
PUBLISHED VERSION

Lagana, Antonio Alberto; Lohe, Max Adolph; von Smekal, Lorenz Johann Maria
Construction of a universal quantum computer Physical Review A, 2009; 79(5):2322

© 2009 American Physical Society

 http://link.aps.org/doi/10.1103/PhysRevA.79.052322

http://hdl.handle.net/2440/55035

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S.
Copyright Act, 17 U.S.C.

§101, the employer named [below], shall have the following rights (the “Author Rights”):

[...]

3. The right to use all or part of the Article, including the APS-prepared version without
revision or modification, on the author(s)’ web home page or employer’s website and to
make copies of all or part of the Article, including the APS-prepared version without
revision or modification, for the author(s)’ and/or the employer’s use for educational or
research purposes.”

19th March 2013

http://hdl.handle.net/2440/55035�
http://link.aps.org/doi/10.1103/PhysRevA.79.052322�
http://hdl.handle.net/2440/55035�
http://publish.aps.org/authors/transfer-of-copyright-agreement�

Construction of a universal quantum computer

Antonio A. Lagana,* M. A. Lohe, and Lorenz von Smekal
Department of Physics, University of Adelaide, South Australia 5005, Australia

�Received 30 March 2009; published 18 May 2009�

We construct a universal quantum computer following Deutsch’s original proposal of a universal quantum
Turing machine �UQTM�. Like Deutsch’s UQTM, our machine can emulate any classical Turing machine and
can execute any algorithm that can be implemented in the quantum gate array framework but under the control
of a quantum program, and hence is universal. We present the architecture of the machine, which consists of
a memory tape and a processor and describe the observables that comprise the registers of the processor and
the instruction set, which includes a set of operations that can approximate any unitary operation to any desired
accuracy and hence is quantum computationally universal. We present the unitary evolution operators that act
on the machine to achieve universal computation and discuss each of them in detail and specify and discuss
explicit program halting and concatenation schemes. We define and describe a set of primitive programs in
order to demonstrate the universal nature of the machine. These primitive programs facilitate the implemen-
tation of more complex algorithms and we demonstrate their use by presenting a program that computes the
NAND function, thereby also showing that the machine can compute any classically computable function.

DOI: 10.1103/PhysRevA.79.052322 PACS number�s�: 03.67.Lx

I. INTRODUCTION

As best exemplified by Shor’s factorization algorithm �1�,
quantum computing algorithms have the potential to achieve
significant speed-ups over classical computing algorithms. In
fact, it has even been suggested �2� that quantum comput-
ability can potentially surpass classical computability by
solving problems such as the famous halting problem.

The gate array model of quantum computing that Deutsch
�3� formulated has been shown to be universal in the sense
that any unitary operation can be implemented using a set of
single-qubit gates �H and the T or �

8 gate� and the two-qubit
controlled-NOT �CNOT� gate much as the two-bit NAND gate is
universal for classical logical circuits �see Nielsen and
Chuang �4� chapter 4, for example�. This means that a quan-
tum computer can compute any function that can be com-
puted by a classical computer and in certain cases, most no-
tably unstructured database search �5� and integer
factorization �1�, with a speed-up over the best known clas-
sical algorithms. However, this universality is distinct from
the notion of universality in the sense that every computable
function can be computed by a universal Turing machine
�UTM�. According to the Church-Turing thesis, all finitely
realized computing machines can be simulated by a single
machine, the UTM. Modern computers are fundamentally
UTM implementations. Thus, universality is important be-
cause programmability follows from it.

The quantum gate array computing model is not universal
in this sense because it is not programmable. A single quan-
tum gate array computer cannot simulate every other quan-
tum computer. Each quantum gate array computer must be
purpose built or configured to implement a particular algo-
rithm. Even the recently proposed quantum adiabatic com-
puting framework �6� is not strictly programmable in this
sense because the time-dependent Hamiltonian must be indi-

vidually tailored for each given problem. In this sense, cur-
rently envisioned quantum computers more closely resemble
special purpose processors rather than general-purpose pro-
cessors, to draw an analogy with classical computers.

In one of the founding papers of quantum computation,
Deutsch �7� defined a quantum Turing machine �QTM� and
further claimed that there exists a universal quantum Turing
machine �UQTM� that is a natural quantum generalization of
the classical UTM, both of which are quantum generaliza-
tions of their classical counterparts. The UQTM was defined
to be a QTM for which there exists a program as part of its
input state that has the effect of applying a unitary transfor-
mation on an arbitrary number of qubits arbitrarily close to
any desired transformation. That is, the UQTM could simu-
late, up to arbitrary accuracy, the operation of any given
QTM. As its classical counterpart, a QTM contains a halt
qubit that is used to indicate whether the computation has
been completed. Thus, the UQTM is universal in the sense in
that it is programmable and able to simulate the operation of
every possible QTM. The theoretical existence of such a ma-
chine is important because it would establish whether a pro-
grammable quantum computer can be constructed in prin-
ciple.

Since the original proposal, several questions have been
raised as to whether the UQTM, as defined by Deutsch, was
indeed valid. In 1997, Myers �8� argued that the UQTM’s
halting scheme was invalid. In 2001 Shi �9� showed that the
validity of the halting scheme ultimately rested on whether
the program concatenation scheme was valid. If the concat-
enation scheme were valid, the halting scheme would be
valid, and Myer’s question could be resolved by Ozawa’s
�10� nondemolition measurements of the halting qubit sub-
ject to the requirement that the halting scheme be imple-
mented in a way whereby the state of the memory tape
ceases to change once the halt qubit is set. The question of
whether the concatenation scheme is valid and hence
whether a UQTM exists has remained an open question.

In the following sections, we first review the QTM and
UQTM as defined by Deutsch and then present an explicit*antonio.lagana@adelaide.edu.au

PHYSICAL REVIEW A 79, 052322 �2009�

1050-2947/2009/79�5�/052322�11� ©2009 The American Physical Society052322-1

http://dx.doi.org/10.1103/PhysRevA.79.052322

construction of a universal quantum computer to demonstrate
that a universal �programmable� quantum computer exists
and that program concatenation is valid. The machine sup-
ports programmatic execution basic instructions that include
the universal set of unitary operations as well as a condi-
tional branch instruction. Like Deutsch’s UQTM, our ma-
chine consists of a memory tape and processor. The internal
architecture of our machine is very similar to that of a classic
microcontroller and contains a data address register, program
counter, status flag, instruction fetch buffer register, and a
memory read-and-write head. In addition, our machine con-
tains a halt qubit that signifies whether program execution
has completed and a flow control register and history buffer
address register that are used to store program execution his-
tory information. The flow control and history buffer address
registers are used to store a sufficient amount of information
such that, in principle, the operation of any program can be
reversed at any given time, consistent with unitarity. This
theoretical construction will be useful to analyze other as-
pects of quantum computation, such as complexity analysis
of algorithms, analysis of the halting problem �in the
Church-Turing thesis sense�, etc., in an analogous way that a
UTM is used in classical computer science.

