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In this paper we discuss one-dimensional models for two-phase Enhanced Oil Recovery (EOR) floods (oil displacement by

gases, polymers, carbonized water, hot water, etc.). The main result presented here is the splitting of the EOR mathematical model

into thermodynamical and hydrodynamical parts. The introduction of a potential associated with one of the conservation laws and

its use as a new independent coordinate reduces the number of equations by one. The (n)� (n) conservation law model for two-

phase n-component EOR flows in new coordinates is transformed into a reduced (n�1)� (n�1) auxiliary system containing just

thermodynamical variables (equilibrium fractions of components, sorption isotherms) and one lifting equation containing just

hydrodynamical parameters (phase relative permeabilities and viscosities). The algorithm to solve analytically the problem includes

solution of the reduced auxiliary problem, solution of one lifting hyperbolic equation and inversion of the coordinate transfor-

mation. The splitting allows proving the independence of phase transitions occurring during displacement of phase relative

permeabilities and viscosities. For example, the minimum miscibility pressure (MMP) and transitional tie lines are independent of

relative permeabilities and phases viscosities. Relative motion of polymer, surfactant and fresh water slugs depends on sorption

isotherms only. Therefore, MMP for gasflood or minimum fresh water slug size providing isolation of polymer/surfactant from

incompatible formation water for chemical flooding can be calculated from the reduced auxiliary system. Reduction of the number

of equations allows the generation of new analytical models for EOR. The analytical model for displacement of oil by a polymer

slug with water drive is presented.

D 2005 Published by Elsevier B.V.
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UNC1. Introduction

Enhanced Oil Recovery (EOR) methods include

injection of different fluids into reservoirs to improve

oil displacement. Displacement of oil by any of these
39
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fluids involves complex physico-chemical interphase

mass transfer, phase transitions and transport property

changes. These processes can be divided into two main

categories: that of thermodynamics and of hydrody-

namics. They occur simultaneously during the displace-

ment, and are coupled in the modern mathematical

models of EOR.

The mathematical models for two-phase Enhanced

Oil Recovery processes consist of mass conservation
ngineering xx (2005) xxx–xxx
PETROL-01338; No of Pages 14
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for each component closed by thermodynamic relation-

ships of phase equilibria. Thermal EOR models contain

also the energy conservation law. The resulting systems

of conservation laws (Gelfand, 1959; Dafermos, 2000)

are hyperbolic (Logan, 1994). Solutions consist of con-

tinuous simple (rarefaction) waves and stable admissi-

ble shocks (Kulikovskii and Sveshnikova, 1995;

Kulikovskii et al., 2001).

Continuous injection of EOR fluid corresponds to

self-similar Riemann problem for the system of two-

phase multi component flow equations. Injection of

EOR fluid slugs with a water/gas drive results in non-

self-similar problems of hyperbolic wave interactions.

Exact analytical solutions have been obtained for

continuous chemical flooding by one component

(Fayers, 1962; de Nevers, 1964; Claridge and Bondor,

1974; Helfferich, 1980), by two components (Bragins-

kaya and Entov, 1980) and by any arbitrary number of

components (Johansen and Winther, 1989; Johansen et

al., 1989; Dahl et al., 1992). A graphical technique to

solve the (2)� (2) system for two-phase three-compo-

nent gas flooding was developed and several exact

solutions for Riemann problems of continuous gas

injection were obtained by Wachman (1964). Other

solutions for different types of phase diagrams and

boundary conditions related to injection of other fluids

were found using the same technique (Hirasaki, 1981;

Dumore et al., 1984; Lake, 1989).

Semi-analytical solutions for n-component gas

flooding were obtained by numerical combination of

shocks and rarefactions (Johns et al., 1993; Johns and

Orr, 1996; Orr et al., 1995). The reduction of the

continuous gas flood system dimension was devel-

oped through the lifting of the concentration waves

from the system with lower dimension, and the exact

solutions were obtained for the displacement of n-

component ideal mixtures (Bedrikovetsky and Chu-

mak, 1992a,b). These reduction technique and solu-

tions were used for different initial-boundary data

corresponding to different gas floods (Entov and

Voskov, 2000; Entov et al., 2002). Non-self-similar

analytical models for displacement of oil by chemical

and gas/solvent slugs were derived explicitly by Bed-

rikovetsky (1993). The detailed study of these ana-

lytical EOR models can be find in monographs by

Lake (1989), Barenblatt et al. (1991) and Bedriko-

vetsky (1993).

