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Abstract

We introduce a tractable family of Bayesian generalization
functions. The family extends the basic model proposed by
Tenenbaum and Griffiths (2001), allowing richer variation in
sampling assumptions and prior beliefs. We derive analytic
expressions for these generalization functions, and provide an
explicit model for experimental data. We then present an ex-
periment that tests the basic model predictions within the core
domain of the theory, namely tasks that require people to make
inductive judgments about whether some property holds for
novel items. Analysis of the results illustrates the importance
of describing variations in people’s prior beliefs and assump-
tions about how items are sampled and of having an explicit
model for the entire task.

Keywords: generalization, induction, Bayesian models

The ability to recognize that a novel item shares unobserved
characteristics with items previously encountered is an ex-
tremely useful inductive capacity, so it is not surprising that
psychologists devoted some effort to understanding how peo-
ple make these generalizations. The most well-known ac-
count of simple generalizations is Shepard’s (1987) exponen-
tial law, derived from a Bayesian analysis and experimental
work dating back to the 1950s (e.g., Shepard, 1957). Accord-
ing to Shepard’s analysis, the learner assumes that there ex-
ists some unknown consequential region within an appropri-
ate psychological space, and that generalization probabilities
result from the learner integrating over his or her uncertainty
about the boundaries of the region.

Although a considerable body of modelling work relies on
Shepard’s law to justify the use of exponential functions, few
researchers have sought to apply or extend his analysis on its
own terms (see, e.g., Navarro, 2006, for a discussion). The
major exception to this is Tenenbaum and Griffiths (2001),
who introduce three innovations: firstly, they note that the
basic Bayesian machinery can easily handle multiple training
examples, and that it is merely analytic intractability that has
prevented people from doing so previously. Secondly, they
note that the approach can be extended to non-spatial repre-
sentations, and in doing so make connections to Tversky’s
(1977) featural approach. Thirdly, they note that variation in
prior beliefs, assumptions about how stimuli are sampled, and
the nature of the hypotheses involved (e.g., connected versus
disconnected regions; Navarro, 2006) induce a number of in-
teresting changes to the model. Remarkably, however, there
are few formal results or experimental data that allow these
extensions to be explored as well as one might like: conse-
quently, our goal in this paper is to provide both. In the first

part of the paper, we present the theoretical extensions, while
the second half is devoted to experimental data and its analy-
sis using these extensions.

Modelling Generalization
This section extends the Bayesian theory of generalization
in four ways, by (1) expanding the range of allowable sam-
pling assumptions, (2) explicitly allowing variability in prior
beliefs, (3) providing analytic expressions for the resulting
generalization gradients, and (4) including task-specific sta-
tistical models for calibration, contaminants and errors.

Sampling Assumptions
Bayesian generalization models assume that if some property
holds for previously observed items X = (x1, . . . , xn) then
they may all be taken to belong to some latent region r over
which the property holds. As a result, the inductive problem
when presented with new item y is to infer p(y ∈ r|X, X ∈
r), the probability that the new item also belongs to the re-
gion. Note that this induction uses two pieces of knowledge:
that (a) the items belong to the region (i.e. X ∈ r), and (b)
the items have really been observed (i.e., X exists). The first
fact implies an obvious constraint on the region boundaries,
but the second is more subtle. In Shepard’s original proposal
(weak sampling), the generative process is assumed to be in-
dependent of r, so the probability of sampling an item x such
that x ∈ r is a constant, p(x, x ∈ r|r) ∝ p(x) ∝ 1 if x ∈ r,
and 0 otherwise. In contrast, Tenenbaum and Griffiths’ strong
sampling proposal states that the observations are explicitly
sampled from the region (with uniform probability density
on r), implying that p(x, x ∈ r|r) = 1/|r| if x ∈ r where |r|
denotes the size of the region, and is 0 otherwise.

