Molecular characterisation of

Shigella flexneri outer membrane protease IcsP

Elizabeth Ngoc Hoa Tran

Submitted for the Degree of Doctor of Philosophy

Discipline of Microbiology and Immunology The School of Molecular and Biomedical Science The University of Adelaide

October 2007

Table of Contents

Abstract		Ι
Declara	Declaration I Acknowledgments	
Acknow		
Abbrevi	ations	V
Chapter	1 - Literature Review	1
1.1	Genus Shigella	1
1.1.1	Disease and symptoms	1
1.2	Classification	2
1.2.1	Species and serotypes	2
1.3	Shigella pathogenesis	3
1.3.1	Invasion of the gut epithelium	3
1.3.2	Entry into epithelial cells	4
1.3.3	Intercellular and intracellular spread	5
1.3.3.1	Actin based motility (ABM)	5
1.3.3.2	IcsA	6
1.4	The Gram-negative outer membrane (OM)	7
1.4.1	Surface distribution of OM proteins	7
1.5	Outer membrane proteases	8
1.5.1	The Omptin family	
1.5.2	Omptins and infectious diseases	9
1.5.3	OmpT of E. coli	
1.5.4	OmpP of E. coli	10
1.5.5	IcsP of S. flexneri	11
1.5.5.1	Regulation of IcsP expression	
1.5.5.2	Role of IcsP in ABM	
1.5.5.3	Role of IcsA cleavage in ABM	12
1.5.5.4	Distribution of IcsP on the cell surface	13
1.5.6	Pla of Y. pestis	13
1.5.7	PgtE of S. enterica	14
1.5.8	PlaA of <i>E. pyrifoliae</i>	14
1.6	Lipopolysaccharide (LPS)	14
1.6.1	LPS and IcsA	15
1.6.2	LPS and Omptins	16
1.7	VirK	17
1.7.1	VirK and IcsA	17

1.7.2	VirK and IcsP	18
1.7.3	VirK and LPS	18
10	Aime of this study	20
1.0	Aims of this study	20
Chapter	2 - Materials and Methods	21
2.1	Reagents used in this study	21
2.1.1	Buffers and solutions	21
2.1.2	Oligonucleotides	21
2.1.3	Antibodies	21
2.2	Bacterial strains and growth conditions	22
2.2.1	Strains and plasmids	22
2.2.2	Growth media and conditions	22
2.3	DNA preparation	22
2.3.1	Preparation of chromosomal DNA	22
2.3.2	Preparation of boiled lysates for PCR amplification	23
2.3.3	Preparation of DNA using a kit	23
2.3.3		23
2.4	Polymerase Chain Reaction (PCR)	23
2.4.1	General PCR	23
2.4.2	Amplification of products for cloning PCR	24
2.4.3	Splicing by overlap extension PCR	24
2.4.4	DNA sequencing	24
2.5	Sequence analysis	25
		25
2.6	Analysis of DNA	25
2.6.1	Agarose gel electrophoresis	25
2.7	<i>In vitro</i> cloning of DNA	26
2.7.1	General techniques	26
2.7.2	Preparation of competent cells	26
2.7.2.1	Chemically competent cells	26
2.7.2.2	Electrocompetent cells	27
2.7.3	Bacterial cell transformation	27
2731	Heat shock transformation	27
2732	Transformation by electroporation	27
2.7.3.3	Conjugation	28
• •		
2.8	Creation of chromosomal and virulence plasmid mutations	28
2.8.1	Mutagenesis using pCACTUS	28
2.8.2	Mutagenesis using the λ red phage mutagenesis system	29
2.8.2.1	In E. coli	29
2.8.2.2	In S. flexneri	29

