
Article

Light Node Communication Framework : a new way
to communicate inside a Smart Home
Valère Plantevin 1, Abdenour Bouzouane 2 and Sebastien Gaboury 3

1 UQAC; valere.plantevin1@uqac.ca
2 UQAC; abdenour_bouzouane@uqac.ca
3 UQAC; Sebastien_gaboury@uqac.ca
* Correspondence: valere.plantevin1@uqac.ca

Version November 7, 2017 submitted to Sensors; Typeset by LATEX using class file mdpi.cls

Abstract: The Internet of Thing has profoundly changed the way we imagine information science1

and architectures and Smart Homes are an important part of this domain. Created a decade ago, the2

few existing prototypes use the technologies of the day forcing designers to create centralized and3

costly architectures that raise some issues concerning the reliability, the scalability and ease of access4

which cannot be tolerated in an assistance context. In this paper we briefly introduce a new kind5

of architecture where the focus was placed on the distribution and especially. More specifically,6

we answer the first issue we met by proposing a lightweight and portable messaging protocol.7

After running several tests, we observed a maximized bandwidth, no packets were lost and a good8

encryption was obtained. These results tend to prove that our innovation may be employed in a real9

context of distribution on small entities.10

Keywords: Messaging protocol; IoT; SmartHome; Distributed Computing11

1. Introduction12

The evolution of our society towards the all-digital of the Internet of Things (IoT) profoundly13

remodeled our relationship with the science of information. In this new one, the smart home became14

the subject of numerous researches [1–3] and joins the recent current of thought stemming from the15

Ambient Intelligence (Amb. I). This last one refers to a tendency that wants us to miniaturize a set16

of electronic devices (sensors and effectors) in order to integrate them into any object of everyday life17

(lamp, refrigerator, etc.) in a transparent way for the person. The aim behind this idea is to supply18

punctual assistance to the occupants according to the gathered information and to the history of the19

accumulated data.20

The vast majority of work in the smart home domain focuses on the activity recognition21

problem in order to assist the inhabitant with a potential dementia often caused by an advanced22

age[4–6]. Nevertheless, none of them seems to propose a standard architecture which provides both23

high-reliability and scalability capabilities at a relative low-cost. And still, high-reliability has to be a24

mandatory feature of such architecture since the assistance is vital for the inhabitant with a potential25

dementia. Moreover, as the disease can stay for decades, any work on architecture must take the26

scalability parameter into account since many sensors or improvements can be realized during the27

illness evolution. Finally, the low-cost aspect has to be taken into account as the vast majority of the28

aging population will be located in poor or developing countries by 2050 [7]. As far as we know, this29

paper is the first focusing on those three points in particular.30

Here, we briefly introduce a new kind of smart home architecture providing both reliability and31

scalability based on low-cost smart sensors. To achieve this objective, the first issue we ran into is the32

difference between all the possible entities in the environment. In fact, our solution has to integrate33

Submitted to Sensors, pages 1 – 19 www.mdpi.com/journal/sensors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Constellation

https://core.ac.uk/display/127687783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Version November 7, 2017 submitted to Sensors 2 of 19

different operating systems (e.g. Linux or FreeRTOS) running on different hardware (e.g. computer or34

microcontroller) and using different communication technologies (e.g. Wi-Fi, ZigBee or 6LowPan). To35

answer these dissimilarities, we have to use a highly portable communication protocol using a broker36

less architecture to provide the highest reliability. This point will be the main concern of this paper.37

Even if many protocols exist like MQTT, RabbitMQ or ZeroMQ [8–10] none of them fully answer our38

requirements since the first two require brokers to work and the last one is based on POSIX sockets39

and cannot be embedded in some light systems. Consequently, the contribution we make in this paper40

is a new way to communicate that can be embedded in every system as soon as they implement an41

IP stack. Our solution provides discovery mechanism, security via AES encryption and two different42

channels in order to address the difference between configuration messages and data messages.43

This paper is divided in four sections. The first one will present a state of the art about existing44

smart homes and their architectures. The second part will cover the technological breakthroughs that45

the embedded computing has experienced since the creation of the first Smart Homes. Then, the46

proposed solution will be explained and some tests on the messaging protocol will be presented in47

the third section. Finally, a conclusion and some future works will end this paper.48

2. Existing architectures49

Many smart habitations have been implemented in laboratories since the creation of the ambient50

intelligence [1,3,11,12]. Each of these projects use the technology of its day to create a testing51

environment in which the data accessibility was the main challenge. Here, we depict three of those52

starting with the LIARA and DOMUS, which share the same architecture [12]. We continue this53

review with the Gator Tech house [3] and CASAS [1]. Finally, we end this part by describing Software54

Defined Smart Home [13,14], a recently released architecture based on software defined networks.55

2.1. LIARA and DOMUS56

LIARA and DOMUS laboratories aim to study how smart homes can assist people with cognitive57

deficiencies. They both created a very similar architecture, represented in Figure 1, to test their58

algorithms and solutions [15]. Inherited from the industry, they use some islands, made of industrial59

grade hardware, to agglomerate transducers. Then, an automate is in charge of getting back, from60

the islands, the values of the sensors or changing the values of the effectors. To end this process,61

the automate will update a relational database hosted on a SQL Server in order to provide a simple62

interface for other systems like, in this case, an artificial intelligence.63

These two smart homes present some interesting features we have to discuss. First, the use of64

industrial grade hardware means that all the components have been tested for a continuous use in65

a far much harder environment than just a house (e.g. production line in a factory). Therefore it66

demonstrates an excellent reliability even if the smart home has to operate at all times. The second67

main advantage of these environments comes from the highly centralized architecture itself. Indeed,68

all the values coming from sensors and all the actuator controls end up in the same database. As a69

result, it facilitates interaction with the home since this kind of storage offers an easy way to retrieve70

sensors values or interact with actuators.71

Nevertheless, industrial material suffers from two main drawbacks. The first one is the72

introduction of black boxes in a research environment. As a matter of fact, the communications73

between all these pieces of hardware often rely on proprietary libraries that can impact future74

evolution. The second main disadvantage is the price of such an architecture. Based on the hardware75

presented by Bouchard et al. and the price of it, we were able to compute the total price of the chain76