Sections II and III provide brief descriptions of Deutsch’s
QTM and UQTM, respectively. In Sec. IV we describe sev-
eral problems that were raised about the QTM halting
scheme and the fact that it relies on the validity of program
concatenation, something that Deutsch did not prove. In Sec.
V we present an explicit construction of a universal quantum
computer and describe the internal architecture, instruction
set, and the time evolution operator associated with the ma-
chine. In Sec. VI we define a set of basic programs in order
to demonstrate the classical universal nature of our machine
by constructing a program that computes the NAND function.
In Sec. VII we discuss program concatenation and present a
program concatenation operator for our machine thus dem-
onstrating that program concatenation is valid for quantum
computers.

II. QUANTUM TURING MACHINE

As defined by Deutsch, a QTM consists of two compo-
nents: a finite processor and an infinite tape �external
memory�, of which only a finite portion is ever used. The
finite processor consists of N qubits and the infinite tape
consists of an infinite sequence of qubits, of which only
a finite portion is ever used. The currently scanned tape
location is specified by x which denotes the “address”
number of the tape. Thus, the state of a QTM is a unit vector
in the Hilbert space spanned by the basis states �x��n��m�,

where �n� =
def

�n0 ,n1 ,n2 , . . . ,nN−1�, and �m� =
def

�. . . ,m−2 ,m−1 ,
m0 ,m1 ,m2. . .�.

The operation or dynamics of the machine is defined by a
fixed unitary operator U whose only nontrivial matrix ele-
ments are �x�1;n� ;mx� ,my�x�U�x ;n ;mx ,my�x�. That is, only
one tape qubit, the xth, participates in any given computa-
tional step and at each step, the position of the head cannot
change by more than one unit, forward or backward, or both

in the case that the position of the tape is a superposition of
�x�1�. Each different U corresponds to a different QTM.
Stated differently, each QTM corresponds to a specific algo-
rithm in the same way that each quantum gate array circuit is
an implementation of a specific algorithm. To signal whether
the computation has been completed, the processor contains

a special internal qubit, �n0 =
def

h�, known as the halt qubit, that
is initialized to 0 and is set to 1 upon completion of the
computation. Thus, an external operator �or classical com-
puter� may periodically observe �h� to determine whether the
computation has been completed. The evolution of the QTM
can thus be described as

���s�T�� = Us���0�� ,

where ���0�� is the initial state, s is the number of computa-
tion steps, and �T is the time duration of each computational
step.

III. UNIVERSAL QUANTUM TURING MACHINE

As Shi �9� pointed out, a UQTM state may be defined as
�Q ,D , P ,��, where Q is the state of the processor, including
the head position x, D is the state of the data register, and P
is the program state. D and P are each parts of the tape and
� is the remaining part of the tape that is not used during the
computation. Note that this does not deviate from the origi-
nal definition of the UQTM by Deutsch in �7�, as the corre-
sponding basis elements of �m� can be appropriately mapped
to the corresponding basis elements of D, P, and �.

Deutsch claimed that there is a UQTM with which is as-
sociated a special unitary transformation U that when applied
a positive integer number of times can come arbitrarily close
to applying any desired unitary transformation on a finite
number of data qubits. Stated differently, the claim was that
there exists a UQTM, i.e., a special U, so that for an arbitrary
accuracy � and arbitrary unitary transformation U which
changes D to UD, there is always a program state P�D ,U ,��
and a positive integer s=s�D ,U ,��, such that

Us�Q,D,P,�� = �Q�,D�,P�,�� ,

where D� is arbitrarily close to UD, i.e., �D�−UD�2��. Fi-
nally, like the QTM, the UQTM contains a special internal
halt qubit �h� that is monitored to determine whether the
computation has completed.

IV. IS THE HALTING SCHEME VALID?

In 1997 Myers �8� suggested that the UQTM’s halting
scheme was invalid. He argued that an entanglement be-
tween the halt qubit and other qubits could occur, thereby
making it impossible to determine whether the machine has
halted or not. His reasoning was as follows: suppose that two
computations, A and B, halt after NA and NB steps, respec-
tively, and without loss of generality, that NB�NA. Then for
a computation that is a superposition of computations A and
B, after N steps of the UQTM with NA�N�NB, the halt
qubit will be in a superposition of halted and not halted states
due to the linearity of the quantum evolution.

LAGANA, LOHE, AND VON SMEKAL PHYSICAL REVIEW A 79, 052322 �2009�

052322-2

Because the computation time is unknown a priori, mea-
surement of the halt qubit would collapse the state of the
machine to that corresponding to the intermediate computa-
tion state of B �with �h�= �0�� or to the completed computa-
tion state of A �with �h�= �1��. Myers argued that this was a
conflict between being universal and “being fully quantum,”
i.e., that the UQTM halting scheme was incompatible with
superposition and hence the machine would need to operate
on classic states. Conceptually, one could argue that this is
not really a problem because any program will ultimately
generate a single result. The case of superposed programs
corresponds to the classical case of running a program with
random data. The computation result depends on the data. In
the superposed quantum computer case, the result obtained
depends on the final measurement probabilities for obtaining
each of the superposed program results.

In 1998 Ozawa �10� showed that monitoring �h� is a quan-
tum nondemolition measurement, that is, periodic measure-
ment of �h� while the computation is in progress does not
alter the final measurement of the memory tape contents,
which store the result of the computation. This is true even if
�h� becomes entangled with other qubits during the compu-
tation. The crucial aspect of this proof is that the probabili-
ties of obtaining each of the possible superposed results are
not altered by periodic measurement of the halt qubit. The
periodic measurement could be said to collapse the machine
to one of the many superposed branches of computation as
Myers aptly highlighted, but the probability of measuring
that particular computational branch is no different than if
the measurement is postponed until after the program has
completed execution. The key assumption or requirement in
Ozawa’s proof is that the state of the memory tape remains
unchanged once the halt qubit is set.

Furthermore, in 2001 Shi �9� also highlighted that univer-
sality and “being fully quantum” does not require the entire
UQTM to evolve from a superposition. The superposition
need only be on the data state. For example, if the data state
is �D�= �A�+ �B�, the state of the total system starts at
�Q ,A+B , P�A+B ,U ,�� ,��, rather than at
�Q ,A , P�A ,U ,�� ,��+ �Q ,B , P�B ,U ,�� ,��.