It was observed from semi-analytical and numerical

experiments on the continuous displacement of oil by

gases that several thermodynamic features (MMP, key

tie lines, etc.) are independent of transport properties

(Zick, 1986; Bedrikovetsky and Chumak, 1992a,b; Orr
ED P
ROOF

et al., 1995; Wang and Orr, 1997). The analytical mo-

delling of multicomponent polymer/surfactant flood

also allows observing that the concentration bpathQ of
the solution is completely defined by adsorption iso-

therms and does not depend on relative permeability

and phase viscosities (Johansen and Winther, 1989;

Johansen et al., 1989; Bedrikovetsky, 1993). Neverthe-

less, the independence of thermodynamics and hydro-

dynamics for two-phase multi component flows in

porous media has never been proved.

The model for one-dimensional displacement of oil

by different EOR fluids is analysed in this paper. The

main result is the splitting of thermodynamical and

hydrodynamical parts in the EOR mathematical

model. The introduction of a potential associated with

one of the conservation laws and its use as an indepen-

dent variable reduces the number of equations by one.

The algorithm to solve the problem includes solution of

the reduced auxiliary problem, solution of one lifting

hyperbolic equation and inversion of the coordinate

transformation.

The reduced auxiliary system contains just thermo-

dynamical (equilibrium fractions of each phase, sorp-

tion isotherms) variables and the lifting equation

contains just hydrodynamical (phases relative perme-

abilities and viscosities) parameters while the initial

EOR model contains both thermodynamical and hydro-

dynamical functions. So, the problem of EOR displace-

ment was divided into two independent problems: that

of thermodynamics and that of hydrodynamics. The

number of auxiliary equations is less than the number

of equations in the compositional model by one. Ex-

plicit projection and lifting procedures are derived. The

splitting is valid for either self-similar continuous in-

jection problems or for non-self-similar slug injection

problems.

Therefore, phase transitions occurring during dis-

placement are determined by the auxiliary system, i.e.

they are independent of hydrodynamic properties of

fluids and rock. For example, the minimum miscibility

pressure (MMP) and tie line sequences in displace-

ment zones are independent of relative permeabilities

and phases viscosities. Relative motion of polymer,

surfactant and fresh water/brine slugs depends on

sorption isotherms only. The splitting technique was

used for the development of analytical model for non-

self-similar displacement of oil by polymer slug with

water drive.

Presently the development of 1D analytical models

becomes particularly important in 3D streamline simu-

lation. With respect to 3D flows, the splitting takes

place only for the case of constant total mobility
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(where the stream line concept is valid). For the general

case of the total mobility variation, mixing between

fluids that enter different streamlines occurs, and split-

ting does not happen any more.

In Section 2 we present the splitting method for

different two-phase multicomponent flows in porous

media that correspond to various EOR methods: chem-

ical flooding is given in 2.1, gasflooding is presented

in 2.2, WAG injection is derived in 2.3, carbonised

water flooding in 2.4 and non-isothermal waterflood-

ing is presented in 2.5. The analytical model for 1D

displacement of oil by a polymer slug with water drive

as an illustration of the technique developed is pre-

sented in Section 3. Brief description of various appli-

cations in streamline simulation and laboratory EOR

is shown in Section 4. Summary and conclusions are

presented in Section 5. Proofs of splitting can be found

in Appendixes.

2. Mathematical models of enhanced oil recovery

processes

In this part, several systems of equations that arise in

enhanced oil recovery processes are presented, and the

splitting technique applied.

2.1. Chemical flooding

We consider the linear displacement of oil by an

aqueous solution of n-components (polymer, salts) in

a reservoir of constant permeability and porosity.

The reservoir is initially saturated with oil and

water. The fluid system contains two incompressible

phases (oil and water). There are also n low concen-

tration components dissolved in the aqueous phase, so

the change of concentrations does not affect the aque-

ous phase density. The components can be adsorbed

by the porous rock. The following conditions are

assumed:

! Neglected capillary pressure and diffusion;

! Instantaneous thermodynamics equilibrium;

! Constant pressure and temperature.

Under the conditions of thermodynamic equilibrium,

the concentrations of the components adsorbed (ai) and

dissolved in water (ci) are governed by adsorption

isotherms:

Ya ¼ Ya Yc Þ; Ya ¼ a1; a2; . . . ; anð Þ;ð
Yc ¼ c1; c2; . . . ; cnð Þ ð1Þ
ED P
ROOF

The closed system of governing equations includes the

conservation laws for the aqueous phase volume and for

the mass of each component under equilibrium sorption

conditions. The unknowns in the (n+1)� (n +1) system

are the scalar water saturation function s(xD, tD) and the

vector-valued function Yc (xD, tD):

Bs

BtD
þ Bf s;Ycð Þ

BxD
¼ 0

B Yc sþYa Ycð Þð Þ
BtD

þ BYc f s;Ycð Þ
BxD

¼ 0

ð2Þ

where the following dimensionless coordinates are used:

xD ¼ x

l
; tD ¼ ut

Ul
ð3Þ

where U is porosity.

