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Abstract—This paper presents a new technique for automatic
monitoring of power quality events, which is based on the mul-
tiresolution S-transform and Parseval’s theorem. In the proposed
technique, the S-transform is used to produce instantaneous fre-
quency vectors of the signals, and then the energies of these vec-
tors, based on the Parseval’s theorem, are utilized for automat-
ically monitoring and classification of power quality events. The
advantage of the proposed algorithm is its ability to distinguish dif-
ferent power quality classes easily. In addition, the magnitude, du-
ration, and frequency content of the disturbances can be accurately
identified in order to characterize the disturbances. The paper pro-
vides the theoretical background of the technique and presents a
wide range of analyses to demonstrate its effectiveness.

Index Terms—Automatic classification, Parseval’s theorem,
power quality monitoring, S-transform.

I. INTRODUCTION

I N THE industrialized world, electric power systems have
become polluted with unwanted variations in the voltage

and current signals. This power quality issue is primarily due
to continually increasing sources of disturbances that occur
in interconnected power grids, which contain large numbers
of power sources, transmission lines, transformers and loads.
In addition, such systems are exposed to environmental dis-
turbances like lighting strikes. Furthermore, nonlinear power
electronic loads, such as converter-driven equipment (which
varies from consumer electronics and computers, up to ad-
justable-speed drives), have become increasingly common in
power systems. Although these converter-driven equipment are
manufactured according to the appropriate standards, the wide
utilization of such devices pollutes the power systems. If these
unwanted variations in the voltage and current signals are not
mitigated properly, they can lead to failures or malfunctions of
the many sensitive loads connected to the same systems, which
may be very costly for the end users.

As a result, power quality issues have become a major concern
in the power industry, particularly, in this era of deregulation.
An important step in understanding and hence improving the
quality of the electric power is to extract sufficient information
about the events that cause power quality issues. This is currently
obtained by using a large number of recorders located through
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the power system. However, when we consider the continually
growing number of monitors installed and the large amount of
data that may be collected in a given power system, the manual
inspection and extraction of information about the events is no
longer a practical option in any monitoring process. Therefore, it
is necessary to have automatic analysis tools, integrated with the
monitoringsystems thatcanbeapplied to largeexistingdatabases
for automatic analysis and classification of power quality events.
This information is important for identifying the cause of these
events and selecting appropriate mitigation techniques.

A number of techniques have been investigated in the litera-
ture for the automatic classification of different types of power
quality events. Some survey studies can be found in [1]–[3].

Among these techniques, the Fourier Transform (FT) is the
most commonly used technique to obtain harmonic information
about the signals monitored. However, using the FT alone is
inadequate for feature extraction due to the transient nature of
most power quality signals where time information is required
for analyzing such signals.

To overcome the inadequacy of the Fourier transform (FT),
the short-time Fourier transform (STFT) technique was adopted
in [4] for detecting and characterizing power quality distur-
bances in the time–frequency domain. The signal studied was
split into a set of output signals, which were obtained using
bandpass filters centered at the harmonic frequencies. Although
the STFT technique offered a partial solution for the absence
of time information in the FT, it has also limitations due to
its fixed window length, which has to be chosen prior to the
analysis. This drawback is reflected in the achievable frequency
resolution when analyzing nonstationary signals with both low-
and high-frequency components [5].

In order to overcome the limitations of the Fourier-based
algorithms, the wavelet transform (WT) technique has been
utilized, and shown to be suitable for power quality analysis,
specifically for nonstationary signals. Due to its ability to ana-
lyze signals at different frequency resolutions, the technique has
been explored extensively in various studies as an alternative to
the STFT, [6]–[10]. This research covered both the continuous
wavelet transform (CWT) and the discrete wavelet transform
(DWT).

The previous work on the CWT was mainly based on the
visual detection of power quality events in the time-scale plane
[6], [7], which is capable of handling noisy signals. However,
the main disadvantage of the CWT is its redundancy of using a
large number of scales resulting in a significant computational
overhead.