Island-Automate-Main Server. With 2000 dollars each island [16], 1500 dollars the automate [16] and77

4000 the server [17], the architecture reaches 13,500 dollars without any transducers or backbone78

structure (e.g. networking, cooling for the server, maintenance). Finally, the highly centralized79

architecture presented here creates many Single Points of Failure (SPoFs) like the automate, the80

Islands and the main server hosting both the AI and the SQL server. So if one of these SPoFs fails,81



Version November 7, 2017 submitted to Sensors 3 of 19

Figure 1. The LIARA and DOMUS architecture.

at least a quarter of the environment and its assistance will fail too. Moreover, these points represent82

some serious bottlenecks in the architecture preventing a real scalability.83

2.2. Gator Tech84

Gator Tech [3] is a project funded in Florida. Its main goal is to prove the feasibility of a low-cost85

smart home where the integration of new transducers will be easy. In order to accomplish that the86

authors present an OSGI [18] based architecture sums up in Figure 2. In this last one, each transducer87

has a simple EEPROM memory containing the driver to communicate with it. Once powered, the88

transducer registers itself by sending its driver to an OSGI service definition. This last one will act89

as an abstraction layer to create basic services that allow the consumption of highly abstracted data90

(e.g. "Sunny" instead of 10 000 lumen for a light sensor) or the combination of basic services to a91

composite service (e.g. create a voice recognition service on all the different microphone services).All92

this architecture allows developers to create applications without any knowledge of the underlying93

communication and with only highly abstracted data which simplify the development.94

This environment has some really good advantages. First of all, the automatic transducer95

registration really helps the scalability of such an environment (e.g. add new sensors or replace96

some of them). Secondly, the high abstraction of the data generates by this system greatly helps97

the application development. For example, it is straightforward to enable the air conditioning when98

the temperature is "Hot.” However, it is more complicated when the decision is only based on the99

microcontroller value since this one depends on the hardware (e.g. the microcontroller itself, the100

temperature sensor or even the analog to digital chips). Finally, the price of such infrastructure is as101

low as possible as every transducer is designed to be the most affordable possible by using Atmega128102

as the main processor unit which is a low-cost platform [19]. Moreover, because every transducer is103

wireless, there is no need of Islands or Automate as in LIARA and Domus homes. Despite all these104

great advantages, the use of OSGI on a unique server create a SPoF which is a big problem in a high105

reliability architecture.106



Version November 7, 2017 submitted to Sensors 4 of 19

Figure 2. The Gator Tech architecture.

2.3. CASAS107

CASAS [1], or the Smart Home in a box, is an infrastructure where the accent was put on the price108

and the ease of installation. Depicted in Figure 3, the architecture is divided in four main elements.109

The first one is the ZigBee mesh which represents all the transducers communicating between them in110

a network where every node relay the information to its neighbors by using the ZigBee protocol. This111

mesh sends events on a Publish/Subscribe (Pub/Sub) messaging service through a ZigBee bridge112

in charge of converting events to higher-level XMPP messages. The messaging service allows other113

applications to easily integrate the infrastructure and use the transducers. By default, there are two114

services which are the Storage and the Intelligence. The first archives all the events occurring in the115

environment by using the Scribe Bridge. As for the intelligence, it is in charge of energy monitoring116

and the discovery and recognition of any activity that can happen in the house.117

CASAS has two main benefits : the price and the ease of installation. For the first, the authors118

present a detailed summary of the cost. They state that their solution cost only 2,765 dollars which119

is really a great achievement. Regarding the ease of installation, they demonstrate it by conducting a120

test on people aged from 21 to 62 and it requires only an hour to set up the whole environment. In121

spit of these qualities, CASAS, as the other architecture, suffer from the existence of many SPoFs like122

the ZigBee bridge or the Application Bridge which can stop the assistance or the Pub/Sub-messaging123

service which is a sensitive component.124

2.4. Software Defined Smart Home125

The works previously described are the old founders of the Smart Home architecture. However,126

some more recent papers exist in this particular domain [13,14]. One of them introduce the idea127

of Software Defined Smart Home or SDSH for short [13]. This concept is a new way to integrate128

heterogeneous smart appliances (e.g. Smart Light, Smart Flowerpot, etc.) in one homogeneous129

platform creating a Smart Home from the chaos of the different hardwares and communication130

protocols implemented by the companies who create these devices. To achieve such a goal, the131

authors propose a three layers architecture derived from software defined networks [20]. First, the132

Smart Devices layer includes all the different kinds of smart hardware in a home (a.k.a. the smart133



Version November 7, 2017 submitted to Sensors 5 of 19

Figure 3. The CASAS architecture.

appliances). Next, the controller layer is a centralized management service locally implemented or134

deployed in the cloud. Its main goal is to hide the implementation details of the hardware layer,135

retrieve and analyze the user demands and manage the whole smart home. Moreover, it is in charge136

of encapsulates information extracted from the smart home and provide them to the last layer : the137

external service layer. This last one uses the smart home resources to provide some smart services138

like home security or medical attention.139

SDSH offers some great features. First of all, as Gator Tech, this architecture offers a strong140

separation between raw sensors and final services via its controller layer. Next, it uses OpenFlow141