In our view, strong and weak sampling are best viewed as
two end points on a continuum: at one end the training items
are sampled in a way that is completely dependent on the re-
gion itself, whereas at the other end observations are com-
pletely independent of the consequence at hand. However, in
many realistic scenarios our observations arrive in a manner
that is only partially correlated with the phenomenon in which
we are interested. As a simple example, consider the sam-
pling process involved when one is trying to guess whether a
patient in a doctor’s office is sick. Not everyone who enters
the office is in fact sick, so strong sampling is impossible.
However, people who are seeking treatment are more likely
to be sick than randomly chosen people, so weak sampling
seems inappropriate too. In short, a more general approach
is necessary. Perhaps the simplest scheme that satisfies this
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Figure 1: The effect of varying θ, for a case involving three training
items (black dots) varying along a single dimension. In this example
the region is known not to extend below 0 or above 1, but in all
other respects the prior over regions is uniform. When θ = 0 (weak
sampling), we obtain a linear interpolation model (the uppermost
black curve), whereas when θ = 1 (strong sampling), we obtain the
tightest generalization gradients (the lowest black curve). Varying
θ in increments of 0.1 produces the various intermediate gradients
shown with the grey curves.

criterion is a mixed sampling approach; with probability θ,
items are sampled from the region in question, but with prob-
ability (1 − θ) they are generated randomly. In reality, this is
probably still too simple (in a doctor’s surgery, for instance,
the non-sick people do tend to look sick), but it is nevertheless
considerably more useful than the simple strong-versus-weak
dichotomy. This generalized sampling model assumes that
the probability of sampling item x such that x ∈ r is

p(x, x ∈ r|r, θ) = (1 − θ) + θ|r|−1. (1)

Not surprisingly, the generalization functions that arise from
this class of sampling assumptions interpolate smoothly from
weak to strong sampling, as shown in Figure 1.

Prior Beliefs
In order to produce generalization gradients shown in Fig-
ure 1, we made two additional assumptions. Firstly, we as-
sumed that the region does not extend beyond a finite range
(helpful for both experimental and analytic purposes), which
without loss of generality we fix at [0, 1]. Secondly, we as-
sumed that so long as this constraint is met, every region is
equally plausible a priori. It is this latter, rather unrealistic
restriction that we now relax, and introduce a simple class
of priors indexed by a single parameter φ. This prior is in-
tuitively reasonable to the extent that it allows preference for
large regions (φ > 1), small regions (φ < 1), or no preference
at all (φ = 1), but is nevertheless more restricted than what
people’s “real” beliefs might encompass, since does not allow
a prior preference for “medium sized” regions, or any more
complicated beliefs (e.g., “big or small, but not medium”).

To construct this family, we first make the assumption that
the prior over regions is location invariant.1 In a single di-
mension, a region is defined in terms of an upper bound u
and lower bound l, but may also be described in terms of the
mean (u+l)/2 and the size u−l. Location invariance implies
that p(r) ∝ p(u − l). For a generalization within the interval

1Note that a uniform prior over region locations does not im-
ply symmetric or location-invariant generalization gradients, since a
shift in location alters the information provided by the edge points.
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Figure 2: The effect of varying φ, when the sampling model is weak
θ = 0 for a case involving three training items (black dots). When
φ = 1 (the black curve), the linear interpolation function for weak
sampling is obtained. When φ < 1, the gradients become convex
and dip below the linear one, whereas when φ > 1 the gradients
become concave. An analogous effect exists for all values of θ.

[0, 1] we adopt the one-parameter Beta(1, φ) family, in which
p(u − l) ∝ (u − l)φ−1, for u − l ∈ [0, 1]. Importantly, since
|r| = u− l, this prior has the same structure as the likelihood,
allowing φ to be easily interpreted (e.g., increasing φ by one
has a similar effect to decreasing the sample size by one).