2.9	Protein techniques	31
2.9.1	General preparation of whole cell lysates	31
2.9.2	SDS polyacrylamide gel electrophoresis (SDS-PAGE)	31
2.9.3	Western transfer and detection	31
2.9.3.1	Stripping and re-probing nitrocellulose membranes	32
2.9.4	Wild-type IcsP and IcsA expression	32
2.9.5	His-tagged protein over-expression and purification from pQE60	32
2.9.5.1	IPTG induced over-expression	32
2.9.5.2	Purification of His-tagged protein	33
2.9.6	Antisera techniques	34
2.9.6.1	Production of polyclonal anti-IcsP antiserum	34
2.9.6.2	Purification of antiserum by absorption with live bacteria	35
2.9.6.3	Affinity purification of antisera	35
2.9.7	HA-tagged protein over-expression from pBAD30	36
2.9.7.1	Arabinose induced over-expression	36
2.9.8	Cell fractionation	36
2.9.8.1	Triton/MgCl ₂ /Urea solubilisation	36
2.9.8.2	Sucrose density gradient fractionation	37
2.9.8.3	Refractive index readings of sucrose fractions	38
2.9.9	Preparation of cell associated and soluble IcsA	
	1	
2.10	Lipopolysaccharide (LPS) techniques	38
2.10.1	O antigen typing	38
2.10.2	Preparation of LPS samples	39
2.10.3	Analysis of LPS samples by silver-stained SDS-PAGE	39
2.11	Immunofluorescence (IF) microscopy techniques	39
2.11.1	Formalin-fixation of cells	39
2.11.2	Sf6 TSP treatment of cells	40
2.11.3	Lysozyme treatment of cells	40
2.11.4	Indirect epi-fluorescence microscopy and deconvolution	40
2.11.5	Microscopy image analysis	41
2.12	Tissue culture techniques	41
2.12.1	Growth, maintenance, and incubation of cell monolayers	41
2.12.2	Splitting cells and seeding trays/flasks	42
2.12.3	Preparation of bacteria	42
2.12.4	Plaque assay	43
2.12.5	Invasion assay	43
2.13	Plasminogen/ α_2 AP cleavage assay	44
2.14	Antimicrobial assays	45
2.14.1	Growth of bacteria for bactericidal assay	45
2.14.1.1	Complement bactericidal assay	45
2.14.1.2	Protamine assay	45
		-
2.15	Colicin sensitivity assay	46

46

Chapter 3 - Characterisation of IcsP		47
3.1	Introduction	47
3.2	Mutagenesis of S. flexneri icsP in 2457T and M90T	47
3.3	Characterisation of <i>icsP</i> mutants	49
3.3.1	Analysis of IcsA cleavage by <i>icsP</i> mutants	49
3.3.2	Analysis of surface distribution of IcsA in <i>icsP</i> mutants	50
3.4	An analysis of <i>icsP</i> mutants with respect to virulence related properties	50
3.4.1	Analysis of intercellular spread by <i>icsP</i> mutants	50
3.4.2	Analysis of F-actin tail formation by <i>icsP</i> mutants	52
3.5	Summary	52
Chapter	4 - Surface distribution of IcsP	54
4.1	Introduction	54
4.1	Introduction	54
4.2	Cloning of <i>icsP</i> into pQE60	55
4.2.1	IPTG induced expression and purification of IcsP-His ₆	56
4.2.2	IcsA cleavage by IcsP-His ₆	56
4.2.3	Detection of surface IcsP-His ₆ by IF	57
4.2.4	Production of polyclonal anti-IcsP antisera	58
4.3	Insertion of a HA epitope into IcsP	58
4.3.1	Construction of pBAD30:: <i>icsP</i> ^{HA} and pBAD30:: <i>icsP</i>	59
4.3.2	Expression of IcsP ^{HA} and IcsP from pBAD30	60
4.3.3	Characterisation of IcsP ^{HA}	60
4.3.4	Localisation of IcsP ^{HA} protein to the OM	61
4.3.4.1	Cell fractionation by Triton/MgCl ₂ treatment	61
4.3.4.2	Cell fractionation by sucrose density gradient centrifugation	62
4.4	Effect of LPS on detection of IcsP	63
4.4.1	Construction of smooth and rough LPS strains	63
4.4.2	LPS analysis of smooth and rough LPS strains	64
4.4.3	IcsP ^{HA} detection in smooth and rough LPS strains	64
4.4.4	Effect of extending arabinose incubation time on detection of IcsP ^{HA}	65
4.4.5	Detection of IcsP ^{HA} at low levels of expression	66
4.5	Deletion of <i>yfdI</i> gene in <i>E. coli</i> K-12	66
4.5.1	Construction of <i>yfdI</i> mutant	68
4.5.2	Serotype specificity of yfdI mutant by antiserum agglutination	68