[21] as its main protocol which is a well-known protocol widely implemented in software defined142

network. Finally, it uses smart appliances already in the market and standardize the access to their143

data. Unfortunately, the centralized controller depicted as one of the main advantages of this work144

is also a great default because, if it allows to configure the whole Smart Home at the same place,145

it represents a severe single point of failure. To answer this problematic, the authors introduced146

visualization techniques but these one require either an Internet cloud connection (which cannot be147

tolerated in some applications) or a server strong enough to deal with many systems started on the148

same hardware which can be very expensive for a single house.149

2.5. Conclusion on existing architectures150

All these existing architectures have some common points. First the majority of their components151

are transducers. Moreover, according to the Gator Tech and CASAS cases, it seems that embed152

some intelligence and communication abilities in them helps to reduce costs and ease installation153

and scalability. Finally, we have to point out the common problem in all these architectures: the154

centralization. This weakness creates single points of failure which can lead to a complete stop of the155

assistance. In corporate computing and Web domains, this particular issue has been solved ten years156

ago by using redundancy, clusters and distributed computing [22–25].157

The ideal architecture appears to be composed of many smart transducers easing the scalability158

of such architecture. This specific attribute bring our environment closer to another computer science159

domain which is the Internet of Things (IoT). In this last one, already used in the Smart Home [26,27],160

a multitude of smart objects communicate in a uniform manner and generates a huge amount of data161

often associate to "Big Data" [28]. In this last case, it is not conceivable to handle the information in a162

centralized way any more, even if we use server clusters. It is more appropriate to use decentralized163



Version November 7, 2017 submitted to Sensors 6 of 19

methods relocating the intelligence as close as possible to the units composing this huge data pool164

[28,29].165

3. Technological breakthroughs166

The transducers (i.e. sensors and actuators) are the essential basis of every Smart Home167

architecture. CASAS and Gator Tech case studies proved that embed intelligence and communication168

in these entities allow to reduce costs while improving the ease of implementation and the scalability.169

In this part, we are going to study the concept of a smart transducer such as designed by the170

standards. Then, we will review some hardware evolution realized since the creation of the first171

Smart Homes.172

A smart transducer is clearly defined in the IEEE 1451.2 standard [30]. To sum up, it is an entity173

providing more features than the one’s mandatory to generate a good representation of the controlled174

quantity. Some of these attributes can be sensor identification, a process to simplify the installation or175

the maintenance, network interfaces or the coordination and synchronization with other entities [31].176

In order to guide the community, Lewis [31] proposed three objectives for these transducers. The first177

one is to move the intelligence closest to the sensing point. The second one is to make the installation178

easier, and the maintenance of massive distributed sensor networks less expensive. The last one is to179

facilitate the interfacing of many different sensors. Now that the concept of a smart transducer is well180

defined, we can work at the different technological breakthroughs that occur during the last ten years181

and allow us to finally design and build inexpensive smart sensors for the smart environments.182

Many prototypes of smart environment have emerged during the last decade (e.g. Gator Tech in183

2005 or LIARA/DOMUS in 2009 [3,12]. They have been built on top of existing technologies, which184

for the most part are anterior to great innovations made recently. One of these is the apparition and185

especially the democratization of System on Chip (SoC) which are full systems integrated on a single186

substrate providing all the elements to run an application (e.g. processor, memory, radio). The SoCs187

are the cutting edge of the modern electronic and can be found everywhere from smart sensors to188

nano-computers and drive the price and power consumption reduction in all the modern devices189

[32].190

To illustrate the growth in power and integration, we propose to make a quick comparison191

between two microcontrollers platforms and some nano computers. The first two are the Arduino192

USB, easily accessible at the time of the creation of the first smart homes, and the latest released193

ESP 32 from the Espressif company. Concerning the nano computers, we chose the evolution of194

the Raspberry Pi since its creation. The attributes we compare are the released year, the processor195

frequency, the memory available, the connectivity, the relative size and the price. Tables 1 and 2196

both represents the different values for the attributes retain respectively for the micro controllers and197

the Raspberry Pi. The first thing that jump out from these tables is the increase in both processor198

frequency and memory with 16 MHz and 1 kB of RAM for the Arduino USB to a dual core 240 MHz199

with 512 kB of RAM for the ESP 32. And the phenomenon is the same for the different Raspberry Pi200

with 700 MHz and 512 MB of RAM for the Pi1 to 1 GHz and the same amount of memory but with201

half the size of the Pi Zero W and four cores at 1.2GHz with 1 GB of RAM for the Pi3 but with the202

same form factor. Moreover, it is pretty obvious that the embedded connectivity became a must in203

this period with the integration of Wi-Fi and both Bluetooth and BLE on the ESP 32 and Wi-Fi/BLE204

for the Pi Zero W and Pi3. Finally, it must be noted that the price of these platform stay the same of205

decrease drastically even if the platforms increase in power and connectivity.206

Technological evolution since the beginning of the 2000s was impressive. The democratization207

of the SoC permits an increase of power for such piece of hardware while reducing costs and power208

consumption. In parallel, SoC integrate much more advanced features like Wi-Fi and Bluetooth209

communication. Subsequently, it seems now possible to create powerful applications on embedded210

hardware and one of these applications is the creation of more intelligent transducers as depicted in211

the IEEE 1451 standard.212



Version November 7, 2017 submitted to Sensors 7 of 19

Table 1. Arduino USB and ESP 32 comparison

Arduino USB ESP32 Thing
Released Year 2005 2016

Processor Frequency 16 MHz 2 x 240 Mhz
Memory 1 kB 512 kB

Connectivity None Bluetooth + BLE and WiFi
Relative size 1 0.5
Price (USD) 35 7

Table 2. Raspberry Pi platform over time

Pi 1 Pi Zero W Pi 3
Released Year 2012 2017 2016

Processor Frequency 700MHz 1 GHz 4 x 1.2GHz
Memory 512 MB 512 MB 1 GB

Connectivity None BLE/WiFi BLE/WiFi
Relative size 1 0.5 1
Price (USD) 35 9 35

4. Proposed solution213

We saw that existing smart homes had some weaknesses in both reliability and scalability. Yet214

these kinds of weak points are not bearable in the assistance domain. Here, we propose a new kind215

of architecture using the latest technological advances to provide a reliable and scalable distributed216

environment to safely run the assistance.217

The main concept behind our solution is that the only non-removable elements of a smart218

environment are the transducers themselves. And if we think about it, they represent a vast number219

of distributed entities. With the latest hardware innovations it is feasible to equip each of them with220

an intelligent entity with both communication and processing capabilities creating a huge network221

with highly distributed computation potential and no single point of failure. In this vision, the222

generic smart entities have to answer the three main objectives firstly formulated by Lewis [31]. It223

means that they must allow to move the artificial intelligence to the closest sensing point, provide224

methods to easily install, configure and maintain this smart network and finally ease the interfacing225

between many different sensors. The first issue that such an architecture has to deal with is the226

difference between all the intelligent entities we can use. Indeed, if we want our solution to be227

the most generic possible we have to cope with the most different hardware and operating systems.228