The effect of allowing a range of priors is illustrated in Fig-
ure 2, in which φ varies from 0 to 5 in increments of 0.5. As
noted, varying the prior has an effect not dissimilar to varying
the likelihood function or adding data. Moreover, it is impor-
tant to recognize that when there is a prior expectation that the
region will be large (i.e., φ > 1), the generalization gradients
can in fact be concave. Accordingly, careful experimental
design is required to discriminate between the effects of the
two parameters: specifically, a single generalization gradient
cannot differentiate between φ and θ. To disentangle priors
from likelihoods, one needs to examine how generalization
functions change as new observations are added.

Mathematical Details
In this section we briefly demonstrate the manner in which
analytic expressions may be obtained for the generalization
function. Space constraints require us to present only a sketch
of the derivation, but the full version is available in an accom-
panying technical note (Navarro, 2008). We are interested
in the case where items vary continuously along the finite
range [0, 1], and the learner applies the extended generaliza-
tion model introduced above. Having observed a set of items
X = (x1, . . . , xn) such that all items fall inside an unknown
region X ∈ r, the learner observes that the probability that a
novel item y also falls inside r is

p(y ∈ r|X, X ∈ r)
=

∫
R p(y ∈ r′)p(r = r′|X, X ∈ r) dr′.

(2)

In this expression, r′ denotes one possibility as to the identity
of the unknown region r, and the integration is taken over R,
the set of all such regions. Noting that p(y ∈ r′) is a simple
indicator function that equals 1 if y falls inside r′ and 0 if it
does not, the application of Bayes’ rule yields the expression:

p(y ∈ r|X, X ∈ r) =

∫
Ry

p(X, X ∈ r|r′)p(r′) dr′∫
R p(X, X ∈ r|r′)p(r′) dr′

. (3)
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Letting zl = min(x1, . . . , xn) and zu = max(x1, . . . , xn)
denote the most extreme of the observed data points, it is clear
that the denominator of Eq. 3 integrates over regions with
upper bound u and lower bound l such that l ≤ zl and zu ≤ u.
The numerator is more stringent, requiring also that y fall
inside the region, so the domain consists of regions satisfying
l ≤ min(zl, y) and max(zu, y) ≤ u.

Under weak sampling, the likelihood function is a simple
indicator function that assigns constant probability to any ob-
servations X that fall within region r′. With strong sampling,
the probability is scaled by size, with the likelihood being
given by |r′|−1 = (u−l)−1 for each observation. With mixed
sampling, either of these two possibilities could hold for any
particular data point. As a result, the number of “strongly”
sampled items in the training set follows a Binomial(θ, n)
distribution, which gives rise to the more general likelihood:

p(X, X ∈ r|r, θ)
=

∑n
k=0 (n

k) (1 − θ)kθn−k(u − l)−(n−k).
(4)

We then substitute this likelihood function and the prior
p(r) ∝ (u − l)φ−1 into Eq. 3. By cancelling constant
terms and rearranging, it is easy to show that the exact two-
parameter generalization function is

p(y ∈ r|X, X ∈ r, θ, φ)

=
∑n

k=0
b(n,k,θ)f(n−k−φ+1,min(y,zl),max(y,zu))∑n

k=0
b(n,k,θ)f(n−k−φ+1,zl,zu)

,
(5)

where b(n, k, θ) = (n
k ) (1 − θ)kθn−k is the probability that

exactly k of the n observed items were sampled weakly, and

f(w, a, b) =
∫ a

0

∫ 1

b

(u − l)−w du dl, (6)

for 0 ≤ a ≤ b ≤ 1. Since the integrand in Eq. 6 is polynomial
in u and l, it is trivial to solve analytically, but the expressions
are lengthy (see Navarro 2008). In short, the generalization
probabilities may be computed exactly as the ratio of the two
sums in Eq. 5, though for large n further simplifications (e.g.,
Gaussian approximation to the binomial) may be useful.