To avoid the redundancy in the CWT technique, the wavelet
multiresolution analysis (MRA) was adopted by a number of re-
searchers. In [8]–[10], an algorithm based on the energies of the
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Fig. 1. Two pure sinewave signals with different phase shifts (top), and their
decomposed signals energy distribution diagrams (middle and bottom).

decomposed signals from wavelet MRA was proposed to distin-
guish different classes of power quality events. Although the en-
ergies of the decomposed signals at different levels were shown
to be sensitive to the type of disturbance and, thus, were used as
distinctive features for the classification, the phase shifts of the
signals studied were not considered despite their impact on the
results [11]. This issue can be illustrated in Fig. 1, which shows
two pure sine waves with different phase shifts (Fig. 1 top), and
their energies at different levels based on MRA (Fig. 1 middle
and bottom). It can be seen in this figure that, although the two
analyzed signals are ideal sine waves, their energy distributions
are different at the levels from 7 to 13. These differences make
it more difficult to distinguish changes in the energy distribu-
tions due to distorted signals as opposed to phase shifts in the
signals being processed. Another issue related to wavelet anal-
ysis is its limited ability to classify disturbances that have more
gradual changes, such as sags or swells events that start at the
zero-crossings of the measured signal [12].

As an alternate to the wavelet-based techniques, the multires-
olution S-transform technique (MRST) was presented in [13]
as a new power quality signal processing technique. The MRST
technique was used for classifying seven classes of power
quality events based on three extracted features calculated from
the minimum and maximum values of the S-transform matrix.
However, these features were not able to provide additional
information about the characteristics of disturbances.

Therefore, based on the above discussion, it was concluded
that the previous studies were focused on the implementation of
different signal processing techniques for only distinguishing,
(classifying), different types of power quality events. However,
for a detailed power quality analysis, it is expected that the
adopted power quality techniques should be capable of both
classifying the type of power quality events and identifying
characteristics such as their magnitude, duration and frequency
content.

To achieve this, the paper proposes a new algorithm that
is based on the MRST technique and Parseval’s Theorem for
classifying and characterizing the power quality events. The
mathematical background of the MRST and the S-Transform
spectrum are discussed in the Sections II and III, respectively.
The proposed automatic classification algorithm is explained

Fig. 2. Gaussian window function for ST at three different frequencies.

in Section IV. The application of the algorithm is given in
Section V, and the paper draws its conclusions in Section VI.

II. MULTIRESOLUTION S-TRANSFORM

The S-transform (ST) technique was introduced in [13] as
an alternative to the STFT technique for localization of the
time–frequency spectra. Such a technique can be considered
conceptually as a hybrid of the STFT and the CWT techniques.
The ST can provide time and frequency information like the
STFT but it does this at different resolutions using a variable
window length as in the CWT technique [5], [6].

The ST technique is derived from the CWT by modifying the
phase of the window function (mother wavelet function) in the
CWT. Therefore, for a continuous time signal, , the ST can
be derived as in [13] as the CWT of the product of the target
signal and a phase correction function

(1)

where is the ST of the signal is the mother wavelet
function, is the frequency, is the wavelet scale, and is equal
to .

However, unlike the WT technique, the mother Wavelet (the
window function) in the ST is chosen to be a function of the
frequency content in the signal instead of the scale . This is
given as

(2)

where is a function that controls the length of the window
function, and it is chosen to be proportional to the inverse of the
frequency of the signal. Fig. 2 shows a plot of the above function
at three different frequencies.