The fractional flow function is defined as:

f ¼ f s;Ycð Þ ¼ 1þ kro s;Ycð Þlw

lokrw s;Ycð Þ

� ��1

ð4Þ

Initial and boundary conditions for continuous poly-

mer injection correspond to:�
s xD; 0ð Þ ¼ sI

Yc xD; 0ð Þ ¼ 0

s 0; tDð Þ ¼ s J

Yc 0; tDð Þ ¼ Yc J

� ð5Þ

The boundary conditions for the displacement of oil by

a polymer slug with water drive are:

Yc 0; tDð Þ :
Yc J; tDb1

0; tDN1

�
ð6Þ

The conservation law for the aqueous phase allows the

introduction of the following potential:

s ¼ � Bu
BxD

; f ¼ Bu
BtD

ð7Þ

Consider any trajectory xD=xD(tD) that starts at xD=0 at

the moment tD. The potential u(xD, tD) is the water

volume flowing through the trajectory during the period

tD:

u xD; tDð Þ ¼
Z xD;tD

0;0

f dtD � sdxD ð8Þ

and the integral (8) is a function of xD and tD, which is

independent of the trajectory.
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After the following transformation of independent

variables:

H : xD; tDð ÞY xD;uð Þ ð9Þ

system (2) becomes

B

Bu
s

f

�
� B

BxD

1

f

�
¼ 0

��
ð10Þ

BYa Ycð Þ
Bu

þ BYc

BxD
¼ 0 ð11Þ

Derivation of system (11) is presented in Appendix

A. The most important feature of the system (10), (11)

is the independence of the n equations (11) from the

first Eq. (10). The unknowns in the system (11) are ci,

i=1, 2, 3, . . ., n. The hyperbolic Eq. (10) contains the

unknown s(xD,u) and the known vector function
Yc (xD,u), which is the solution of (11).

The system (11) is called the auxiliary system of the

large system (2). It is important to mention that the

system (2) contains thermodynamic functions and

transport properties, while the auxiliary system contains

only thermodynamic functions.

The initial and boundary conditions (5) and (6) allow

the calculation of the potential u where these condi-

tions are set. Integration of the potential Eq. (8), ac-

counting for (5), determines the initial and boundary

conditions for continuous chemical injection in plane

(xD,u):

tD ¼ 0 : u ¼ � sIxD
xD ¼ 0 : u ¼ f JtD

ð12Þ

Then, the initial-boundary conditions (5) become

u ¼ � sIxD

�
s ¼ sI

Yc ¼ 0

u ¼ � f JtD
s ¼ sJ

Yc ¼ Yc J

� ð13Þ

Finally, the boundary conditions (6), for the dis-

placement of oil by a polymer slug with water drive

take the form:

u ¼ f JtD

s ¼ sJ; 8tD
Yc ¼ Yc J; tDb1
Yc ¼ 0; tDN1

8<
: ð14Þ

It is possible to prove that any Cauchy or initial-

boundary value problem for the model (2) can be
ED P
ROOF

projected onto the corresponding Cauchy or initial-

boundary value problem for the auxiliary system.

Consider the trajectory xD=xD(tD) and its image

u =u(tD) by the mapping (9):

u tDð Þ ¼ u xD tDð Þ; tDð Þ ð15Þ

Define the trajectory speeds

D ¼ dxD

dtD

V ¼ dxD

du

ð16Þ

Using xD as a parameter for both curves xD=x(tD) and

u =u(tD) it is possible to obtain

1

V
¼ f

D
� s ð17Þ

from which follows the relationship between elementa-

ry wave speeds in planes (xD, tD) and (xD, u):

D ¼ f

sþ 1=V
ð18Þ

For example, the eigenvalues of the large and aux-

iliary systems for c waves are related by:

Kiþ1 s;Ycð Þ ¼ f

sþ 1=ki
; i ¼ 1; . . . ; n: ð19Þ

2.2. Gas flooding

Consider 1D two-phase multicomponent gas flood-

ing under the following assumptions:

! Neglected capillary pressure and diffusion;

! Instantaneous thermodynamic equilibrium;

! Constant pressure and temperature;

! Equal component individual densities in both

phases.

Thermodynamic equilibrium implies n�2 indepen-

dent phase fractions. We choose components i=2, 3,

. . ., n�1 in gas phase for the vector of independent

phase fractions:

Yg ¼ c2g; c3g; . . . ; c n�1ð Þg
�	

ð20Þ

Under the above mentioned conditions, the total

two-phase flux is conserved, and n mass balances for

n-components are replaced by n�1 volume conserva-
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tion laws for n�1 components:

BCi

BtD
þ BFi

BxD
¼ 0

xD ¼ x

l
; tD ¼ ut

Ul

ð21Þ

where the overall i-th component fraction and flux are

Ci � cilS þ cig 1� Sð Þ ð22Þ

Fi ¼ cilf þ cig 1� fð Þ ð23Þ

Here f is the fractional flow of liquid:

f S;Ygð Þ ¼ krl S;Ygð Þ=ll
Ygð Þ

krl S;Ygð Þ=ll
Ygð Þþkrg S;Ygð Þ=lg

Ygð Þ ð24Þ

Initial and boundary conditions for continuous gas

injection correspond to given compositions of injected

gas and displaced oil:

Ci xD; 0ð Þ ¼ CI
i

Ci 0; tDð Þ ¼ CJ
i

ð25Þ

The boundary conditions for the displacement of oil

by solvent slug with lean gas drive are:

Ci 0; tDð Þ : CJ
i ; tDb1

CD
i ; tDN1

�
ð26Þ

where Ci
D is the composition of gas driving the solvent

slug.

At this point we introduce new variables:

ai Ygð Þ ¼ cil � cig

cnl � cng
; i ¼ 2; 3; . . . n� 1 ð27Þ

bi
Ygð Þ ¼ cig � aicng; i ¼ 2; 3; . . . n� 1 ð28Þ

Fig. 1 shows the geometrical meaning of ai and bi.

Vertices 1, 2, . . ., n correspond to pure components in

phase diagram. Tie line GL connects equilibrium phase

compositions, GiLi is the tie line projection on the

plane (Ci, Cn). The slope of the straight line GiLi is

equal to ai, the intersection of GiLi with the axes Ci is

equal to bi.

System (21) takes the form:

BC

BtD
þ

BF C;
Yb


 �
BxD

¼ 0

B Ya Yb

 �

C þYb

 �

BtD
þ

B Ya Yb

 �

F þYb

 �

BxD
¼ 0

ð29Þ
ED P
RO

In system (29), C is equal to Cn, the overall volumetric

fraction of n-th component, and F is equal to Fn, the

overall volumetric fractional flow of n-th component.

The unknowns in system (29) of n�1 equations are

C and bi, i =2, 3, . . ., n�1.

After the introduction of variables (27) and (28), the

initial and boundary conditions (25) for continuous gas

injection become

C xD; 0ð Þ ¼ CI
n

bi xD; 0ð Þ ¼ bi
Yg Ið Þ ð30Þ

C 0; tDð Þ ¼ CJ
n

bi 0; tDð Þ ¼ bi
Yg Jð Þ ð31Þ

For displacement of oil by a rich gas slug with lean

gas drive, the boundary conditions (26) take the form

C 0; tDð Þ :
�
CJ
n; tDb1

CD
n ; tDN1

bi 0; tDð Þ : bi
Yg Jð Þ; tDb1

bi
Yg Dð Þ; tDN1

� ð32Þ

The conservation law form of the first Eq. (29)

allows the introduction of the following potential:

c ¼ � Bu
BxD

;F ¼ Bu
BtD

ð33Þ

The potential u(xD, tD) is equal to the n-th compo-

nent volume flowing via a trajectory connecting points

(0, 0) and (xD, tD):

u xD; tDð Þ ¼
Z xD;tD

0;0

FdtD � CdxD ð34Þ
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and the integral (34) is a function of xD and tD, and is

independent of the trajectory.

Let us introduce the variable

w ¼ xD � tD ð35Þ

From the incompressibility of the total flux follows

that w(xD, tD) is equal to the overall mixture volume

flowing via a trajectory connecting points (0, 0) and

(xD, tD).

After the following transformation of independent

variables

H : xD; tDð ÞY w;uð Þ ð36Þ

system (29) becomes

B

Bu
C

F � C

�
� B

Bw
1

F � C

�
¼ 0

��
ð37Þ

B
Yb
Bu

þ
BYa Yb


 �
Bw

¼ 0 ð38Þ
T 427
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Derivation of system (38) is presented in Appendix

B. The most important feature of the system (37), (38)

is the independence of the n�2 Eq. (38) from the first

Eq. (37). The unknowns in the system (38) are bi, i =2,

3, ..., n�1. The hyperbolic Eq. (37) contains the un-

known C(w,u) and the known vector function

bi(w,u), which is the solution of (38).

The system (38) is called the auxiliary system of the

large system (29). It is important to mention that the

system (29) contains thermodynamic functions and

transport properties, while the auxiliary system contains

only thermodynamic functions.

The initial and boundary conditions (30), (31) and

(32) allow the calculation of both potentials along the

axes xD and tD where the conditions are set.

