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Abstract—Newly announced IP addresses (from previously
unused IP blocks) are often unreachable. It is common for
network operators to filter out address space which is known
to be unallocated (“bogon” addresses). However, as allocated
address space changes over time, these bogons might become
legitimately announced prefixes. Unfortunately, some ISPs still
do not configure their bogon filters via lists published by the
Regional Internet Registries (RIRs). Instead, they choose to
manually configure filters. Therefore it would be desirable to
test whether filters block legitimate address space before it is
allocated to ISPs and/or end users. Previous work has presented
a methodology that aims at detecting such wrongly configured
filters, so that ISPs can be contacted and asked to update
their filters. This paper extends the methodology by providing
a more formal algorithm for finding such filters, and the paper
quantitatively assesses the performance of this methodology.

I. INTRODUCTION

It is common for Internet Service Providers (ISPs) to use so
called bogon filters to eliminate traffic that is impossible (or
bogus). A common example of such traffic is traffic originating
from unallocated address space. Such traffic may arise as part
of a (source address spoofing) DoS, Worm, or other attack [1],
or as a result of address hijacking (as used by spammers [2],
[3]) so such filters make a great deal of sense. However,
address space allocations changes over time, as new address
space becomes allocated and announced [4]. Bogon filters need
to be kept up to date, but recent measurements [5] show that
they are not. In a significant number of cases, new address
space will be unreachable because of incorrectly configured
filters.

Previous work [5] presented a methodology for detecting
incorrectly configured filters. However, the approach has not
been tested against complete ground truth data, nor has
its quality with respect to the scale of measurements been
measured. Furthermore, the approach relies on a rather ad
hoc heuristic, and it is very likely this can be improved. In
this paper, we propose an optimization approach to detecting
incorrectly configured bogon filters. In order to solve the
optimization problem we implement a genetic algorithm (GA),
specifically that of [6]. We test this formulation using simu-
lated BGP data and demonstrate its effectiveness in locating
filters within the simulated BGP network.
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Our findings suggest that the underlying approach is sound,
given enough measurements, and a sparse set of incorrect
filters. Without enough measurements, we cannot see the
whole Internet, and so cannot infer the locations of all filters.
If too many locations have filters, then there are unavoidable
ambiguities. However, for many reasonable scenarios, we
should be able to detect and localise a substantial proportion
of incorrect filters, with a low false positive rate.

II. METHODOLOGY

The Internet is composed of a large number of inde-
pendently administered networks (Autonomous Systems or
ASs), coupled by the Border Gateway Protocol (BGP) into
a single globe spanning entity. BGP [7]-[9] provides the glue
that brings the Internet’s diverse ASs together. Each AS is
physically connected to other ASs at one or more locations.
BGP is used across these links to exchange information about
reachable IP prefixes. Routes are distributed between routers
internal to an AS using iBGP. However, the distribution of
routes, and the choice of “best” route is influenced by policies,
a simple example of which involves filtering selected routing
announcements to remove them from consideration. We pri-
marily consider detecting this type of filtering here (though
bogon filters may take other forms). Typical policies dictate the
relationship between connected ASs, which commonly falls
into one of the following two broad categories:

1) Customer-Provider: One AS (the customer) financially
compensates the other AS (the provider) for connectivity
to the remainder of the Internet.

2) Peer-Peer: A mutually beneficial relationship between
two ASs to provide connectivity to each others’ cus-
tomers. No remuneration is required for traffic ex-
changed between the two peer ASs. An AS generally
does not transit traffic between two of its peers, and BGP
policies are used to enforce this condition, for instance,
an AS would not advertise a route learnt from one peer
to another peer.

Although these categories do not apply to all relationships, or
BGP policies, they are highly illustrative. A peer-peer policy
would be implemented, e.g., by not passing route information
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from providers, to peers. This simple filtering prevents one
peer from using the other for transit.