Thus, if (2) is substituted into (1), the ST can be given as

(3)

The function in the above equation is proportional to the
inverse of the frequency content of the signal and is defined in
[13] as

(4)

where and are constants, and . Note that, setting to
zero, transforms the window function to the same window that
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Fig. 3. Computation process of the ST.

is used in the STFT technique. For simplicity, can be set to
zero, and thus the ST of the signal can be rewritten as

(5)

The above equation represents a convolution of the con-
tinuous time series with a frequency-dependant window
function which is known as
the Gaussian window function. Therefore, as the convolution
process in the time domain is equivalent to a multiplication
in the frequency domain, the ST can be calculated by multi-
plying the Fourier transform of the analyzed signal and
the Fourier transform of the Gaussian window function. The
Fourier transform of the Gaussian function is calculated as

(6)

where is a constant that is equal to as defined in (4). The
ST technique produces a multiresolution analysis as a bank of
filters with a constant relative bandwidth [13].

It can be seen in (5) that, due to the term , the
ST is a complex transform. Therefore, the ST can be written as

(7)

where and are the amplitude and phase of the
ST spectrum, respectively.

In practical applications, where the captured signals are in
discrete form, the discrete version of the ST technique is ob-
tained by making equal to and equal to

(8)

where is the length of the analyzed signal, the indices ,
and are equal to is the time interval between
two consecutive samples, is the fast Fourier
transform of the analyzed signal, and .

The computation process of the ST can be illustrated in a
block diagram form as shown in Fig. 3. As shown in the figure,
the analyzed signal and the ST Gaussian window are trans-
formed into the frequency domain using the FFT technique,
and both spectrums are localized around the required frequency.
Then, the ST is obtained by multiplying both shifted spectrums
and taking the inverse FFT of the product.

III. S-TRANSFORM SPECTRUM

The amplitude of the ST spectrum is defined
by the absolute values of the complex matrix resulting from the
ST technique, which is

(9)

Fig. 4. ST spectrum of a sag event.

Fig. 5. ST spectrum of an oscillatory transient event.

The above equation represents a matrix, the rows of which
are the frequencies, whereas the columns are the corresponding
times. Each column, thus, represents the local spectrum at one
point in time. Since the matrix preserves the am-
plitude information of the frequency content of the signal at dif-
ferent resolutions, it can localize the different classes of power
quality events accurately.

The accuracy of the ST spectrum on localizing power quality
signals can be illustrated in two case studies as shown in Figs. 4
and 5. In both cases, the test signals were simulated using
MATLAB. The number of samples per cycle in both cases was
50, and their fundamental frequency was 50 Hz. The first case
in Fig. 4 (top) represents a 0.5 p.u. voltage sag event while the
second case in Fig. 5 (top) represents an oscillatory transient
event. The amplitudes of the ST spectra, [the matrix in (9)]
are presented as three-dimensional plots as shown in Fig. 4
(bottom) for the sag event, and in Fig. 5 (bottom) for the
oscillatory transient event to demonstrate the variations in the
amplitudes of the instantaneous frequencies in the signals.

The three-dimensional plots depict the ability of the ST spec-
trum to track the changes in the low-frequency components in
the signal (as in the case of the sag event), as well as the changes
in the high-frequency components (as in the case of the tran-
sient event). Considering this feature of the ST, a power quality
monitoring algorithm is proposed in this study as explained the
following section.
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IV. AUTOMATIC MONITORING ALGORITHM

The proposed algorithm for automatic power quality moni-
toring is based on Parseval’s Theorem. This theorem states that
the energy of a signal remains the same whether it is com-
puted in a signal domain (time) or in a transform domain (fre-
quency) as given in [15]

(10)

where and are the time period and the length of the signal,
respectively, and is the Fourier transform of the signal.