Completing the Model
To complete the model, we need to address several topics that,
though somewhat ancillary to the underlying theory of gen-
eralization, are essential for the proper representation of ex-
perimental data. With this in mind, we briefly outline our
approach to (a) response biases, (b) errors and outliers, (c)
model evaluation, and (d) individual differences.

Biased probability judgments. The first issue to note is
that the generalization function describes a latent subjective
probability, and people may not always report this value in
a straightforward fashion. In the context of the Bayesian
model, it is helpful to note that the probability in question is
essentially a subjective confidence that some rule holds. With
this in mind, it makes sense to assume that the function re-
lating the true probability p(y ∈ r|X, X ∈ r) to the value
p̃y that one might expect to see reported is much the same
as a “confidence calibration” curve measured in the decision-
making literature, which appear to be approximately linear

(e.g., Baranski & Petrusic, 1998, Weber & Brewer, 2004).
Accordingly, while we might hope calibration to be fairly
good in simple inductive tasks, it would be sensible to adopt
the assumption that

p̃y = jl + (ju − jl)p(y ∈ r|X, X ∈ r) (7)

where the function is parameterized by unknown calibration
parameters ju and jl, the upper and lower bounds on values
that the participant is willing to report when making proba-
bility judgments.

Errors and outliers. Once the linear calibration function is
incorporated, we have a reasonably plausible model for the
most likely response. Nevertheless, since data are noisy, an
explicit error model is required. Note that since responses
vary continuously between 0 and 1, the standard homoscedas-
tic Gaussian model (used when minimizing squared error)
is inappropriate, since the boundaries introduce skewed er-
rors. A more plausible approach is to assume that errors
are Beta-distributed such that the most likely response is
p̃y. Accordingly, we specify a skewed error model using the
Beta(1+ p̃τ, 1+(1− p̃)τ ) distribution2, in which τ is a preci-
sion parameter, and the distribution becomes more skewed as
p̃ moves toward either 0 or 1. However, this error model does
not account for genuine contaminant processes: sometimes
people give arbitrary responses due to inattention, acciden-
tal responding, or any of a range of possibilities. The result
is that in such cases the response is entirely independent of
the model, and very likely to produce genuine outlier data
that can distort the parameter estimates. Accordingly, we as-
sume that with some unknown (but presumably small) prob-
ability ε, the response is sampled from a uniform distribution
on [0, 1].

Model evaluation. Our overall approach to model evalua-
tion is pragmatic. We adopt a simple Bayesian approach for
parameter estimation, setting priors over the parameters and
then selecting the posterior mode as the best-fitting parame-
ter set. For model checking, however, we rely on orthodox
methods (primarily Kolmogorov-Smirnov tests of distribu-
tional equivalence) to ascertain whether the posterior mode
provides a sufficiently good account of the data. The ap-
proach to choosing priors uses a mix of objectivist and sub-
jectivist Bayesian methods, though space constraints preclude
a detailed exposition (see Navarro 2008). Briefly, we adopt a
uniform prior over the sampling models, p(θ) = 1 and set
p(φ) ∝ φ exp(−φ) to ensure that the prior mode involves no
preference for region size (i.e., φ = 1). The prior on the cal-
ibration function has a weak bias towards an assumption of
perfect calibration, in which p(ju, jl) ∝ ju(1− jl) subject to
the constraint that jl < ju to set the prior over the calibration
function. The prior on the precision p(τ ) ∝ (τ + 3)−3/2 is
chosen so as to assume an approximately uniform prior over
the standard deviation of the errors. Finally, we use a very
tight prior p(ε) ∝ ε−1/2 over the contaminant probability so
as not to encourage the model to “throw away” too many ob-
servations as outliers.

2That said, though it seems to improve on the Gaussian model,
the Beta still has problems very near to the edge points, so in practice
the data are truncated to fall on [.01, .99].
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Figure 3: The experimental design. Each panel corresponds to one of the three scenarios, and shows the three different sets of stimuli known
to possess the property (circles, squares and triangles). The tick marks are located at each of the test points.

