-boson vertex.
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Crucially, because of gauge invariance, this longitudinal
component of the vertex is wholly determined by the
fermion propagator. Moreover, it is this longitudinal com-
ponent that gives the dominant ultraviolet behavior of the
vertex [41].

Quite generally, the transverse vertex can be decom-
posed in the massless fermion case in terms of the remain-
ing four basis vectors as

�
�
T ðp; k;qÞ ¼

X
i¼2;3;6;8

�iðp2; k2; q2ÞT�
i ðp; k;qÞ;

(9)

where the �i are coefficient functions depending on mo-
menta k2, p2 and q2, which are as yet undetermined, and
the Ti are the basis tensors defined by Ball and Chiu [36]—
the modification of this basis by K�z�lersü et al. [41] does
not affect these four vectors:

T
�
2 ðp; k; qÞ ¼ ðp�ðk � qÞ � k�ðp � qÞÞðk6 þ p6 Þ;

T�
3 ðp; k; qÞ ¼ q2�� � q�q6 ;

T
�
6 ðp; k; qÞ ¼ ��ðp2 � k2Þ þ ðpþ kÞ�q6 ;

T�
8 ðp; k; qÞ ¼ ���k�p���� þ k�p6 � p�k6 :

(10)

With these basis vectors, the �iði ¼ 2; 3; 6; 8Þ are individu-
ally free of kinematic singularities at Oð�Þ in perturbation
theory in any covariant gauge as shown in Ref. [41]. It is
these �i’s that are constrained by multiplicative renorma-

lizability [18]. It is our key presumption that this will force
these transverse components (or at least their projections in
the Schwinger-Dyson equations for the 2-point functions)
to depend only on propagator functions just like the lon-
gitudinal part of Eqs. (7) and (8).
What we can say about these coefficients? Here we

discuss the fundamental constraints on the transverse ver-
tex that follow from (i) dimensional analysis, (ii) symmetry
properties, (iii) order of perturbation theory, (iv) gauge
dependence and (v) renormalization:
(i) The transverse vertex is dimensionless. Knowing the

dimensions of the basis vectors from Eq. (10) tells us
the dimensions of the �i’s. With d ¼ momentum2,
then

dim of T
�
2 : d

2 ! dim of �2:
1

d2
;

dim of T
�
3 : d ! dim of �3:

1

d
;

dim of T
�
6 : d ! dim of �6:

1

d
;

dim of T
�
8 : d ! dim of �8:

1

d
:

(11)

(ii) The C-parity operation [24,42] on Eqs. (7) and (9)
requires

�2ðk2; p2; q2Þ ¼ �2ðp2; k2; q2Þ; �1ðk2; p2; q2Þ ¼ �1ðp2; k2; q2Þ;
�3ðk2; p2; q2Þ ¼ �3ðp2; k2; q2Þ; �2ðk2; p2; q2Þ ¼ �2ðp2; k2; q2Þ;
�6ðk2; p2; q2Þ ¼ ��6ðp2; k2; q2Þ; �3ðk2; p2; q2Þ ¼ �3ðp2; k2; q2Þ;
�8ðk2; p2; q2Þ ¼ �8ðp2; k2; q2Þ; �4ðk2; p2; q2Þ ¼ ��4ðp2; k2; q2Þ:

(12)

(iii) At zeroth order in perturbation theory the full vertex
is ��. Since at this order F ¼ 1, we see from
Eqs. (7) and (8) that ��

L ¼ ��, consequently, ��
T ¼

0. Thus the �i ¼ Oð�Þ in perturbation theory.
(iv) The propagator for the photon carrying momentum q

is

i���ðqÞ ¼ �i

�
Gðq2Þ
q2

�
g�� �

q�q�

q2

�
þ �

q�q�

q4

�
;

¼ �i

�
�T

�� þ �
q�q�

q4

�
; (13)

where Gðq2Þ is the photon renormalization function,
� is the covariant gauge parameter and the�T

�� is the

transverse part of the photon propagator. The bare
photon propagator, �0

��, has Gðq2Þ � 1 in Eq. (13).

Gauge covariance is expressed through the Landau-
Khalatnikov-Fradkin (LKF) transformations

[43,44]. These mean that once a Green’s function
is known in some gauge, then its form in all other
gauges is determined. In general, this is, of course,
only useful if we know the relevant Green’s function
precisely in some gauge. Nevertheless, the LKF
transformations provides two key results we shall
use. The first concerns the fermion wave function
renormalization, Fðp2Þ, which can only depend on
the covariant gauge through a unique factor of � in
its anomalous dimension. The second fact is that the
photon wave function renormalization, Gðq2Þ, must
be gauge independent. Both of these requirements
place restrictions on the form of the nonperturbative
interactions.

(v) In QED the full propagators and the vertex function
are all divergent. However, as is well known
[16,17,45], one can define finite (renormalized)
propagators and vertex function by absorbing these
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divergences into functions, Zi (i ¼ 1, 2, 3). As usual
we introduce field renormalizations:

�R ¼ Z�1=2
2 �0; A�

R ¼ Z�1=2
3 A�

0 ; (14)

where the subscripts R and 0 denote renormalized and bare
quantities, respectively. The latter are conveniently made
finite by introducing an ultraviolet momentum cutoff �
and the former renormalized quantities depend on the
momentum scale � at which we choose to renormalize.
The divergence of the fermion propagator is absorbed into
Z2, the fermion renormalization function, by

SRðp;�Þ ¼ Z�1
2 ð�;�ÞS0ðp;�Þ; (15)

and similarly for the photon,

�R
��ðp;�Þ ¼ Z�1

3 ð�;�Þ�0
��ðp;�Þ: (16)

The gauge covariance of the photon propagator requires
that the covariant gauge parameter is similarly renormal-
ized:

�R ¼ Z�1
3 �: (17)

The divergence of the vertex function is canceled by the
factor Z1:

�R
�ðp;�Þ ¼ Z1ð�;�Þ�0

�ðp;�Þ; (18)

with the above definitions, the coupling constant is renor-
malized according to

eR ¼ Z2

Z1

ffiffiffiffiffiffiffiffi
Z3e

p
: (19)

Making use of the Ward-Green-Takahashi identity [38–
40],

Z1 ¼ Z2; (20)

the coupling constant renormalization becomes

eR ¼ Z1=2
3 e:

As usual, we define � ¼ e2=ð4	Þ, where eR ¼ Z1=2
3 e, �0,

�R denote the bare and renormalized couplings related to e
and eR, respectively.

What we want to determine are the constraints these
renormalizations of the fermion and photon propagators
impose on the transverse part of the fermion-boson vertex.
The renormalization of the 3-point vertex is proportional to
fermion renormalization constant Z�1

2 .
This can be seen already in the longitudinal vertex from

the WGTI [36]. Consequently, the nonperturbative struc-
ture of the transverse component, and hence the �i’s, must
be proportional to the inverse of the fermion wave function
renormalization, i.e. �iðF;GÞ � 1=F, just as the longitudi-
nal �i’s of Eq. (8) are.

To go further, the basic idea is easily explained by
considering the fermion propagator in quenched massless

QED. The nonperturbative quantity is the fermion wave
function renormalization Fðp2;�2Þ. Let us imagine ex-
panding this perturbatively and just keeping leading loga-
rithms, so that we have

Fðp2;�2Þ ¼ 1þ �0A1 ln
p2

�2
þ �2

0A2ln
2 p

2

�2

þ �3
0A3ln

3 p
2

�2
þ . . . ; (22)

then inserting such a form in the loop integral of Fig. 3. For
this to be a solution of the Schwinger-Dyson equation, the
equation has to deliver Fðp2;�2Þ with the same perturba-
tive expansion as output. However, to be multiplicatively
renormalizable, the coefficients An cannot be independent,
but related by A2 ¼ A2

1=2, A3 ¼ A3
1=6 and finally An ¼

An
1=n!. This requirement places a severe constraint on the

fermion-boson vertex. Since its longitudinal part is known,
it is its transverse components that are constrained. The
aim of this paper is to determine these conditions on the �i
of Eq. (9) for full QED. In general, these �iðp2; k2q2Þ
functions can be written as a sum of terms, each with the
correct dimensions, Eq. (11), symmetry properties,
Eq. (12), and renormalization requirements, as

�iðp2; k2; q2Þ ¼ X
j

fijðp2; k2; q2Þ ��ðjÞi ðF;GÞ: (23)

Each of these �0is has been divided into two parts: a kine-
matic part encoded in fij, giving the right dimensions,

Eq. (11), which depends on momenta squared, and a func-

tional part, ��ðjÞi , that is assumed only to know about the
fermion and photon renormalization functions F and G at
k2, p2 or q2. Such a form would provide a genuine non-
perturbative construction,

�
sym
i ðp2; k2; q2Þ ¼ X

j

½fantiij ðp2; k2; q2Þ�antiðjÞi ðF;GÞ

þ fsymij ðp2; k2; q2Þ�symðjÞ
i ðF;GÞ�;

�antii ðp2; k2; q2Þ ¼ X
j

½fsymij ðp2; k2; q2Þ�antiðjÞi ðF;GÞ

þ fantiij ðp2; k2; q2Þ�symðjÞ
i ðF;GÞ�:

(24)

The forms of the �i’s are structured such that the integrals
are soluble. First we deal with the kinematic factors for
each �i’s, which are included in the following way:

p p k ΓBC
µ  + ΓT

µ

q = k- p

= -

-1 -1

FIG. 3. Unquenched Schwinger-Dyson equation for fermion
propagator.
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�M2 ðp2; k2; q2Þ ¼ 2

ðk4 � p4Þ
�

2 þ �2

2k � p
k2 þ p2

�
�anti2 ðp2; k2; q2Þ þ 2

ðk2 þ p2Þ2
�
�2 þ �2

2k � p
k2 þ p2

�
�sym2 ðp2; k2; q2Þ;

�M3 ðp2; k2; q2Þ ¼ 1

ðk2 � p2Þ
�

3 þ �3

2k � p
k2 þ p2

�
�anti3 ðp2; k2; q2Þ þ 1

ðk2 þ p2Þ
�
�3 þ �3

2k � p
k2 þ p2

�
�sym3 ðp2; k2; q2Þ;

�M6 ðp2; k2; q2Þ ¼ 1

ðk2 þ p2Þ
�

6 þ �6

2k � p
k2 þ p2

�
�anti6 ðp2; k2; q2Þ þ ðk2 � p2Þ

ðk2 þ p2Þ2
�
�6 þ �6

2k � p
k2 þ p2

�
�sym6 ðp2; k2; q2Þ;

�M8 ðp2; k2; q2Þ ¼ 1

ðk2 � p2Þ
�

8 þ �8

2k � p
k2 þ p2

�
�anti8 ðp2; k2; q2Þ þ 1

ðk2 þ p2Þ
�
�8 þ �8

2k � p
k2 þ p2

�
�
sym
8 ðp2; k2; q2Þ:

(25)

The factor 2 in the numerator of �2 is merely for later
convenience and superscript M stands for Minkowski
space. The kinematic factors, fsym;anti

ij play two roles: first
to ensure that each of �sym;anti

i is dimensionless, and to
define the appropriate symmetry of these functions under
the interchange of k, p. To make the problem tractable we
do not include q2 dependence in the denominator factors.
However, the dimensions and symmetry of the �

sym;anti
i is,

of course, maintained by multiplying by a factor of
q2=ðk2 þ p2Þ. Such a factor can be rewritten as 1� 2k �
p=ðk2 þ p2Þ, and this is the origin of the inclusion of the

i, �i, �i, �i terms in Eq. (25).