In the case of the ST, the raw signal is decomposed in terms of
its frequencies, and thus, a set of decomposed signals at each of
the instantaneous frequencies in the raw signal can be obtained
from the ST matrix. Thus, based on Parseval’s Theorem, the
energy of a distorted signal can be given as

(11)

where is the signal length, and
is the energy vector of the instantaneous frequency at frequency

.
Although the energy vector can contain the instanta-

neous frequencies starting from the lowest frequency (the dc
component) up to one-half of the sampling rate of the signal
(Nyquist rule) at 1-Hz frequency resolution, in this study, a fre-
quency resolution of 25 Hz for the ST calculations was found to
be an appropriate selection for the power quality classification
technique presented in this paper. Note that the fundamental fre-
quency of the signals is assumed to be 50 Hz. It should be also
noted that the energies of the decomposed signals are calculated
from the absolute value of the ST matrix which differentiates
them from the traditional FFT technique.

As it will be explained below, based on the vector , the
proposed algorithm has the advantage of performing two simul-
taneous tasks automatically: 1) classification of power quality
events, and 2) characterization of the classified events by iden-
tifying more information, (e.g., the depth, duration, starting and
ending times of the events), which is required for analyzing the
power quality issues.

A. Classification of Power Quality Events

It is proposed to use the energy vector of the instantaneous
frequencies to distinguish different types of power quality dis-
turbances. The distinguishing capability of the proposed energy
vector was tested using five common power quality events: sags,
swells, interruptions, oscillatory transients, and harmonic dis-
tortions. Table I provides the modeling details of the studied five
events showing the controlling parameter of each event. The en-
ergies of the instantaneous frequencies of these events, based on
(11), are demonstrated in Figs. 6–9.

In Fig. 6, the energies of the instantaneous frequency vectors
are plotted against different magnitudes of sag events varying
from 0 p.u. (pure signal) to 1 p.u. (interruption). The lowest
curve in the figure represents a pure signal whereas the upper
curve represents an interruption event. The frequency is nor-
malized for the sampling rate of 5 kHz. From the figure, one

Fig. 6. Energies of the instantaneous frequencies of sag events of different
magnitudes.

Fig. 7. Energies of the instantaneous frequencies of the swell events at different
magnitudes.

Fig. 8. Energies of the instantaneous frequencies of the transient events at dif-
ferent oscillation frequencies.

can see how the energies of the instantaneous frequency vector
increases with the magnitudes of sag events.

The energies of the instantaneous frequency vectors in the
case of swell events are shown in Fig. 7. Similarly, each curve
in the figure illustrates the magnitudes of different swell events,
which vary from 1 p.u., which represents a pure signal (the
lowest curve in the figure), up to 2 p.u. swell (the highest curve
in the figure). It should be noted that, although the profiles of the
curves in this case are very similar to the sag events, there are
slight differences in the minimum values of the curves as will
be shown later in Fig. 12.

Fig. 8 is given to illustrate the energies of the instantaneous
frequency curves in the case of oscillatory transient events. Five
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TABLE I
MODELING OF POWER QUALITY EVENTS

Fig. 9. Energies of the instantaneous frequencies of the harmonic distortion
events at different values of THD.

oscillation frequencies of the events varying from 0.9 to 1.3 kHz
using the modeling equations given in Table I are shown in the
figure.

The instantaneous frequencies’ energies of the harmonic dis-
tortion events are shown in Fig. 9. In this case, the fundamental
frequency was contaminated with the harmonics 2nd, 3rd, 5th,
7th, 9th, and 11th. The magnitude of the harmonics is changed
randomly between 0% to 25% of the fundamental for the 3rd,
5th, and 7th, while the rest of the harmonics kept less than 10%
as was shown in Table I. In Fig. 9, the corresponding curves of
the energies of the instantaneous frequencies are shown for a
selected ten different signals having a total harmonic distortion
(THD) varied randomly from 5.7% to 27.3%. The lower curve
represents the instantaneous frequency’s energies of a signal
having a THD of 5.7%.