Individual differences. In general, we have no strong rea-
son to assume homogeneity among participants or across dif-
ferent situations, but we do wish to assume that parameter
values do not vary with sample size. Although more sophisti-
cated methods are possible (e.g., Navarro, Griffiths, Steyvers,
& Lee, 2006), for the present purposes we estimate a separate
set of parameters (θ, φ, jl, ju, τ, ε) for each scenario and each
person, but require the parameters to remain invariant as the
number of observations changes.

Qualitative remarks on model complexity. Given the nat-
ural concerns one might have regarding model complexity
(e.g., Myung, 2000), it is worth commenting briefly on what
characteristics the model can and cannot produce. In par-
ticular, the following qualitative constraints appear to be the
most important: gradients must be unimodal, may not be-
come shallower as more observations arrive, and must remain
flat across the region spanned by the observations.

Experiment
Method
Twenty-two undergraduate participants (16 female, 6 male)
were asked to evaluate three different generalization scenar-
ios and given a $10 book voucher for their participation. The
three scenarios involved different problems in a biological
domain: in one case the problem involved the temperatures
at which bacterium can survive, in another the range of soil
acidity that produces a particular colored flower, and the third
related to the times at which a nocturnal animal might for-
age. Observations were presented on a computer screen as
black dots, and participants were asked to solve an induction
problem such as the following:

Bacillus cereus is a type of bacteria that causes food-
poisoning. This bacteria is sensitive to temperature, and
exposure to very high temperatures (>70◦C) or very low
temperatures (<5◦C) will quickly kill the bacteria. In an
experiment, food was contaminated with Bacillus cereus
and then either heated or chilled to a given temperature.
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Figure 4: Marginal distributions over θ and φ for the 36 model-
consistent cases. The two distributions are weakly correlated.

If the experiment found that the bacteria was alive in food
that was kept at the temperatures shown as black dots
below, what is the probability that it would also be found
alive in food kept at the temperature specified by the red
question mark?

Responses were obtained by allowing people to position a
slider bar using the mouse. In this bacterial scenario, three
known observations were initially given, and to elicit the full
generalization gradients the question was repeated 24 times,
on each occasion asking about a different temperature (in a
randomized order). Once this was complete, two new data
points were added and the process repeated. Finally, a further
five data points were added, and a third generalization gradi-
ent elicited. This sequence is illustrated in the top panel of
Figure 3. A similar process applied to the soil and foraging
scenarios, with the locations of the training points shown in
the lower two panels of Figure 3. Note that the relative posi-
tions of the test points (i.e., the red question marks) were the
same in every single case, though the presentation order dif-
fered each time. The three scenarios varied slightly in terms
of the extent to which the edge-points were made explicit
(e.g., the temperature range explicitly states 5-70◦C, whereas
the foraging scenario marked 6am-6pm on screen, but only
explicitly referred to “night time” as the relevant range) and
were presented in a random order.

1749



Temperature Soil Foraging
0

0.2

0.4

0.6

0.8

1
A

ve
ra

ge
 θ

Temperature Soil Foraging
0

1

2

3

A
ve

ra
ge

 φ

Figure 5: Average θ and φ across scenarios, for the 36 model-
consistent cases. Error bars are 95% confidence intervals.

Results
Calibration and error. With 22 participants and 3 scenar-
ios, 66 independent parameter optimizations were required,
each requiring 6 unknowns to be estimated from 72 data
points. Although the parameters of interest are θ and φ, we
begin with the various precision (τ ) and contamination (ε)
parameters. Overall, the data appear largely uncontaminated,
with 45 of the 66 ε values less than .001. The precision was
reasonable, with the distribution over τ such that the average
standard deviation of the error distributions was 0.11. As ex-
pected, calibration was generally good but not perfect. At the
top of the scale, only 5 cases involved ju < .9. At the lower
end some miscalibration is evident, with 24 cases involving
jl > .1 (interquartile range ran from .01 to .28). However,
much of this variation may represent model misspecification,
in the sense that if people do not believe that generalization
probability is zero at the edge points, wider gradients are ob-
served; an effect that can be mimicked by raising jl.