However, the scenario highlighted by Myer would arise if
one were to require that the program be only dependent on
the desired transformation U and the accuracy �, but inde-
pendent of the initial data state. In this case, a computation
on data state D=A+B would need to start at
�Q ,A+B , P�U ,�� ,��, or �Q ,A , P�U ,�� ,��
+ �Q ,B , P�U ,�� ,��. Hence in this case entanglement between
the halt qubit and the rest of the system would occur if the
execution times for A and B were different, which would be
generally the case. However, the requirement for a data state
independent program is unnecessary and the halt qubit en-
tanglement problem could thus be avoided. Also if we re-
quire the programs to be data state independent and the halt
qubit becomes entangled, Ozawa’s proof applies and peri-
odic measurements of the halt qubit do not affect the out-
come of the computation.

However, Shi also pointed out that the halting scheme is a
special case of the program concatenation scheme that was
assumed to be valid in the original UQTM proposal. The
original definition of the UQTM is based on the assumption

that if there is a program whose effect is to apply U on the
data state �D�, then there exists a unitary operator whose
effect is �h=1��h=0� � U on �h=0��D�. This assumption was
not proven and the validity of program concatenation has not
been addressed in other work �see Sec. 8.3 in �11�, for ex-
ample� that relies upon the QTM defined by Bernstein and
Vazirani �12� in 1997; this version of the QTM not only
requires a halting scheme like Deutsch’s but also requires
that every computational path reach a final configuration si-
multaneously, and thus every computational path must be
somehow synchronized.

The problem with synchronizing every computational
path is that, in general, it is not known a priori how long a
program will take to halt or if it will halt at all because
program execution times can depend on the data that the
program operates upon. This problem was highlighted by
several authors, including Iriyama, Miyadera, and Ohya as
recently as 2008 �13�. Thus, it is not always possible to find
an upper bound T on the time needed for all branches to halt
and thereby equip each branch of a computation with a
counter that increments at each time step and halts once it
reaches some upper bound T. In essence, such a synchroni-
zation scheme is well suited for dealing with sequential pro-
grams that are guaranteed to halt but not for programs that
may never halt due to conditional branches or loops.

We address these open questions by constructing a theo-
retical universal quantum computer with valid and explicit
halting and program concatenation schemes, and which also
supports conditional branching and does not require synchro-
nization of all computational paths. This machine serves as a
prototypical model for a general-purpose programmable
quantum computer that will be useful in the development and
analysis of new quantum algorithms, complexity analysis of
quantum algorithms, and investigation of the physical basis
of the Turing halting problem.

V. UNIVERSAL QUANTUM COMPUTER

Our goal is to devise a quantum computer that can
compute any computable function. The machine itself
is to be fixed and each different function is to be computed
by providing the machine with a suitable set of input
data and program. Any unitary operation can be
approximated to any desired accuracy using the set of
	H,CNOT,T
 gates �see Nielsen and Chuang �4�, Chap. 4, for

example�, where H =
def

1
�2

	��0�+ �1���0�+ ��0�− �1���1�
,

CNOT =
def

�00��00�+ �01��01�+ �11��10�+ �10��11�, and T =
def

�0��0�
+ei�/4�1��1�. This set is universal in the sense that any func-
tion �i.e., unitary operation� that can be computed by a quan-
tum computer can be implemented using a combination of
these gates. Thus, to create a universal quantum computer in
the programmable sense, it suffices to devise one that can
implement these operations on a specified set of qubits under
the control of a quantum program. The quantum computer
described below and illustrated in Fig. 1 is an instance of
such a machine.

Following Deutsch �7�, our machine UQC consists of two
primary parts: a processor Q that implements the universal

CONSTRUCTION OF A UNIVERSAL QUANTUM COMPUTER PHYSICAL REVIEW A 79, 052322 �2009�

052322-3

set of unitary operations and an infinite tape that acts as the
machine’s external memory. The tape consists of an infinite
sequence of qubits, �M�= 	�mi�
 , i�Z, with only a finite sub-
set of them ever being used for any given program. This
corresponds to a classical computer’s memory and external
storage which, while finite, can be arbitrarily large. With the
tape is associated an observable x̂ in the processor that has
the whole of Z as its spectrum and that acts as the address
number of the currently scanned tape location. Addressing
different tape locations can be realized either by a movable
head over a static tape or by a movable tape under a static
head. Since either scheme is identical for the purposes of
constructing UQC, we assume the latter as that allows for Q
to be fixed in space, and movement of the tape is accom-
plished by a sliding “bin” of qubits that moves under Q’s
control.

As part of its internal state machine, Q also contains two

additional observables, D̂ and P̂, that act as the data address

and program counter, respectively. D̂ is used to address indi-
vidual data qubits on the tape and to specify the branch des-

tination address and P̂ is used to keep track of the program
instruction that is to be executed. As with classical comput-

ers, D̂ and P̂ need not have an infinite spectrum as they need
only be as “wide” as required to address the finite subset of
the infinite tape that would ever be used. However, for the
purpose of the most general construction, we do not restrict

UQC to have a particular address range and thus treat D̂ and

P̂ �and x̂� as having an infinite spectrum.

Q also contains a four-qubit register Î to load the instruc-
tion to be executed. In order to perform the two-qubit CNOT

operation, Q contains a “scratch” qubit �s� that is used as the
control qubit. Like Deutsch’s UQTM, UQC also contains a
dedicated observable qubit �h� that indicates whether the pro-
gram execution has completed �i.e., the halt qubit�. Q also

contains a two-qubit register F̂ that is used to control the

execution flow �i.e., whether the program should loop on the
current instruction, proceed to the next instruction, or branch
to a new instruction�. Finally, UQC contains a register Ĥ with
the same spectrum as x̂, D̂, and P̂. The purpose �and naming�
of the Ĥ register is described later. For notational simplicity,
we drop the ˆ notation hereafter when referring to UQC reg-
isters, e.g., D refers to the observable D̂ whose correspond-
ing state is �D�.

The overall state of UQC, then, is given by
�h ,x ,D , P ,F ,H ,s , I ,M�, where �h ,D , P ,F ,H ,s , I�

corresponds to Deutsch’s �n� with �h� =
def

�n0�.
Each program consists of a finite sequence of four qubit

instruction words. Self-modifying code is to be avoided be-
cause modifying program instructions during program ex-
ecution can lead to unpredictable results. For example, the
processor fetches instructions to be executed from the
memory tape into the temporary internal buffer register I by
swapping the contents of the memory tape and the I register
�and swapping back the two when the instruction has been
executed�. Because I is initialized to �0�, the swapped con-
tents of the memory tape temporarily become �0� while the
instruction is being executed. This means that if the program
attempts to modify the location of the instruction being ex-
ecuted, it would be modifying �0� and not the actual instruc-
tion �that is temporarily held in the I register�. This can lead
to unintended and unpredictable behavior.