From the figures given above, one can recognize three dif-
ferent frequency regions which can be used to distinguish the
five power quality classes studied. These regions are illustrated
in Fig. 10. The first region (region 1 in the figure) is for the first
three classes of events: sag, swell, or interruption. Note that fur-
ther analysis will be performed later in the paper to distinguish
the three classes of events present in region 1. The second re-
gion (region 2 in the figure) is related to the harmonic distortion

Fig. 10. Classification regions as specified by the proposed technique.

events, which usually having harmonics in the range of hun-
dreds of hertz. The third region (region 3 in the figure) is for the
oscillatory transient events which generally show much higher
frequency components, (in the kilohertz range).

Based on Fig. 10, the power quality events can be classified
using the proposed algorithm by calculating the maximum value
of the energies of the instantaneous frequencies. If the maximum
value lies in region 1, then the event could be either a sag or a
swell, or an interruption. Similarly, if the maximum value lies
in regions 2 or 3, then the event is a harmonic distortion event
or an oscillatory transient event respectively.

B. Characterizing Power Quality Events

Once the events are classified as explained above, further in-
formation about the characteristics of an event is usually re-
quired. This information is important to determine the cause of
the event.

The information that can be extracted from an event depends
on the class of the disturbance. For example, for the sag, the
swell, and the interruption classes, the information required is
the magnitude and the duration of the event, whereas the THD
of the event is usually required in order to characterize the har-
monic distortion events. In addition, to identify the source of the
disturbance in the oscillatory transient class, it is helpful to know
the starting time and the frequency of the oscillation. The fol-
lowing subsections will explain the ability of the proposed tech-
nique to efficiently quantify the disturbances in a signal using
the maximum and minimum values of the instantaneous fre-
quencies’ energy curves. As was shown above, the events will
be divided into regions as follows.

1) Quantifying the Classes in Region 1: Although the pro-
posed technique has similar responses to the classes of sag,
swell, and interruption, one can distinguish a specific class by
calculating the minimum and maximum values of the instanta-
neous frequencies’ energy curves. As will be seen in the fol-
lowing figures, these maximum and minimum values can be
used to identify the magnitudes of the sag and the swell events.

Figs. 11 and 12 show the minimum values and the maximum
values of the energy curves given in Figs. 6 and 7, respectively.

Fig. 11 shows that the maximum value of the energies of the
instantaneous frequencies versus the magnitude of the sag and
the swell events are the same for both of them. Therefore, by
using this curve, the depth of the sag or the height of the swell
can be identified directly.
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Fig. 11. Maximum values of the energies of the instantaneous frequencies for
the sag and the swell events as a function of the magnitudes of these events.

Fig. 12. Minimum values of the energies of the instantaneous frequencies for
the sag (thick) and the swell (thin) events as a function of the magnitudes of
these events.

The decision whether the event is a sag or a swell can be
made from the minimum values of the energy curves as shown
in Fig. 12. One can see in the figure that, if the minimum value
of the energies of the instantaneous frequencies curve is less
than 0.025, then the event is a sag, otherwise it is a swell event.
In the case of an interruption event, however, the identification
can be made using both minimum and maximum values. If the
maximum value is more than 0.9 and the minimum value of less
than 0.003, then the event is an interruption.

It should be noted here that there is an uncertainty about a
decision if the magnitude of sag or swell events is less than 0.1
p.u., as can be seen in Fig. 12. However, this is not considered
a limitation since the IEEE standards [16] still consider these
small variations as pure (that is, acceptable) signals. Therefore,
if the magnitude of an event is within this range, then the signal
can be considered not distorted (pure signal), and hence requires
no identification.

In order to identify the duration of an event, it was found that
the signal symmetry can be utilized to identify the starting and
the ending times of the event. This is because the occurrence of
the event in a signal causes a sudden change in the symmetry
of the signal. Such sudden changes usually involve a high-fre-
quency component in the signal. Therefore, the time derivative
of the energy of the highest frequency in the matrix defined
by (9) can be used to detect the occurrence time(s) of the event.
This can be given by

(12)

where is the disturbance occurrence time vector.