4.5.3	Effect of Sf6 TSP treatment on detection of IcsP ^{HA} – LPS analysis	69
4.5.4	Effect of Sf6 TSP treatment on detection of IcsP ^{HA} by IF	69
16	Distribution of LPS in S. flornori	70
4.0 4.6.1	S flerneri 5a I PS labelling with different I PS antibodies	70
4.0.1	<i>S. flexneri</i> 5a LPS labelling inside CV-1 cells	71
4.6.3	S. flexneri 5a LPS and IcsP ^{HA} labelling	71
4.7	Summary	72
Chanton	5 Effort of wirk and rul mutations on Ios P and S. flarmari virulance	75
Chapter	5 - Effect of <i>VIF</i> X and <i>Finite</i> initiations on ICSF and 5. <i>Jiexneri</i> virulence	/5
5.1	Introduction	75
5.2	Construction of S. flexneri 2457T virK and rmlD mutants	76
5.2.1	Construction of 2457T virK mutant	76
5.2.2	Construction of 2457T rmlD mutant	77
5.2.3	Construction of <i>icsP</i> derivatives	78
5.3	LPS profile of <i>S. flexneri virK</i> and <i>rmlD</i> mutants	78
5.4	Analysis of plaque and F-actin comet tail formation by <i>S. flexneri virK</i> and <i>rmlD</i> mutants	79
5.4.1	Plaque formation on CV-1 cell monolayers	79
5.4.2	Plaque formation on HeLa cell monolayers	80
5.4.3	Analysis of F-actin comet tail formation	80
5.5	IcsA expression in <i>S. flexneri virK</i> and <i>rmlD</i> mutants	81
5.6	IcsP expression in S. flexneri virK and rmlD mutants	82
5.7	Analysis of IcsP activity in S. flexneri virK and rmlD mutants	83
5.8	Surface distribution of IcsA in <i>S. flexneri virK</i> and <i>rmlD</i> mutants	83
5.9	Summary	84
Charter	6 Alternative substrates for IccD	07
Chapter	v - Anerhauve Substrates for 1051	00
6.1	Introduction	86

6.2 IcsP activity against plasminogen and $\alpha_2 AP$ 86

6.2.1	Analysis of IcsP activity against plasminogen	87
6.2.2	Analysis of IcsP activity against $\alpha_2 AP$	88
()		00
0.3	Antimicrobial assays	88
6.3.1	Analysis of IcsP activity against complement	88
6.3.2	Analysis of IcsP activity against protamine	89
6.4	IcsP activity against colicins	90
6.4.1	Analysis of IcsP activity against colicin E1	91
6.4.2	Analysis of IcsP activity against colicin E2	91
6.5	Summary	92
Chapte	er 7 - Discussion	94
7.1	Introduction	94
7.2	Characterisation of <i>icsP</i> mutants and the role of IcsP in cell-to-cell spread	94
7.2.1	Role of IcsP in S. flexneri cell-to-cell spread	95
7.3	Surface distribution of IcsP	96
7.3.1	IcsP ^{HA} distribution in smooth and rough LPS strains	97
7.3.2	Sf6 TSP treatment enhances detection of IcsP ^{HA}	97
7.3.3	Punctate IcsP ^{HA} distribution at low arabinose induction	98
7.3.4	Helical distribution of LPS in <i>S. flexneri</i> 5a strains	99
7.3.5	LPS and $IcsP^{HA}$ distribution in <i>S. flexneri</i> 5a	100
7.4	Characterisation of <i>S. flexneri virK</i> and <i>rmlD</i> mutants	101
7.4.1	Reassessment of <i>virK</i> mutant phenotype	101
7.4.2	Assessment of <i>rmlD</i> mutant phenotype	102
7.5	IcsP activity against other known Omptin protease substrates	103
7.5.1	IcsP activity against plasminogen	104
7.5.2	IcsP activity against α_2 AP and complement	105
7.5.3	IcsP activity against OmpT substrates protamine and colicins	106
7.6	Conclusion	107
Refere	nces	108

Thesis Amendments

Abstract

Page I, para 2, line 3: Page VI, abbreviations list:

Chapter 1 – Literature Review

Page 8, line 11: Page 9, section 1.5.2, line 3: Page 10, para 2, line 7: Page 11, section 1.5.5, line 3: Page 17, section 1.7, line 1: Page 18, section 1.7.3, para 1, line 6: Page 18, section 1.7.3, para 2, line 3: Page 18, section 1.7.3, para 2, line 5: should read "...found that icsP in both ... " should include HEPES abbreviation "4-(2-hydroxyethyl)-1piperazineethanesulfonic acid"

should read "...Gram-negative ... " should read "...zoonosis of plague caused ... " should read "...cleave colicins A,..." should read "...detected in culture supernatants" should read "...discovered to affect intracellular ... " should read "...to encode proteins required for maximal ... " should read "...which has 36% identity) ... " should read "...encodes the enzyme ... "