The instruction set of UQC is as follows. As mentioned
earlier, we implement a universal set of unitary operations,
namely 	H,CNOT,T
, in order to ensure that UQC is universal.
In order to enable the programmer to address any qubit on
the memory tape and thus apply the universal set of opera-
tions to any qubit, we implement three instructions: an in-
struction to set D to 0, an instruction to increment D by 1,
and an instruction to decrement D by 1. Because the CNOT

operation requires two operands �control and data�, we
implement a swap instruction to enable the programmer to
swap the qubit on the memory tape pointed to by D with the
machine’s s qubit, thereby enabling any qubit on the memory
tape to be used as the control qubit. While not strictly nec-
essary for universality, we implement a branching scheme in
UQC because first, this is not explicitly possible in other
popular quantum computing frameworks such as the gate
array framework and second, because it is a common opera-
tion in classical computers. Branching is essentially imple-
mented by allowing the programmer to swap the data register
and program counter register contents, thereby allowing the
program to branch to any instruction on the memory tape.
We also implement an instruction to effectively clear s by
swapping its contents with the next available 0 slot on the
negative portion of the memory tape �pointed to by H�. The
clear s instruction provides for a simple and convenient way
for the programmer to load s with 0 without having to hunt
around the memory tape looking for a 0 data qubit slot. Fi-
nally, we implement an instruction to set the halt qubit to 1
but because we also want the memory tape to remain un-
changed once the halt qubit is set, we implement an accom-
panying instruction �NOP� to follow the halt instruction that
will accomplish this.

x

Q

M(x)

UQC

State Machine

s h

M

P D I H F

FIG. 1. Architecture of the universal quantum computer UQC,
showing the memory tape M, processor Q, address of tape head �x�,
scratch qubit �s�, instruction register �I�, program address register
�P�, data address register �D�, history address register �H�, flow
control register �F�, halt qubit �h�, and the qubits that are measured
��M� and �h��.

LAGANA, LOHE, AND VON SMEKAL PHYSICAL REVIEW A 79, 052322 �2009�

052322-4

The instruction set of UQC, then, consists of 11 instruc-
tions, whose operations and encodings are defined in Table I.
The single qubit operations H and T act on the qubit at tape
location M�D�, denoted �M�D, and the two qubit operations
SWAP and NAND act on �M�D and the scratch qubit �s�, the
latter being used as the control qubit for the NAND operation.

The operation of UQC proceeds as follows:
�1� An external operator �or classical computer� initializes

the state of M at t=0 with the desired data and program.
Data qubit i, i�Z+, is placed on tape location M�5i−1� and
program instruction j, j�Z+, is placed on tape locations
M�5j−2:5�j−1��, i.e., data are placed at
M�4� ,M�9� ,M�14� , . . . , and program instructions are placed
at M�3:0� ,M�8:5� ,M�18:15� , The negative portions of
the tape are initialized to �0�, as illustrated in Fig. 2.

�2� The processor registers are all initialized to �0�.
�3� An external operator starts Q by releasing it from the

reset state.
�4� Q fetches the program instruction at tape location

M�P� into register I.
�5� Q executes the operation specified by I.
�6� If the halt qubit �h� becomes set, Q halts execution

�strictly speaking, because UQC is a quantum system, Q
continues to evolve but the evolution of the memory tape
becomes trivial—i.e., U=1—after the halt qubit has been set�
and awaits an external measurement of the results. Other-
wise, Q continues execution of the program by loading the
next program instruction.

�7� An external operator periodically performs a measure-
ment on the halt qubit.

�8� If measurement of the halt qubit yields �1�, the pro-
gram has completed execution. The results are obtained by
measuring the contents of M. Otherwise, Q is allowed to
continue program execution.

The operation of Q is governed by the state machine de-
picted in Fig. 3.

A. Evolution of Q

We now define the unitary evolution operators associated
with the Q state transitions. In the equations below, sub-
scripts on projectors denote the qubit�s� on which the projec-
tor acts, e.g., �i��i�k acts on qubit k, and unspecified qubits are
understood to be operated on by an implicit identity operator,
e.g., �i��j�k � �l��m�n is short hand for �i��j�k � �l��m�n � 1�k,n
which acts on qubits k and n and leaves all other qubits
unaffected. ���R denotes �i���i��R�i�, where R is a multiple
qubit register �e.g., D� with R=�iR�i� and �=�i��i�. More-
over, for notational simplicity in the rest of this paper, we
define four primitive unitary operations, SWAP, DEC, INC, and
NAND as follows:

�1� Swap contents of registers a and b,

SWAPa,b =
def

i,j

�i��j�a � �j��i�b. �1�

�2� Decrement the contents of register a,

DECa =
def

i

�i − 1��i�a. �2�

�3� Increment the contents of register a,

INCa =
def

i

�i + 1��i�a. �3�

TABLE I. UQC instruction set.

Label Encoding Description

�NOP� �0000� No operation

�D→0� �0001� D→0

�D+1� �0010� D→D+1

�D−1� �0011� D→D−1

�H� �0100� Apply Hadamard operation to �M�D

�T� �0101� Apply T operation to �M�D

�SWAP� �0110� �M�D↔ �s�
�CNOT� �0111� CNOT of �M�D and �s� ��s�: control�
�D↔P� �1000� �D�↔ �P� �branch� if s=0

�CLS� �1001� Clear s

�R0� �1010� Unused

�R1� �1100� Unused

�R2� �1101� Unused

�R3� �1110� Unused

�h→1� �1111� �h�→ �1� �set halt qubit�

M
0 1 2 3-1-2-3
P1 P2 P3 P4 . . .

Program and Data QubitsScratch and Unused Qubits

4
D10 0 0 P5 P6 P7 P8 D2
5 6 7 8 9

P9 P10 P11 P12 D3
10 1112 13 14

. . .
-4-5-6

0 0 0
-7-8

0 0

FIG. 2. Initial memory tape contents. The negative qubit slots
are used as scratch qubits and the non-negative qubit slots are ini-
tialized with interleaved program instruction and data qubits.

IF

XD

RESET

M(x+3:x) I(3:0) Point To Next Instruction And
Fetch Instruction From Memory

x D

Update Control Flow RegisterUF

Point To Data Qubit

EX

x D

Execute Instruction
(NOP if h=1)

UD Update Data Register

RI

F F’

x P

x x’
M(x) M’(x)s s’
h h’

UP

CF

x x+4
x P

M(x+3:x) I(3:0) Point To Fetched Instruction And
Restore Instruction To Memory

x P
x x-4
x P

Update Program Address RegisterP P’

Clear Control Flow RegisterF 0

FIG. 3. Q state machine diagram that corresponds to the evolu-
tion of the universal quantum computer. The overall evolution is
determined by eight unitary transformations.