Fig. 13. Sag event of 0.3 p.u. (top) and its disturbance occurrence time vector
(bottom).

Fig. 14. Swell event of 0.2 p.u. (top) and its disturbance occurrence vector
(bottom).

Fig. 15. The plot showing the maximum values of the energies of the instanta-
neous frequencies versus the total harmonic distortion of the signal.

The response of the vector is demonstrated in Figs. 13
and 14. Fig. 13 (top) shows that the voltage sag starts at 0.01 s
and ends at 0.1 s. These times are accurately detected by the
vector, as shown in Fig. 13 (bottom).

Similarly, as shown in Fig. 14, the starting and ending times
of a swell event of 0.2 p.u. was accurately detected by the distur-
bance occurrence times vector as 0.032 and 0.15 s, respectively.

2) Quantifying the Classes in Region 2: If an event is clas-
sified in region 2 (which is a harmonic distortion event), then
the THD should be specified for the event. In order to deter-
mine the THD directly using the proposed algorithm, the max-
imum values of the energies of the instantaneous frequencies
are plotted against the THD as shown in Fig. 15. As can be seen
from the plotted relationship between the two parameters, once
the maximum value of the energies curves is detected, the THD
can be determined accordingly.
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Fig. 16. Oscillatory transient event having (top), its energies showing an oscil-
lation frequency of 900 Hz (middle) and corresponding disturbance occurrence
vector (bottom).

3) Quantifying the Classes in Region 3: For events classified
as region 3 events (oscillatory transients), the initial time and
the oscillation frequency can be determined accurately using
the proposed technique. In this case, the maximum value of the
instantaneous frequency’s energy curve corresponds to the fre-
quency of oscillation.

This is illustrated in Fig. 16, which shows an oscillatory tran-
sient event having an oscillation frequency of 900 Hz. The fre-
quency of the superimposed oscillatory transient is detected ac-
curately using the energies curve of the instantaneous frequen-
cies (Fig. 16, middle). Similarly, the starting time of this event
can be specified using the vector in (12), which is determined
here as 0.056 s.

The whole process of the proposed algorithm can be summa-
rized in the flowchart shown in Fig. 17. This process will be
examined in the following section using two case studies.

V. APPLICATION OF THE PROPOSED ALGORITHM

In order to demonstrate the feasibility of the technique
proposed above, different power quality events were gener-
ated using a power system simulation tool, which utilizes
the SimPowerSystem Blockset of Simulink as a development
platform. In the paragraphs below, two case studies are given
to demonstrate the operation of the proposed algorithm.

The first case study represents a load fed from two transmis-
sion lines as shown in the single line diagram of Fig. 18 (top).
In this configuration, if a fault occurs in one of the transmis-
sion lines, the load will experience a voltage sag until the fault
is cleared. The simulation block diagram that investigates this
case is given in Fig. 18 (bottom). In this study, it is assumed
that the fault occurred at the midpoint of one of the transmis-
sion lines and lasted for seven cycles.

The voltage signals were captured at the load side at a sam-
pling rate of 5 kHz. The voltage signal of one phase, the ener-
gies of the instantaneous frequencies of the event, and the dis-
turbance occurrence time vector are all given in Fig. 19.

In Fig. 19 (middle), the maximum value of the energies of in-
stantaneous frequencies was found as 0.76. Because this value

Fig. 17. Flowchart of the proposed classification and characterization
algorithm.

Fig. 18. Case study 1. A single line diagram of the computer simulation (top),
which is used to generate a sag event, and its simulation block diagram based
on SimPowerSystem Blockset of Simulink (bottom).

lies in the region 1 (as described in Fig. 10), the event is clas-
sified as a region 1 event, which could be either a sag, swell,
or interruption event. However, since the minimum value of the
curve of the energies of the instantaneous frequencies is 0.0073,
the event is classified as a sag event based on the curves provided
in Fig. 12. To identify the magnitude of this sag event, the curve
given in Fig. 11 can be used, which estimates the sag magnitude
as 0.8 p.u., (which corresponds to a maximum energy value of
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Fig. 19. Voltage sag due to a fault (top), its instantaneous frequencies energies
curve (middle), and the disturbance occurrence times vector (bottom).