Model checking. Before proceeding to a discussion of the
estimates of θ and φ, it is important to check that the model
provides a good enough description of the data that these es-
timates are likely to be useful. Given that the model is such
that the error distribution is different for every data point, this
is not entirely simple. However, since it is straightforward
to compute the inverse cumulative distribution functions for
the Beta-error model, we can obtain the theoretical percentile
rank for each datum. If the model performance is accurate,
these should be uniformly distributed, which may be checked
via the Kolmogorov-Smirnov test. We conducted these tests
at three different levels of granularity. At the lowest level, we
checked each of the 22×3×3 = 198 gradients separately: at a
significance level of α = .05, 66 of the 198 theoretical gra-
dients were rejected. A stricter test would treat each of the
66 parameter estimates separately, and require all three gen-
eralization gradients to pass (at the adjusted level α3, where
1 − αk = (1 − α)k to hold the error rate fixed at α). This
analysis suggests that 30 of the parameter estimates may be
unreliable, since at least one generalization gradient was not
successfully accounted for. At the most stringent level, we
treated each participant separately, requiring all 9 generaliza-
tion gradients to produced by the participant to be correctly
described. In this case, the model passed only for 7 of the 22
participants: however, since “failure” here refers to the inabil-
ity to fully describe the joint distribution over 216 dependent
variables (one per response), a 32% success rate is actually
quite good.

Samplers, priors and stories. Restricting the discussion
to those 36 parameter estimates that pass the Kolmogorov-

Figure 6: A comparison between partipants 13 (top) and 15 (bottom)
on scenario 1 (temperature), as the sample size is increased (from
left to right). The solid black lines are the theoretical generalization
gradients, with 80% confidence bands for a single judgment shown
in grey. White circles denote the actual responses given, and the
black circles show the observations given to the participants. Note
that both participants are well calibrated, with lower bounds jl,13 =
.01 and jl,15 = .07 and upper bounds ju,13 = .99 and ju,15 = .93,
and use a prior slightly favouring large regions (φ13 = 1.15, φ15 =
1.71). Participant 13 applies a weak sampling model θ13 = .016
while participant 15 adopts an intermediate approach θ15 = .47.
The comparison also highlights the different roles played by τ and
ε: data in the top panels are precise τ = 68 with a few contaminants
ε = .05, whereas the data below are uncontaminated ε = 0 but less
precise τ = 19.

Smirnov test (i.e., the 66 − 30 = 36 cases not rejected), Fig-
ures 4 and 5 provide an illustration of the basic pattern of
variation. As shown in Figure 4, the estimates of θ tended
to be low (mean = .25, std = .33), suggesting a fairly weak
degree of correlation between the sampling process and the
underlying region. However, the distribution is somewhat bi-
modal, with a small peak at θ = 1. For φ, the distribution
is unimodal and slightly skewed (skew = 1.24), with moder-
ate variance (std = 1.03). With a median at φ = 1.17 (mean
= 1.42), the general tendency is towards flat priors, but with
enough variation to matter for small samples (recall that al-
tering φ by 1 has a similar effect to raising the sample size
by 1). Moreover, the two distributions are weakly correlated,
with ρ = .33 (p ≈ 2.8× 10−5): stronger sampling is weakly
associated with prior preference to larger regions. Finally,
as shown in Figure 5, the different scenarios did appear to
suggest different sampling models to people (t-tests are sig-
nificant at p < .05 in all cases), but did not influence the prior
beliefs about regions (p > .9 in all cases).