CONSTRUCTION OF A UNIVERSAL QUANTUM COMPUTER PHYSICAL REVIEW A 79, 052322 �2009�

052322-5

�4� CNOT operation using qubit a as the control and qubit
b as the data,

CNOTa,b =
def

��00��00� + �01��01� + �11��10� + �10��11��a,b.

�4�

The operators, UIF, UXD, UEX, UUD, UUF, URI, UUP, and
UCF, which govern the Q state transitions, then, are defined
as follows.

�1� Fetch next instruction at M�P�,

UIF =
def

DECP
4 · SWAPx,P · ��

i=3

0

INCx · SWAPM�x�,I�i��SWAPx,P.

�5�

This operator fetches the next program instruction by “swap-
ping” the next program instruction qubits on the memory
tape with the contents of the I register. As stated earlier,
because I is initialized to �0�, the instruction slot on the
memory tape becomes temporarily �0� while the instruction
is being executed but is restored to its original state once the
instruction has been executed. Note that P will be pointing
back to the fetched instruction address after this operator is
applied because the update of the program counter is de-
ferred until UUP is applied.

�2� Move tape head to M�D�,

UXD =
def

SWAPx,D
. �6�

UXD points the memory tape head to the qubit addressed
by the data register D.

�3� Execute instruction

UEX =
def

�NOP��NOP�I + �D → 0��D → 0�I � DECx

+ �D + 1��D + 1�I � INCx + �D − 1��D − 1�I � DECx

+ �H��H�I � HM�x� + �T��T�I � TM�x�

+ �SWAP��SWAP�I � SWAPM�x�,s

+ �CNOT��CNOT�I � CNOTs,M�x�

+ �D ↔ P��D ↔ P�I + �CLS��CLS�I
� SWAPx,H · DECx · SWAPM�x�,s · SWAPx,H

+ �h → 1��h → 1�I � ��1��0� + �0��1��h +
i=0

4

�Ri��Ri�I.

�7�

UEX applies the appropriate transformation associated with
the instruction being executed. The transformations associ-
ated with the NOP, D+1, D−1, H, T, SWAP, CNOT, and re-
served instructions are self-evident but those associated with
the D→0, D↔P, CLS, and h→1 instructions warrant some
explanation.

The D→0 instruction works as follows. D is decremented
by one by UEX and P is left unchanged by UUP �see Eq. �11��
until D=0. Leaving the program counter unchanged has the
effect of keeping P pointing to the D→0 instruction such

that it is refetched in the next iteration. Thus, Q continues to
fetch and execute the same D→0 instruction until D=0. In
other words, it will loop on the D→0 instruction, decrement-
ing D until it reaches 0. Once D=0, P is incremented by 5
such that it points to the next instruction, thus completing the
loop.

It is important to note that this scheme relies on the as-
sumption that D�0 when the D→0 instruction is encoun-
tered. Therefore, the programmer must ensure that D�0
when Q fetches the D→0 instruction. This can be accom-
plished by preceding the D→0 instruction with a D+1 in-
struction since, in the absence of programming error, D will
always be positive. If the programmer fails to meet this re-
quirement Q could loop forever stepping through the nega-
tive portions of the memory tape.

The transformation associated with the D↔P operation is
the identity operation here because its execution is deferred
until later. Deferring the actual swapping of the D and P
register contents is necessary in order to keep the address of
the D↔P instruction unchanged so that we can restore the
branch instruction back to its original slot on the memory
tape and only then update the program counter to point to the
next instruction in the program execution flow.

The CLS instruction first points the memory tape head to
the address contained in the H register �the next slot on the
negative portion of the memory tape that contains �0��, swaps
the contents of the s qubit with the contents of the memory
tape slot ��0�� thereby clearing s �but leaving the previous
value of s on the memory tape making the operation revers-
ible in principle�, decrements H such that it points to the next
�0� slot on the memory tape, and then points the memory
tape head back to where it was.

The NOP instruction plays a key role in the UQC halting
scheme. In our implementation, the halting scheme requires
the halt instruction �h→1� to be followed by a �NOP� in-
struction. In other words, the “true” halt instruction is effec-
tively �h→1��NOP� or �11110000� using the presently de-
fined instruction encodings. This is such that after the halt
qubit is set, Q will continue to fetch the next instruction
following �h→1� which being �NOP� will guarantee that Q
loops forever doing nothing, thereby effectively halting pro-
gram execution �but not quantum evolution�. The fact that
the encoding of the NOP instruction is �0000� is also inten-
tional. This ensures that the contents of the memory tape
remain unchanged after the halt qubit is set because swap-
ping the instruction slot on the memory tape with the con-
tents of the I register leaves the state of the memory tape
unchanged. The halting scheme relies on all halt instructions
in any given program being followed by a NOP instruction
and stopping the program counter from changing when a NOP

instruction is executed such that P will continue to point at
the NOP instruction following the instruction that caused the
halt qubit to be set.

The halting scheme is thus effectively a two step process:
the first step is to set the halt qubit using the h→1 instruc-
tion to alert an external observer that the program has halted
and the second step is to loop forever on the NOP instruction.
In this sense, the NOP instruction is really a “loop forever”
trap instruction. As such, the NOP instruction must only be
used following a halt instruction. If it is inadvertently placed

LAGANA, LOHE, AND VON SMEKAL PHYSICAL REVIEW A 79, 052322 �2009�

052322-6

anywhere else in the program, program execution will halt
but the halt qubit will not be set so the external observer will
not know that the program has halted.

An improved halting scheme that does not require all in-
stances of the halt instruction in a program to be followed by
a NOP instruction may be possible and is an area for future
investigation.

�4� Update contents of D register,

UUD =
def

SWAPx,D
. �8�

UUD updates the D register with the results of executing
the instruction since x will contain any changes to D after
UEX has been applied.

�5� Update control flow register with instruction flow in-
formation

UUF =
def

��D → 0��D → 0�I � �1 − �0��0��D + �NOP��NOP�I�

+ �D ↔ P��D ↔ P�I � �0��0�s � INCF
2

+ �1 − �D → 0��D → 0�I � �1 − �0��0��D − �NOP��NOP�I
− �D ↔ P��D ↔ P�I � �0��0�s� � INCF �9�

UUF updates F whose value is later used to update P to
point to the address of the next instruction to be executed.
Note that F is initialized to �0� and the evolution of UQC is
designed to ensure that F=0 when UUF is applied �F is ef-
fectively “cleared” by UCF by swapping its contents with the
infinite supply of �0� slots on the negative portion of the
memory tape as we describe later�. As explained earlier, if
the instruction is D→0 and D�0 or if the instruction is NOP,
P will be left unchanged to effectively loop on the instruc-
tion. If the instruction is D↔P and s=0 then P will be
swapped with D to effectively branch to D. Otherwise, P is
set to point to the instruction following the instruction that
was just executed �i.e., P→P+5�. The encodings of F are
defined in Table II.