A. Detecting Incorrect Filters

The methodology for detecting incorrect filters proposed in
[5] involves the following. First, the portion of address space
that is intended to be allocated in the near future is temporarily
assigned to the testing service. A set of test-boxes that are
strategically scattered throughout the Internet announce fest-
prefixes. In addition each test-box announces an anchor-prefix.
The anchor-prefix is a well established prefix, part of an
address block that has been used for some time and is known
to be reachable [10]. As the test-prefix and the anchor-prefix
are announced from the same router, the paths through the
Internet should typically be the same for both prefixes. Each
of the test- and anchor-prefixes have a pingable IP address on
a computer belonging to the testing service, called test-IP and
anchor-IP respectively.

Traceroutes are then run from various locations against
the test-IP as well as the anchor-IP. We call this probing
technique in-probes. By comparing the two paths we can
derive candidates that might potentially filter the test-prefix.
There are a number of cases that might result from a pair
of traceroutes from traceroute source to the target and corre-
sponding anchor. We exclude pathological cases such as where
the anchor is unreachable (indicating some type of broader
routing pathology). Below we list illustrative cases along with
some commentary on the inference available from each.

1) anchor and target reached by the same path: see
Figure 1(a). In this case there is no filtering along the
path.

2) anchor and target reached by a different path: see
Figure 1(b). In this case some type of differential policy
applies between test and anchor prefixes. The likely
cause is a filter somewhere on the path of the test-prefix,
though there are other possibilities:

o traffic engineering [11].

o BGP allows some non-locality in routing that could
cause route changes due to filtering off of the main
path.

3) target not reachable: In some cases filters may prevent
an AS from even learning of a prefix, and in this case it
will have no route to the destination at all. In this case
we can clearly infer that a filter must exist somewhere
on the test-prefix route.

We will use the simplest implications of each of these types of
measurements to construct a set of constraints for the filters.
The constraints list arise from

1) ASs where filtering cannot occur,

2) paths along which filtering is likely.

Our aim is to find a set of filters which match this possible set
of constraints. Note that due to the possible sources of errors
listed above, this list of constraints may not be consistent in
practice, so it is desirable to have an approach that is error
tolerant.

More importantly, it is likely that the feasible region speci-
fied by the constraints allows multiple solutions. In fact, many
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(b) case 2: anchor and target reached by a different path
Fig. . Example outcomes of traceroute measurements. Dotted and dashed
lines show traceroute paths to the target and anchor respectively. Solid lines
denote “paths” through potentially multiple ASs (not all shown).

solutions may be possible. In mathematical parlance, the prob-
lem is underconstrained. Hence, we need to select one of the
possible solutions from the feasible region. In other network
inference (tomography) problems, the method for dealing with
this issue is to use a prior model of the expected structure of
the solution (for instance the gravity model in traffic matrix
inference [12]). We then seek the feasible solution that most
closely matches the prior. The statistical term for this type
of process is regularization. Often, the resultant problem can
then be formulated as an optimization problem.

In this problem, we will use a prior such that our solution
has maximal sparseness. That is, we seek the solution that uses
the smallest number of filters to explain the observations. In
reality the solution may not be the sparsest possible, but there
are reasons to seek a sparse solution. Foremost, the Internet
works. It would not if problematic filters were endemic. The
defacto status of the Internet as a working network suggests
that problem filters are rare.

So our approach will be to seek a solution which satisfies
the observational constraints while maximizing the sparseness
(minimizing the number of filters) needed in the solution. We
can write this mathematically as follows.

B. Formalization

We have a graph G = (N,E) with nodes N and edges E.
Within this graph, we have a set of nodes, S C N, representing
in-probe source nodes from which we may initiate trace-routes.
Also, we have a set of nodes, D C N, representing the test-
boxes where we announce the test and anchor prefixes.

Consider s; € § and d; € D. In all graphs we will be
considering, a path found using a trace-route from s; to d; for
the anchor prefix announced from the test-box should exist.
Let a;; C N be the set of nodes representing this path from s;
to d;. Similarly, let #;; C N be the set of nodes representing
the corresponding path for the test prefix, where we note that
this set may be empty if no path exists, that is, the target is
not reachable from our in-probe source.