Thus, we want to make feasible the integration of sensors based on different operating systems (e.g.229

Linux or FreeRTOS) implemented on different hardware but also to be able to interface different230

communication protocols (e.g. ZigBee, Wi-Fi or BLE). In order to answer this problem, we had to231

think of a new way to communicate between all these entities.232

4.1. Communication protocol233

There are many ways to communicate by using messages in the literature or industry. As far234

as we know the most popular ones are MQTT, RabbitMQ and ZeroMQ [8,9,33]. The first of them is235

mainly used in the Internet of Thing application by its high portability and its reduce footprint in236

terms of memory and power. It’s a publish/subscribe protocol where clients connect to a centralized237

instance named broker. It supports different type of quality of service which affects the reliability238

of communication (message is delivered at most once, at least once or exactly once). Finally, it can239

support a “Last will and testament” (LWT) which allows to send a specific message on a specific240

subject when the entity disconnect in an abnormal way from the network. RabbitMQ, on the other241

hand, is a leading messaging protocol mainly use in distributed architectures. It implements the242



Version November 7, 2017 submitted to Sensors 8 of 19

Advanced Message Queuing Protocol (AMQP) and consequently has a broker architecture which243

provides ease of development in favor of scalability and speed since the broker adds latency and244

treatment and the message exchanged are pretty big. Finally, ZeroMQ is a messaging system which245

allows developers to create themselves the architecture including brokerless ones. The main problem246

with this approach is the portability since ZeroMQ relies on POSIX sockets which are only supported247

in Unix and Windows operating systems. To conclude, none of the leading messaging protocol fit in248

our application since we want one without a centralized unit like a broker and heavily portable in249

order to deal with the most part of the possible entities in a Smart Home which can be composed of250

embedded systems running on top of different Real Time Operating Systems (RTOS) like FreeRTOS251

or RiotOS.252

The contribution we make in this paper is a new communication protocol with two main253

characteristics. First, it can be embedded on any device from computers to microcontrollers as long254

as they implement an IP stack (over Wi-Fi, 6LowPan or ZigBee IP). Second, our protocol does not255

have the need for any main server also known as a broker. This last point was an issue in the most256

popular solutions (e.g. MQTT, NATS, etc.). To build our solution, we made two basic assumptions.257

The first one is that all our messages will stay in the smart home network. The second is that UDP is258

the minimum requirement for any device that wants to communicate over a network as it is the base259

of many network configuration protocols (e.g. DHCP or DNS).260

One of the first issues we ran into is the fundamental difference between configuration and261

data streams. The first one has to be based on a reliable delivery system allowing point to point262

communication without the urge of the highest data speed. The second one, have to be able to stream263

a huge quantity of information in a minimum of time without the highest reliability to many different264

listeners. In order to answer this problematic, we propose to use two different channels like the FTP265

protocol [34]. We will now explain how these two channels work in order to offer all the features we266

want.267

4.1.1. Configuration channel268

269

As said sooner, the configuration of a smart entity has to be distributed over a reliable270

communication. In order to achieve this objective, we propose to use CoAP, a well-known IoT271

protocol, already implemented in many platforms [35]. It allows us to use HTTP-like request to get272

or change values represented by URI in a fail-safe manner based on an acknowledgment system for273

important messages (i.e. messages with high reliability). We propose to use this URI representation274

for the entity configuration. In order to facilitate the understanding of such a concept, we present a275

simple example in Table 3. In this table, each line represents a possible configuration variable with276

its CoAP URI, the methods allowed in order to get or set the information and the type of data that277

is asked by the entity. The first one is pretty obvious and represents the update frequency used by278

a potential sensor. It is a simple integer, represents by the URI /rate and that can be obtained or279

modified by using respectively GET or POST request. The usage of a HTTP-like protocol allows us280

to define read-only values like the version which is a string that is only reachable via a GET request281

on the /version URI. Moreover, we can exchange much more complex data types like JSON to clearly282

define hardware configurations and interaction. Another interesting feature of CoAP that we use283

in our configuration sample is the block-wise extension of the protocol that permit the transfer of284

large binary file like updates for the embedded software. Finally, the last feature of CoAP we use285

in this configuration channel is the ability to encrypt the communication by the usage of DTLS. To286

demonstrate the utility of such a feature we propose to change symmetric encryption keys on the287

device. This kind of operation is critical since it has to be highly secured in order to guarantee the fact288

that nobody can intercept these keys to listen and speak over a secure network. With our method, we289

simply exchange keys by using CoAP protected by SSL which guarantees both confidentiality and290



Version November 7, 2017 submitted to Sensors 9 of 19

Table 3. A configuration example based on CoAP

URI Methods allowed Data type
Update rate /rate GET/POST Integer

Version /version GET String
Hardware /hardware GET/POST JSON

Update /update POST Binary
Encryption key /keys POST Binary

authentication. Now that the configuration channel operation is explained, we can think about how291

to exchange information through the data channel.292

4.1.2. Data channel293

294

In addition to a reliable communication channel to ensure the good configuration of any295

device, we have to provide a method to exchange data messages between the smart entities in our296

architecture. We want to be able to transfer huge data in a minimal amount of time, to discover smart297

sensors connected to the network and to give the ability to encrypt sensitive information. To attain298

these aims, we propose a simple publish/subscribe messaging protocol based on UDP multicast299

chosen for its ability to transfer to one or many listeners at once in addition to its low-latency. To300

sum up the protocol work-flow, users join the multicast group, they register to any topic, represented301

by a simple character string, and will receive any messages labeled by this topic. They may also ask302

for any sensors connected to the network group by sending a discovery packet with a request in it303