�6� Restore executed instruction back to the memory tape
location from where it was fetched,

URI =
def

UIF
† . �10�

URI restores the instruction that was just executed back to
its original slot on the memory tape. Recall that the P update
has been deferred and will be controlled by the state of the F
register. Thus, the only operator that has affected P thus far
has been UIF so UIF

† suffices to undo the fetch. In essence, F
is a temporary place holder to store the information neces-

sary to determine the next instruction location after restoring
the instruction back to the memory tape and hence losing
knowledge of how to update P otherwise.

�7� Update program counter to the address of the next
instruction to be executed,

UUP =
def

�LOOP��LOOP�F + �NEXT��NEXT�F � INCP
5

+ �BR2D��BR2D�F � SWAPD,P + �R0��R0�F. �11�

UUP updates P to the address of the next instruction to be
executed according to the state of F.

�8� Clear flow control register such that it can be used
again in the next cycle,

UCF =
def

SWAPx,H��
i=1

0

DECx · SWAPM�x�,F�i��SWAPx,H . �12�

UCF first swaps the contents of the x and H registers. The
H register contains the address of the next slot on the nega-
tive portion of the tape that contains �00�. These “0” slots are
used to clear the F register back to �0� each cycle. Since the
sequence of F values effectively contains the information
about the program execution flow, in essence the negative
portion of the tape contains the “history” of instructions that
UQC has executed and is a side effect of the need for all
UQC programs to be reversible.

In other words, the negative portion of M is used to store
the ancillary garbage data that would be required to reverse
the operation of the program. The number of �0� slots re-
quired for any given program is equal to the number of in-
structions that are executed by the program. UCF clears F by
swapping its contents with the contents of the next �0� slot on
the negative portion of the tape. After application of UCF, H
points to the next �0� slot on the tape and the previous F
value is contained on the slot to the right of the first �0� slot
on the negative portion of the tape. At this point, Q has
completed processing the instruction and is ready to fetch the
next instruction in the execution flow.

These operators are all readily verified to be unitary and
to have the desired effects of implementing the state machine
shown in Fig. 3. The overall evolution of UQC, then, is gov-
erned by the unitary operator,

U = UCFUUPURIUUFUUDUEXUXDUIF. �13�

Unlike Deutsch’s original UQTM, the memory tape �or
tape head� of UQC is not restricted to move at most one
position to the left or to the right �x→x�1� in any given
step. This is most obvious in the case of the branch instruc-
tion where the tape head will jump by an arbitrarily large
amount in a single step. However, the evolution of UQC is
still unitary and hence physically possible in principle.

VI. SOME PRIMITIVE PROGRAMS

In this section we describe a set of primitive programs or
operations to demonstrate the universal nature of UQC.
These routines serve as building blocks for devising and ana-
lyzing more complicated and useful programs.

TABLE II. F encodings.

Label Encoding Description

�LOOP� �00� Loop �P→P�
�NEXT� �01� Next sequential instruction �P→P+5�
�BR2D� �10� Branch to D �P→D�
�R0� �11� Unused

CONSTRUCTION OF A UNIVERSAL QUANTUM COMPUTER PHYSICAL REVIEW A 79, 052322 �2009�

052322-7

The first set of primitive programs,
	�D+i� , �D−i� , �Di� , �Si,s� , �Si,j� , �Bi�
, that we define perform
basic functions to manipulate the data address register, swap
qubits, and conditionally branch to an arbitrary address. The
superscripts on the programs denote the operation performed
by the program and the subscripts indicate the qubits on
which the program operates. For notational simplicity,
�Ph� denotes the program that causes UQC to halt, i.e.,

�Ph� =
def

�h→1��NOP� .
�1� �D+i�: Increment D by i,

�D+i� =
def��

k=1

i

�D + 1�, if i 	 1

1, otherwise.
� �14�

�2� �D−i�: Decrement D by i,

�D−i� =
def ��

k=1

i

�D − 1�, if i 	 1

1, otherwise.
� �15�

�3� �Di�: Set D to i, i�0,

�Di� =
def

�D + 1��D → 0��D+i� . �16�

Recall from the discussion of UEX that we are preceding the
D→0 instruction with a D+1 instruction to ensure that D
�0 when the D→0 instruction is executed.

�4� �Si,s�: Swap data qubits D�i� and s,

�Si,s� =
def

�D5i−1��SWAP� . �17�

�5� �Si,j�: Swap data qubits D�i� and D�j�,

�Si,j� =
def

�S5i−1,s��S5j−1,s��S5i−1,s� . �18�

�6� Branch to the ith instruction �i.e., instruction at
M�5�i−1���, where i�Z+,

�Bi� =
def

�D5�i−1���D ↔ P� . �19�

Note that, as defined, this instruction will have no effect
unless �s�= �0� so this operation is only useful following non-
trivial operations on the �s� qubit.

Next we describe a set of programs,
	�Pi

H� , �Pi,j
H � , �Pi

T� , �Pi,j
C �
, to apply the H, T, and CNOT opera-

tions on arbitrary qubits i and j on the memory tape, where i
and j�Z. These comprise a universal set of unitary opera-
tions from which any arbitrary unitary operation can be con-
structed.

�1� �Pi
H�: Apply H to data qubit D�i�,

�Pi
H� =

def

�D5i−1��H� . �20�

�2� �Pi,j
H �: Apply H to data qubits D�i : j�, where i	 j,

�Pi,j
H � =

def

�
k=j

i

�Pk
H� . �21�

One could implement this program using a loop but that
would require first implementing binary addition of M qu-
bits. Binary addition is possible because one can implement
a binary adder such as a Carry Lookahead Adder �14� using
the NAND program that we define later in this section. How-
ever, since we are only interested in a polynomial order �in
the number of qubits� multiple qubit Hadamard transforma-
tion program, we define �Pi,j

H � as a sequential “unrolled” loop
program.

�3� �Pi
T�: Apply T to data qubit D�i�,

�Pi
T� =

def

�D5i−1��T� . �22�

�4� �Pi,j
C �: Apply CNOT to data qubits D�i� and D�j� with D�i�

as the control qubit,

�Pi,j
C � =

def

�Si,s��D5j−1��CNOT��Si,s� . �23�

Using the sets of primitive programs defined above, we

can now define the set of programs, 	�Pi
X� , �Pi

S� , �Pi
T†

�
, that
apply the Pauli X, Phase �S�, and T† operations on data qubit
i�Z+. These operations are often used in quantum algo-
rithms so it is useful to identify the programs that implement
them. A constant subscript on a program denotes that some
suitable qubit on the memory tape has been prepared with
the appropriate value. For example, �P1� is shorthand for �Pk�
where M�k�, for some suitable k, has been prepared with the
value �1�.

