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Abstract 

 

Neutral gas-phase metal-carbide clusters are generated by laser ablation and are detected 

in the constructed time-of-flight mass-spectrometer by laser ionisation. Photo-ionisation 

efficiency (PIE) experiments are performed on the metal-carbide clusters to determine 

their ionisation potentials (IPs). Complimentary density functional theory (DFT) 

calculations are performed on the energetically favorable structural isomers of the metal-

carbide clusters. Comparison between the calculated IPs of the isomers and the 

experimental IP allows the carrier of the observed ionisation onset for a metal-carbide 

cluster to be assigned. 

 

The niobium-carbide clusters Nb3Cy (y = 0–4), Nb4Cy (y = 0–6) and Nb5Cy (y = 0–6) are 

examined by PIE experiments and DFT calculations. The IPs of the niobium-carbide 

clusters are found to be either left reasonably unchanged from the IPs of the bare metal 

clusters or moderately reduced. The clusters Nb3C2, Nb4C4, Nb5C2 and Nb5C3 display the 

largest IP reductions for their corresponding cluster series. 

 

The structures assigned to the IPs of the Nb3Cy (y = 1–3) clusters are based on the carbon 

atoms attaching to the niobium faces and/or niobium-niobium edges of the triangular Nb3 

cluster. However, for Nb3C4 the ionisation onset is assigned to a low-lying isomer, which 

contains a molecular C2 unit, rather than the lowest energy isomer, a niobium atom 

deficient 2×2×2 face-centred cubic (fcc) nanocrystal structure. 

 

The structures assigned to the IPs of the Nb4Cy (y = 1–4) clusters are based on the carbon 

atoms attaching in turn to the niobium faces of the tetrahedral Nb4 cluster, developing a 

2×2×2 fcc nanocrystal structure for Nb4C4. For Nb4C3 two ionisation onsets are observed; 

one weak onset at low energy and another more intense onset at high energy. It is 

proposed that the two onsets are due to ionisation from both a metastable 3A1 state and the 

ground 
1
A1 state of the lowest energy isomer. The ionisation onsets of Nb4C5 and Nb4C6 

are also proposed to originate from metastable triplet states of the lowest energy isomers, 

with the transitions from the ground singlet states calculated to be greater than the highest 
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achievable photon energy in the laboratory. The structures of Nb4C5 and Nb4C6 have one 

and two carbon atoms in a 2×2×2 fcc nanocrystal substituted with molecular C2 units, 

respectively. 

 

The structures assigned to the IPs of the Nb5Cy (y = 1–6) clusters are based on the 

underlying Nb5 cluster being in either a “prolate” or “oblate” trigonal bipyramid 

geometry; the former has six niobium faces available for carbon addition, while the latter 

has two niobium butterfly motifs and two niobium faces available for carbon addition. 

Both the structures of Nb5C5 and Nb5C6 have the underlying Nb5 cluster in the oblate 

trigonal bipyramid geometry and contain one and two molecular C2 units, respectively. 

 

The tantalum-carbide clusters Ta3Cy (y = 0–3), Ta4Cy (y = 0–4) and Ta5Cy (y = 0–6) are 

examined by PIE experiments and DFT calculations. The IPs of the tantalum-carbide 

clusters in each series show trends that are very similar to the corresponding iso-valent 

niobium-carbide cluster series, although the IP reductions upon carbon addition are 

smaller for the former. For the vast majority of tantalum-carbide clusters, the same 

structural isomer is assigned to the ionisation onset as that assigned for the corresponding 

niobium-carbide cluster. 

 

Bimetallic tantalum-zirconium-carbide clusters are generated using a constructed double 

ablation cluster source. The Ta3ZrCy (y = 0–4) clusters are examined by PIE experiments 

and DFT calculations. The IP trend for the Ta3ZrCy cluster series is reasonably similar to 

that of the Ta4Cy cluster series, although the IP reductions upon carbon addition are 

greater for the former. The structures assigned to the IPs of the Ta3ZrCy (y = 1–4) clusters 

are based on the carbon atoms attaching in turn to the metal faces of the tetrahedral Ta3Zr 

cluster. 

 

In summary, the work presented in this thesis demonstrates that the structures of metal-

carbide clusters can be inferred by the determination of their IPs through PIE experiments 

in combination with DFT calculations on candidate structural isomers.  
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