Define

g = , if node » may be filtering the test preﬁ)t,l)
o 0, otherwise.
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Using the above definition and the path node-sets defined
for pairs (s;,d;) we may write down some constraints for the
location of filters in our node-set N. All nodes that are in #;
must not be implementing any filtering for the test prefix and
so, for all s5; € S and d; € D,

I 0 2
If the path node-sets differ, then those nodes on the path to
the anchor prefix that are not on the path to the test-prefix are
candidates for filtering the test prefix. As such, we have that

2 1, 3)
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for all 5; € S and d; € D. Equation (3) dictates that if the
paths differ, there must be at least one filter on the path
for the anchor prefix. Note that some of these nodes will be
automatically excluded by equation (2) if present in #;.
Given a sparsity criteria for determining the location of
filters, we attempt to solve the binary optimization problem
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minimize F° =
subject to the definitions and constraints given in equations
(1), (2) and (3). The objective function given in equation (4)
is aimed at minimizing the number of nodes in the network
that filter the test prefix(es), due to the practical assumption
that filtering is relatively rare.

The above formalization is somewhat of a simplification of
the real problem, although it can be extended to allow for
more complex filtering rules and hence additional constraints.
We aim, however, to learn if solving this type of optimization
problem is a viable approach for locating filters. The primary
goal of the investigation contained in this report is to analyze
the accuracy of inferred filter locations while varying the
frequency of in-probe sources and test-boxes throughout the
network. Given a set of in-probe sources, S, and a set of test-
boxes, D, we may solve this optimization problem for this
particular set of measurements to find a minimal set of filtering
nodes that can explain the observed paths. This simplified
problem will provide the appropriate intuition without unnec-
essary complications. These complications, however, could be
added to a real system without major difficulty.

C. Solution

We use the optimization problem defined above to find
the filter locations. There are various approaches for solving
this optimization problem, but it is an integer programming
problem and NP-hard. Hence, any viable solution must be ob-
tained using heuristics, and will therefore be an approximation.
Note, however, that our optimization criteria (sparsity) is an
approximation in the first place, and so finding the optimal
solution is not as important as finding a good solution within
a reasonable amount of time.

The approach we use to solving the optimization problem
is the Genetic Algorithm (GA) outlined in Hadj-Alouane
and Bean [6]. This approach has several advantages in this
context. Apart from the standard features of a GA (flexibil-
ity with respect to optimization objective function, ease of
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programming, and monotonic convergence), the GA approach
inherently generates a population of solutions. This population
may have multiple different, but equally good (or close to as
good) solutions. This population of good solutions can give
us a clear idea of the potential for multiple different solutions
for some measurements (multiple potential solutions are an
inevitable result of partial measurements).

We begin by initializing the population with random so-
lutions for the problem at hand. We then score and rank the
newly generated population. To score a specific element of the
population, we have two contributing components. The first is
simply the number of filters in the solution. The second is
the number of measurement constraints violated, multiplied
by some penalty multiplier, A, determined by our perceived
requirement that all constraints of the optimization problem
be satisfied. The score of the solution is thus the sum of these
components, and we rank the entire population from the lowest
(best) score to the highest. Note that a low score indicates a
sparse solution that satisfies a large number of the optimization
constraints.

Once a population has been scored and ranked, we check
to see if we wish to continue with the generation process of
the GA. If so, we generate a new population using 3 distinct
techniques. The first is to clone the top p.% of the population,
which guarantees monotonic convergence of the GA to an
eventual optimal solution. Then, p,% of the new population
is randomly generated, a process akin to migration and thus
diversity of the newly generated population is maintained.
The remaining solutions required for the new population are
generated as offspring from the previous population. For this
purpose, we have chosen a parameterized (biased) uniform
crossover of parents from the previous generation, which
generates two offspring, and then the offspring with the best
score is added to the new population.