Performing the integration (34) in xD accounting

for (30) we obtain the potential u along the axes

xD:

tD ¼ 0 : u ¼ 0� CI
nw

w ¼ xD
ð39Þ

So, the initial conditions (30) in coordinates (w, u)

become

u ¼ � CIw : C ¼ CI ð40Þ

u ¼ � CIw :
Yb ¼ Yb I ð41Þ
ED P
ROOF

Integrating (34) in tD accounting for boundary con-

dition (31) allows calculation of the potential u along

the axes tD:

xD ¼ 0 : u ¼ 0� FJ
nw

w ¼ � tD
ð42Þ

The boundary conditions (31) take the form:

u ¼ � FJw : C ¼ CJ ð43Þ

u ¼ � FJw :
Yb ¼ Yb J ð44Þ

The boundary condition (32) for slug injection gives

the following value of potential u:

xD ¼ 0 : u
� FJ

nw; � 1bwb0
FJ
n � FD

n w þ 1ð Þ; �lbwb� 1

�
ð45Þ

So, the boundary conditions (32) become:

C ¼ CJ;u ¼ � FJw; � 1bwb0
CD;u ¼ � FJ � FD w � 1ð Þ; �lbwb� 1

�
ð46Þ

Yb ¼
Yb J;u ¼ � FJw; � 1bwb0
Yb D;u ¼ � FJ � FD w � 1ð Þ; �lbwb� 1

(

ð47Þ

Therefore, the transformation (36) separates the ini-

tial and boundary conditions for the large system (29)

into initial-boundary value problem for auxiliary sys-

tem (38) and the initial-boundary value problem for the

lifting Eq. (37).

It is worth mentioning that the elementary wave

speeds of the auxiliary system are linked with the

wave speeds of the large system by

D ¼ F þ V

C þ V
ð48Þ

The eigenvalues of the large and auxiliary systems

for b waves are related by:

Kk C;
Yb


 �
¼

F þ 1=kk
Yb


 �
C þ 1=kk

Yb

 � ;

k ¼ 2; 3; . . . ; n� 1: ð49Þ

The phase transitions occurring during gas-based

EOR displacements throughout the 1D reservoir are

determined just by thermodynamics of the oil–gas sys-

tem and are independent of transport properties.
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The solution of the large system bi(xD, tD) realizes the

mapping from the plane (xD, tD) to the set of tie lines in n-

vertices simplex of n-component phase diagram. The

image of the domain of the plane (xD, tD); xDN0,

tDN0, defines 2D surfaces in the simplex. The auxiliary

solution bi(w,u) also maps the domain of the plane (w,

u), where the initial-boundary value problem is defined,

into 2D surface in the simplex. From the splitting of the

compositional model (29) into auxiliary (38) and lifting

(37) problems follow that these surfaces coincide.

The auxiliary solution depends on thermodynamic

functions ai and bi and on the composition fractions of

the initial and boundary conditions. So, the 2D solution

image in the simplex is independent of transport prop-

erties, i.e. fractional flow curves, relative phase perme-

ability and phase viscosities.

2.3. Wag injection

During miscibleWAG (water-alternate-gas) flooding,

aqueous phase contains just water component, and oleic

phase is an n-component mixture of the virgin oil with

hydrocarbon components of the gaseous solvent:

Bs

BtD
þ Bf s;Ycð Þ

BxD
¼ 0

B Yc sð Þ
BtD

þ BYc f s;Ycð Þ
BxD

¼ 0

ð50Þ

HereYc is an n-vector of hydrocarbon components in

the oleic phase and s is saturation of oleic phase. When

gas composition in all slugs is the same, the problem (50)

is equivalent to the case of binary oil–gas mixture.

System (50) is mathematically equivalent to the

system of multi component polymer flooding with no

adsorption,Ya Ycð Þ ¼ 0. So, the introduction of potential

(8) transforms the system (50) into the form

BYc xD;uð Þ
BxD

¼ 0 ð51Þ

The proposed splitting technique significantly sim-

plifies exact solution for miscible WAG if compared

with that derived in Bedrikovetsky (1993).

2.4. Carbonised waterflooding

Displacement of oil by carbonised water is described

by (n +1)� (n +1) hyperbolic system

Bs

BtD
þ

Bf s;Yc
	 �
BxD

¼ 0

B Yc sþY
b Yc
	 �

1� sð Þ

 �

BtD
þ

B Yc f s;Yc
	 �

þY
b Yc
	 �

1� fð Þ

 �

BxD
¼ 0

ð52Þ
ED P
ROOF

Here low concentration of gases in injected water Yc
and low equilibrium concentration of gases in oil

Y
b

Ycð Þ do not change overall volume balance of water and

oil phases if compared with immiscible waterflooding.

The introduction of coordinates u and w, (8) and

(35), results in the following (n)� (n) auxiliary system

B
Y
b Ycð Þ
Bu

þ
B Yc �Y

b

 �

BW
¼ 0: ð53Þ

2.5. Hot waterflood with heat losses for surround

formations

Displacement of oil by hot/cold water is described

by a (2)� (2) hyperbolic system of quasi-linear equa-

tions of water volume balance and of heat balance for

water–oil–rock system

Bs

BtD
þ Bf s; Tð Þ

BxD
¼ 0

B T sþ bð Þð Þ
BtD

þ B T f þ hð Þð Þ
BxD

¼ a T � 1ð Þ
ð54Þ

where T is the temperature. A quasi steady state heat

flux from the reservoir into surround formations

(Newton’s law) is assumed, and a is a heat transfer

coefficient.