The �antii and �symi are antisymmetric and symmetric

under k2 $ p2, respectively. The �sym;anti
i are assumed to

be solely functions of the fermion and boson renormaliza-
tion functions F and G, with consequently simplified de-
pendence on k2, p2 and q2. Since here we expand these
functions in terms of leading logarithms, it is helpful to
note that combinations like logðk2=p2Þ are antisymmetric,
while logðq4=k2p2Þ is clearly symmetric under the inter-
change of k and p, with each power of a ‘‘log’’ being
multiplied by a factor of �0. Such forms are the basis for

the leading logarithmic expansion of the �sym;anti
i . Before

renormalization, these will depend on the ultraviolet cutoff

�, and we can represent the �sym;anti
i by

�antii ðp2; k2; q2Þ ¼ X1
m¼1

X1
n;r¼0

Amnrr

��
�0 ln

k2

�2

�
m

�
�
�0 ln

p2

�2

�
m
��

�0 ln
q2

�2

�
n

�
�
�2
0 ln

k2

�2
ln
p2

�2

�
r
; (26)

�
sym
i ðp2; k2; q2Þ ¼ X1

m¼0

X1
n;r¼0

Smnrr

��
�0 ln

k2

�2

�
m

þ
�
�0 ln

p2

�2

�
m
��

�0 ln
q2

�2

�
n

�
�
�2
0 ln

k2

�2
ln
p2

�2

�
r
: (27)

The fact mentioned earlier that the zeroth order vertex
contribution comes from the longitudinal component, ��,
imposes the condition that there can be no leading order
term in any transverse component. Consequently S0000 ¼
0. It is important to note that the coefficients A and S are
constants in the above expressions and these depend on
indices m, n, r. These are labeled by mnrr to make it easy
to read off that such a term contributes at Oð�mþnþrþr

0 Þ.
Expanding Eqs. (26) and (27) to Oð�3

0Þ:

�antii ðp2; k2; q2Þ ¼ �0A1000

�
ln
k2

�2
� ln

p2

�2

�
þ �2

0

�
A2000

�
ln2

k2

�2
� ln2

p2

�2

�
þA1100

�
ln
k2

�2
� ln

p2

�2

�
ln
q2

�2

�

þ �3
0

�
A3000

�
ln3

k2

�2
� ln3

p2

�2

�
þA2100

�
ln2

k2

�2
� ln2

p2

�2

�
ln
q2

�2
þA1200

�
ln
k2

�2
� ln

p2

�2

�
ln2

q2

�2

þA1011

�
ln
k2

�2
� ln

p2

�2

�
ln
k2

�2
ln
p2

�2

�
þOð�4Þ; (28)

�
sym
i ðp2; k2; q2Þ ¼ �0

�
S1000

�
ln
k2

�2

�
þ 2S0100 ln

q2

�2

�
þ �2

0

�
S2000

�
ln2

k2

�2
þ ln2

p2

�2

�
þ 2S0200ln

2 q
2

�2
þ S1100

�
ln
k2

�2
þ ln

p2

�2

�

� ln
q2

�2
þ 2S0011 ln

k2

�2
ln
p2

�2

�
þ �3

0

�
S3000

�
ln3

k2

�2
þ ln3

p2

�2

�
þ 2S0300ln

3 q
2

�2
þ S2100

�
ln2

k2

�2
þ ln2

p2

�2

�

� ln
q2

�2
þ S1200

�
ln
k2

�2
þ ln

p2

�2

�
þ S1011

�
ln
k2

�2
þ ln

p2

�2

�
ln
k2

�2
ln
p2

�2
þ 2S0111 ln

k2

�2
ln
p2

�2
ln
q2

�2

�
þOð�4

0Þ:
(29)
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One should keep in mind in the rest of this section that the
sum of m, n, r, r adds up to the order of the expansion.
Thus, for example, at Oð�2

0Þ one only has coefficients
ðA2000;A1100Þ in �antii and ðS2000;S0200;S1100;S0011Þ in
�symi . In turn, the dependence ofAmnrr and Smnrr on � and
NF can only happen such that the maximum power of each
of them is mþ nþ 2r, i.e. the order of �0 too.

As mentioned earlier the dominant ultraviolet behavior
of the vertex to Oð�0Þ is given by the longitudinal compo-
nent [41], Eq. (7), the transverse vertex has no leading
logarithms, i.e. (�n

0ln
n�2) terms must vanish.

Consequently, in Eqs. (27) and (29) the relation at
Oð�0 ln�

2Þ:

S i
1000 þ Si

0100 ¼ 0; (30)

at Oð�2
0ln

2�2Þ:

S i
2000 þ Si

0200 þ Si
0011 þ Si

1100 ¼ 0; (31)

at Oð�3
0ln

3�2Þ:

S i
2100 þ Si

3000 þ Si
0300 þ Si

1011 þ Si
0111 þ Si

1200 ¼ 0;

(32)

and, in general, at Oð�u
0ln

u�2Þ:
Xu
nr¼0

Si
m¼½u�n�2r�nrr ¼ 0 (33)

must hold.
Our aim is to determine the conditions on the constants

Ai
mnrr and Si

mnrr for i ¼ 2, 3, 6, 8 imposed by the fact that
the fermion and photon propagators satisfy the appropriate
Schwinger-Dyson equations and that these must be multi-
plicatively renormalizable. These constraints must, of
course, be fulfilled by the full 3-point vertex. In the weak
coupling limit, perturbative calculation of the relevant
Feynman graphs will give explicit values for these con-
stants. However, the �i’s that enter here determine not the
full vertex, but projections defined by the Schwinger-
Dyson equations of the next section.

III. UNQUENCHED SCHWINGER-DYSON
CALCULATIONS

A. Fermion propagator

The Schwinger-Dyson equation for the fermion propa-
gator displayed in Fig. 3 can be written as

� iS�1
F ðpÞ ¼ �iS0

�1

F ðpÞ �
Z
M

d4k

ð2	Þ4
�ð�ie��ðp; k; qÞÞiSFðkÞð�ie��Þi���ðqÞ:

(34)

Substituting the form of the longitudinal part of the photon
propagator from Eq. (13) and using the Ward-Green-
Takahashi identity of Eq. (1), we can rewrite Eq. (34) as

iS�1
F ðpÞ ¼ iS0

�1

F ðpÞ � e2
Z
M

d4k

ð2	Þ4
�
��ðp; k; qÞSFðkÞ��

� �T
��ðqÞ þ �ðS�1

F ðkÞ � S�1
F ðpÞÞSFðkÞ q6

q4

�
;

¼ iS0
�1

F ðpÞ � e2
Z
M

d4k

ð2	Þ4
�
��ðp; k; qÞSFðkÞ��

� �T
��ðqÞ þ �

�
q6
q4

� S�1
F ðpÞSFðkÞ q6

q4

��
: (35)

The second term in the integrand being an odd integral
gives zero:

Z d4k

ð2	Þ4
q6
q4

¼ 0; (36)

if a translation invariant regularization is employed [24].
After substituting the fermion and photon propagators,
Eqs. (2) and (13), explicitly in Eq. (35), we obtain

p6
Fðp2;�2Þ ¼ p6 þ ie2

ð2	Þ4
Z
M
d4k

�
��ðp; k; qÞFðk

2Þ
k6

� �� Gðq2Þ
q2

�
g�� �

q�q�

q2

�

� �
p6

Fðp2Þ
Fðk2Þ
k6

q6
q4

�
: (37)

Multiplying this equation by p6 =4, taking its trace and
rearranging, we arrive at the following equation for the
fermion wave function renormalization:

1

Fðp2;�2Þ ¼ 1þ ie2

4p2ð2	Þ4
Z
M

d4k

k2q2

� Trp6
�
��ðp; k;qÞk6 ��Fðk2ÞGðq2Þ

�
�
g�� �

q�q�

q2

�
� �

q2
; p6 k6 q6 Fðk2Þ

Fðp2Þ
�
: (38)

We see this equation involves a particular projection of the
full vertex ��. To make this explicit we substitute into this
equation the general form given by the Ball-Chiu longitu-
dinal part, Eq. (7), and the transverse component, Eq. (7):
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1

Fðp2;�2Þ¼ 1þ ie2

4p2ð2	Þ4
Z
M

d4k

k2q2
Fðk2Þ

�
� �

q2
1

Fðp2Þ Trðp6 p6 k6 q6 Þþ�1ðp2;k2;q2ÞGðq2ÞTr
�
p6 L�

1 ðp;k;qÞk6 ��

�
g���

q�q�

q2

��

þ�2ðp2;k2;q2ÞGðq2ÞTr
�
p6 L�

2 ðp;k;qÞk6 ��

�
g���

q�q�

q2

��
þGðq2ÞTr

�
p6 ��

T ðp;k;qÞk6 ��

�
g���

q�q�

q2

���
; (39)

where d4k ¼ 2	k2dk2sin2�d� and� is the angle between the 4-vectors k and p. To perform these integrals, we move to
Euclidean space using the Wick rotation (k0 ! ik0, ki ! ki). After performing an explicit trace algebra in Eq. (39) and
inserting the transverse vertex, �

�
T , Eqs. (9) and (10), with its undetermined �i’s, we obtain

1

Fðp2;�2Þ ¼ 1� e2

ð2	Þ3p2

Z
E
k2dk2

Z 	

0
sin2�d�

1

k2q2

�
��

Fðk2Þ
Fðp2Þ

p2

q2
ðk2 � k � pÞ þ Fðk2ÞGðq2Þ

�
�E
1 ðp2; k2; q2Þ

�
�
1

q2
½�2�2 � 3q2k � p�

�
þ �E

2 ðp2; k2; q2Þ
�
1

q2
½2ðk2 þ p2Þ�2�

�
þ �E2 ðp2; k2; q2Þf�ðk2 þ p2Þ�2g

þ �E3 ðp2; k2; q2Þf2�2 þ 3q2k � pg þ �E6 ðp2; k2; q2Þf�3ðk2 � p2Þk � pg þ �E8 ðp2; k2; q2Þf�2�2g
��
; (40)

where �2 ¼ ðk � pÞ2 � k2p2.
Since multiplicative renormalizabilty is closely related

to the ultraviolet behavior of the Green’s functions, we
make a general perturbative expansion of the nonperturba-
tive fermion and photon wave function renormalizations in
powers of leading logarithms as follows:

Fðp2;�2Þ ¼ X1
u¼0

�u
0Auln

u p
2

�2
; (41)

Gðq2;�2Þ ¼ X1
u¼0

�u
0Buln

u q
2

�2
: (42)

In this paper we will consider leading logarithms only in
order to present the ideas and techniques and postpone to a
future paper the more involved next-to-leading order. Of
course, in perturbation theory the coefficients Au, Bu have
definite values. However, it is the general structure that
multiplicative renormalizability determines. We substitute
these expansions into Eq. (40) in order to calculate this.
The photon wave function renormalization Gðq2Þ depends
on the momentum q2 ¼ k2 þ p2 � 2k � p therefore it has
both a radial and an angular component. However, the
angular dependent part of this quantity only contributes
to 1=Fðp2Þ beyond the leading order, and so here we can
simply approximate Gðq2Þ with Gðk2Þ. We can then carry
out the angular integration in Eq. (40) after inserting the
coefficients of the basis tensors, i.e. �i’s and �i’s from Eqs.

(8) and (25):

1

Fðp2;�2Þ¼ 1þ�0�

4	

Z �2

p2

dk2

k2
Fðk2Þ
Fðp2Þ

�3�0

8	

Z �2

p2

dk2

k2
Fðk2ÞGðk2Þ

�
1

2

�
1

Fðk2Þ�
1

Fðp2Þ
�

þð ��antif þ ��
sym
f Þ

�
; (43)

where

�� anti
f � 
2�

anti
2 þ ð
3 � �3Þ�anti3 þ ð
6 þ �6Þ�anti6

� 
8�
anti
8 ;

��symf � �2�
sym
2 þ ð�3 � "3Þ�sym3 þ ð�6 þ "6Þ�sym6

� �8�
sym
8 :

(44)

To evaluate this expression, we have to insert the coeffi-

cients of the basis tensors, i.e. the �anti;symi from Eqs. (26)
and (27) into Eq. (43). � is the ultraviolet cutoff for the
momentum k introduced in Eq. (3) in accord with
Eqs. (15), (16), (18), (41), and (42). One observes from
Eq. (43) that there is no contribution to 1=Fðp2;�2Þ from
the �1 part of the longitudinal vertex, Eq. (7), but only from
�2. On laboriously integrating Eq. (43) and using Eqs. (41)
and (42) we arrive at
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1

Fðp2;�2Þ ¼ 1�
�
�

4	

1

Fðp2Þ
X1
u¼0

�ðuþ1Þ
0

Au

ðuþ 1Þ ln
uþ1 p

2

�2
þ 3

16	

�
1

Fðp2Þ
X1
u¼0

X1
t¼0

�uþtþ1
0

AuBt

ðuþ tþ 1Þ ln
uþtþ1 p

2

�2

�X1
t¼0

�tþ1
0

Bt

ðtþ 1Þ ln
tþ1 p

2

�2

�
� 3

8	

X1
u¼0

X1
t¼0

AuBt

X1
m¼1

X1
n¼0

X1
r¼0

�uþtþmþnþ2rþ1
0 lnuþtþmþnþ2rþ1 p

2

�2
�Af

mnrr

�
�

1

ðuþ tþmþ nþ rþ 1Þ �
1

ðuþ tþ nþ rþ 1Þ
�
� 3

8	

X1
u¼0

X1
t¼0

AuBt

X1
n¼0

X1
m¼0

X1
r¼0

�uþtþmþnþ2rþ1
0

� lnuþtþmþnþ2rþ1 p
2

�2
�Sf
mnrr

�
1

ðuþ tþmþ nþ rþ 1Þ þ
1

ðuþ tþ nþ rþ 1Þ
��
; (45)

where

�A f
mnrr � 
2A2

mnrr þ ð
3 � �3ÞA3
mnrr þ ð
6 þ �6ÞA6

mnrr � 
8A8
mnrr;

�Sf
mnrr � �2S2

mnrr þ ð�3 � "3ÞS3
mnrr þ ð�6 þ "6ÞS6

mnrr � �8S8
mnrr:

(46)

In order to rearrange the infinite sums in Eq. (45) in terms of powers of �0, we convert some of the infinite sums to finite
sums:

1

Fðp2;�2Þ ¼ 1�
�
�

4	

1

Fðp2Þ
X1
u¼0

Au

ðuþ 1Þ�
uþ1
0 lnuþ1 p

2

�2
� 3

16	

X1
u¼1

�uþ1
0 lnuþ1 p

2

�2

�Xu
a¼1

AaBu�a

1

ðuþ 1Þ

þ Xu
b¼1

Xu�b

a¼0

ð�1ÞbAbAaBu�b�a

1

ðu� bþ 1Þ
�
þ 3

8	

X1
u¼1

�uþ1
0 lnuþ1 p

2

�2
ðHu þ �HuÞ

�
; (47)

where

Hu ¼
Xu
b¼1

Xb
c¼1

Xb�c

d¼0

Xc
a¼1

AdBb�c�dRu�b

�
1

½12 ðuþ bÞ þ 1� �
1

½12 ðuþ bÞ � aþ 1�
�
�Af

aðc�aÞððu�bÞ=2Þððu�bÞ=2Þ; (48)

�H u ¼ Xu
b¼0

Xb
c¼0

Xb�c

d¼0

Xc
a¼0

AdBb�c�dRu�b

�
1

½12 ðuþ bÞ þ 1� þ
1

½12 ðuþ bÞ � aþ 1�
�
�Sf
aðc�aÞððu�bÞ=2Þððu�bÞ=2Þ; (49)

with

Rj ¼
�
1 if j is even
0 if j is bold:

(50)

The above expression for the fermion wave function renormalization, 1=Fðp2;�2Þ, is the exact nonpertubative
calculation for the massless fermions in a general covariant gauge at leading logarithmic order. In this equation the
Ai

mnrr’s and Si
mnrr’s are the constants to be constrained by multiplicative renormalization. For the purpose of explaining

how this works, we will first implement it order-by-order, then, we generalize. To do this, we expand the fermion wave
function renormalization, Eq. (47), in Oð�4Þ:

1

Fðp2;�2Þ ¼ 1þ 1

4	

�
��0� ln

p2

�2
��2

0 ln
2 p

2

�2

�
�
�
�

2
þ 3

8

�
A1þ 3

4
ð �Af

1000� �Sf
1000Þ

�
��3

0 ln
3 p

2

�2

�
�
�
�

2
þ 3

8

�
A2
1

þ
�
4�

3
þ 1

�
A2�A1B1

8
þ 1

4
ðA1þB1Þð �Af

1000� �Sf
1000Þþ �Af

2000þ
1

4
�Af

1100�
3

4
�Sf
2000þ

1

4
�Sf
0200�

1

4
�Sf
0011

�

��4
0 ln

4 p
2

�2

�
�A3

�
9

16
þ 3

4
�

�
þA1A2

�
1

8
þ 1

6
�

�
� 1

4
A2
1B1þ 9

16
A2B1� 1

16
A1B2þ 1

8
ðA2þB2Þð �Af

1000� �Sf
1000Þ

þ 1

8
A1B1ð �Af

1000� �Sf
1000Þþ ðA1þB1Þ

�
þ3

8
�Af

2000þ
1

8
�Af

1100�
1

4
�Sf
2000�

1

8
�Sf
0011þ

1

8
�Sf
0200

�
þ 1

4
�Af

1011

þ 1

8
�Af

1200þ
3

8
�Af

2100þ
9

8
�Af

3000þ
1

8
�Sf
0111þ

3

8
�Sf
0300�

1

8
�Sf
1011þ

1

4
�Sf
1200�

3

4
�Sf
3000

�
�Oð�5

0Þ
�
: (51)
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Equations (30)–(32) have been input to obtain this expres-
sion. Equations (45), (47), and (51) illustrate how the
fermion wave function renormalization depends on the
explicit form of the full 3-point vertex. As we shall see
in Sec. IV, the expansion toOð�4ln4Þ is the minimum order
at which we can recognize the pattern of constraints.

B. Photon propagator

Next we discuss the Schwinger-Dyson equation for the
gauge boson. This equation has some different features
from the fermion SDE. Now, the two fermion legs have
to be treated equally. We can ensure this symmetry prop-
erty by dividing the external momentum flow equally in the
loop as shown in Fig. 4

Using the Feynman rules, Fig. 4 can be expressed as

�i��1
��ðqÞ ¼ �i�0

��
�1ðqÞ � ð�1ÞNF

Z
M

d4‘

ð2	Þ4
� Tr½ð�ie��ð‘�; ‘þ; qÞÞiSFð‘þÞ
� ð�ie��ÞiSFð‘�Þ�; (52)

which can be symbolically written as ��1
��ðqÞ ¼

�0
��

�1ðqÞ þ���ðqÞ, where��� is the photon self-energy

and ‘þ � ð‘þ q=2Þ, ‘� � ð‘� q=2Þ.
The definitions of the fermion and photon propagators1

are given already in Sec. II,

iSFð‘þÞ ¼ iFð‘þÞ=‘6 þ;

i���ðqÞ ¼ � i

q2

�
GðqÞ

�
g�� � q�q�

q2

�
þ �

q�q�

q2

�
:

Equation (52) must satisfy the photon Ward identity,
q���1

�� ¼ q�q
2=�, which is, of course, fulfilled by the

bare propagator in Eq. (52). Consequently, the loop graph
of Fig. 4 must be transverse. Contracting Eq. (52) with q�

and using the Ward-Green-Takahashi identity of Eq. (1),
this transversality requires

q��
�� ¼ iNFe

2

q2ð2	Þ4
Z
M
d4‘Tr½��fSFð‘þÞ� SFð‘�Þg� ¼ 0:

(53)

If dimensional regularization is used, then this integral is
automatically zero. However with cutoff regularization,

this is not the case. Then ��� is not entirely transverse.

To extract the correct component, we introduce the follow-
ing tensor [46,47]:

P�� ¼ 1

3q4
ð4q�q� � q2g��Þ: (54)

Projecting Eq. (52) with P�� allows us to remove the

potentially quadratically divergent term in four-
dimensions, and project out the required ultraviolet loga-
rithmically divergent terms. It is easy to check that this
leaves the correct leading logarithms. We then have a
scalar equation for the photon wave function renormaliza-
tion:

1

Gðq2;�2Þ ¼ 1þ NF

i�0

4	3

Z
M

d4‘

‘2þ‘2�
Fð‘�ÞFð‘þÞP��

� Tr½��
F ð‘�; ‘þ; qÞÞ‘6 þ��‘6 ��: (55)

Recalling the definition of the vertex of Eqs. (7)–(10), we
obtain

1

Gðq2;�2Þ ¼ 1þ NF

i�0

4	3

Z
M

d4‘

‘2þ‘2�
Fð‘�ÞFð‘þÞP��

� f�M
1 ð‘2�; ‘2þ; q2ÞTrð��‘6 þ��‘6 �Þ

þ �M
2 ð‘2�; ‘2þ; q2ÞTrð4��‘6 þ‘6 ‘�‘6 �Þ

þ Trð��
T ‘6 þ��‘6 �Þg: (56)

Moving to Euclidean space, we perform aWick rotation.
Substituting d4‘ ¼ 2	‘2d‘2dc sin2c and the form of the
transverse vertex from Eqs. (9) and (10), and then taking
the traces leads to

FIG. 4. Unquenched Schwinger-Dyson equation for photon
propagator.

1Where appropriate, we denote the fermion and photon wave
function renormalization functions as FðpÞ or Fðp2Þ and GðpÞ or
Gðp2Þ, respectively. Where we wish to emphasize that the
quantities are unrenormalized, �2 will be added to the list of
arguments—with similar conventions for the renormalized quan-
tities, for instance FRðpÞ and GRðpÞ.
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1

Gðq2;�2Þ ¼ 1� �0NF

6	2q2

Z
E

‘2d‘2

‘2þ‘2�

Z 	

0
sin2c dcFð‘þÞFð‘�Þ

�
2�E

1 ð‘2�; ‘2þ; q2Þ
�
16

ð‘ � qÞ2
q2

� 3q2 � 4‘2
�

þ 2�E
2 ð‘2�; ‘2þ; q2Þ

�
�
�
16

‘2

q2
� 2

�
ð‘ � qÞ2 þ 4‘4 þ q2‘2

�
þ �E2 ð‘2�; ‘2þ; q2Þf2ð4‘2 þ q2Þ�2g

þ �E3 ð‘2�; ‘2þ; q2Þf�8�2 � 3q2ð4‘2 � q2Þg þ �E6 ð‘2�; ‘2þ; q2Þf6‘ � qð4‘2 � q2Þg þ �E8 ð‘2�; ‘2þ; q2Þf8�2g
�
;

(57)

where �2 ¼ ð‘ � qÞ2 � ‘2q2 and the photon Schwinger-
Dyson equation picks out loop momentum regions where
‘2þ � ‘2� � ‘2 � q2. This allows us to carry out the angu-
lar integrals in Eq. (57) for the leading log terms after
inserting �i’s and �i’s from Eqs. (8) and (25). This gives

1

Gðq2;�2Þ ¼ 1þ �0NF

3	

Z �2

q2

d‘2

‘2
F2ð‘Þ

�
1

Fð‘Þ þ
3

4
��sym�

�
;

(58)

where

��
sym
� � ð�2 þ "2Þ�sym2 � ð�3 þ "3Þ�sym3

þ ð�6 þ "6Þ�sym6 � ð�8 þ "8Þ�sym8 : (59)

This time the explicit longitudinal contribution comes from
�1; �2 does not contribute to the leading log’s. Using Eq.
(41) and performing the radial integration, Eq. (58) yields

1

Gðq2;�2Þ ¼ 1� NF

3	
�0 ln

q2

�2
þ NF

3	

�
�
� X1

u¼1

�uþ1
0

Au

ðuþ 1Þ ln
uþ1 q

2

�2
� 3

2

X1
u¼0

A0
u

� X1
m¼0

X1
n¼0

X1
r¼0

�uþnþmþ2rþ1
0 lnuþnþmþ2rþ1

� q2

�2

�S�
mnrr

ðuþ nþ 2rþ 1Þ
�
; (60)

where

�S�
mnrr � ð�2 þ "2ÞS2

mnrr � ð�3 þ "3ÞS3
mnrr

þ ð�6 þ "6ÞS6
mnrr � ð�8 þ "8ÞS8

mnrr; (61)

A0
u �

Xu
d¼1

2d

u
AdAu�d: (62)

Evaluating the multiple sums using the symmetries and
rearranging terms with respect to powers of �0 yields

1

Gðq2;�2Þ ¼ 1� NF

3	
�0 ln

q2

�2
� NF

3	

X1
u¼1

�uþ1
0 lnuþ1 q

2

�2

�
�

Au

ðuþ 1Þ þ
3

2
Ku

�
;

where

Ku ¼
Xu
b¼0

Ru�b

ðuþ a� cþ 1Þ
Xb
c¼0

Xc
a¼0

� Xðb�cÞ

d¼1

2d

ðb� cÞAdAðb�c�dÞ
�

� �Saðc�aÞððu�bÞ=2Þððu�bÞ=2Þ;

K0 ¼ 0; (63)

with Rj defined by Eq. (50). Employing the expansion of
the transverse vector coefficients introduced in Eqs. (25)–
(27), we can then write 1=Gðq2Þ analogous to the fermion
result for 1=Fðp2Þ of Eq. (51), after performing the many
integrals:

1

Gðq2;�2Þ¼1þNF

3	

�
��0 ln

q2

�2
��2

0 ln
2 q

2

�2

�
A1

2
�3

4
�S�
1000

�

��3
0 ln

3 q
2

�2

�
A2

3
�1

2
A1

�S�
1000�

1

4
�S�
2000þ

3

4
�S�
0200

�1

4
�S�
0011

�
��4

0 ln
4 q

2

�2

�
A3

4
�1

4
A2
1
�S�
1000

�1

4
A1

�S�
0011þ

1

2
A1

�S�
0200�

1

4
A1

�S�
2000þ �S�

0300

�1

8
�S�
1011þ

1

4
�S�
1200�

1

8
�S�
3000

�
þOð�5

0Þ
�
: (64)

We have already made use of Eqs. (30)–(32) in the above
expression. Now the transverse vertex must have the right
structure, i.e. the right coefficients Ai

mnrr, Si
mnrr, so that

the solution of the Schwinger-Dyson equations for
1=Fðp2Þ and 1=Gðq2Þ, Eqs. (47), (51), (63), and (64), are
multiplicatively renormalizable.