Chapter 2 – Materials and Methods

Page 40, section 2.11.4, line 1: Page 45, section 2.14.1.1, line 1: should read "...(~4 µl) were labelled ... " should read "...bacteria were centrifuged ..."

should read "...form plaques and F-actin comet tails."

should read "...ETRM22 (Section 5.6) and ETRM108 (data not

should read "...second agarose layer ... " should read "...second agarose layer ... "

should read "...with FITC-phalloidin."

Chapter 3 - Characterisation of IcsP

Fig 3.7 legend, line 3: Fig 3.8 legend, line 6: Page 47, section 3.1, line 14: Page 48, para 2, line 6:

Page 52, section 3.4.2, line 3:

Page 76 vs Page 85:

Page 78, section 5.3, line 10:

Page 83, section 5.7, line 13:

Page 84, section 5.9 conclusions:

Page 81, section 5.5, para 1, line 3:

Page 81, section 5.5, para 2, line 1: Page 82, section 5.6, line 6: Page 83, section 5.7, line 4:

Chapter 4 – Surface distribution of IcsP

Page 54, section 4.1, para 2, line 9:	should read "an increased detection "
Page 61, section 4.3.4.1, line 3:	should read "unexpectedly solubilised by the Triton/MgCl2"
Page 61, section 4.3.4.1, line 6:	should read " in the soluble and the insoluble fractions (Table 4.1,
	and data not shown)."
Page 70, section 4.6, line 3:	should read "Experiments whereby the LPS of S. flexneri 2a 2457T
	was labelled with"
Page 70, section 4.6, line 5:	should read "(Fig. <u>3.9A</u>)."

shown) using anti-IcsP ... "

Chapter 5 – Effect of virK and rmlD mutations on IcsP and S. flexneri virulence

The effect of the mutation used in the Nakata et al. (1992) study is speculated upon here as one of two possible differences. The virKmutation used in this study is unlikely to have a polar effect as it is a deletion. Proving the absence of a polarity effect does not change the results observed. Further experiments are also beyond the scope of this thesis and mutations affecting other genes in the operon would also need to be made. should read "...little or no detectable effect on the structure of LPS."

should read "...attributed to an effect ... "

- should read "...<u>Figure 5.10...</u>" should read "...<u>Figure 5.10C...</u>"
- should read "...Figure 5.12"

should read "...have no effect on lcsP ... "

The data shown in Figure 5.11 is correct and reproducible. No effect on IcsA cleavage (Fig. 5.12) was observed which is consistent with the results in Figure 5.11. A problem with the immunoblotting chemiluminescence substrate was encountered during the course of

this thesis, and this was resolved by switching to a different substrate from a new supplier. This problem only affected immunoblotting with anti-IcsP. The differences seen in Figure 5.10B are reproducible and are not affected by the immunoblotting chemiluminescence substrate problem. should read "...no effect on IcsP..."

Page 85, line 5: Page 85, line 8: should read "...no <u>effect</u> on IcsP..." should read "...that *virK* has no detectable effect on the structure of LPS."

Chapter 6 - Alternative substrates for IcsP

Page 89, line 2:	should read "showed <u>resistance</u> "
Page 89, line 5:	should read " experiment was performed twice "
Page 89, para 2, line 6:	should read " experiment was performed twice "
Page 89, section 6.3.2, line 1:	should read "sequence similarity to the "
Page 90, line 2:	should read " experiment was performed twice "
Page 94, section 7.1, line 9:	should read "shares most <u>similarity</u> to OmpT"

Chapter 7 - Discussion

Page 107, line 1: Page 107, section 7.6, line 5: should read "...by <u>van der</u> Ley *et al*. ..." should read "...plaque <u>assay</u>, and..."

Abstract

Shigella is a genus of Gram-negative bacteria responsible for bacillary dysentery in humans. *Shigella flexneri* type 2a in particular is responsible for the majority of incidents in developing countries. The *S. flexneri* protease IcsP, is a member of the Omptin family of outer membrane (OM) proteases which cleaves IcsA, a polarly localised OM protein required for *Shigella* virulence. Mutations in *icsP* have been shown to effect the observed distribution of IcsA, however the significance of IcsP in *Shigella* virulence is incompletely understood.

