THRESHOLD PHOTO-IONISATION AND DENSITY FUNCTIONAL THEORY STUDIES OF METAL-CARBIDE CLUSTERS

Viktoras Dryza

A thesis submitted in total fulfillment of the requirements for the degree of Doctor of Philosophy

November, 2008

Department of Chemistry The University of Adelaide This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available in all forms of media, now or hereafter known.

Viktoras Dryza November, 2008. Dedicated to my Dad.

"Serenity now, serenity now!" - Frank Costanza (Seinfeld, Season 9/Episode 3)

Abstract

Neutral gas-phase metal-carbide clusters are generated by laser ablation and are detected in the constructed time-of-flight mass-spectrometer by laser ionisation. Photo-ionisation efficiency (PIE) experiments are performed on the metal-carbide clusters to determine their ionisation potentials (IPs). Complimentary density functional theory (DFT) calculations are performed on the energetically favorable structural isomers of the metalcarbide clusters. Comparison between the calculated IPs of the isomers and the experimental IP allows the carrier of the observed ionisation onset for a metal-carbide cluster to be assigned.

The niobium-carbide clusters Nb_3C_y (y = 0-4), Nb_4C_y (y = 0-6) and Nb_5C_y (y = 0-6) are examined by PIE experiments and DFT calculations. The IPs of the niobium-carbide clusters are found to be either left reasonably unchanged from the IPs of the bare metal clusters or moderately reduced. The clusters Nb_3C_2 , Nb_4C_4 , Nb_5C_2 and Nb_5C_3 display the largest IP reductions for their corresponding cluster series.

The structures assigned to the IPs of the Nb₃C_y (y = 1-3) clusters are based on the carbon atoms attaching to the niobium faces and/or niobium-niobium edges of the triangular Nb₃ cluster. However, for Nb₃C₄ the ionisation onset is assigned to a low-lying isomer, which contains a molecular C₂ unit, rather than the lowest energy isomer, a niobium atom deficient 2×2×2 face-centred cubic (fcc) nanocrystal structure.

The structures assigned to the IPs of the Nb₄C_y (y = 1-4) clusters are based on the carbon atoms attaching in turn to the niobium faces of the tetrahedral Nb₄ cluster, developing a 2×2×2 fcc nanocrystal structure for Nb₄C₄. For Nb₄C₃ two ionisation onsets are observed; one weak onset at low energy and another more intense onset at high energy. It is proposed that the two onsets are due to ionisation from both a metastable ³A₁ state and the ground ¹A₁ state of the lowest energy isomer. The ionisation onsets of Nb₄C₅ and Nb₄C₆ are also proposed to originate from metastable triplet states of the lowest energy isomers, with the transitions from the ground singlet states calculated to be greater than the highest achievable photon energy in the laboratory. The structures of Nb_4C_5 and Nb_4C_6 have one and two carbon atoms in a 2×2×2 fcc nanocrystal substituted with molecular C₂ units, respectively.

The structures assigned to the IPs of the Nb₅C_y (y = 1-6) clusters are based on the underlying Nb₅ cluster being in either a "prolate" or "oblate" trigonal bipyramid geometry; the former has six niobium faces available for carbon addition, while the latter has two niobium butterfly motifs and two niobium faces available for carbon addition. Both the structures of Nb₅C₅ and Nb₅C₆ have the underlying Nb₅ cluster in the oblate trigonal bipyramid geometry and contain one and two molecular C₂ units, respectively.

The tantalum-carbide clusters Ta_3C_y (y = 0-3), Ta_4C_y (y = 0-4) and Ta_5C_y (y = 0-6) are examined by PIE experiments and DFT calculations. The IPs of the tantalum-carbide clusters in each series show trends that are very similar to the corresponding iso-valent niobium-carbide cluster series, although the IP reductions upon carbon addition are smaller for the former. For the vast majority of tantalum-carbide clusters, the same structural isomer is assigned to the ionisation onset as that assigned for the corresponding niobium-carbide cluster.

Bimetallic tantalum-zirconium-carbide clusters are generated using a constructed double ablation cluster source. The Ta₃ZrC_y (y = 0-4) clusters are examined by PIE experiments and DFT calculations. The IP trend for the Ta₃ZrC_y cluster series is reasonably similar to that of the Ta₄C_y cluster series, although the IP reductions upon carbon addition are greater for the former. The structures assigned to the IPs of the Ta₃ZrC_y (y = 1-4) clusters are based on the carbon atoms attaching in turn to the metal faces of the tetrahedral Ta₃Zr cluster.