(e.g. sensors with service "temperature") and those sensors will answer with their IP address and the304

different topics they expose. We are now going to explain the three different modes of our messaging305

protocol which are data, discovery and encrypted data.306

4.1.3. Data message307

308

Figure 4a represents a single and unencrypted data message in our solution. Every packet begins309

with an options byte, divided in two parts. The first three most significant bits (MSB) compose the310

version number of this packet and is all set to 0 for the version we present here. The other bits311

are reserved and unused except for the two least significant bits (LSB) who represent flags used in312

discovery and encrypted mode and have to be set to 0. These options are followed by the topic length313

which can go from 1 to 255 characters encoded on a single byte. Any message without topic has to314

be considered as an error and forget. Next come the topic with a variable length defined previously315

followed by the data length encoded on two bytes (the protocol tolerate empty data packages) and316

the data associated. Finally, a checksum is computed with the whole packet by using the CRC-32317

algorithm already used in the Ethernet frame which is a fast and lightweight hash algorithm. It has318

to be noted that the maximum size of one packet is limited by the theoretical limit of UDP which is319

65,535 bytes. When a client receives a packet, the first operation he has to do with it is the checksum320

validation. If this fails, the packet has to be dropped as the protocol does not have any mechanisms321

to send the packet again. Otherwise, the packet can be split by using the different sizes and the data322

and topic can be easily read.323

4.1.4. Discovery message324

325

A really interesting feature we have to provide is a mechanism to discover entities in the network.326

To achieve this, each of them can register custom key-value pairs in addition to any readable (i.e.327

allowing GET method) configuration values that will be exposed to any discovery request. Figure 4b328



Version November 7, 2017 submitted to Sensors 10 of 19

Figure 4. Representation of the three packets present in our protocol.



Version November 7, 2017 submitted to Sensors 11 of 19

Table 4. An example of the discovery decision process

Key Requested Exposed Conclusion
version "1.0.1" "1.0.1" OK
name "temp2" "temp32" NOK
units "C" ["C", "F"] OK
units "K" ["C", "F"] NOK
units ["C", "F"] "C" OK
units ["C", "F"] "K" NOK
units ["C", "F"] ["C", "K"] OK
units ["C", "F"] ["K", "R"] NOK

represents a single discovery packet. As the data packet, the options come first. The only difference is329

the LSB of this particular byte which is set to 1 representing a discovery packet. Next come the length330

of the data containing the request, a simple key-value data structure represented in JSON format.331

For security reasons, data has to be set in order to limit the number of answers. Consequently, any332

discovery packets with a zero-length data have to be ignored and consider as an error. When the333

frame is received, receivers will have to decide if they have to answer or not. To achieve this, they334

check every key in the request if they do not have one of them they can drop the packet they must335

not answer. Regarding the associated values, two cases are possible : either the key contains a single336

value or an array of values. Consequently, four situations can occur depending on the combination of337

two different data type on the receiver and the sender. Examples of each case are presented in Table338

4. The first case shown here is when both requested and exposed are single value. In this case, the339

two values have to be exactly the same as presented in the first two lines of the table. Next, come the340

case where one has an array and the other a single value here, the single value has to be in the array341

like in the lines 3 to 6 in the Table 4. Finally, when both have arrays as values, at least one value in the342

requested array has to be present in the exposed one.343

4.1.5. Encrypted data message344

345

As we deal with sensitive information inside a smart environment, our protocol has to provide346

an easy way to secure the communications. We adapt a well-known secure chat found in the Telegram347

[36] application to achieve this goal.348

The encryption process starts by adding random padding to the message. Indeed, Advanced349

Encryption Standard (AES), the encryption algorithm we use, is a block cipher so our data have to350

be a multiple of the block size Bs. The number of random bytes Ps we have to add is defined by351

the formula 1. We always add Bs bytes in order to always put some randomness in the original352

message then, we add enough bytes to be a multiple of Bs (16 in the case of AES). In formula 1 we353

use DataLength + 2 because the last step in the packet preparation is the prepending of the data size354

a two-byte long number.355

Ps = Bs + (Bs − (DataLength + 2)%Bs) (1)

When the packet is ready to be encrypted, we create the message key used to generate the AES356

key and IV by computing the SHA1 of the packet to encrypt. This hash is given to a Key Derivation357

Function (KDF) with the Secret Key preconfigured by using the configuration channel. The KDF358

presented in algorithm 1 is a sequence of different SHA1 hash and will result in two values, the359

128-bit AES Key and AES IV used to encrypt the packet with AES. Next, in order to identify the secret360

key used to encrypt, we compute a unique fingerprint of it by using the Base64 representation of the361

key SHA256. Finally, the hash message authentication code (HMAC) is computed by using the secret362

key with the SHA1 hashing algorithm.363



Version November 7, 2017 submitted to Sensors 12 of 19

Figure 5. The encryption process.

Data: secret_key[16], msg_key[20]
Result: aes_key[16], aes_iv[16]
sha1_a = sha1(msg_key + secret_key[0...3]);
sha1_b = sha1(secret_key[4...5] + msg_key + secret_key[6...7]);
sha1_c = sha1(secret_key[8...11] + msg_key);
sha1_d = sha1(msg_key + secret_key[12...15]);
aes_key = sha1_a[0...3] + sha1_b[0...7] + sha1_c[4...7];
aes_iv = sha1_a[12...15] + sha1_b[12...19] + sha1_d[0...3];

Algorithm 1: The Key Derivation Function



Version November 7, 2017 submitted to Sensors 13 of 19

Figure 6. The decryption process.