IV. MULTIPLICATIVELY RENORMALIZABLE
Fðp2Þ AND Gðq2Þ

A. The photon propagator

We shall first look for the most general form of the
multiplicatively renormalizable photon wave function re-
normalization. In order to do so, the renormalized GR can
be written in the following form by using Eq. (16):

GRðq2; �2Þ ¼ Z�1
3 ð�2;�2ÞGðq2;�2Þ: (65)

We define the most general leading logarithmic expansion
of the unrenormalized photon wave function renormaliza-
tion by
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Gðq2;�2Þ ¼ X1
u¼0

�u
0Buln

u q
2

�2

¼ 1þ �0B1 ln
q2

�2
þ �2

0B2ln
2 q

2

�2

þ �3
0B3ln

3 q
2

�2
þOð�4

0Þ: (66)

We impose the renormalization condition that GRðq2 ¼
�2Þ ¼ 1. The coefficients Biði > 2Þ are then constrained
by multiplicative renormalizability, i.e., B2 ¼ B2

1, Bn ¼
ðB1Þn so that the renormalized photon wave function re-
normalization can be written as

GRðq2; �2Þ ¼ X1
u¼0

�u
RðB1Þulnu q

2

�2

¼ 1þ �RB1 ln
q2

�2
þ �2

RB
2
1ln

2 q
2

�2

þ �3
RB

3
1ln

3 q
2

�2
þOð�4

RÞ: (67)

Then, as we shall use later, the inverse of G and GR are

1

GRðq2; �2Þ ¼ 1� �RB1 ln
q2

�2
;

1

Gðq2;�2Þ ¼ 1� �0B1 ln
q2

�2
;

(68)

where, as is well known, 1=Gðq2Þ in QED only has a
leading logarithm at one loop order, just like 1=�ðq2Þ
and being related to this physical quantity is independent
of the gauge.

B. The fermion propagator

Analogously to the previous section, we deal with the
fermion wave function renormalization. We similarly de-
fine the general leading logarithmic expansion of the un-
renormalized F as

Fðp2;�2Þ ¼ X1
u¼0

�u
0Auln

u q
2

�2

¼ 1þ �0A1 ln
p2

�2
þ �2

0A2ln
2 p

2

�2

þ �3
0A3ln

3 p
2

�2
þOð�4

0Þ: (69)

Since not only the coupling, but the gauge parameter have
to be renormalized, we need to make the dependence of the
Au on � explicit. As gauge dependence in the coefficients
arises from photon propagators, any Au cannot have a
higher power of � than �u. Consequently, Fðp2;�2Þ can
be written as

Fðp2;�2Þ ¼ 1þ �0ða1�þ b1Þ lnp
2

�2

þ �2
0ða2�2 þ b2�þ c2Þln2 p

2

�2

þ �3
0ða3�3 þ b3�

2 þ c3�þ d3Þln3 p
2

�2

þOð�4
0Þ; (70)

where ai, bi, ci, di are constants related to the Au by
comparing Eqs. (69) and (70). Recalling Eqs. (17) and
(19), �0 ¼ Z3�R, �0 ¼ Z�1

3 �R we note that

�0� ¼ �R�R; and

FRðp2; �2Þ ¼ Z�1
2 ð�2=�2ÞFðp2;�2Þ; (71)

with the renormalization condition for the fermion wave
function renormalization FRðp2 ¼ �2Þ ¼ 1. Equation (70)
can then be inserted in this equation to give

FRðp2; �2Þ ¼ 1þ �Rða1�R þ b1Þ lnp
2

�2

þ �2
Rða2�2

R þ b2�R þ c2Þln2 p
2

�2

þ �3
Rða3�3

R þ b3�
2
R þ c3�R þ d3Þln3 p

2

�2

þOð�4
RÞ: (72)

Multiplicative renormalizability requires that the inverse
unrenormalized fermion wave function renormalization
must have the following form keeping only the leading
logarithms:

1

Fðp2;�2Þ ¼ 1þ �0 ln
p2

�2
½�a1�� b1� þ �2

0 ln
2 p

2

�2

�
a21
2
�2 þ a1b1�þ b1

2
ðb1 � B1Þ

�
þ�3

0 ln
3 p

2

�2

�
�a31

6
�3 � a21b1

2
�2

þ a1b1
2

ð�b1 þ B1Þ�� b31
6
� b1B

2
1

3
þ b21B1

2

�
þ�4

0 ln
4 p

2

�2

�
a41
24

�4 þ a31b1
6

�3 þ a21b1
4

ðb1 � B1Þ�2

þ a1b1
2

�
b21
3
� b1B1 þ 2

3
B2
1

�
�þ b1

4

�
b31
6
� b21B1 þ 11

6
b1B

2
1 � B3

1

��
þOð�5

0Þ: (73)

AYŞE KIZILERSÜ AND MICHAEL R. PENNINGTON PHYSICAL REVIEW D 79, 125020 (2009)

125020-12



The renormalized form of 1=F can be found by replacing
�0 ! �R, � ! �R and � ! � in the above expression.

V. MR CONSTRAINTS ON THE VERTEX

In Sec. III we have shown exactly how the full vertex
contributes in the fermion and boson SDEs. In principle,
truncation of the Schwinger-Dyson equations for the fer-
mion and boson propagators requires knowledge of the
complete structure of the vertex, all 12 independent com-
ponents or, here in massless QED, all six. While two are
fixed by the Ward-Green-Takahashi identity in terms of the
fermion propagator, the four transverse components appear
to embody information about all the higher-point Green’s
functions. Knowledge we do not have, unless we solve the
theory completely. However, two simplifications have al-
ready occurred. First, the massless fermion and boson self-
energies involve just two projections of the six independent
vertex vectors, so we do not need to know their complete
spin and Lorentz structure. This is helpful, since even at
Oð�0Þ in perturbation theory, this is of daunting complex-
ity [41]. The second simplification is that multiplicative
renormalizability is closely related to the ultraviolet be-
havior of the loops in Figs. 3 and 4. There not only is the
structure of the vertex simpler, but importantly for the
present study the two graphs explore the vertex in distinct
kinematic regimes. For the fermion self-energy, the inter-
nal fermion momentum k and boson momentum q are very
much larger than the external fermion momentum p, i.e.
k2 ’ q2 � p2. In contrast, for the boson self-energy, it is
the fermion momenta that are both large, i.e. k2 ’ p2 �
q2. We shall see that this distinction plays a powerful role
in our analysis.

First, in this section we combine the results of the
previous two sections to find the constraints on the
fermion-photon vertex imposed by multiplicative
renormalizability.

A. MR constraints via fermion Schwinger-Dyson
equation

In this and the next section, we apply the above strategy
first to the fermion wave function renormalization in full
massless QED. To do this, we start by comparing order-by-
order the results fixed by multiplicatively renormalizable
F, Eq. (73), with those found by solving the Schwinger-
Dyson equation, Eq. (51). These comparisons will give
what we refer to as the fermion conditions, labeled by
FC1, FC2, etc..

�0 ln p2=�2 comparison:

�A1 � �ða1�þ b1Þ ¼ � �

4	
;

+
a1 ¼ 1

4	
; b1 ¼ 0: (74)

In this first order comparison MR fixes the value of a1 and
b1 and by that all leading order terms in 1=F or F, then
Eq. (73) requires

FC1: A1 ¼ �

4	
; A2 ¼ A2

1

2
: (75)

�2
0 ln

2 p2=�2 comparison:

a21
2
�2 þ a1b1�þ b21

2
¼ 1

4	

��
�

2
þ 3

8

�
A1 � 3

4
�Af

1000

þ 3

4
�Sf
1000

�
: (76)

Making use of Eqs. (74) and (75) and keeping in mind that
�Af

1000 and �Sf
1000 can be at most proportional to � or NF

from Eqs. (28) and (29), we immediately see that the �2

term on both sides automatically matches and for the �
term we must have

FC2:
A1

2
¼ �Af

1000 � �Sf
1000: (77)

�3
0 ln

3 p2=�2 comparison:

�a31
6
�3 ¼�A3

1

3!

¼� 1

4	

�
�
�
�

2
þ 3

8

�
A2
1 þ

�
4�

3
þ 1

�
A2 �A1B1

8

þ 1

4
ðA1 þB1Þð �Af

1000 � �Sf
1000Þ þ �Af

2000

þ 1

4
�Af

1100 �
3

4
�Sf
2000 þ

1

4
�Sf
0200 �

1

4
�Sf
0011

�
: (78)

The leading terms in � in Eq. (78) [i.e. Oð�3Þ] automati-
cally match on the left- and right-hand sides. Imposing
Eq. (77), the Oð�2Þ terms require the transverse part to be
fixed so that

FC3:
A2
1

4
¼ � �Af

2000 �
1

4
�Af

1100

þ 3

4
�Sf
2000 �

1

4
�Sf
0200 þ

1

4
�Sf
0011: (79)

As one can see the B1 term in Eq. (78) disappears from
the above expression and this must repeat itself in every
order, i.e. in leading order terms the photon contribution
will be canceled out by the transverse vertex.
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�4
0 ln

4 p2=�2 comparison:

a41
24

�4 ¼ A4
1

4!

¼ � 1

4	

�
�A3

�
9

16
þ 3

4
�

�
þ A1A2

�
1

8
þ 1

6
�

�
� 1

4
A2
1B1 þ 9

16
A2B1 � 1

16
A1B2 þ 1

8
ðA2 þ B2Þð �Af

1000 � �Sf
1000Þ

þ 1

8
A1B1ð �Af

1000 � �Sf
1000Þ þ ðA1 þ B1Þ

�
3

8
�Af

2000 þ
1

8
�Af

1100 �
1

4
�Sf
2000 �

1

8
�Sf
0011 þ

1

8
�Sf
0200

�
þ 1

4
�Af

1011

þ 1

8
�Af

1200 þ
3

8
�Af

2100 þ
9

8
�Af

3000 þ
1

8
�Sf
0111 þ

3

8
�Sf
0300 �

1

8
�Sf
1011 þ

1

4
�Sf
1200 �

3

4
�Sf
3000

�
: (80)

Once again in above expression the leading terms in � [i.e.
Oð�4Þ] terms match on both sides. After substituting the
FC2 and FC3 conditions in Eq. (80), we have the follow-
ing combined constraints on �3 and �2NF terms:

FC4:
A3
1

16
¼ ðA1 þ B1Þ

48
f �Af

1100 � �Sf
0011 þ �Sf

2000 þ �Sf
0200g

þ 1

6
�Af

1011 þ
1

12
�Af

1200 þ
1

4
�Af

2100 þ
3

4
�Af

3000

þ 1

12
�Sf
0111 þ

1

4
�Sf
0300 �

1

12
�Sf
1011 þ

1

6
�Sf
1200

� 1

2
�Sf
3000: (81)

The Schwinger-Dyson Equation for the fermion propaga-
tor involves corrections from photon emission and absorp-
tion as displayed in Fig. 4. This requires the fermion
renormalization function to depend on the photon renor-
malization function, which in turn depends on the number
of fermions NF. Therefore in general f �Af

1100;
�Sf
0011;

�Sf
2000;

�Sf
0200g and f �Af

1011;
�Af

1200;
�Af

2100;
�Af

3000;
�Sf
0111;

�Sf
0300;

�Sf
1011;

�Sf
1200

�Sf
3000g terms in Eq. (81) can be propor-

tional to (�2 orN2
F or �NF) and (�

3 or �2NF or �N2
F orN3

F),
respectively. Remarkably, the matching required by multi-
plicatively renormalizability of these renormalization
functions is automatically satisfied if the transverse
fermion-boson vertex is independent of the photon renor-
malization function at leading logarithmic order. Therefore
f �Af

1100;
�Sf
0011;

�Sf
2000;

�Sf
0200g and f �Af

1011;
�Af

1200;
�Af

2100;
�Af

3000;
�Sf
0111;

�Sf
0300;

�Sf
1011;

�Sf
1200

�Sf
3000g terms would

be proportional to only �2 and �3 terms, respectively. This
will clearly constrain the nonperturbative forms of the
transverse vertex that we wish to determine. In other words
constraint FC4 of Eq. (81), will divide into two separate
conditions for �2NF and �3 comparisons:

FC41: 0 ¼ �Af
1100 � �Sf

0011 þ �Sf
2000 þ �Sf

0200;

FC42:
A3
1

16
¼ 1

6
�Af

1011 þ
1

12
�Af

1200 þ
1

4
�Af

2100 þ
3

4
�Af

3000

þ 1

12
�Sf
0111 þ

1

4
�Sf
0300 �

1

12
�Sf
1011 þ

1

6
�Sf
1200

� 1

2
�Sf
3000: (82)

The idea is then to find a nonperturbative structure for the
transverse pieces that delivers such relations. This we do in
the next section. However, first we determine the condi-
tions imposed by multiplicative renormalizability for the
photon wave function renormalization.