In summary, the work presented in this thesis demonstrates that the structures of metalcarbide clusters can be inferred by the determination of their IPs through PIE experiments in combination with DFT calculations on candidate structural isomers.

Acknowledgments

First and foremost I would like to thank my supervisor Dr. Greg Metha for giving me this opportunity. Professionally his helpful advice, extensive knowledge and forward thinking attitude to research have been invaluable. Personally he has been a great friend and mentor. I will always remember our stay in Munich; getting lost in a dark snowing forest and throwing snowballs at each other on the way home after a late night out. Also, the many laughing fits at our mutual appreciation of Borat.

Thanks must also go to my co-supervisor Prof. Mark Buntine for his smart-arse comments and the occasional helpful one.

I am also totally indebted to our post-doc Dr. Jason Gascooke, whose ability to solve problems which seem unsolvable to me is truly amazing. He has also been a great drinking buddy and is the co-inventor of beer-table tennis.

Thanks to Matt Addicoat for his help with the computational calculations.

The support in the mechanical workshop from Peter Apoefis has been fantastic in converting my caveman-like drawings into reality.

I have also had many a fun time in the lab with my partner in crime Olivia Maselli; whether it be dancing around like a fool, discussing our small overlap in musical tastes or laughing at her stories. Also thanks to all the other Honours and PhD students I have shared the lab with.

Huge thanks must go to my extremely supportive family (Mum, Dad and Kristina) for the Sunday lunches and for still believing I have some intelligence, despite observing my constant stupidity over the years.

Last, but definitely not least, I must thank my beautiful girlfriend Milena. She has always believed in me and has the magical ability to make me happy whenever I'm with her (even when my experiments are not working).

Publications

The following publications were produced from the work presented in this thesis:

Ionization Potentials of Tantalum-Carbide Clusters: An Experimental and Density
Functional Theory Study
Dryza, V.; Addicoat, M.A.; Gascooke, J.R.; Buntine, M.A.; Metha, G.F. J. Phys. Chem. A
2005, 109, 11180.

Threshold Photo-ionization and Density Functional Theory Studies of the Niobium-Carbide Clusters Nb₃C_n (n = 1–4) and Nb₄C_n (n = 1–6) Dryza, V.; Addicoat, M.A.; Gascooke, J.R.; Buntine, M.A.; Metha, G.F. *J. Phys. Chem. A* **2008**, *112*, 5582.

Onset of Carbon-Carbon Bonding in the Nb₅C_y (y = 0-6) Clusters: A Threshold Photoionisation and Density Functional Theory Study Dryza, V.; Gascooke, J.R.; Buntine, M.A.; Metha, G.F. *PCCP* **2008**, (in press).

The following publications are currently in preparation from the work presented in this thesis:

Onset of Carbon-Carbon Bonding in the Ta_5C_y (y = 0-6) Clusters: A Threshold Photoionization and Density Functional Theory Study Dryza, V.; Gascooke, J.R.; Buntine, M.A.; Metha, G.F. (in preparation).

Threshold Photo-ionization and Density Functional Theory Studies of Bimetallic-Carbide Clusters: Ta_3ZrC_y (y = 0-4) Dryza, V.; Gascooke, J.R.; Buntine, M.A.; Metha, G.F. (in preparation).

Abbreviations

AO	Atomic Orbital		
С	Carbon		
DFT	Density Functional Theory		
EA	Electron Affinity		
ECP	Effective Core Potential		
eV	Electron Volt		
FC	Frank-Condon		
FCC	Face-centred Cubic		
FEL	Free Electron Laser		
FWHM	Full Width at Half Maximum		
GTO	Gaussian Type Orbital		
НОМО	Highest Occupied Molecular Orbital		
IP	Ionisation Potential		
IR	Infrared		
LUMO	Lowest Unoccupied Molecular Orbital		
MO	Molecular Orbital		
MPD	Multi-photon Dissociation		
MPI	Multi-photon Ionisation		
MRCI	Multi-Reference Configuration Interaction		
Nb	Niobium		
NBO	Natural Bond Order		
PES	Potential Energy Surface		
PFI-ZEKE	Pulsed Field Ionisation Zero Electron Kinetic Energy		
PIE	Photo-ionisation Efficiency		
REMPI	Resonance Enhanced Multi-photon Ionisation		
SPI	Single-photon Ionisation		
Та	Tantalum		
TOF-MS	Time-of-flight Mass-spectrometer		
ZPE	Zero-point Energies		
Zr	Zirconium		