When this population generation is complete, the new
population is scored and ranked and the process continues
until some termination criteria is met. This criteria is often a
fixed number of generations, although for our analysis we have
implemented a common early termination criteria whereby if
the best solution of some number of successive generations
remains constant, then it is likely that the optimal solution has
been found, and the process may be terminated.

In preliminary analysis, the GA performs well, providing
solutions in seconds on problems where MATLAB’s optimiza-
tion toolbox hits its iteration limit and returns no solution.

ITI. RESULTS
A. Test Methodology

Prior work on this problem has used real data obtained
from measurement experiments on the Internet [5]. However,
this does not (i) give us a complete set of ground truth data,
(i1) the ability to perform multiple realizations in order to
obtain statistics with which to measure the performance of our
approach. So, our approach to testing the algorithm is to use
simulation. Of course, simulating the Internet is non-trivial.
We use C-BGP [13], [14], to perform simulations because it
allows us to simulate interdomain routing at the granularity



needed for this problem. Policies are realized using BGP
communities and filters (as they might be in a real network),
and we can simulate routing decisions including diversity and
connectivity within each AS, without the unnecessary details
of individual protocol packets. This allows us to run much
larger simulations than other tools.

We simulate a tiered model of the Internet. That is, ASs
fall into tiers, with tier-1 providers representing the “top”
level providers who provide transit services to the next lower-
layer, and so on down through the tiers. Lower-level tiers
represent stubs, i.e., networks that connect users to the Internet,
but don’t provide transit services to other ASs. The model
is implemented through BGP policies that dictate that links
between ASs fall into one of the previously defined categories:
customer-provider and peer-peer with matching BGP policies.
The real Internet has an approximate tiered structure which
reflects these AS business relationships, but the exact structure
of these relationships is still a research question. Apart from
the top and bottom levels there is considerable argument about
the best model for tiering, so the intermediate layers are not so
clearly delineated. In our model we therefore use only three
tiers: tier-1, tier-2 and tier-3/stub ASs. It is also important to
realize that ASs are not single points — they consist of multiple
routers, and may have complex interconnections, and that this
does change the behaviour of the system [15].

In the real Internet there are more than 26,000 ASs, of which
a few dozen might be considered tier 1, down to maybe 5000
stub ASs. However, we will not use topologies of the same
size as the Internet so that the causality within the simulation
is clear, and we can quickly simulate all routing tables. We
use AS topologies that consist of “only” 150 ASs but 575
routers. These topologies are large enough to accommodate
a tiered structure and complex interconnections between ASs.
Altogether, we have 5 tier-1s, 20 tier-2s and 125 stub ASs. We
interconnect the ASs in the following manner: Tier-1 ASs are
connected by a full mesh of peer-peer links. Each tier-2 AS is
connected to x tier-1 providers where x is a random number
between 1 and 5 (the number of tier-1 ASs). For at least one
of these AS-level links we assign a customer-provider policy,
and we randomly choose the policy for the other links. As a
result tier-2 ASs are connected with up to 10 other tier-2 ASs
by peer-peer links. For stub ASs, we toss a coin to decide
whether it is to be dual- or single-homed. If it is single-homed,
we randomly choose a tier2-ASs to connect it via a customer-
provider link. For multi-homed stubs we randomly choose two
tier-2 ASs and configure one link as peer-peer and the other
as either peer-peer or customer-provider.

ASs cannot be seen as atomic entities that consist of a single
router [15]. Rather, multiple routers per AS are needed to
allow for path diversity. Yet, not all ASs have equally complex
internal topologies. Tier-1s often have more complex networks
than tier-2s and tier-3s. Therefore, in our simulations only tier-
Is and tier-2s have multiple routers: tier-1 have 30 routers
and tier-2 ASs have 15 routers. All routers within an AS are
connected by iBGP sessions. Since in reality peer-peer AS
edges rarely consist of a single link between two ASs, we
configure multiple peering links for each AS-level edge by
choosing a random number between 2 and 5 which is upper
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bounded by the number of routers in the ASs incident to the
edge. For each edge we then pick a random router within each
incident AS.