Introduction of potential u (8) and w =bxD�htD
results in the linear auxiliary equation

BT

Bu
þ BT

BW
¼ � a T � 1ð Þ ð55Þ

and the solution of the auxiliary problem (55) decreases

along the characteristic lines u�w =constant with dec-

rement a. It allows derivation of the exact solution for

alternate injection of hot and cold water in oil reservoir

accounting for heat losses.

3. An analytical model for oil displacement by

polymer slug with water drive

In this section the splitting technique is applied to

the analytical modelling of oil displacement by a poly-

mer slug with water drive. The same procedure may be

applied to the solution of the problem of gas slug

injection with lean gas drive.

We assume a linear sorption isotherm a(c)=Cc.
Typical fractional flow functions are shown in Fig. 2.

The chemical flooding problem with only one

chemical component in solution is a (2)� (2) hyper-

bolic system. For the linear adsorption isotherm con-
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sidered here, the auxiliary system is a linear hyper-

bolic equation:

C
Bc

Bu
þ Bc

Bx
¼ 0 ð56Þ

subject to the initial and boundary conditions

u ¼ � sIxD : c ¼ 0

xD ¼ 0 : c 0;uð Þ ¼ 1; 0bub1
0; 1bubþl

�
ð57Þ

The solution of the auxiliary problem is given by:

c xD;uð Þ ¼
0; � sIxDbubCxD
1;CxDbubCxD þ 1

0;CxD þ 1bubþl

8<
: ð58Þ

For the sake of simplicity, we define two new de-

pendent variables for the lifting Eq. (10):

U ¼ 1

f
;F U ;Ycð Þ ¼ � s

f
ð59Þ

that becomes

BU

BxD
þ BF U ;Ycð Þ

Bu
¼ 0 ð60Þ

The lifting problem for these new variables corre-

sponds to the following boundary conditions:

xD ¼ 0;U ¼ 1

u ¼ � sIxD : U ¼ þl
ð61Þ

There are two discontinuities in the boundary

conditions of this problem: at the points (0, 0) and

(0, 1). The evolution of the discontinuity at the point
ED P
ROOF

(0, 0) is given by the path sIY3Y2–(�sJ). Fig. 3

shows the solution path through two fractional flow

functions f(s,c) in new variables U and F. The speed

of the shock sIY3 is equal to (�sI)�1. The speed of

the shock 3Y2 is 1 /C, and point 2 is a tangent

point of the curve F =F(U, c =1) and the straight line

2–3.

U2 � U3

F2 � F3

¼ 1

F
=
U U2; 1ð Þ

¼ C ð62Þ

The area between the fronts u =CxD and u =CxD+1
is filled by the s-wave 2–(�sJ). The values U+

ahead of the front u =CxD+1 are determined by

the s-wave

U ¼ U0 uV
xVD

�
;F

=
U U 0; c ¼ 1
	 �

¼ uV
xVD

�
ð63Þ

The points ahead of and behind the shock, U+ and

U�, are linked by the Hugoniot–Rankine conditions:

C ¼ F Uþ; 1ð Þ � F U�; 0ð Þ
Uþ � U� ð64Þ

In the domain behind the shock u =CxD+1, the

values of U are constant along the s-characteristics:

U xD;uð Þ ¼ U� xVD;uVð Þ
u � uV
xD � xVD

¼ F
=
U U�; 0ð Þ ð65Þ

Now we consider the s-characteristic passing

through a point (xD, u) from the area behind the

shock u =CxD+1. This characteristic crosses the front

u =CxD+1 at the point (xVD, uV) (Fig. 4). So, the system
of four transcendental equations (63) (64) and (65)



T

ARTICLE IN PRESS

576
577
578
579

580581582
583

584585586

587588589
590
591
592

593594595
596
597

598599

600
601
602

603604605
606

607608

609610611
612
613

614615616
617

618

619620

Fig. 4. Solution of the auxiliary and lifting problem.

A.P. Pires et al. / Journal of Petroleum Science and Engineering xx (2005) xxx–xxx 9
UNCORREC

determines the unknowns xVD, uV, U� and U+ for given

xD and u.