In this study, aspects of IcsP biology were investigated. *S. flexneri* 2457T and M90T *icsP* mutants were constructed to investigate the role of IcsP in *Shigella* intercellular spread, and it was found that *icsP* in both *S. flexneri* backgrounds did not appear to be essential for cell-to-cell spread in human cervical cancer HeLa cells, but enhanced cell-to-cell spread in monkey kidney CV-1 cells (as determined by plaque assays). Complementation with *icsP* returned the mutant phenotype to wild-type. The results suggest IcsP does play a role in *Shigella* intercellular spread.

The 2457T *icsP* mutant was subsequently complemented with an altered *icsP* gene encoding a haemagglutinin epitope tagged IcsP (IcsP^{HA}) to determine the distribution of IcsP on the cell surface. In both *S. flexneri* and *E. coli* K-12 possessing smooth and rough lipopolysaccharide (LPS), the distribution of IcsP^{HA} was found to be punctate across the cell surface. Deconvolution analysis revealed that IcsP distribution was punctate and banded in both LPS backgrounds. A smooth LPS *E. coli* K-12 *yfdI* mutant strain expressing IcsP^{HA} was also constructed, and experiments involving treatment of this strain with bacteriophage Sf6 tail spike protein suggested that LPS O antigen chains masked IcsP in smooth LPS strains. During these studies, double-labelling of IcsP^{HA} and LPS in a *S. flexneri* 5a M90T strain revealed a helical distribution of LPS in this strain. Overall, the results suggest IcsP has a punctate, banded distribution across the cell surface.

The effect of *virK* and *rmlD* mutations on IcsP was then investigated by constructing a *virK*, *rmlD* and *virK/rmlD* double mutant in *S. flexneri* 2457T. Western immunoblotting showed no change in IcsP expression levels in either the *virK*, *rmlD* or *virK/rmlD* mutants compared to wild-type. Surprisingly, the *virK* mutant showed no change in IcsA expression levels by Western immunoblotting and plaque assays (using HeLa and CV-1 cells) suggested that *virK* was not essential for *Shigella* intercellular spread (contradicting the published data on this gene). No effect was also observed on IcsP expression level or on IcsP's ability to cleave IcsA into culture supernatants.

Finally alternative substrates for the protease activity of IcsP were investigated against known Omptin substrates (plasminogen, α_2 -antiplasmin, complement, protamine and colicins). However, IcsP appeared to have no effect on these substrates as determined by proteolytic cleavage assays and antimicrobial assay. Interestingly, Plg cleavage by rough LPS *S. flexneri*, and α_2 AP cleavage by both smooth and rough LPS *S. flexneri*, was observed.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University library, being made available in all forms of media, now or hereafter known.

Elizabeth Ngoc Hoa Tran

Acknowledgements

I would firstly like to thank my supervisor, Dr. Renato Morona. Thank you for giving me the opportunity to do my PhD with you, and for teaching me so much about microbiology and research. I have grown and developed much as a scientist under your guidance and I am grateful for your patience, understanding and knowledge. Thank you secondly to Luisa Van Den Bosch, for your patience in teaching me all the techniques in the lab, and for looking out for me like a daughter.

To Gerald Murray, Leanne Purins and Kerrie May, thank you for all the things you have taught me, for your advice and experience, and for your friendship. Maggie Papadopoulos and Min Yan Teh, my two best friends in and outside the lab, thank you for the laughter and unwavering support, your friendship is invaluable. To Marcin Grabowicz and Campbell Strong, your patient advice and friendship I appreciate alot. To all past Honours students, thank you for the joy you brought to the lab. A kind thank you to the Paton lab, for happily answering questions I had and for the ever entertaining conversations. Thank you for introducing me to the lab soccer games I love so much. To Steve Attridge and other members of the School, including the CSU staff, Chris Wong and Jamie Botten, Martin Lennon, Sergei Volgin and Garry Penney, thank you for being there to help me and provide advice.

To all my friends, particularly Sophia Tan and Damien Chong, thank you for the kind of support only a friend could give. You guys are the best! My heart-felt thank you and affection goes to Tan Nguyen, for your enduring enthusiasm and compassion. Thank you for being there and seeing me through, for now and always.