To capture the diversity of routes we originate one prefix for
each destination AS and then compute the BGP routing tables
for each router. Paths are computed by taking the standard
concatenation of a series of such routing tables providing a set
of AS paths between the 150 ASs. These represent the paths
for the anchor prefixes and we denote this AS path set, 4, and
it forms the base against which we compare other path sets
where filtering is implemented. In the simulations, a bogon
filter is assumed to be consistent across an AS so no (newly
advertised) routes can use this AS. We denote a set of AS paths
that have been constructed in this manner as 7', indicating that
it relates to test-prefixes.

B. Performance Results

We perform a set of simulations varying the number of
filters (from 2-10), test-boxes (from |D| = 1-10 though results
from 9-10 are omitted due to space constraints and because
they continue the obvious trend), and in-probe sources (from
|S| = 5-90). In each case we perform 100 simulations choosing
the set of test boxes and in-probe sources randomly. We do not
allow ASs with filters to be used as observations points (either
test boxes or in-probe sources) because this might make the
problem too easy, and to further simplify the problem we do
not allow a test-box site to also be the location of an in-probe.

In each simulation we construct the network, and thence
a set of measurements. We then use the GA to solve the
optimization problem described earlier. We experimented with
the parameters of the GA, and found that the following worked
as well as any others: the population size was 100, and we
terminate the algorithm if 40 successive generations have the
same ‘best’ solution. In the population generation process we
clone the top 10 solutions, randomly generate 1 solution at
each new population generation stage, and the ‘bias’ parameter
in the offspring generation is set to 0.8. Finally, the constraint
penalty multiplier A = 3. With these parameters, the average
computation time for all runs performed in this section is just
over half a second.

Results for 2 filters are shown in Tables I-II. The table shows
that with few observations it can be hard to find all of the
filters, but that as the number of observation points increases,
we can find all of the filters in all but a few cases. The result
is a direct reflection of the fact that if none of the paths we
observe pass through a filtering AS, then we cannot know that
this AS is filtering. However, the false detection rate shown
in Table II is very low. We do not find filters where there
are none. As the number of filters increases from 2-6 (false
detection rate results omitted), we observe the same findings.
The proportion of filters identified depends on the number of
ASs observed (see Tables III and IV).

When we increase the number of filters to 8 (or more) we
start to see new phenomena. Tables V-VI show the results. The
false detection rate, while still small, is no longer negligible.
This results from a small number of locations in the topology
where the combination of filters results in an ambiguity. That



TABLE I
2 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS.

TABLE III
4 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS.