The solution of the lifting problem is given by the

formula:

U xD;uð Þ ¼
U3 � sIxbubCxD

U0 u
xD

� �
CxDbubCxD þ 1

U� xD;uð Þ CxD þ 1bubþl

8>><
>>: ð66Þ

The expression of unknown s via U is obtained from

(59):

s ¼ � UF U ; cð Þ ð67Þ

Finally, the solution s(xD,u) is:

s xD;uð Þ ¼

s3 � sIxDbubCxD

s0
u
xD

� �
CxDbubCxD þ 1

s� xD;uð Þ CxD þ 1bubþl

ð68Þ

8>>><
>>>:

In order to invert the mapping (9), we calculate the

variable tD(xD,u) from (8). In the area ahead of the

front u =CxD, the dependent variables s and f are

constant:

tD ¼ 1

f3

Z u

0

duVþ s3

f3

Z xD

0

dxV ð69Þ

Repeating the integration in the area between fronts

u =CxD and u =CxD+1, where s and f are constant

along each characteristic line, we get:

tD ¼ u

f

�
s0
�

u
xD

�
; 1

� þ
s0
�

u
xD

�

f

�
s0
�

u
xD

�
; 1

� xD ð70Þ
ED P
ROOF

Next we determine time t along the front

u =CxD+1. The expressions linking xD and u with

the variable s ahead of the front are:

u ¼ Cx0 uð Þ þ 1

u
x0 uð Þ ¼ f sþ; 1ð Þ � sþf =s sþ; 1ð Þ

f
=
s sþ; 1ð Þ

ð71Þ

From (71) follows the expression for x0(u) in a

parametric form:

x0 sþð Þ ¼ f Vsþ; 1ð Þ
f sþ; 1ð Þ � f Vsþ; 1ð Þ C þ sþð Þ

u sþð Þ ¼ f Vsþ; 1ð Þ � sþf Vsþ; 1ð Þ
f sþ; 1ð Þ � f Vsþ; 1ð Þ C þ sþð Þ

ð72Þ

then, along the front

tD ¼ 1

f sþ; 1ð Þ � f Vsþ; 1ð Þ C þ sþð Þ

x0 tDð Þ ¼ f Vsþ; 1ð Þ
f sþ; 1ð Þ � f Vsþ; 1ð Þ C þ sþð Þ

ð73Þ

Fig. 4 shows s-characteristics of the lifting equation

ahead of and behind the rear front x0(u).

The final expression for tD(xD,u) is:

tD xD;uð Þ¼

u
f3
þ s3

f3
xD � sIxDbubCxD

u

f s0
u
xD

� �
; 1

� � þ
s0

u
xD

� �

f s0
u
xD

� �
; 1

� � xD CxDbubCxD þ 1

u
f s� xD;uð Þ; 0ð Þ þ

s� xD;uð Þ
f s� xD;uð Þ; 0ð Þ xD CxD þ 1bubþl

8>>>>>>>>>><
>>>>>>>>>>:

ð74Þ

Finally, the solution for c(xD, tD) and s(xD, tD) is

given by the following expressions:

c xD; tDð Þ¼

0;
s3 � sIð Þ
f3

xDbtDb
s3 þ Cð Þ
f3

xD

1;

s0
xD

tD

� �
þC

� �

f s0
xD

tD

� �� � xDbtDb

s0
xD

tD

� �
þC

� �
xDþ f s0

xD

tD

� �� �

f s0
xD

tD

� �� �

0;
s� xD; tDð Þ þ Cð ÞxD þ f s� xD; tDð Þð Þ

f s� xD; tDð Þð Þ btDbþl

8>>>>>>>>>>><
>>>>>>>>>>>:

ð75Þ

s xD; tDð Þ¼

s3
s3 � sIð Þ

f3
xDbtDb

s3 þ Cð Þ
f3

xD

s0
xD

tD

� � s0
xD

tD

� �
þC

� �

f s0
xD

tD

� �� � xDbtDb

s0
xD

tD

� �
þC

� �
xDþ f s0

xD

tD

� �� �

f s0
xD

tD

� �� �

s� xD; tDð Þ s� xD; tDð Þ þ Cð ÞxD þ f s� xDtDð Þð Þ
f s� xD; tDð Þð Þ btDbþl

8>>>>>>>>>>><
>>>>>>>>>>>:

ð76Þ
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From now we use the following dimensionless space

and time:

xD ¼ Ux

D
; tD ¼ ut

D
ð77Þ

where D is the slug volume.

The graphical solution of the problem (5), (6) is

presented in Fig. 5. Fig. 6 shows movements of con-

centration and saturation fronts in plane (xD, tD). The

shock speeds D2 and D3 are given by:

D2 ¼
f2

s2 þ C
¼ f3

s3C

D3 ¼
f3

s3 � sI

ð78Þ

and are obtained graphically in plane (s, f). Here D2 is

the velocity of the oil bank, D3 is the slug front

velocity.