Table of Contents

Chapter 1: Introduction to Metal-Carbide Clusters			
1.1 Generation and Distribution of Metal-Carbide Clusters	1		
1.2 The Structures of the Ti_8C_{12} "Metcar" and $Ti_{14}C_{13}$ "Nanocrystal"			
1.3 Potential Applications of Metal-Carbide Clusters			
1.4 Scope of this Thesis			
1.5 Why Determine the Ionisation Potentials of Metal-Carbide Clusters?	8		
1.6 References	10		
Chapter 2: Experimental Approach	12		
2.1 Laser Ablation	12		
2.1.1 Laser Ablation Theory	12		
2.1.2 Experimental Design and Operation	14		
2.2 Photo-ionisation Efficiency (PIE)	17		
2.2.1 Photo-ionisation Theory	17		
2.2.2 PIE Theory	21		
2.2.3 PIE of Transition Metal Containing Clusters	23		
2.2.4 Experimental Procedure for PIE Experiments	26		
2.3 References	31		
Chapter 3: Computational Approach	33		
3.1 Introduction to Density Functional Theory (DFT)			
3.2 Basis Sets	35		
3.3 Computational Method and Procedure for Metal-Carbide Clusters			
3.4 References	40		
Chapter 4: The Time-of-Flight Mass-Spectrometer	42		
4.1 The Constructed TOF-MS Apparatus			
4.2 References			
4.2 References	47		

Chapter 5: Niobium-Carbide Clusters	48	
5.1 Introduction to Niobium-Carbide and Tantalum-Carbide Clusters		
5.2 Photo-ionisation Efficiency Experiments		
5.3 DFT Calculated Isomers	57	
5.3.1 The Nb ₃ C _y ($y = 0-4$) Cluster Series	57	
5.3.2 The Nb ₄ C _y ($y = 0-6$) Cluster Series	60	
5.3.3 The Nb ₅ C _y ($y = 0-6$) Cluster Series	65	
5.4 Comparison between Calculated and Experimental IPs	74	
5.4.1 The Nb ₃ C _y ($y = 0-4$) Cluster Series	74	
5.4.2 The Nb ₄ C _y ($y = 0-6$) Cluster Series	77	
5.4.3 The Nb ₅ C _y ($y = 0-6$) Cluster Series	81	
5.5 Discussion on Niobium-Carbide Clusters	85	
5.5.1 Comparison to Previous Spectroscopic Data	85	
5.5.2 Onset of Carbon-Carbon Bonding	89	
5.5.3 Low-Lying Isomers and Metastable Electronic States	90	
5.5.4 IP trends, Molecular Orbitals and HOMO-LUMO gaps	94	
5.5.5 Thermodynamic Cycle	103	
5.6 Summary and Future Directions	105	
5.7 References	109	
Chapter 6: Tantalum-Carbide Clusters	112	
6.1 Photo-ionisation Efficiency Experiments	112	
6.2 Comparison between Calculated and Experimental IPs	116	
6.2.1 The Ta ₃ C _y ($y = 0-3$) Cluster Series	117	
6.2.2 The Ta ₄ C _y ($y = 0-4$) Cluster Series	119	
6.2.3 The Ta ₅ C _y ($y = 0-6$) Cluster Series	122	
6.3 Discussion on Tantalum-Carbide Clusters		
6.3.1 Comparison to the Niobium-Carbide Clusters	127	
6.4 Summary	129	

6.5 References		

130

Chapter 7: Tantalum-Zirconium-Carbide Clusters	131	
7.1 Introduction to Bimetallic-Carbide Clusters	131	
7.2 Double Ablation Cluster Source Design	133	
7.3 Generation of Tantalum-Zirconium-Carbide Clusters		
7.4 Photo-ionisation Efficiency Experiments	141	
7.5 DFT Calculated Isomers		
7.5.1 The Ta ₃ ZrC _y ($y = 0-4$) Cluster Series	143	
7.6 Comparison between Calculated and Experimental IPs	146	
7.7 Discussion on Tantalum-Zirconium-Carbide Clusters	149	
7.7.1 Relative Energetics of the Bimetallic-Carbide Cluster Isomers	149	
7.7.2 Electronic Structure of the Bimetallic-Carbide Clusters	149	
7.7.3 Comparison of IP Trends for the Ta_3ZrC_y and Ta_4C_y Clusters	153	
7.8 Summary	156	
7.9 References		
Appendix I	159	
Appendix II	161	
Appendix III	166	
Appendix IV	189	
Appendix V	193	
Appendix VI	203	
Appendix VII	205	