In order to decrypt an encrypted packet (identified by a 1 at position 1 in the option byte of the364

header) the receiver has to do some operations sum up in Figure 6. The first task to accomplish is to365

verify the HMAC to ensure the authentication and the integrity of the packet. To accomplish this, we366

first have to retrieve the preconfigured secret key used to encrypt identified by its fingerprint. Next,367

we can compute the HMAC of the packet (without the sender HMAC) and check for equality. If368

the two hash message authentication codes are different, the packet must be dropped otherwise, the369

decryption process can begin. First, we have to reconstruct the AES key and IV used to encrypt the370

message by passing the preconfigured secret key and the message key received in the KDF algorithm371

presented earlier. Next, we can use AES 128 algorithm in decrypt mode with the generated key and372

IV to finally decrypt the whole message. The final step is to remove the padding bytes which can be373

easily done with the message size store in the first two bytes.374

4.2. Tests and discussion375

In order to validate the proposed protocol, we have made three tests on it. The first one is about376

bandwidth and try to maximize the number of messages per second exchanged to demonstrate the377

speed of our protocol. The second one answers a question about the UDP protocol. Indeed, UDP does378

not provide safety mechanisms about lost, corrupted or disordered network packet. Consequently we379

decide to show the number of packets we did not receive because of this lack. Finally, we want to380

demonstrate the fact that even with the same message and secret key, our encrypted packet is always381

totally different in order to prevent semantic attack since our Initialization Vector is not randomly382

generated. To accomplish that, we will compute a similarity measure between encrypted packets383

containing the same message with the same encryption key. The hardware used in our tests was a384

laptop (MSI GT62VR), a Raspberry Pi 3 and a Raspberry Pi Zero W. The first one was connected to a385

Gigabit wireless router (LinkSys WRT1900AC) through its Gigabit wired and wireless (AC Wi-Fi) card386

and the other ones over a simple Wi-Fi connection. Concerning the implementation of our solution,387

we used C++ with the libraries Boost ASIO (for the network) and Crypto++ (for the encryption388

algorithms).389

In order to test the bandwidth capabilities of our protocol, we first generate 9 random messages390

with different sizes from 16 bytes to 60 kibibytes (kiB). Then, we bound a listening process on the391

wired network card on the laptop in order to monitor the packets transiting through the network392

while we use wireless connections to send 20 000 packets for each different sizes with 10 000 encrypted393

and another 10 000 not. Results from this test are summed up in Figures 7 to 9 where the upper plot394



Version November 7, 2017 submitted to Sensors 14 of 19

represents the messages per second (Msg/s) and the lower one the data rate in mebibytes per second395

(MiB/s) transmitted by our protocol both depending on the message size. Figure 7, 8, 9 respectively396

show the laptop, Raspberry Pi 3 and Raspberry Pi Zero W results. The first thing we can note is the397

important drop in both data rates and message per second occurring for packet larger than 2kiB on398

every platform and for both encrypted and non-encrypted messages. With respectively 10.9, 13.1, 3.8,399

4.6, 2.2 and 2.78 times fewer messages sent depending on the platform and encryption, our solution400

seems to present a limit concerning high-frequency large messages (greater than 1000 per second). We401

investigate the reason for such a decreasing in performances and it seems to be fragmented Ethernet402

packets that appear when the length of the transported data is greater than the maximum data size403

of an Ethernet packet which is 1522 bytes. The second observation is pretty obvious and is the fact404

that message rate and data rate decreased when using encryption. This is due to the computation405

of different cryptographic algorithms like AES or SHA but we can say that for a packet under the406

2kiB limit the encryption process does not impact too much our protocol. Finally, we can say that our407

protocol does not overload the Raspberry Pi Zero W, the smallest platform, since both encrypted and408

clear tests give nearly the same results in terms of data rates which can be explained by a fully used409

network adapter.410

Figure 7. Bandwidth results in terms of Msg/s and MiB/s for 10,000 send on the laptop of an
increasing message size in both encrypted and clear mode



Version November 7, 2017 submitted to Sensors 15 of 19

Figure 8. Bandwidth results in terms of Msg/s and MiB/s for 10,000 send on the Raspberry Pi 3 of an
increasing message size in both encrypted and clear mode

Figure 9. Bandwidth results in terms of Msg/s and MiB/s for 10,000 send on the Raspberry Pi Zero
W of an increasing message size in both encrypted and clear mode



Version November 7, 2017 submitted to Sensors 16 of 19

UDP is a protocol without any reliability mechanisms. It means that packets can be lost or411

corrupt and the protocol does not support any means to retrieve this packet unlike TCP. As our work412

is based on UDP and does not provide such mechanisms either, we wanted to show and quantify413

the risk of data loss. To do so, we create 10 000 messages of 1kiB composed by a two-bytes long414

sequence number and some random padding. While the wired interface on the laptop monitor the415

packet arrival (order, corruption using the embedded checksum or loss) the wireless connections416

send 10 000 packets in order. The results of this test are summed up in Table 5 where each line417

represents a different platform (laptop, raspberry Pi 3 and raspberry Pi zero W) and the three columns418

are respectively the number of lost packet, corrupted ones and finally the number of sequencing419

problems. As we can see, on the same network, we did not lose or receive corrupted packets but we420

had some problem in the sequence (2 for the laptop and Raspberry Pi 3 and 3 for the Raspberry Pi421

Zero W). That means that over 10 000 messages only 2 or 3 arrive before the previous one a result that422

tends to prove the relative reliability of our protocol even if we use UDP as our transport protocol.423

Table 5. Number of lost, corrupted or misplaced packets over 10,000 send of a 1kiB message

Sender Packets lost Packets corrupted Sequence problem
Laptop 0 0 2

Pi 3 0 0 2
Pi Zero W 0 0 3

The last test we did is a similarity test. Indeed, while we ensure the confidentiality of the data in424

encrypted mode, we did not randomly generated our Initialization Vector (IV) for the AES encryption.425

Instead, we use an algorithm (KDF described in algorithm 1) to be able to compute the IV based on426

information found in the encrypted packet and the secret key. And yet, the randomization of this IV427

guarantees the semantic security of AES. Consequently we wanted to know if our algorithm using428

random padding bytes is random enough to ensure a non-similarity between encrypted packets with429

the same secret key and containing the same data. To validate this point, we compute the Euclidian430

distance between 1000 secured packets containing the same 1kiB message of random data. The results431

of this test are summed up in table 6. In this last one, the first line represents the maximum distance432

we can obtain by having one packet with all bytes set to 0 and the other 255 this maximum distance433

will be used as a reference to compute the percentage of difference between packets. Next comes the434

mean distance computed on all the packets, with a value of 3458.79, together with a maximum of435