�1� �Pi
X�: Apply
x to qubit M�i�,

�Pi
X� = �P1,i

C � ,

�Pi
X�:�1� j���i → �1� j�1 � ��i = �1� j��̄�i = �1� j
x���i. �24�

�2� �Pi
S�: Apply phase �S� to qubit M�i�.

Noting that S=T2, the following program implements the
phase operation.

�Pi
S� = �Pi

T��Pi
T�

�Pi
S�:���i → T2���i = S���i. �25�

�3� �Pi
T†

�: Apply T† �reverse T� to qubit M�i�,
This operation is used to define the Toffoli operation in a

later section so we define it here. Noting that S=T2 and that
S4=1, T†=T†S4=T†T2S3=TS3, the following program
implements the T† operation:

�Pi
T†

� = �Pi
S��Pi

S��Pi
S��Pi

T� . �26�

Although not specifically shown here, other useful quan-
tum gates such as
y,
z, entanglement gate, etc. can be
similarly implemented. These enable us to implement any
algorithm from the quantum gate array framework on UQC
by appropriate combinations of the programs we have just
defined and adding �Ph� as the last step in the combined
program to halt UQC upon completion. Since the quantum
gate array framework is universal �see �4�, Chap. 4, for ex-
ample�, this means that UQC is also quantum computation-
ally universal with the additional advantage that UQC pro-
vides a fixed and programmable machine to implement the

LAGANA, LOHE, AND VON SMEKAL PHYSICAL REVIEW A 79, 052322 �2009�

052322-8

algorithms unlike the quantum gate array framework.
The two-bit NAND operation is universal for classical

computation. That is, the NAND operation can be used to
implement any Boolean function. Hence it is useful to define
a program that emulates the NAND operation on two qubits as
this could be used as the basis for emulating classical func-
tions on UQC. For this purpose, we first define a program
that implements the Toffoli operation which itself is a uni-
versal classical gate �4�. The Toffoli program, �Pi,j,k

Toff�, applies
the Toffoli operation to qubits D�i�, D�j�, and D�k�, where
D�i� and D�j� are the control qubits and D�k� is the target
qubit.

Armed with the Toffoli program, implementing a program
that takes the NAND of qubits D�i� and D�j� and storing the
result in qubit D�c� is a simple matter of executing the pro-
gram �Pi,j,c

NAND�= �Pi,j,1
Toff�,

�Pi,j,k
Toff� = �Pk

H��Pj,k
C ��Pk

T†
��Pi,k

C ��Pk
T��Pj,k

C ��Pk
T†

��Pi,k
C ��Pk

T��Pj
T†

��Pi,j
C �

��Pk
H��Pj

T†
��Pi,j

C ��Pj
S��Pi

T� . �27�

The ability to perform a two-qubit NAND operation gives
UQC the ability to compute any classically computable func-
tion thus demonstrating that it can emulate a classical uni-
versal Turing machine. This is in addition to being a univer-
sal quantum computer since it can also implement the set of
universal quantum operations on arbitrary qubits on its
memory tape as shown earlier. UQC can compute any clas-
sically computable function, it can compute any quantum
computable function, and it is programmable. In short, UQC
is computationally universal.

VII. PROGRAM CONCATENATION SCHEME

In the process of defining the primitive programs in the
preceding section, we have implicitly used program concat-
enation whereby we sequentially combined separate pro-
grams to create larger programs. Strictly speaking, the pro-
grams that we have thus far defined are really subroutines
since complete programs must include the halting program,
�Ph�, in order to signal program completion. However, it is
readily seen that all of the primitive subroutines can be con-
verted into full-fledged programs by adding �Ph� as the last
instruction.

Sequential programs �programs without branch instruc-
tions� can thus be concatenated by simply removing the last
�Ph� step from each constituent program, concatenating the
resulting subroutines, and appending on �Ph� at the end. Sup-
pose that we have two sequential programs, �PA� and �PB�,
that we wish to concatenate to create a program �PAB� whose
effect is to execute �PB� followed by �PA�. Since �PA� and
�PB� are sequential, this means that �Ph� is the last step in
each program. That is, �PA�= �PA���Ph� and �PB�= �PB���Ph�.
Thus, to achieve the effect of running �PA� followed by

�PB�, we simply construct the program PAB =
def

�PA���PB���Ph�.
The situation is quite different for branching programs. In

general, without complete knowledge of the operations of the
programs to be concatenated, it is not possible to concatenate
them in the strictest sense of joining the individual programs
into a single larger program. This is not a limitation of UQC
but of any computer, be it classical or quantum. The problem
is that the branch destinations in a branching program can be
data dependent and the branching address may also be ma-
nipulated as data. Therefore, it is not sufficient to add an
appropriate offset �the number of instructions of preceding
concatenated programs� to all branch instructions because
this would have the adverse effect of potentially adding an
offset to the manipulated data and hence altering the in-
tended computation results.

The solution, of course, is to first run �PA�, wait for it to
complete, replace �PA� with �PB�, reset the program counter
register to 0, leave all other internal registers and memory
tape qubits unchanged, and resume execution to run �PB�.
However, strictly speaking, this is not program concatenation
per se because while the overall operation has the effect of
running �PA� followed by �PB�, the program that is run is not
�PA��PB�. There is the intermediate step of replacing �PA�
with �PB� and restarting execution, which, strictly speaking,
are not program operations. In the context of UQC this could
be achieved by initializing M with �PA�, running �PA� and
once the halt qubit is measured as �1�, replacing the program
portion of M with �PB�, setting the program counter register
to 0 while leaving all other UQC registers and memory qu-
bits unchanged, and clearing the halt qubit to resume execu-
tion of �PB� with the results of the preceding program�s�.
This scheme, of course, works not only for branching pro-
grams but also for sequential programs.