Discussion
The analyses presented make clear that people differ in their
assumptions about how observations are generated, and have
different prior beliefs that influence the generalization func-
tion; but that, nevertheless, the extended Bayesian approach
performs well. To make this more concrete, it may help to
consider two specific comparisons. The first, illustrated in
Figure 6, involves participants 13 and 15 and the tempera-
ture scenario, who differ primarily in terms of the sampling
assumptions (see Figure caption for the specifics). When
only three data points are available (left panels), the two pro-
duce very similar gradients. For participant 13, for whom
θ = .016, the generalization gradients do not narrow as the
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Figure 7: Comparing participants 10 (top) and 4 (bottom) on the
foraging scenario. This scenario tended to produce high θ values,
with θ = 1 for both participants shown. Both participants are well-
calibrated, with [jl, ju] equal to [.01, .99] and [.07, .93] respectively.
Both are moderately clean data sets, with τ equal to 10.9 and 11.8
respectively, and ε = 0 in both cases. However, while φ = 1.8 for
participant 10, φ = 3.3 for participant 4.

Figure 8: Two cases that cannot be captured by the model. Model
predictions are shown as dashed lines, while the solid lines show the
data. The left panel corresponds to participant 15, foraging scenario,
case 3; and the right panel is participant 10, soil story, case 2.

sample size increases (from left to right). However, since par-
ticipant 15 assumes correlated sampling (with θ = .47), the
gradients tighten considerably from left to right.

The second comparison involves participants 10 and 4,
who both apply strong sampling assumptions (θ = 1) to
the foraging scenario, as shown in Figure 7. As before, the
data are fairly precise and comparable in terms of calibra-
tion (see Figure caption). In this case, the main difference
lies in the prior: participant 10 has a slight prior bias to favor
large regions (φ = 1.8), whereas participant 4 has a large bias
(φ = 3.3). As a consequence, the gradients in the lower panel
start concave, and only assume a convex shape after multiple
data are observed. Note also that, as is generally the case with
Bayesian models, the data “swamp” the prior. In Figure 6,
participants made different assumptions about sampling, and
so grew more dissimilar as the sample size increased. How-
ever, in this second comparison, participants agree about how
data are produced: as a consequence, their prior differences
are erased as the sample size increases from left to right.

Finally, it would be remiss not to discuss the characteristics
of those generalization functions that are not well-captured by
the Bayesian model. In some cases, the reason for this is sim-
ply that the data are too noisy to model effectively. In others,
the individual generalization curves are consistent with the
model, but the variation across cases (i.e., as data are added)
are not consistent with this particular model. However, in
some cases, there is clear qualitative evidence that partici-

pants gave sensible answers that are simply outside the scope
of the model. Two of these are shown in Figure 8. On the left,
the data do not appear to be a “generalization” function at all;
rather, they look much more like a probability density func-
tion or a typicality gradient, suggesting that this participant
has interpreted the task in a manner more akin to a catego-
rization problem (Ashby & Alfonso-Reese, 1995). That is,
items that are clearly members of the concept, but likely to
be on the fringes are in fact assigned low probability. In the
right panel, the flat-topped region extends a long way to the
right. Noting that the data are on the left side of the region,
it would appear that this participants’ prior is not location in-
variant. This is exactly the pattern one expects if one has a
very strong prior bias for the region to be centered in the mid-
dle of the acceptable range.

Final Remarks
Even in very simple inductive tasks it is clear that people vary
considerably in their prior beliefs and in their assumptions
about how data are generated. When these effects are incor-
porated into Tenenbaum and Griffiths’ (2001) generalization
model, a number of counterintuitive effects can arise (e.g.,
concave curves). Nevertheless, we note that some character-
istics of the model remain invariant (e.g., gradients may not
become shallower with data), allowing quite stringent experi-
mental tests of the theory. We present the first such test of the
model, and show that it performs well in 36 of 66 cases, but
cannot capture the full range of behaviors observed even in
this simple task. While a number of post hoc extensions are
possible, they are somewhat beyond the scope of this paper.
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