3775.54 and a minimum of 3175.23, we can say that our algorithm guarantee a relative non-similarity436

between those packets. Finally, we report the mean difference percentage of 42.39% in the last line437

of the results table. This means that for the exact same packet encrypted with our algorithm we438

generate encrypted packets that are on average 42.39% different. Consequently, we can say that our439

encryption process, even if it does not use a full random one, compute sufficiently different IV for the440

same packet in order to protect it from semantic and similarity attacks.441

Table 6. Distance between 1000 packets containing the same message of 1kiB on the same topic and
encrypted with the same encryption key

Variable Value
Maximum theoretical distance 8160

Mean distance 3458.79
Maximum distance 3775.54
Minimum distance 3175.23

Mean difference percentage 42.39%

In conclusion, we can say that our tests were divided in three. The first one was to compute the442

speed capabilities of our protocol. In this case the results demonstrate that for data under 2kiB we443



Version November 7, 2017 submitted to Sensors 17 of 19

assure a very high speed with nearly a thousand messages per second on the lightest platform we444

executed the test on. Another conclusion that we made thanks to this test is the relative low-impact445

of the encryption even on light platform. The second test was realized to ensure the reliability of446

UDP multicast on a single network. Indeed, this communication protocol does not provide reliability447

insurance mechanisms and we wanted to put a number on the risks inherent in its usage. With 0448

packet lost or corrupted and a maximum of 3 order problems over 10 000 messages sent we can safely449

say that even if we use UDP as our base communication protocol, our method seems to be reliable450

enough for data streaming inside a Smart Home. Finally, the last test we executed was to compute451

the similarity between secured packets containing the same message and encrypted with the exact452

same secret key. Indeed as our Initialization Vector is computed instead of randomly generated we453

had to prove that the semantic security of AES is guaranteed. Our results show that our algorithm to454

derive the AES key and IV from the message itself and the secret pre-shard key is random enough to455

an average of 42.39% difference between 1000 encrypted packets containing the same data.456

5. Conclusions and future works457

In this paper, we introduced a new distributed way to communicate between smart entities458

distributed in an environment. Unlike MQTT or RabitMQ, well-known protocols, we don’t need459

to have a centralized broker instance and unlike ZMQ, a well-known framework to implement460

messaging protocols, we don’t rely on POSIX sockets which are hard to embed on tiny devices461

without a Linux or Windows operating system. Our protocol, like FTP, relies on two channels. The462

first one is for the configuration of every entity in the network and is based on COAP, a well-known463

protocol in the field of the Internet of Thing, for its reliability. The other one is a data channel, based464

on multicast messages with a protocol entirely define in this paper. This last one permits to send465

discovery requests to the network as well as messages encrypted or not. For the encrypted way, we466

adapt the Telegram protocol a well-known secure instant messaging protocol in order to work on tiny467

devices and provide an easy authentication with a HMAC.468

In this paper, we realized three different tests to ensure our capabilities in terms of speed,469

reliability and security. In the light of the results, we can say that for data under 2kiB we ensure470

a very high speed with nearly a thousand messages per second on the lightest platform we executed471

the test on. Moreover, with no packet lost or corrupted and a maximum of 3 order problems over472

10 000 messages sent we can safely say that our method seems reliable enough for data streaming.473

Finally, our results show that our algorithm to derive the AES key and IV from the message itself and474

the secret pre-shard key is random enough to generate an average of 42.39% difference between 1000475

encrypted packets containing the same data ensuring the security against semantic attacks.476

Ultimately, we can say that our protocol with its two channels allows to make a difference477

between configuration values which need a high reliability but won’t be changing every millisecond478

and data values or streaming which need higher data rates but less reliability. Moreover, our protocol479

support a native encryption mode which provides security for sensitive information we can easily480

find in a Smart Home. In addition, we designed our innovation to be both brokerless, which is481

the main difference between many existing messaging protocol, and easily portable as it only relies482

on UDP, a communication protocol found in every network applications. Lastly, as a future work,483

we want to realize more tests including tests on embedded environment, like a Real Time OS on a484