B. MR constraints via photon Schwinger-Dyson
equation

We now repeat the previous steps for the photon wave
function renormalization. Comparison takes place between
Eq. (64) and (68) order-by-order for 1=G. Obviously, this
time instead of looking at the terms depending on the
gauge parameter �, we compare the dependence on NF,
the number of flavours hidden in the Bi terms. These give
what we refer to as the photon conditions labeled PC1,
PC2, etc.. Then,
�0 ln p2=�2 comparison:

PC1: B1 ¼ NF

3	
; Bn ¼ Bn

1 ¼
�
NF

3	

�
n
: (83)

First order comparison defines the value of B1 in terms of
NF and as given in Eq. (67) fixes all the higher order terms.
�2

0 ln
2 p2=�2 comparison:

PC2:
2

3
A1 ¼ �S�1000: (84)

As we see above the second order comparison imposes this
condition on the symmetric part of the transverse vertex.
�3

0 ln
3 p2=�2 comparison:

A2
1

6
¼ A1

2
�S�
1000 þ

1

4
�S�
2000 �

3

4
�S�
0200 þ

1

4
�S�
0011: (85)

Substituting Eq. (84) in above condition yields

PC3:
A2
1

3
¼ � 1

2
�S�
0011 þ

3

2
�S�
0200 �

1

2
�S�
2000; (86)

where every term is proportional to �2.
�4

0 ln
4 p2=�2 comparison:

A3
1

24
¼ A1

4
�S�
0011 �

A1

2
�S�
0200 þ

A2
1

4
�S�
1000 þ

A1

4
�S�
2000

þ 1

8
�S�
3000 � �S�

0300 þ
1

8
�S�
1011 �

1

4
�S�
1200: (87)
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Making use of Eqs. (84) and (86), the above expression
becomes

PC4:
A3
1

24
¼ A1

4
�S�
0200 � �S�

0300 þ
1

8
�S�
1011 �

1

4
�S�
1200

þ 1

8
�S�
3000; (88)

where every term is proportional to �3. So far we have
expressed the general multiplicative renormalizability con-
straints on the 3-point vertex function in terms of the

constants �A�
mnrr and �S�

mnrr up to Oð�4Þ.

C. Generalized fermion and photon MR constraints

Let us first look at the general picture. First, a1 and b1
being fixed by Eq. (74), allows the expansion coefficients
Au in Eq. (69) to be fixed in all orders:

A1 ¼ �

4	
; A2 ¼ A2

1

2!
; A3 ¼ A3

1

3!
; � � � ; Au ¼ Au

1

u!
;

(89)

and in turn the infinite leading log series of Fðp2Þ in
Eq. (69) can be summed up as a power series:

Fðp2;�2Þ ¼ X1
u¼0

�u
0

Au
1

u!
lnu

p2

�2
¼

�
p2

�2

�
�A1

: (90)

This is the nonperturbative expression for the unquenched
(full) fermion wave function renormalization. Moreover, it
has exactly the same form as in the quenched QED
[12,18,19,21,32,33,48,49]. Second, the relation between
the photon coefficients are also found through PC1:

B1 ¼ NF

3	
; Bn ¼ Bn

1 ¼
�
NF

3	

�
n
; (91)

hence the infinite series of Gðp2;�2Þ, Eq. (66) can also be
summed up as

Gðq2;�2Þ ¼ X1
u¼0

�u
0B

u
1ln

u q
2

�2
¼ 1

1� �0B1 lnq
2=�2

:

(92)

1. Generalized MR constraints from fermion SDE

Making use of Eqs. (89)–(92), we can then rewrite the
inverse fermion wave function renormalization calculated
from SDE, Eq. (47) as

1

Fðp2;�2Þ ¼ 1�
�
� 1

Fðp2;�2Þ þ 1þ 3

8	

X1
u¼1

�uþ1
0 lnuþ1 p

2

�2

�
�
�1

2

Xu
a¼1

Aa
1

a!
Bu�a
1

1

uþ 1
� 1

2

Xu
b¼1

Xu�b

a¼0

ð�1Þb

�Ab
1

b!

Aa
1

a!
Bu�b�a
1

1

ðu� bþ 1Þ
�
þ 3

8	

X1
u¼1

�uþ1
0

� lnuþ1 p
2

�2
ðHu þ �HuÞ

�
; (93)

and as a consequence of equating the multiplicatively
renormalized F, Eq. (90) to Eq. (93) we can extract the
generalized MR constraints to all orders, which, of course,
reproduces FC1 to FC4:

0 ¼ X1
u¼1

�uþ1
0 lnuþ1 p

2

�2
ðHu þ �HuÞ þ

X1
u¼1

�uþ1
0 lnuþ1 p

2

�2

�
�
� 1

2

Xu
a¼1

AaBu�a

1

ðnþ 1Þ

� 1

2

Xu
b¼1

Xu�b

a¼0

ð�1ÞbAbAaBu�b�a

1

ðu� bþ 1Þ
�
; (94)

where in Eqs. (48) and (49) for theHu and �Hu, one can now
substitute for the An, Bn from Eqs. (89) and (91).

2. Generalized MR constraints from photon SDE

Making use of Eqs. (89)–(92), we repeat the above
procedure for photons, which is analogous to the fermion
case above, in order to rewrite the inverse photon wave
function renormalization, Eq. (63):

1

Gðq2;�2Þ ¼ 1� NF

3	
�0 ln

q2

�2
� NF

3	

X1
u¼1

�uþ1
0 lnuþ1 q

2

�2

�
�

Au
1

ðuþ 1Þ!þ
3

2
Ku

�
; (95)

where in the expression for Ku of Eq. (63) we can sub-
stitute the conditions for An from Eq. (89). The generalized
MR photon constraints can then be written as

X1
u¼1

�uþ1
0 lnuþ1 q

2

�2

�
Au
1

ðuþ 1Þ!þ
3

2
Ku

�
¼ 0; (96)

automatically satisfying PC1� PC4.

D. Nonperturbative fermion and photon MR
constraints

1. Nonperturbative MR constraints on transverse vertex
from photon SDE

To understand the above conditions in full generality
(i.e. beyond their expansion in leading logarithms) we first
turn our attention to photon equation. Starting from Eq.
(68) for multiplicatively renormalizable 1=Gðq2;�2Þ, we
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see that multiplicative renormalizability for leading logs is
given by just the Oð�0Þ term, B1, which is gauge indepen-
dent. Equating the photon Schwinger-Dyson equation at
the leading logarithmic order, Eq. (58), with the multi-
plicatively renormalizable Gðq2Þ, Eq. (68):

1

Gðq2;�2Þ ¼ 1þ �0NF

3	

Z �2

q2

d‘2

‘2
F2ð‘Þ

�
1

Fð‘Þ þ
3

4
��
sym
�

�

¼ 1� �0NF

3	
ln

�
q2

�2

�
: (97)

We observe that the �1 term of the Ball-Chiu longitudi-
nal vertex generates this. However, importantly for the
present purpose this is part of a whole series:

�0NF

3	

Z �2

q2

d‘2

‘2
Fð‘Þ ¼ NF

3	
�0 ln

q2

�2

�
�1�

�
1

2
Xþ 1

6
X2

þ 1

24
X3 þ 1

120
X4 þ 1

720
X5

þ 1

5040
X6 þ 1

40320
X7 þOð�8

0Þ
��
;

(98)

where X ¼ �0A1 ln
q2

�2 . Beyond Oð�0Þ, this series (i.e.

terms inside the square bracket) has to be canceled exactly
by the contribution from the vertex components. Since the
�2 term in the Ball-Chiu longitudinal component only
contributes at nonleading order, it is the symmetric part
of the transverse vertex, ��sym� , with its implicit gauge
dependence that has to provide this cancellation. PC2 to
PC4 in Eqs. (84)–(88) give the conditions for this cancel-
lation to be achieved at Oð�2

0Þ, Oð�3
0Þ and Oð�4

0Þ and the

general condition in Eqs. (96) and (97) for all orders. To go
further, we note that multiplicative renormalizability of the
photon Schwinger-Dyson equation, Eq. (97), picks out
loop momentum regions where ‘2þ ’ ‘2� � ‘2 � q2. The
second term in Eq. (97) must give the following result:

�0NF

4	

Z �2

q2

d‘2

‘2
F2ð‘Þ ��sym� ¼ NF

3	
�0 ln

q2

�2

�
1

2
Xþ 1

6
X2

þ 1

24
X3 þ 1

120
X4 þ 1

720
X5

þ 1

5040
X6 þ 1

40320
X7

þOð�8
0Þ
�
: (99)

This surely determines the structure of the ��sym� ’s for this to
happen. The dependence on the fermion wave function
renormalization must be more complicated than 1=F times
a kinematic factor. It must be proportional to a function of a
function of F’s so let us write

�� sym
� � 1

FðqÞhðYÞ: (100)

In keeping with the ethos of this work, we assume that Y is
determined by the fermion wave function renormalization.
Since the renormalization of the �i’s is replicated wholly
by the factor of 1=F, Y must be renormalization indepen-
dent. As an example let us choose it to be

Y ¼ Fðq2Þ
Fð‘2Þ � 1; (101)

where the factor of �1 ensures that the leading logarithm
expansion of Y begins at Oð�0 lnÞ as required by Eq. (99).
Can we find what function hðYÞ is to satisfy Eqs. (97) and
(99)? Let us assume we can expand hðYÞ as a power series
in Y, and in turn expand this in leading logs of momenta.
Then to produce the cancellation required, we deduce

hðYÞ ¼ Y þ 1

2
Y2 � 1

6
Y3 þ 1

12
Y4 � 1

20
Y5 þ 1

30
Y6

� 1

42
Y7 þ 1

56
Y8 þOðY9Þ: (102)

We recognize this as

hðYÞ ¼ Y

�
1� X1

n¼1

ð�YÞn
nðnþ 1Þ

�
; ¼ ð1þ YÞ lnð1þ YÞ;

(103)

substituting Y from Eq. (101), hðYÞ becomes

hðYÞ ¼ Fðq2Þ
Fð‘2Þ ln

Fðq2Þ
Fð‘2Þ : (104)

Since a form like ��sym� � 1=Fð‘2Þ lnðFðq2Þ=Fð‘2ÞÞ in
Eq. (100) is the k ! p ¼ ‘ limit of the evolving structure,
this naturally generalizes to the k � p configuration as

��sym� ðp2; k2; q2Þ � 1

2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
ln
Fðq2Þ
2

�
�

1

Fðk2Þ þ
1

Fðp2Þ
�
: (105)

While the form in the photon limit is determined, the
structure in general momentum configurations is not
unique and there are several possibilities differing only
beyond leading logarithmic order. Three of these are

Sð1Þ ¼ 1

2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
ln
Fðq2Þ
2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
;

Sð2Þ ¼ 1

2

1

ðFðk2ÞFðp2ÞÞ1=2 ln
Fðq2Þ2

Fðk2ÞFðp2Þ ;

Sð3Þ ¼ 1

4

�
1

Fðk2Þ þ
1

Fðp2Þ
�
ln

Fðq2Þ2
Fðk2ÞFðp2Þ ; (106)

all of which give the same hðYÞ of Eq. (104) in the photon
limit of k2 ’ p2 � q2.
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2. Nonperturbative MR constraints on transverse vertex
from fermion SDE

Similarly, for the multiplicatively renormalizable
1=Fðq2;�2Þ, the result at leading logarithmic order is
given by the leading � dependent piece, as required by
the Landau-Khalatnikov-Fradkin transformation [43,44].
This leading term is provided by the first term in the
integrals of Eqs. (43), (45), and (47). Let us recall
Eq. (43) and in this equation we perform both the radial
and angular integration for the first term, but only the
angular integration for the second term, then we find

1

Fðp2Þ ¼ 1þ
�

1

Fðp2Þ � 1� 3�0

8	

Z �2

p2

dk2

k2
Fðk2ÞGðq2Þ

�
�
1

2

�
1

Fðk2Þ �
1

Fðp2Þ
�
þ ð ��antif þ ��

sym
f Þ

��
: (107)

Imposing the MR fermion condition, Eq. (90), on this
expression yields the following constraint on the transverse
vertex:

� 3�0

8	

Z �2

p2

dk2

k2
Fðk2ÞGðq2Þ

�
�
1

2

�
1

Fðk2Þ �
1

Fðp2Þ
�
þ ð ��antif þ ��

sym
f Þ

�
¼ 0:

(108)

This cancellation involves both the longitudinal and
transverse pieces together. At leading logarithmic order
the longitudinal contribution comes from just the �2 term
in the Ball-Chiu vertex.