And finally, I would like to thank my loving parents and younger siblings Diana and Johnson, for all your love, support and encouragement over the years of study. I could not have done this without you, and I love you very much. This is for you!

List of Abbreviations

~	approximately
°C	degree
%	percentage
#	number
α	alpha
$\alpha_2 AP$	alpha ₂ -antiplasmin
β	beta
γ	gamma
λ	lambda
μg; μl; μm	microgram (s); microliter (s); micrometre (s)
aa	amino acid
3D	3-dimensional
ABM	actin based motility
Amp	ampicillin
Anti-Pla	anti-plasminogen
Arg	arginine
Arp2/3	actin related protein 2/3
Av	average
bp	base pairs
C-terminal	carboxyl-terminal
CAT#	catalogue number
Ch. 3, 4, 5, 6	chapter 3, 4, 5, 6
cm	centimetres
cm ²	cm square
СМ	cytoplasmic membrane
Cml	chloramphenicol

CO ₂	carbon dioxide
D-PBS	Dulbecco's PBS
DAPI	4', 6-diamidino-2-phenylindole dihydrochloride
DMEM	Dulbecco's MEM
DMF	dimethylformamide
DNA	deoxyribonucleic acid
dNTP	deoxynucleoside triphosphate
EDTA	ethylene diamine tetra-acetic acid
Ef1, Ef2, Ef3	elution fractions 1, 2, 3
EIEC	enteroinvasive E. coli
FAE	follicular associated epithelium
FCA	Freund's complete adjuvant
FCS	foetal calf serum
Fig.	Figure
FITC	fluorescein isothiocyanate
FRT	FLP recognition target
GlcNAc	N-acetylglucosamine
GTE	Glucose/Tris/EDTA
h; min; sec	hour (s); minutes (s); seconds (s)
НА	haemagglutinin
HCl	hydrochloric acid
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HIC	heat inactivated complement
His ₆	6x histamine
His ₆ -PsaA	N-terminal His ₆ tagged PsaA
IcsP ^{HA}	HA epitope tagged IcsP
IcsP-His ₆	C-terminal His ₆ tagged IcsP
IF	immunofluorescence
IL-1β	interleukin-1β

IL-8	interleukin-8
IM	inner membrane
Ipa	invasion plasmid antigens
Ipg	invasion plasmid gene
IPTG	isopropyl-β-D-thiogalactopyranoside
Kan	kanamycin
kb	kilobase pairs
kDa	kilodaltons
L	litres
Lab	laboratory
LB	Luria-bertani
LPS	lipopolysaccharide
Lys	lysine
M; mM	molar; millimolar (s)
M-cells	Membraneous epithelial cells
mA	milli-amps
MEM	Modified Eagle's Media
mg; ml; mm	milligram (s); millilitre (s); millimetre (s)
MOPS	3-(N-Morpholino)-propanesulfonic acid
MQ	MilliQ
mxi-spa	membrane expression of Ipas-surface presentation of antigens
N-terminal	amino terminal
N-WASP	neural Wiskott-Aldrich syndrome protein
NaAc	sodium acetate
NEB	New England Biolabs
Ni-charged	nickel-charged
nm	nanometre
nt	nucleotide
Oag	O antigen

OD ₆₀₀	optical density of 600 nm
OM	outer membrane
Omp	outer membrane protease
PBS	phosphate buffered saline
PCR	polymerase chain reaction
Plg	plasminogen
R	resistance
Rha	rhamnose
RI	refractive index
Rif	rifampicin
RNA	ribonucleic acid
RNase	ribonuclease
rpm	revolutions per minute
RT	room temperature
SAP	shrimp alkaline phosphatase
SDS	sodium dodecyl sulphate
SDS-PAGE	SDS polyacrylamide gel electrophoresis
SOE PCR	Splicing by Overlap Extension PCR
Strep	streptomycin
TBE	tris-borate-EDTA
TBS	tris buffered saline
TCA	trichloroacetic acid
Tet	tetracycline
Tris	tris (hydroxymethyl) aminomethane
TSP	tailspike protein
TBS	tris buffered saline
TTBS	tween tris buffered saline
TTSS	Type III secretion system
U	units

UV	ultraviolet
v/v	volume per volume
V	volts
VASP	vasodilator-stimulating phosphoprotein
VP ^{-ve}	virulence plasmid negative
w/v	weight per volume
WM	whole membrane
X-Gal	5'-bromo-4-chloro-3-indolyl-β-D-galactopyranoside