microcontroller and tests with a lot more entities in the network.485

Abbreviations486

The following abbreviations are used in this manuscript:487

AES: Advanced Encryption Standard488

AI : Artificial Intelligence489

Amb. I: Ambiant Intelligence490



Version November 7, 2017 submitted to Sensors 18 of 19

AMQP: Advanced Message Queuing Protocol491

BLE: Bluetooth Low-Energy492

CoAP : Constrained Application Protocol493

CRC: Cyclic Redundancy Check494

EEPROM : Electrically Erasable Programmable Read-Only Memory495

GHz: gigahertz496

HMAC : keyed-Hash Message Authentication Code497

HTTP: Hypertext Transfer Protocol498

IEEE: Institute of Electrical and Electronics Engineers499

IoT: Internet of Things500

IV: Initialization Vector501

KDF : Key Derivation Function502

LNCF: Lght Node Communication Framework503

LIARA: Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités504

LSB : Least Significant Bit505

LWT: Last Will Testament506

kB: kilobyte507

kiB: kibibyte508

kiB/s: kibibyte/second509

MHz: megahertz510

MiB: mebibyte511

MiB/s: mebibyte/second512

MSB : Most Significant Bit513

Msg/s: messages/seconds514

OSGI: Open Service Gateway Initiative515

RAM: Random Access Memory516

RTOS : Real Time Operating System517

SDSH: Software Defined Smart Home518

SHA: Secure Hash Algorithms519

SoC: System on Chip520

SPoF: Single Point of Failure521

UDP: User Datagram Protocol522

XMPP : eXtensible Messaging and Presence Protocol523

ZMQ : ZeroMQ524

525

Author Contributions: All the authors contributed equally to this work.526

Conflicts of Interest: The authors declare no conflict of interest.527

Bibliography528

1. Cook, D.J.; Crandall, A.S.; Thomas, B.L.; C., K.N. CASAS: A Smart Home in a Box 2012. 100, 130–134.529

2. Ghayvat, H.; Mukhopadhyay, S.; Gui, X.; Suryadevara, N. WSN- and IOT-based smart homes and their530

extension to smart buildings. Sensors (Switzerland) 2015, 15, 10350–10379.531

3. King, J.; Jansen, E. The Gator Tech Smart House. Computer 2005, 38, 50–60.532

4. Patterson, D.J.; Liao, L.; Fox, D.; Kautz, H. Inferring High-Level Behavior from Low-Level Sensors.533

International Conference on Ubiquitous Computing, 2003.534

5. Augusto, J.C.; Nugent, C.D. Designing smart homes: the role of artificial intelligence; Vol. 4008, Springer, 2006.535

6. Roy, P.C.; Bouchard, B.; Bouzouane, A.; Giroux, S. Ambient Activity Recognition in Smart Environments536

for Cognitive Assistance. International Journal of Robotics Applications and Technologies 2013, 1, 29–56.537

7. United Nations.; Department of Economic and Social Affairs.; Population Division. World Population538

Ageing 2015. Technical report, 2015.539



Version November 7, 2017 submitted to Sensors 19 of 19

8. Hunkeler, U.; Truong, H. MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks. systems540

software and . . . 2008.541

9. Videla, A.; Williams, J. RabbitMQ in action: distributed messaging for everyone 2012.542

10. Zeromq, 2016.543

11. Cook, D.J.; Youngblood, M.; Heierman, E.; Gopalratnam, K.; Rao, S.; Litvin, A.; Khawaja, F. MavHome:544

an agent-based smart home. Proceedings of the First IEEE International Conference on Pervasive Computing545

and Communications, 2003. (PerCom 2003). 2003, pp. 521–524.546

12. Giroux, S.; Leblanc, T.; Bouzouane, A.; Bouchard, B.; Pigot, H.; Bauchet, J. The Praxis of Cognitive547

Assistance in Smart Homes. BMI Book 2009, pp. 183–211.548

13. Xu, K.; Wang, X.; Wei, W.; Song, H.; Mao, B. Toward software defined smart home. IEEE Communications549

Magazine 2016, 54, 116–122.550

14. Patel, S.M.; Kanawade, S.Y. Internet of Things Based Smart Home with Intel Edison. Proceedings of551

International Conference on Communication and Networks. Springer, 2017, pp. 385–392.552

15. Bouchard, K.; Bouchard, B.; Bouzouane, A. Guidelines to Efficient Smart Home Design for Rapid AI553

Prototyping: A Case Study. PETRA 2012.554

16. Advantech. Automation Controllers & I/Os, 2016.555

17. Dell. Dell PowerEdge Rack Servers, 2016.556

18. OSGiTM Alliance – The Dynamic Module System for Java, 2016.557

19. Drumea, A.; Popescu, C.; Svasta, P. GSM solutions for low cost embedded systems for industrial control.558

28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics559

Technology Progress, 2005. IEEE, 2005, pp. 240–244.560

20. Li, C.S.; Liao, W. Software defined networks. IEEE Communications Magazine 2013, 51, 113–113.561

21. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.562

OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review563

2008, 38, 69–74.564

22. Chu-Sing, Y.; Mon-Yen, L. Realizing Fault Resilience in Web-Server Cluster. ACM/IEEE SC 2000565

Conference (SC’00). IEEE, 2000, pp. 21–21.566

23. Lu, F.; Parkin, S.; Morgan, G. Load balancing for massively multiplayer online games. Proceedings of567

5th ACM SIGCOMM workshop on Network and system support for games - NetGames ’06; ACM Press:568

New York, New York, USA, 2006; p. 1.569

24. Mon-Yen, L.; Chu-Sing, Y. Constructing zero-loss Web services. Proceedings IEEE INFOCOM 2001.570

Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer571

and Communications Society (Cat. No.01CH37213). IEEE, 2001, Vol. 3, pp. 1781–1790.572

25. Schroeder, T.; Goddard, S.; Ramamurthy, B. Scalable Web server clustering technologies. IEEE Network573

2000, 14, 38–45.574

26. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Computer networks 2010.575

27. Liu, B.; Cao, S.G.; He, W. Distributed data mining for e-business. Information Technology and Management576

2011, 12, 67–79.577

28. Chen, M.; Mao, S.; Liu, Y. Big data: A survey. Mobile Networks and Applications 2014, 19, 171–209.578

29. Hey, A.; Tansley, S.; Tolle, K. The fourth paradigm: data-intensive scientific discovery 2009.579

30. IEEE Standard for a Smart Transducer Interface for Sensors and Actuators, 1998.580

31. Lewis, F. Wireless sensor networks. In Smart Environments: Technology , Protocols, and Applications; 2005;581

chapter 2.582

32. Martin, G.; Zurawski, R.; Philips, C. Trends in embedded systems Opportunities and challenges for583

System-on-Chip and Networked Embedded Systems technologies in industrial automation. ABB Review584

2006, 2.585

33. Hintjens, P. ZeroMQ: messaging for many applications; 2013.586

34. Postel, J. User Datagram Protocol. RFC 1980.587

35. Shelby, Z.; Hartke, K.; Bormann, C. The constrained application protocol (CoAP) 2014.588

36. Telegram. Telegram Protocol, 2013.589

c© 2017 by the authors. Submitted to Sensors for possible open access publication under the terms and conditions590

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/)591

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Existing architectures
	LIARA and DOMUS
	Gator Tech
	CASAS
	Software Defined Smart Home
	Conclusion on existing architectures

	Technological breakthroughs
	Proposed solution
	Communication protocol
	Configuration channel
	Data channel
	Data message
	Discovery message
	Encrypted data message

	Tests and discussion

	Conclusions and future works