Formally, our UQC program concatenation operator, ��n�,
is defined as

��n� =
def�

i=1

n−1

�Pi+1��Pi�M�P� � �0��1�h � SWAPP,P��i� � �1��0�S�i+1�� + �P1��0�M�P� � �0��0�h � �1��0�S�1�

+ �
i=1

n−1

�Pi��Pi+1�M�P� � �1��0�h � �1��0�S�i�� + �Pn��Pn�M�P� � �1��1�h � �1��0�S�n�

+
i=1

n

�Pi��Pi�M�P� � �0��1�S�i� +
i=n+1

�Pi��Pi�M�P�, �28�

CONSTRUCTION OF A UNIVERSAL QUANTUM COMPUTER PHYSICAL REVIEW A 79, 052322 �2009�

052322-9

where n denotes the number of programs to be concatenated,
�Pi� denotes the ith program in the concatenation sequence
�we are assuming that the programs have been enumerated
such that the first n programs are the ones that we wish to
concatenate�, M�P� denotes the program qubits portion of M,
h denotes the halt qubit, P denotes the program counter reg-
ister, P��i� denotes the ith ancillary program counter register,
and S�i� is the ith flag denoting that program i has been
swapped. Note that some suitable finite unused subset of M
can be used for P��i� and S�i� since these are initialized to 0
and are only used once in the program concatenation opera-
tion. The P� and S� arrays of qubits are required to save
intermediate states during program swaps to ensure unitarity.

In order to concatenate n given programs, then, we simply
modify the overall UQC evolution operator to

U =
def

��n�UCFUUPURIUUFUUDUEXUXDUIF. �29�

U then has the net effect of running each program until it
halts, swapping each completed program with the next pro-
gram in the concatenation sequence, swapping the program
counter register with 0, flipping the halt qubit �and hence
starting execution of the swapped program�, and leaving the
final result on the tape when the last program, �Pn�, halts.
Even if the individual programs are known to halt, the con-
catenated program will not necessarily halt because, in gen-
eral, the input data to the individual programs will change
when run as part of a concatenated program. Hence, whether
or not a concatenated program will halt is independent of
whether or not its constituent programs halt.

The famous Turing halting problem is only relevant in the
context of executing programs that can branch. Nonbranch-
ing finite programs, by construction, will always halt so the
halting problem is a moot point in that case. This raises a
question about Deutsch’s UQTM. Deutsch did not explicitly
consider branching in his original UQTM proposal and thus
it is unclear whether or not his program concatenation
scheme rested on the assumption that UQTM programs were
nonbranching. If UQTM programs could involve branching,
then without guaranteed halting of the concatenated pro-
grams, the validity of Deutsch’s program concatenation
scheme is problematic. Deutsch’s description of his program
concatenation scheme suggests that it was an “appending”
scheme rather than a “swapping” scheme as we have defined.

There is still one problem with the program concatenation
scheme. As currently defined, the halt qubit will be flipped
several times during the course of executing a concatenation
of programs �assuming that each constituent program halts,
of course�. Thus, it may appear that there is no way for an
external observer �or classical computer� to distinguish be-
tween the intermediate and final states of the halt qubit.
However, this does not pose a problem so long as the mea-
surement of the halt qubit does not affect the result that we

will ultimately measure on the memory tape in which case
we simply measure the halt qubit, wait the time associated
with program swap operations �i.e., �Pi+1��Pi�� to be com-
pleted, and measure the halt qubit again. If the halt qubit was
in an intermediate set state, we will then find it cleared. If, on
the other hand, the halt qubit was in its final set state, then
we will find it still set and we can then measure the memory
tape to find the result. Thus, periodic measurements of the
halt qubit suffice to identify whether the concatenated pro-
gram has halted. The question, then, is whether periodic
measurements of the halt qubit affect the final measurement
of the memory tape. Ozawa �10� has already proven that
periodic measurement of the halt qubit does not spoil the
result of the computation �i.e., the final measurement of the
memory tape contents�. That is, the probability of finding the
memory tape in state Mi after N iterations of U with periodic
measurements �monitoring� of the halt qubit and the prob-
ability of finding the memory tape in the state Mi after N
iterations of U without periodic measurements of the halt
qubit �i.e., one single measurement of M after N iterations of
U� are identical. Thus, periodic measurements of the halt
qubit do not spoil the intermediate computation as Myers
argued.

Therefore, we see that concatenation of UQC programs
works in the same way as concatenation of classical com-
puter programs. While the halting question for the resultant
program still remains just as it does for classical computers,
a valid unitary UQC program concatenation scheme exists.
The programs to be concatenated are sequentially executed
without changing the state of internal registers except for the
program counter. Not surprisingly, the concatenation scheme
is analogous to the classical case.

VIII. CONCLUSION

The quantum computer we have defined is universal in
the sense that, under the control of quantum programs, it can
first emulate any classical Turing machine by being able to
compute the NAND function and second can approximate any
unitary operation to any desired accuracy by being able to
apply the set of 	H,CNOT,T
 operations on a specified set of
qubits. The machine also supports conditional branching and
hence conditional execution, a feature that is not directly
possible in the quantum gate array circuit framework. The
defined halting scheme works in a way that prevents changes
to the memory tape once the program has halted thus satis-
fying Ozawa’s proof requirement and allowing for a valid
program concatenation scheme. Because of its universality,
UQC serves as a prototypical model for general-purpose pro-
grammable quantum computation and should find uses in the
development and analysis of quantum algorithms and com-
plexity. Work in progress using the UQC includes a demon-
stration of how to implement oracle based algorithms such as
the Grover search algorithm.

LAGANA, LOHE, AND VON SMEKAL PHYSICAL REVIEW A 79, 052322 �2009�

052322-10

�1� Proceedings of the 35th Annual Symposium on the Founda-
tions of Computer Science, edited by S. Goldwasser �IEEE
Computer Society, Los Alamitos, CA, 1994�.

�2� T. Kieu, Int. J. Theor. Phys. 42, 1461 �2003�.
�3� D. Deutsch, Proc. R. Soc. Lond. 425, 73 �1989�.
�4� M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information �Cambridge University Press, Cam-
bridge, England, 2000�.

�5� L. K. Grover, Phys. Rev. Lett. 79, 325 �1997�.
�6� E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, e-print

arXiv:quant-ph/0001106.
�7� D. Deutsch, Proc. R. Soc. Lond. 400, 97 �1985�.
�8� J. M. Myers, Phys. Rev. Lett. 78, 1823 �1997�.

�9� Y. Shi, Phys. Lett. A 293, 277 �2002�.
�10� M. Ozawa, Phys. Rev. Lett. 80, 631 �1998�.
�11� N. S. Yanofski and M. A. Mannucci, Quantum Computing for

Computer Scientists �Cambridge University Press, Cambridge,
England, 2008�.

�12� E. Bernstein and U. Vazirani, SIAM J. Comput. 26, 1411
�1997�.

�13� S. Iriyama, T. Miyadera, and M. Ohya, Phys. Lett. A 372,
5120 �2008�.

�14� S. Waser and M. J. Flynn, Introduction to Arithmetic for Digi-
tal Systems Designers �Holt, Rinehart and Winston, New York,
1982�.

CONSTRUCTION OF A UNIVERSAL QUANTUM COMPUTER PHYSICAL REVIEW A 79, 052322 �2009�

052322-11