ID| — ID| —

e 1 2 3 4 5 6 7 8 e 1 2 3 4 5 6 7 8
5 028 | 036 | 068 | 0.82 | 087 | 1.03 | 1.01 | 1.28 5 043 | 0.63 | 095 | .11 | 111 | 1.30 | 1.38 | 1.61
10 | 038 | 068 | 0.84 | 125 | 126 | 135 | 139 | 1.57 10 | 0.61 | 1.01 | 1.09 | 1.64 | 1.63 | 1.83 | 1.96 | 2.17
15 | 052 | 082 | 1.14 | 132 | 149 | 151 | 1.62 | 1.72 15 | 086 | 128 | 1.72 | 198 | 2.10 | 2.01 | 235 | 238
20 | 051 | 095 | 126 | 136 | 1.63 | 1.72 | 167 | 1.71 20 | 080 | 141 | 1.83 | 2.07 | 236 | 239 | 240 | 256
25 | 079 | 1.15 | 139 | 155 | 1.67 | 1.64 | 1.89 | 1.84 25 | 126 | 1.76 | 2.06 | 223 | 2.50 | 2.50 | 2.61 | 2.71
30 | 061 | 1.13 | 151 | 1.61 | 1.66 | 1.81 | 1.77 | 1.92 30 | 1.17 | 2.04 | 241 | 240 | 2.65 | 278 | 2.73 | 288
35 | 067 | 1.09 | 144 | 163 | 1.75 | 1.79 | 1.82 | 191 35 | 144 | 195 | 234 | 257 | 281 | 2.81 | 296 | 3.09
40 | 081 | 1.19 | 148 | 167 | 1.84 | 1.85 | 1.96 | 1.93 40 | 154 | 215 | 245 | 265 | 3.00 | 3.02 | 3.10 | 3.25
45 | 083 | 125 | 158 | 1.70 | 1.79 | 182 | 1.88 | 1.97 45 | 1.61 | 238 | 2.80 | 2.94 | 298 | 320 | 329 | 333
50 | 089 | 128 | 152 | 1.73 | 180 | 1.86 | 1.93 | 1.98 50 | 173 | 238 | 275 | 3.01 | 3.08 | 330 | 3.39 | 3.40
55 | 078 | 124 | 156 | 1.80 | 187 | 1.92 | 1.96 | 1.95 55 | 1.68 | 254 | 295 | 324 | 329 | 342 | 344 | 356
60 | 0.84 | 134 | 161 | 170 | 1.93 | 1.93 | 1.94 | 1.96 60 | 1.86 | 285 | 3.03 | 325 | 3.46 | 344 | 358 | 353
65 | 087 | 125 | 163 | 1.76 | 1.83 | 195 | 195 | 1.98 65 | 1.92 | 258 | 3.13 | 334 | 347 | 361 | 3.69 | 3.61
70 | 089 | 141 | 162 | 185 | 183 | 193 | 1.96 | 1.97 70 | 2.08 | 2.93 | 330 | 351 | 3.61 | 3.56 | 3.60 | 3.71
75 | 100 | 141 | 158 | 1.72 | 1.83 | 196 | 1.95 | 2.00 75 | 221 | 2.97 | 326 | 353 | 3.57 | 3.76 | 3.73 | 3.82
80 | 096 | 148 | 153 | 1.79 | 189 | 1.94 | 198 | 1.9 80 | 214 | 3.13 | 327 | 3.62 | 3.68 | 3.73 | 3.82 | 3.88
85 | 078 | 150 | 1.65 | 1.82 | 1.90 | 1.96 | 1.96 | 2.00 85 | 208 | 3.17 | 340 | 3.64 | 379 | 3.85 | 3.87 | 3.92
90 | 089 | 140 | 1.76 | 1.85 | 1.92 | 1.98 | 2.00 | 1.99 90 | 221 | 314 | 369 | 382 | 383 | 392 | 3.94 | 3.9