While antisymmetric forms do not contribute to the
leading logarithmic behavior of the photon Schwinger-
Dyson equation, this is not the case for the fermion equa-
tion. Indeed, here the distinction between symmetric and
antisymmetric disappears when k2 ’ q2 � p2. Thus, a
seemingly symmetric form like

ln
Fðq2Þ
2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
� ln

�
Fðk2Þ
Fðp2Þ

�

¼ �0A1 ln
k2

p2
þOð�2

0Þ; (109)

is antisymmetric in k and p. Such a form contributes
equally to the antisymmetric terms like

1

Fðk2Þ �
1

Fðp2Þ ¼ ��0A1 ln
k2

p2
þOð�2

0Þ: (110)

The Oð�2
0Þ, Oð�3

0Þ and Oð�4
0Þ conditions of Eqs. (84)–

(88), which embody the gauge independence of the photon
wave function renormalization and the known gauge de-
pendence of the fermion function, require the transverse
vertex to deliver a very particular gauge dependence itself.
Our aim is to reproduce this by constructing the nonper-
turbative transverse vertex from the fermion wave function

renormalization. This means from Eq. (108) that

�� anti
f þ ��

sym
f ¼ � 1

2

�
1

Fðk2Þ �
1

Fðp2Þ
�
: (111)

Hence this expression tells us that the total transverse
vertex, i.e. combination of antisymmetric and symmetric
parts, must be proportional to antisymmetric form in the
limit k2 ’ q2 � p2. These considerations suggest particu-
lar antisymmetric and symmetric vertex forms. In Table I,

we give the specific coefficients �Amnrr and �Smnrr atOð�3
0Þ

for these examples.

VI. APPLICATION

The next step is to make use of all the examples in
Table I as inputs to the multiplicative renormalizability
constraints. In order to satisfy these, we have a set of
equations to solve. As a first step the coefficient functions,
�i’s, can in general be written as a sum of different non-
perturbative forms of F and G using the above examples.
Hence, an antisymmetric and symmetric combination of F
and G in �antii and �symi , respectively, become

�antii ¼ ðfð1ÞAð1ÞÞi þ ðfð2ÞAð2ÞÞi þ � � � þ ðfðnÞAðnÞÞi;
�symi ¼ ð~fð1ÞSð1ÞÞi þ ð~fð2ÞSð2ÞÞi þ � � � þ ð~fðnÞSðnÞÞi; (112)

whereAðnÞ and SðnÞ refer to the relevant expressions in the
left hand column of Table I. In general, the number of
constants needed to solve these equations is proportional to
the number n of various combinations of the F and G.
These combinations will appear in the ansatz for the non-
perturbative transverse vertex. We then try to solve these
equations by choosing a minimal number of combinations,
in order to find the simplest possible vertex ansatz.
From Eqs. (46) and (61), we see that the coefficients 
i,

�i, �i, �i, defined in Eqs. (25) appear in the fermion and
photon conditions in rather specific combinations. To make
this explicit and simplify the notation, it is useful to define


f � ð
2 þ
3 þ
6 �
8Þ; �f � ð��3 þ�6Þ;
�f � ð�2 þ�3 þ�6 ��8Þ; �f � ð��3 � �6Þ;
�� � ð�2 ��3 þ�6 ��8Þ; �� � ð�2 � �3 þ �6 � �8Þ:

(113)

Recall that antisymmetric forms for the �i’s do not con-
tribute to the photon renormalization at leading logarith-
mic order, and so we have no corresponding combinations
of 
� and ��.

A. Fermion constraints

We now wish to write down the fermion constraints
FC1� FC4, Eqs. (71) and (81), which we obtained in
the previous section for the specific choices for ��antif and

��symf , namely,Að1Þ as the antisymmetric form of the trans-

verse vertex and Sð1Þ as the symmetric one in the Table I:
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A ð1Þ ¼
�

1

Fðk2Þ �
1

Fðp2Þ
�
;

Sð1Þ ¼ 1

2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
ln
Fðq2Þ
2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
:

(114)

After recalling the definition of �Af
mnrr and �Sf

mnrr from
Eq. (46) and reading off the specific values of Amnrr and
Smnrr’s from the Table I, the MR constraint FC2, Eq. (77),
which comes from �2

0ln
2p2=�2 order comparison together

with Eq. (113) gives the following condition:

� ð
f þ �fÞ þ 1

2
ð�f þ "fÞ ¼ 1

2
: (115)

The �3
0ln

3p2=�2 order constraint FC3, Eq. (79), splits the
combined 
f, �f, �f, "f form of previous constraint into

two separate ones:

ð�f þ "fÞ ¼ 0; ð
f þ �fÞ ¼ � 1

2
: (116)

The �4
0ln

4p2=�2 order constraint FC4, Eq. (81) does not
give further new information, but again yields Eq. (116).

B. Photon constraints

We repeat this procedure for the photon constraints

PC2� PC4 for the same choices of Að1Þ and Sð1Þ in
Table I. All the MR constraints PC2 to PC4, Eqs. (84) and
(86), which follow from �2

0ln
2 to �4

0ln
4 comparisons give

the same condition and that is

ð�� þ "�Þ ¼ � 4

3
: (117)

Since this condition repeats itself at every order, this means
we have the exact solutions. There are 14 constants to be
fixed, and Eqs. (116) and (117) can only fix three of them in
terms of the others, for instance,


2 ¼ � 1

2
� 
3 � 
6 þ 
8 þ �3 � �6;

�2 ¼ � 2

3
� �6 þ �8 � "2

2
þ "3 � "6 þ "8

2
;

�3 ¼ 2

3
þ "2

2
� "8

2
:

(118)

Substituting these constants into Eq. (25), we can write the
nonperturbative coefficient functions �i’s as

�M2 ðp2; k2; q2Þ ¼ 2

ðk4 � p4Þ
��

1

2
� 
3 � 
6 þ 
8 þ �3 � �6

�
þ �2

2k � p
k2 þ p2

�
�anti2 ðp2; k2; q2Þ

þ 2

ðk2 þ p2Þ2
��

� 2

3
� �6 þ �8 � "2

2
þ "3 � "6 þ "8

2

�
þ �2

2k � p
k2 þ p2

�
�sym2 ðp2; k2; q2Þ;

�M3 ðp2; k2; q2Þ ¼ 1

ðk2 � p2Þ
�

3 þ �3

2k � p
k2 þ p2

�
�anti3 ðp2; k2; q2Þ

þ 1

ðk2 þ p2Þ
��

2

3
þ "2

2
� "8

2

�
þ �3

2k � p
k2 þ p2

�
�
sym
3 ðp2; k2; q2Þ;

�M6 ðp2; k2; q2Þ ¼ 1

ðk2 þ p2Þ
�

6 þ �6

2k � p
k2 þ p2

�
�anti6 ðp2; k2; q2Þ þ ðk2 � p2Þ

ðk2 þ p2Þ2
�
�6 þ �6

2k � p
k2 þ p2

�
�
sym
6 ðp2; k2; q2Þ;

�M8 ðp2; k2; q2Þ ¼ 1

ðk2 � p2Þ
�

8 þ �8

2k � p
k2 þ p2

�
�anti8 ðp2; k2; q2Þ þ 1

ðk2 þ p2Þ
�
�8 þ �8

2k � p
k2 þ p2

�
�
sym
8 ðp2; k2; q2Þ; (119)

with �
anti;sym
i having specific forms such as those determined in Sec. V, Eqs. (106) and (111), examples of which are given

in Table I.
Multiplicative renormalizability relates the coefficients at order ð�0 lnÞn to that at n ¼ 1. This lowest leading logarithm

coefficient is fixed by the longitudinal component of the fermion-boson vertex. Transverse components only enter at n¼2.

TABLE I. Antisymmetric combinations of F and G.

Að1Þ 1
FðkÞ � 1

FðpÞ A1000 ¼ �A1, A2000
A2
1

2! , A1100 ¼ 0, A3000 � A3
1

3! , A2100 ¼ A1011 ¼ A1200 ¼ 0,

A4000 ¼ � A4
1

4! , A3100 ¼ A2200 ¼ A1300 ¼ A2011 ¼ A1111 ¼ 0

Sð1Þ 1
2 ð 1

FðkÞ þ 1
FðpÞÞ lnFðqÞ2 ð 1

FðkÞ þ 1
FðpÞÞ S1000 ¼ � A1

2 , S0100 ¼ A1

2 , S2000 ¼ 3
8A

2
1, S1100 ¼ � A2

1

2 , S0011 ¼ A2
1

8 , S0200 ¼ 0,

S3000 ¼ � 3
16A

3
1, S2100 ¼ A3

1

4 , S1011 ¼ � A3
1

16 , S0300 ¼ S1200 ¼ S0111 ¼ 0

Sð2Þ 1
2 ð 1

FðkÞFðpÞÞ1=2 ln FðqÞ2
FðkÞFðpÞ S1000 ¼ � A1

2 , S0100 ¼ A1

2 , S2000 ¼ A2
1

4 , S1100 ¼ � A2
1

2 , S0011 ¼ A2
1

4 , S0200 ¼ 0, S3000 ¼ � A3
1

16 ,

S2100 ¼ A3
1

8 , S1011 ¼ � 3
16A

3
1, S0300 ¼ S1200 ¼ 0 S0111 ¼ A3

1

8

Sð3Þ 1
4 ð 1

FðkÞ þ 1
FðpÞÞ ln FðqÞ2

FðkÞFðpÞ S1000 ¼ � A1

2 , S0100 ¼ A1

2 , S2000 ¼ A2
1

4 , S1100 ¼ � A2
1

2 , S0011 ¼ A2
1

4 , S0200 ¼ 0, S3000 ¼ � A3
1

8 ,

S2100 ¼ A3
1

4 , S1011 ¼ � A3
1

8 , S0300 ¼ S1200 ¼ S0111 ¼ 0
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Remarkably, once the MR conditions at this first nontrivial
order are satisfied, the conditions at all orders in leading
logarithms for both the fermion and photon Schwinger-
Dyson equations are fulfilled.

As far as the leading terms are concerned, the above
constraints ensure that both fermion and photon propaga-
tors are multiplicatively renormalizable in massless un-
quenched QED4. These constraints impose conditions on
the transverse part of the vertex. The 3-point vertex calcu-
lated at Oð�0Þ and the coefficient constants, �i’s, at one
loop order [41] will be very helpful in fixing some of these
constants.

VII. PERTURBATION THEORY

The vertex coefficients �i’s were calculated exactly in
Oð�0Þ for the massive fermions in a general covariant
gauge [41] and for our purpose their massless limits are
given in Appendix A.

We observe in Eqs. (A1)–(A4) that all the four �i’s (i ¼
2, 3, 6, 8) contain four different structures in general. The
first one is the J0 dependent part, which contains Spence
functions (or dilogarithms) of momenta p2, k2, q2 in
Eq. (A5). The second part is proportional to ln k2=p2 which
is the perturbative expansion of the asymmetric combina-
tion of F and G in first order, and the third part is propor-
tional to ln q4=ðk2p2Þ, which is the perturbative expansion
of the symmetric combination of F andG, and the final one
is the kinematical term dependent on k2, p2, q2.

In order to fix some of the individual constants
i, �i, �i,
�i’s appearing in Eqs. (116) and (117) we need to make a
comparison between perturbative transverse vertex coeffi-

cients �
pert
i of Eqs. (A1)–(A4) and the nonperturbative ones

we used in fermion and photon SDE, �non-perti of Eqs. (26)
and (27) in the previous sections. However this comparison
has to be made in a particular way in order to be mean-
ingful. There are two points to be considered. The first is
how these �i coefficients behave inside the fermion and
photon SDEs, since these equations project out different
parts of the vertex. Recall, that with this in mind we started
with a simplified ansatz for the explicit kinematic factors in

the �non-perti , Eq. (25), and assumed their denominators did

not depend on k � p. We therefore need to take the corre-

sponding limits of both pure perturbative �perti ’s, Eq. (A1)–

(A4), and the �
non-pert
i ’s, Eqs. (26) and (27) which we

inserted into SDE. While for the fermion SDE the relevant
limit would be where either of the fermion momenta are
large, e.g. k2 ’ q2 � k � p � p2, for the photon SDE the
relevant one is where the both internal fermion momenta
are same and much greater than the photon momentum,
e.g. k2 ’ p2 � q2.
The second point is that the real �i functions depend on

the angle between momenta k and p. This means that when
we obtained MR constraints, Eqs. (115) and (117), on the
vertex, i.e. on �i functions, their angular dependences were
already integrated out. These angular averaged functions
we call effective �i’s [50]. It is these that we have to
compare with perturbation theory.