Fig. 20. Case study 2. Single line diagram of the (top) for the oscillatory tran-
sient event, and the simulation block diagram (bottom).

0.76). Note that, this estimated sag level is in agreement with a
visual inspection of the sag signal in Fig. 19 (top). The second
piece of information which can be obtained from the proposed
algorithm is the starting and ending times of the event, and thus
its duration. As it can be seen in Fig. 19 (bottom), the distur-
bance occurrence times vector detects three sudden changes in
the signal: 0.0396, 0.143, and 0.148 s. From a close inspection
of the time-domain of the voltage signal, it can be seen that the
recovery from the sag was in two stages, at 0.143 and 0.147 s,
which are accurately detected by the proposed algorithm.

The second case study examines the transient events that re-
sult from the connection of large capacitor banks to the supply
in order to improve the power factor of the system. The single
line diagram of this case study and its simulation block diagram
are shown in Fig. 20.

In this case study, the capacitor banks are connected to the
12.5 kV side and the voltage signals are captured at the 415 V
side of the transformer (the load side) at a sampling rate of

Fig. 21. Voltage transient due to the capacitor switching (top), its energies of
the instantaneous frequencies (middle), and the disturbance occurrence time
vector (bottom).

Fig. 22. Energies of the instantaneous frequencies of the oscillation transient
event versus the actual frequency.

5 kHz. The voltage signal of one phase, its energies of the instan-
taneous frequencies, and the disturbance occurrence time vector
are shown in Fig. 21.

In Fig. 21 (middle), the maximum value of the energies of
the instantaneous frequencies is estimated as 0.32. Similar to
the previous discussions, since this value lies in region 3 (see
Fig. 10); therefore, it is an oscillatory transient event. Again, the
starting time of this event was accurately detected by the distur-
bance occurrence time vector as 0.018 s, as shown in Fig. 21
(bottom). The frequency of the oscillation can be identified as
the frequency corresponding to the maximum value of the en-
ergy. To obtain the frequency of oscillation, Fig. 22 is given. In
this figure, the instantaneous frequency energies curve is repro-
duced as a function of the actual frequencies, which indicates
the frequency of the oscillation transient as 875 Hz.

VI. CONCLUSION

Due to the large number of power quality events that may
occur in power systems, there is a need for a new technique that
can be used for automated classification and characterization of
power quality events. It is desirable that such a technique be
able to both distinguish the type of power quality event, and
also accurately identify the magnitude, duration, and frequency
content of the disturbances.

This paper introduced a new algorithm to address the above
requirements. The technique is based on the multiresolution
S-transform. Unlike most of the previous automatic monitoring
techniques that can only classify the disturbance type, the pro-
posed technique has the ability to classify and also characterize
the disturbances in the signals measured.
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In this paper, the energy vector from the multiresolution
S-transform was used to distinguish the different types of
power quality disturbances, which include five very common
power quality events: sags, swells, interruptions, oscillatory
transients, and harmonic distortion.

The classification and characterization of the disturbances in
this proposed algorithm is based on simple rules using the en-
ergies of the instantaneous frequencies vector. The proposed al-
gorithm was implemented for accurately distinguishing the five
different power quality classes based on classification regions.
It was demonstrated that the algorithm can efficiently quantify
the disturbances in a signal using the maximum and minimum
values of the variation of energy with instantaneous frequency.

In this paper, the performance of proposed approach was
tested using two typical case studies based on simulations. It
was demonstrated by the results that the technique is effective
and accurate for both classification and characterizing of power
quality events.
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