TABLE II
2 FILTERS: MEAN NUMBER OF INCORRECTLY IDENTIFIED FILTERS. TABLE IV
6 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS.
DI= 2 3 4 5 6 7 8
NE D] —
5 [ 020 | 003 | 001 | 000 | 002 | 0.03 | 0.03 | 0.03 sty | ! 2 3 4 5 6 7 8
10 | 018 | 004 | 000 | 000 | 0.07 | 0.02 | 0.00 | 0.00 5 062 | 086 | 126 | 139 | 148 | 1.80 | 1.79 | 2.17
15 | 012 | 000 | 001 | 000 | 003 | 0.01 | 0.0L | 0.00 10 | 095 | 1.55 | 1.59 | 201 | 221 | 239 | 2.68 | 2.91
20 0.14 0.01 0.00 0.02 0.00 0.00 0.01 0.00 15 1.30 1.80 232 2.60 284 2.65 3.16 3.19
25 0.16 0.06 0.00 0.00 0.01 0.01 0.00 0.00 20 1.54 2.09 261 2.80 317 3.26 328 354
30 | 023 | 000 | 001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 25 | 197 | 252 | 2.88 | 298 | 3.47 | 3.56 | 3.33 | 3.74
35 1013 | 003 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 30 | 201 | 3.03 | 3.42 | 329 | 3.67 | 3.98 | 3.82 | 4.01
40 0.22 0.01 0.00 0.01 0.00 0.00 0.00 0.00 35 235 3.05 348 377 4.12 4.06 429 4.8
45 0.24 0.02 0.00 0.00 0.00 0.00 0.00 0.00 40 262 3.40 374 3.83 4.5 427 4.45 443
50 | 0.16 | 0.01 | 001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 45 | 275 | 3.63 | 407 | 431 | 435 | 464 | 476 | 4.69
55 | 012 | 005 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 50 | 294 | 373 | 411 | 446 | 453 | 474 | 490 | 491
60 0.08 0.04 0.00 0.00 0.00 0.00 0.00 0.00 55 284 3.96 4.43 4.67 4.85 5.00 4.94 517
65 0.14 0.01 0.00 0.00 0.00 0.00 0.00 0.00 60 324 434 4.64 478 5.06 501 527 517
70 | 013 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 65 | 329 | 412 | 483 | 492 | 511 | 534 | 537 | 5.27
75 | 017 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 70 | 348 | 463 | 497 | 530 | 532 | 527 | 535 | 547
80 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75 375 457 4.99 525 533 5.55 554 5.60
85 0.08 0.02 0.01 0.00 0.00 0.00 0.00 0.00 30 368 4.88 5.05 546 546 5.55 5.69 577
% | 009 | 001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 85 | 377 | 499 | 523 | 552 | 571 | 5.68 | 579 | 5.79
90 | 3.93 | 506 | 558 | 574 | 572 | 586 | 5.92 | 597

is, given the actual set of filters, no set of measurements
could distinguish the actual set of filters from a least one
other alternative. A simple example of such an ambiguity
could be a set of ASs which occur in series (with no other
connections). Assuming we do not have a monitor in these
ASs, we can never tell which is causing the filtering because all
could explain a route which avoids the series of ASs. The GA
naturally provides a population of potential filtering solutions.
We can use this population to examine whether there is some
ambiguity in the potential solutions.

The other phenomena that we observe occurs when there
are 10 or more filters. In this case we can sometimes explain
the observations (even with a nearly complete set of measure-
ments) using a smaller number of filters than actually exist.
The example above of a series of ASs serves to illustrate this
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case as well. If filters exist in all of the series of ASs, these
filters may be explained by a single filter in one AS, and so
our approach, which searches for the sparsest solution to the
problem (the solution with the least number of filters) will
return only a subset of the total filters. Again the fact that
the GA returns a population of solutions to the filter location
problem can provide insight into the potential for multiple
filters. However, the underlying assumption of our work is
that incorrect filters are sparse. Our approach works when the
number of filters is more than 5% of the total population of the
network. If more than 5% of networks have incorrect filters,
this translates to over 1300 filtering ASs. This is not a problem
to be debugged, so much as an epidemic.



TABLE V
8 FILTERS: MEAN NUMBER OF CORRECTLY IDENTIFIED FILTERS.