A. k2 ’ q2 � p2: The fermion limit

Let us take the fermion limit of the perturbative �perti ’s,
Eqs. (A1)–(A4) in Euclidean space. In order to do this, J0
of Eqs. (A5) and (B1) has to be expanded up toOð1=k7Þ to
ensure we keep all the terms of the required order. As
shown in Appendix B, these results are

ð�E2 ÞpertRealðp2; k2; q2Þ ¼ �0�

8	k4
ln
k2

p2

�
4

3
þ 2

k � p
k2

þ 14

15

p2

k2

�
;

ð�E3 ÞpertRealðp2; k2; q2Þ ¼ �0�

8	k2
ln
k2

p2

�
2

3
þ k � p

k2
þ 2

15

p2

k2

�
;

ð�E6 ÞpertRealðp2; k2; q2Þ ¼ �0�

8	k2
ln
k2

p2

�
� 1

3
� 1

3

k � p
k2

� 1

5

p2

k2

�
;

ð�E8 ÞpertRealðp2; k2; q2Þ ¼ 0: (120)

In this limit one observes that both J0 and ln ðq4=k2p2Þ
behave like ln ðk2=p2Þ. Therefore all four coefficient func-
tions become proportional to ln ðk2=p2Þ signaling that the
structure of nonperturbative transverse vertex consists of
purely asymmetric combination of F orG. Next we expand

the nonperturbative �non-perti ’s, Eq. (25), using Eqs. (28) and
(29) at the order Oð�0Þ:

ð�E2 Þnon-pertðp2; k2; q2Þ ¼ 2

k4

�

2 þ �2

2k � p
k2

��
�0A2

1000 ln
k2

p2

�
þ 2

k4

�
�2 þ �2

2k � p
k2

��
��0S2

1000 ln
k2

p2

�
þOð�2

0Þ;

ð�E3 Þnon-pertðp2; k2; q2Þ ¼ 1

k2

�

3 þ �3

2k � p
k2

��
��0A3

1000 ln
k2

p2

�
þ 1

k2

�
�3 þ �3

2k � p
k2

��
�0S3

1000 ln
k2

p2

�
þOð�2

0Þ;

ð�E6 Þnon-pertðp2; k2; q2Þ ¼ 1

k2

�

6 þ �6

2k � p
k2

��
��0A6

1000 ln
k2

p2

�
þ 1

k2

�
�6 þ �6

2k � p
k2

��
�0S6

1000 ln
k2

p2

�
þOð�2

0Þ;

ð�E8 Þnon-pertðp2; k2; q2Þ ¼ 1

k2

�

8 þ �8

2k � p
k2

��
��0A8

1000 ln
k2

p2

�
þ 1

k2

�
�8 þ �8

2k � p
k2

��
�0S8

1000 ln
k2

p2

�
þOð�2

0Þ:

(121)

As we mentioned earlier, during the process of finding MR constraints in Eq. (116) from the fermion SDE we performed
both radial and angular integrations therefore these constraints on the vertex are for the �i’s whose angular dependence has
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been integrated out, viz. they are the effective �
non-pert
i ’s. To make consistent comparison between the Eqs. (120) and (121),

we must integrate out the angular dependence of both �
pert
i and �

non-pert
i . The details of this procedure can be found in

Appendix C. Following this, the effective coefficient functions can be found from �
pert
Real’s in Eq. (120):

ð�E2 Þperteff ðp2; k2Þ ¼ �0�

8	k4
ln
k2

p2

�
4

3

�
; ð�E3 Þperteff ðp2; k2Þ ¼ �0�

8	k2
ln
k2

p2

�
1

6

�
;

ð�E6 Þperteff ðp2; k2Þ ¼ �0�

8	k2
ln
k2

p2

�
� 1

2

�
; ð�E8 Þperteff ðp2; k2Þ ¼ 0:

(122)

We repeat the same procedure for the first order expansion of the nonperturbative coefficients �non-pertReal ’s in Eq. (121) to give

ð�E2 Þnon-perteff ðp2; k2Þ ¼ 2

k4

2

�
�0A2

1000 ln
k2

p2

�
þ 2

k4
�2

�
��0S2

1000 ln
k2

p2

�
þOð�2Þ;

ð�E3 Þnon-perteff ðp2; k2Þ ¼ 1

k2
ð
3 � �3Þ

�
��0A3

1000 ln
k2

p2

�
þ 1

k2
ð�3 � �3Þ

�
�0S3

1000 ln
k2

p2

�
þOð�2Þ;

ð�E6 Þnon-perteff ðp2; k2Þ ¼ 1

k2
ð
6 þ �6Þ

�
��0A6

1000 ln
k2

p2

�
þ 1

k2
ð�6 þ �6Þ

�
�0S6

1000 ln
k2

p2

�
þOð�2Þ;

ð�E8 Þnon-perteff ðp2; k2Þ ¼ 1

k2

8

�
��0A8

1000 ln
k2

p2

�
þ 1

k2
�8

�
�0S8

1000 ln
k2

p2

�
þOð�2Þ:

(123)

The constants 
i’s, �i’s, �i’s and "i’s appearing in
Eq. (123) are the ones which must satisfy the MR con-
straints, Eqs. (116) and (117). Let us check we have
obtained the correct result in three key situations.

First we compare Eq. (122) with Eq. (123) to read off the
constraints on Ai

1000 and Si
1000 for i ¼ 2, 3, 6, 8:


2A2
1000 � �2S2

1000 ¼
A1

3
;

ð
3 � �3ÞA3
1000 � ð�3 � "3ÞS3

1000 ¼ �A1

12
;

ð
6 þ �6ÞA6
1000 � ð�6 þ "6ÞS6

1000 ¼
A1

4
;


8A8
1000 � �8S8

1000 ¼ 0:

(124)

(1a) General case at Oð�0Þ: Recall the definition of
�Af

1000 and �Sf
1000, Eq. (46), in order to form the FC2

constraint in Eq. (77) using above expressions by adding
them up appropriately:

�A f
1000 � �Sf

1000 ¼
�
1

3
� 1

12
þ 1

4

�
A1 ¼ A1

2
: (125)

(1b) For the special vertex (Að1Þ and Sð1Þ) at Oð�0Þ:
Making use of Table I we can read off the values of Ai

1000

and Si
1000 and insert them into Eq. (124) to see whether we

can satisfy the fermionMR constraint of Eq. (115) by using
Eq. (113):

½ð
2 þ 
3 þ 
6 � 
8Þ þ ð��3 þ �6Þ�ð�A1Þ
� ½ð�2 þ �3 þ �6 � �8Þ þ ð�"3 þ "6Þ�

�
�A1

2

�
;

¼
�
�ð
f þ �fÞ þ 1

2
ð�f þ "fÞ

�
A1;

¼
�
1

3
� 1

12
þ 1

4

�
A1; ¼ A1

2
: (126)

As we see, all effective �ieff’s, Eq. (122) add up to A1=2, as
required.
(2) Nonperturbative check: If we trace back the MR

constraint in fermion SDE equation, Eq. (108), we have
already observed that the � dependent part will give the
right equality and the rest must be zero to give the fermion
MR condition. Hence this MR constraint for the effective
�i’s after the angular and before the radial integration was
performed can be written as

3�0

8	

Z dk2

k2
Fðk2ÞGðk2Þ

�
1

2

�
1

Fðk2Þ �
1

Fðp2Þ
�

þ k2
Xð�Ei Þnon-perteff ðp2; k2Þ

�
¼ 0; (127)

where

Xð�Ei Þnon-perteff ðp2; k2Þ ¼ 1

2
k2ð�E2 Þeff � ð�E3 Þeff

� ð�E6 Þeff þ ð�E8 Þeff : (128)

At Oð�0Þ
1

2

�
1

Fðk2Þ �
1

Fðp2Þ
�
¼ �A1

2
�0 ln

k2

p2
þOð�2

0Þ: (129)
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Making use of �ieff ’s in Eq. (122) to form Eq. (128) gives

k2
Xð�Ei Þeffðp2; k2Þ ¼ �0 ln

k2

p2

�
2

3
� 1

6
þ 1

2

�
A1

2
;

¼ A1

2
�0 ln

k2

p2
þOð�2

0Þ: (130)

Since Eq. (129) cancels out in Eq. (130), Eq. (127) is
satisfied.

B. k2 ’ p2 � q2: The photon limit

Let us turn our attention now to the photon limit of the

perturbative �
pert
i ’s, Eqs. (A1)–(A4) in Euclidean space.

The technical details of this limit can be found in
Appendix B 2 and then we have

ð�E2 Þpertrealð‘2; q2Þ ¼
�0�

12	‘4
ln
‘2

q2
þOð�2

0Þ;

ð�E3 Þpertrealð‘2; q2Þ ¼
�0�

12	‘2
ln
‘2

q2
þOð�2

0Þ;

ð�E6 Þpertrealð‘2; q2Þ ¼ 0þOð�2
0Þ;

ð�E8 Þpertrealð‘2; q2Þ ¼ 0þOð�2
0Þ;

(131)

since in this limit ln ðk2=p2Þ approaches 1 and
ln ðq4=ðk2p2ÞÞ approaches ln ðq4=‘4Þ. Therefore all four
coefficient functions become proportional to ln ðq2=‘2Þ.
This signals that the structure of the nonperturbative trans-
verse vertex consists of purely symmetric combination of

F orG. We expand the nonperturbative �
non-pert
i ’s, Eq. (25),

using Eqs. (28) and (29) at the order Oð�0Þ:

ð�E2 Þnon-pertreal ð‘2; q2Þ ¼ 1

‘4
ð�2 þ "2Þ�0S2

1000 ln
‘2

q2
þOð�2

0Þ;

ð�E3 Þnon-pertreal ð‘2; q2Þ ¼ � 1

‘2
ð�3 þ "3Þ�0S3

1000 ln
‘2

q2
þOð�2

0Þ;

ð�E6 Þnon-pertreal ð‘2; q2Þ ¼ � ‘ � q
‘2

ð�6 þ "6Þ�0S6
1000 ln

‘2

q2

þOð�2
0Þ;

ð�E8 Þnon-pertreal ð‘2; q2Þ ¼ � 1

‘2
ð�8 þ "8Þ�0S8

1000 ln
‘2

q2

þOð�2
0Þ: (132)

Comparing Eqs. (131) and (132) one can read off the
symmetric coefficients as

ð�2 þ "2ÞS2
1000 ¼

A1

3
; ð�3 þ "3ÞS3

1000 ¼ �A1

3
;

ð�6 þ "6ÞS6
1000 ¼ 0; ð�8 þ "8ÞS8

1000 ¼ 0: (133)

Analogously to the fermion case, we now perform similar
checks for the photon constraints in the same three
situations:

(1a) General case at Oð�0Þ: Recalling Eq. (61) let us
check whether the photon MR constraint PC2, Eq. (84), at

Oð�0Þ is satisfied by Eq. (133) after adding them appro-
priately:

ð�2 þ "2ÞS2
1000 � ð�3 þ "3ÞS3

1000

þ ð�6 þ "6ÞS6
1000 � ð�8 þ "8ÞS8

1000

¼
�
A1

3
�

�
�A1

3

��
;

i:e: �S�
1000 ¼

2

3
A1: (134)

(1b) For the special vertex (Að1Þ and Sð1Þ) at Oð�0Þ: We
also check if the photon MR constraint, Eq. (117) atOð�0Þ
is satisfied for this special choice of the vertex:

ðð�2 þ "2Þ � ð�3 þ "3Þ þ ð�6 þ "6Þ
�ð�8 þ "8ÞÞ

��A1

2

�
¼ 2

3
A1;

i:e: �� þ "� ¼ � 4

3
: (135)

As we can see from both results, Eqs. (134) and (135), the
effective �ieff’s satisfy the photon MR constraint.

(2) Nonperturbative check: Recalling Eq. (97) and after
extracting the nonperturbative MR constraints, we can
usefully rewrite this as

�NF

3	

Z �2

q2

d‘2

‘2

�
½Fð‘Þ � 1� þ 3

2
‘2F2ð‘ÞXð�Ei Þnon-perteff

� ð‘2; q2Þ
�
¼ 0; (136)

whereXð�Ei Þnon-perteff ð‘2; q2Þ ¼ ‘2ð�E2 Þeff þ ð�E3 Þeff þ ð�E8 Þeff :

(137)

At Oð�0ÞZ �2

q2

d‘2

‘2
½Fð‘2Þ � 1� ¼ �A1

2
�0ln

2 q
2

�2
þOð�2

0Þ: (138)

Making use of Eq. (131) to form Eq. (137) we obtain

Z �2

q2

d‘2

‘2

�
3

2
‘2F2ð‘ÞXð�Ei Þeffð‘2; q2Þ

�

¼ A1

2
�0ln

2 q
2

�2
þOð�2

0Þ: (139)

We see Eq. (138) cancels Eq. (139) and so Eq. (136) is
satisfied.