ID| —

11 1 2 3 4 5 6 7 8
5 1.06 | 146 | 194 | 2.03 | 231 | 270 | 2.82 | 3.16
10 | 151 | 239 | 247 | 291 | 329 | 3.63 | 3.83 | 4.19
15 | 206 | 260 | 348 | 395 | 415 | 405 | 452 | 473
20 | 248 | 325 | 381 | 421 | 448 | 486 | 490 | 5.17
25 | 292 | 3.82 | 424 | 442 | 486 | 496 | 5.12 | 548
30 | 3.1 | 430 | 481 | 481 | 516 | 559 | 551 | 5.75
35 | 351 | 442 | 492 | 540 | 582 | 574 | 601 | 6.06
40 | 373 | 474 | 513 | 528 | 588 | 597 | 623 | 6.24
45 | 356 | 491 | 557 | 589 | 6.05 | 641 | 654 | 646
50 | 3.77 | 500 | 580 | 6.11 | 624 | 648 | 6.69 | 6.76
55 | 3.86 | 532 | 597 | 625 | 6.61 | 672 | 6.74 | 6.95
60 | 437 | 548 | 612 | 634 | 670 | 679 | 7.12 | 7.04
65 | 414 | 555 | 635 | 653 | 689 | 7.13 | 7.16 | 7.14
70 | 456 | 5.73 | 654 | 681 | 7.04 | 7.00 | 721 | 732
75 | 447 | 554 | 656 | 6.89 | 7.09 | 735 | 7.46 | 7.49
80 | 470 | 597 | 655 | 7.15 | 7.13 | 7.30 | 742 | 7.58
85 | 466 | 647 | 679 | 7.14 | 735 | 738 | 7.58 | 7.62
90 | 459 | 639 | 7.05 | 732 | 739 | 759 | 7.71 | 7.83

TABLE VI
8 FILTERS: MEAN NUMBER OF INCORRECTLY IDENTIFIED FILTERS.

ID| —

11 1 2 3 4 5 6 7 8
5 053 | 054 | 059 | 044 | 059 | 0.75 | 057 | 0.67
10 | 080 | 086 | 0.77 | 0.61 | 0.79 | 0.67 | 0.64 | 0.64
15 | 080 | 080 | 091 | 0.70 | 0.81 | 0.60 | 0.74 | 0.64
20 | 112 | 098 | 091 | 071 | 0.74 | 0.87 | 0.67 | 0.73
25 | 114 | 098 | 0.74 | 087 | 0.73 | 0.78 | 058 | 0.77
30 | 1.09 | 1.01 | 088 | 0.73 | 0.72 | 0.69 | 0.72 | 0.65
35 | 1.18 | 0.89 | 0.78 | 093 | 0.89 | 0.80 | 0.79 | 0.56
40 | 1.14 | 1.00 | 081 | 0.82 | 0.61 | 0.68 | 0.64 | 0.60
45 | 100 | 087 | 082 | 072 | 0.67 | 0.70 | 0.68 | 0.69
50 | 0.84 | 0.84 | 0.77 | 067 | 0.78 | 0.70 | 0.69 | 0.70
55 | 0.87 | 090 | 0.79 | 0.66 | 0.68 | 0.62 | 062 | 0.76
60 | 0.88 | 077 | 0.77 | 0.74 | 0.73 | 0.62 | 0.59 | 0.63
65 | 072 | 076 | 081 | 071 | 0.72 | 0.70 | 059 | 0.67
70 | 078 | 0.82 | 0.72 | 0.70 | 0.62 | 0.67 | 059 | 0.63
75 | 075 | 071 | 0.72 | 0.70 | 0.66 | 0.62 | 0.70 | 0.61
80 | 0.67 | 0.68 | 0.73 | 0.67 | 0.67 | 0.66 | 0.75 | 0.68
85 | 079 | 077 | 0.76 | 0.74 | 0.78 | 0.64 | 0.72 | 0.73
90 | 073 | 072 | 0.80 | 0.81 | 0.65 | 0.72 | 0.77 | 0.70

IV. CONCLUSION

This paper has made many simplifications — too many
to list in the space available. We have aimed to examine
the feasibility of the problem rather than the intricate detail
required in a real solution. However, most of these details
do not alter the fundamental problem, they simply increase
the size of the optimization problem that needs to be solved.
Thus we believe that the qualitative nature of our results will
hold for more complex problems. Moreover, the GA has been
chosen specifically because of the ease with which its objective
function can be enhanced. One of the key features of GAs is
their flexibility, and this will allow addition of new constraints
and parameters as needed.

There are many issues we wish to investigate in the future.
For instance, how the position of monitors in the inter-
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AS hierarchy impacts the results, and how features of the
real routing system impact on these results. In addition, the
current simulations concern only small network, and it will
be interesting to consider how the GA approach scales with
network size.
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