C. Individual coefficients

With guidance from perturbation theory, we can now
find further relations between the constants, Eq. (124) and
(133). These eight equations fix eight of the 14 unknown
constants (�2, �3, �6, �8; . . . ). In general these are
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�2S2
1000 ¼

A1

3
� "2S2

1000; 
2A2
1000 ¼

2

3
A1 � "2S2

1000;

�3S3
1000 ¼ �A1

3
� "3S3

1000; ð
3 � �3ÞA3
1000 ¼ � 5

12
A1 � 2"3S3

1000;

�6S6
1000 ¼ �"6S6

1000; ð
6 þ �6ÞA6
1000 ¼

1

4
A1;

�8S8
1000 ¼ �"8S8

1000; 
8A8
1000 ¼ �"8S8

1000:

(140)

For the specific choices of antisymmetric, Að1Þ and symmetric Sð1Þ transverse vertex forms given in Table I, Eq. (140)
becomes

�2 ¼ � 2

3
þ 2"3 � "8; 
2 ¼ � 2

3
þ "3 � 1

2
"8;

�3 ¼ 2

3
� "3; 
3 ¼ 5

12
þ �3 � "3;

�6 ¼ �"6; 
6 ¼ � 1

4
� �6;

�8 ¼ �"8; 
8 ¼ � 1

2
"8;

"2 ¼ �2"3 þ "8:

(141)

As we can see the unknown constraints in �i’s, Eqs. (25) and (119), have now been fixed to match with perturbation theory.
If we insert these constants in Eqs. (25) and (119), we can write the coefficient functions, �i’s, in Euclidean space to obtain
our final nonperturbative result:

�E2 ðp2; k2; q2Þ ¼ 2

ðk4 � p4Þ
��

� 2

3
þ "3 � "8

2

�
þ �2

2k � p
k2 þ p2

�
�anti2 þ 2

ðk2 þ p2Þ2
�
� 2

3
þ ð2"3 � "8Þ q2

k2 þ p2

�
�
sym
2 ;

�E3 ðp2; k2; q2Þ ¼ � 1

ðk2 � p2Þ
��

5

12
� "3

�
þ �3

ðkþ pÞ2
k2 þ p2

�
�anti3 � 1

ðk2 þ p2Þ
�
2

3
� "3

q2

k2 þ p2

�
�
sym
3 ;

�E6 ðp2; k2; q2Þ ¼ � 1

ðk2 þ p2Þ
�
� 1

4
� �6

q2

k2 þ p2

�
�anti6 � ðk2 � p2Þ

ðk2 þ p2Þ2
�
�"6

q2

k2 þ p2

�
�
sym
6 ;

�E8 ðp2; k2; q2Þ ¼ � 1

ðk2 � p2Þ
�
� 1

2
"8 þ �8

2k � p
k2 þ p2

�
�anti8 � 1

ðk2 þ p2Þ
�
�"8

q2

k2 þ p2

�
�
sym
8 ;

where

�antii ¼
�

1

Fðk2Þ �
1

Fðp2Þ
�
; and �

sym
i ¼ 1

4

�
1

Fðk2Þ þ
1

Fðp2Þ
�
ln

�
Fðq2Þ2

Fðk2ÞFðp2Þ
�

OR

�
sym
i ¼ 1

2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
ln

�
1

2

�
Fðq2Þ
Fðk2Þ þ

Fðq2Þ
Fðp2Þ

��
:

(142)

The fermion and photon SDE’s at leading log order do not fix the constants �i, "i, Eq. (142). As the simplest example for
later exploration we choose �i ¼ "i ¼ 0 in the above expressions and insert the second form of �

sym
i in Eq. (142), we then

have:

�E2 ðp2; k2; q2Þ ¼ 1

ðk4 � p4Þ
�
� 4

3

��
1

Fðk2Þ �
1

Fðp2Þ
�
þ 1

ðk2 þ p2Þ2
�
� 2

3

��
1

Fðk2Þ þ
1

Fðp2Þ
�
ln

�
1

2

�
Fðq2Þ
Fðk2Þ þ

Fðq2Þ
Fðp2Þ

��
;

�E3 ðp2; k2; q2Þ ¼ � 1

ðk2 � p2Þ
�
5

12

��
1

Fðk2Þ �
1

Fðp2Þ
�
� 1

ðk2 þ p2Þ
�
1

3

��
1

Fðk2Þ þ
1

Fðp2Þ
�
ln

�
1

2

�
Fðq2Þ
Fðk2Þ þ

Fðq2Þ
Fðp2Þ

��
;

�E6 ðp2; k2; q2Þ ¼ � 1

ðk2 þ p2Þ
�
� 1

4

��
1

Fðk2Þ �
1

Fðp2Þ
�
; �E8 ðp2; k2; q2Þ ¼ 0:

(143)

This is our simplest expression for the transverse part. We can then construct the full vertex from this using

��ðp; k; qÞ ¼ X4
i¼1

�iðp2; k2; q2ÞL�
i ðp; k;qÞ þ

X
j¼2;3;6;8

�iðp2; k2; q2ÞT�
i ðp; k; qÞ; (144)
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from Eqs. (7)–(10). This is our final result.
Phenomenological studies of strong coupling QED with
this vertex ansatz are presently underway [51,52].

VIII. CONCLUSIONS

The Schwinger-Dyson equations constitute the field
equations of a theory. Being an infinite set of nested
integral equations, they are in general intractable without
some form of truncation. To date, the only known consis-
tent truncation procedure is perturbation theory. This sat-
isfies gauge invariance and multiplicative renormal-
izability order-by-order, and the meaning of any truncation
is well defined. In the case of nonperturbative truncations,
like the rainbow approximation, one has always been un-
sure as to how much physics has been encoded and how
much lost. The calculation of dynamical mass generation
nicely illustrates this. The properties of gauge invariance
and multiplicative renormalizability are fundamental to
our ability to calculate consistently in a gauge theory. It
is thus natural that any truncation should respect these
properties. They ensure not only the elimination of over-
lapping divergences that plague Schwinger-Dyson calcu-
lations, but allow all ultraviolet divergences to be handled
appropriately. Here we have considered the fermion and
boson propagators in four-dimensional massless QED. To
be able to study these requires an ansatz for the full
fermion-boson vertex. This interaction involves 11 nonzero
components, three of which are fixed by the Ward-Green-
Takahashi identity in terms of the fermion propagator
functions. The other eight (transverse) components in prin-
ciple require knowledge of the 4-, 5-, 6-,. . . point functions.
However, very specific projections of this vertex appear in
the fermion and boson self-energies. We have seen that
these projections are strongly constrained by the multi-
plicative renormalizability of the fermion and boson propa-
gators. At its simplest, multiplicative renormalzability is
closely related to the ultraviolet behavior of loop integrals.
This probes distinct limits for the fermion-boson vertex:
one in the fermion equation and the other in the boson. In
these two limits, the vertex has quite different structures.
Such behavior ensures the multiplicative renormalizability

of leading logarithms and shows that the 2-point Green’s
functions for both fermion and photon are wholly deter-
mined by the fermion wave function renormalization. This
has enabled us to unravel for the first time the nonpertur-
bative structure of the full vertex, Eqs. (143) and (144), at
least as far as concerns the fermion and photon Schwinger-
Dyson equations.
While the form of the 3-point vertex is determined in

three kinematic limits, when k2, p2 � q2, when k2, q2 �
p2 and when p2, q2 � k2, its form at general momenta
when all six vector structures of massless QED contribute
involves free parameters. Imposing the known perturbative
Oð�Þ result for the individual vertex components fixes
these. This marks a significant step in the development of
nonperturbative Feynman rules needed for realistic calcu-
lations in strong QED. There are many steps to go:
(i) to solve the extended constraints beyond leading

logarithmic order and include masses [53],
(ii) to compute the Lamb shift of hydrogen and calculate

the properties of positronium to asses how well our
vertex ansatz automatically sums higher orders in �,

(iii) to explore strong physics with such a complete,
unquenched vertex—extending the existing studies
using bare, Ball-Chiu and CP vertices
[11,19,20,23,29–34,48]. Such calculations are under
way and will be reported elsewhere [52]

Eventually an extension to QCD will be our target.
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APPENDIX A: PERTURBATIVE �’S

The vertex coefficients �i’s given below are the massless
limit of the exact Oð�Þ calculation for the massive fermi-
ons in general covariant gauge [41].

�M2 ðp2; k2; q2Þ ¼ �0

8	�2

�
J0

��
k2 þp2

2
þ 3

4�2
p2k2q2

�
ð�� 2Þ þ k �p

�
þ ln

k2

p2

�� ðkþpÞ2
2ðp2 � k2Þ þ

3

4�2
k �pðp2 � k2Þ

�
ð�� 2Þ

þ ðpþ kÞ2
ðp2 � k2Þ

�
þ ln

q4

k2p2

��
3

4�2
k �pq2 þ 1

�
ð�� 2Þ þ 1

�
þ ð�� 2Þ

�
; (A1)

�M3 ðp2; k2; q2Þ ¼ �0

8	�2

�
J0

��ðk2 þ p2Þ2
8

� 3

8�2
ðk � pÞ2ðk2 � p2Þ2

�
ð�� 2Þ ��2

�

þ ln
k2

p2

�ðk2 � p2Þ
4

�
�1þ 3

2�2
k � pðkþ pÞ2

�
ð�� 2Þ

�

þ ln
q4

k2p2

�
k � p
2

�
1� 3

4�2
ðk2 � p2Þ2

�
ð�� 2Þ

�
� ðkþ pÞ2

2
ð�� 2Þ

�
; (A2)
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�M6 ðp2; k2; q2Þ ¼ �0

8	�2

ðp2 � k2Þ
2

�
J0

��
�q2

4
þ 3

4�2
q2ðk � pÞ2

�
ð�� 2Þ

�
þ ln

k2

p2

��
3

4�2
k � pðp2 � k2Þ � ðpþ kÞ2

2ðp2 � k2Þ
�

� ð�� 2Þ
�
þ ln

q4

k2p2

�
3

4�2
k � pq2ð�� 2Þ

�
þ ð�� 2Þ

�
; (A3)

�M8 ðp2; k2; q2Þ ¼ �0

8	�2

�
q2
�
k � pJ0 þ ln

q4

k2p2

�
þ ðp2 � k2Þ ln

�
k2

p2

��
; (A4)

where

J0 ¼ 2

�

�
f

�
k � p� �

p2

�
� f

�
k � pþ �

p2

�
þ 1

2
ln

�
q2

p2

�
ln

�
k � p� �

k � pþ �

��
; (A5)

and

fðxÞ ¼ Spð1� xÞ ¼ �
Z 1

x
dy

lny

1� y
: (A6)

APPENDIX B: LIMITS OF �i’S

1. Fermion limit

In order to take the k2 ’ q2 � p2 limit of the perturbative transverse vertex coefficients, namely, the �i functions,
Eq. (A1)–(A4) we need to expand J0 function, Eqs. (A5) and (B1), up to Oð1=k7Þ:

J0 ¼ 2

k2

�
1þ 1

k2

�
k � p� p2

3

�
þ 1

k4

�
4

3
ðk � pÞ2 � ðk � pÞp2 þ 1

5
p4

�
þ 1

k6

�
2ðk � pÞ3 � 12

5
ðk � pÞ2p2 þ ðk � pÞp4 � 1

7
p6

�

þ 1

k8

�
16

5
ðk � pÞ4 � 16

3
ðk � pÞ3p2 þ 24

7
ðk � pÞ2p4 � ðk � pÞp6 þ 1

9
p8

�
þ 1

k10

�
16

3
ðk � pÞ5 � 80

7
ðk � pÞ4p2

þ 10ðk � pÞ3p4 � 40

9
ðk � pÞ2p6 þ ðk � pÞp8 � p10

11

�
þOð1=k7Þ

�
ln

�
k2

p2

�
: (B1)

2. Photon limit

In the photon limit, k2 ’ p2 � q2, J0 behaves like

J0 ¼ 2

ðp2 � k2Þ
�
2ðp2 � k2Þ

p2
þ ðp2 � k2Þ2

p4
þ 13

18

ðp2 � k2Þ3
p6

þ � � �
�
: (B2)

APPENDIX C: EFFECTIVE �’S

The connection between the effective and real �i functions are given below and the detail of this procedure can be found
elsewhere [50]:

ð�E2 Þeffðp2; k2Þ ¼ 1

fðk2; p2Þ
Z 	

0
dc

sin2c

q2
ð�E2 ÞRealðp2; k2; q2Þf��2g;

ð�E3 Þeffðp2; k2Þ ¼ 1

fðk2; p2Þ
Z 	

0
dc

sin2c

q2
ð�E3 ÞRealðp2; k2; q2Þ

�
��2 � 3

2
q2k � p

�
;

ð�E6 Þeffðp2; k2Þ ¼ 1

f6ðk2; p2Þ
Z 	

0
dc

sin2c

q2
ð�E6 ÞRealðp2; k2; q2Þfk � pg;

ð�E8 Þeffðp2; k2Þ ¼ 1

fðk2; p2Þ
Z 	

0
dc

sin2c

q2
ð�E8 ÞRealðp2; k2; q2Þf��2g;

(C1)

where

AYŞE KIZILERSÜ AND MICHAEL R. PENNINGTON PHYSICAL REVIEW D 79, 125020 (2009)

125020-24



fðk2; p2Þ ¼ 	

8

p2

k2
ð3k2 � p2Þ; f6ðk2; p2Þ ¼ 	

4

k2

k2
: (C2)
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