Trajectory of the rear slug front is given by the

parametric formulae (73)). The explicit dependency

x0(tD) can be found geometrically. Draw the tangent

to the fractional flow curve c =1 at point s+(x0) to meet

axis f at point A and axis s at point B. Then

A0 ¼
1

tD
;B0 ¼

1

x0 tDð Þ ð79Þ

Let us fix time tD and calculate A0. From (79) it

follows that if the segment A0 is marked up and the

tangent to the curve c =1 is drawn from the point A,

then it meets the curve 1 at the point s+(x0), and the

intersection with the axes s at point B defines the

coordinate x0(tD). The straight line (�C)–s+(x0) is
UNCORR

Fig. 5. Solution of the slug problem in the phase plane (s, f ).
F
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ED P
ROthen produced to meet the curve c =0 at point

s�(x0).

The structure of the displacement zone during poly-

mer slug injection (Fig. 6) is:

I. Zone of displaced oil, c=0, s = sI;

II. Water–oil bank formed ahead of the slug, c =0,

s = s3, velocity of the leading front of the bank is

D3;

III. Polymer slug, c =1, saturation decreases from

s+(x0) ahead of the rear front of the slug up to

s2 on the leading front of the slug; the leading

slug front velocity is equal to D2;

IV. Water drive zone with mobile oil; c =0, saturation

decreases from sJ at the stagnant front up to

s�(x0) behind the rear slug front; the position of

the stagnant front is determined by equality

s�(x0)= s
J;

V. Water drive zone with immobile oil, s = sJ.

Sizes of the first, second and fourth zones grow

unlimitedly. The slug size grows with time and stabi-

lizes at tDH1. Saturation in slug tends to s3; it allows

calculating the limit of the slug size from the polymer

mass conservation �1 / (s3+C). The thickness of the

water drive zone with immobile oil becomes constant

after the slug rear front passes this zone.

Stabilization of the slug volume with time results

in different outcomes, depending on the flow geom-

etry. In case of linear flow (rows of injectors and

producers), since the slug volume is proportional to

the distance between the leading and rear slug

fronts, the slug thickness stabilizes. For radial flow

with injection in a single well x = r2 /2, and slug
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thickness tends to zero with order (tD)
1 / 2. This fact

should be considered when designing the slug size

preventing the slug destruction by more mobile driv-

ing water.

Compared with waterflooding, the use of a polymer

slug increases the period of water free production,

reduces the water cut at initial water drive period,

and enhances the ultimate displacement at a stage

after breakthrough. Water drive does not disturb the

flow ahead of the oil bank and in the front part of the

slug.

For low sorption (small C), the slug injection results

in prolongation of water free production while for high

sorption slug injection does not change water free

period, if compared with waterflooding.

4. Applications

The obtained analytical models for 1D gas injec-

tion and polymer slug flood can be used in stream-

line modelling. The structure of the displacement

zone, as obtained from the exact solution, can be

used for the interpretation of laboratory and field

data.

For an n-component polymer flooding test, the aux-

iliary system (11) can be used to determine sorption

isotherms of each component through relationships

linking the sorption isotherms with breakthrough com-

ponent concentrations ci(1, tD) measured during the

continuous chemical injection. Integrating the left

hand side of the auxiliary system over the closed trian-

gle with vortexes in points (0, 0), (1, 0) and (1, u) with

Green’s formulaZ
D

Z
BYa Ycð Þ

Bu
þ BYa

BxD

� �

dxDdu ¼
Z
BD

Yc du �Ya Ycð ÞdxD ð80Þ

The right hand side integral over the side (0, 0)–(1,

0) is equal zero due to initial conditions, where all

concentrations are zero. The integral over the side (0,

1)–(1, u) is equal to the mass of the i-th component

during the production of the volume u of water. The

solution of the auxiliary system for continuous polymer

injection is self-similar, so Yc is constant along (0, 0)–

(1, u). The right hand side of the integral (80) is equal

zero:

Z u

0

Yc 1; yð Þdy�Yc 1;uð Þu þYa Ycð Þ 1;uð Þ ¼ 0

ð81Þ
ED P
ROOF

The expression above allows calculatingYa Ycð Þ for
each value of breakthrough concentrations Yc 1;uð Þ.
The function Ya Ycð Þ is calculated by (81) only along

the trajectory Yc 1;uð Þ, i.e. sorption isotherms can be

determined only for measured concentrations during the

test.

Splitting of compositional model into thermody-

namics and hydrodynamics equations can be used for

testing numerical 1D models. For example, in order

to test a polymer simulator, we model two cases that

differ from each other by oil viscosity. The time-

dependencies of accumulated water production

u(1, tD) and of outlet concentrations ci(1, tD) must

be different for the two cases, but the outlet concen-

trations versus accumulated water production ci(1,u)

must be the same. The concentrations ci(1,u) must

be the same for different oil and water viscosities,

relative permeabilities and resistance factors that

could vary in wide intervals during the model testing.

The concentration equality allows validation of the

numerical simulator.

The problem of the compatibility of polymer with

formation water can be overcome by the injection of

a compatible water slug before the polymer slug

injection. In order to avoid contact between the

polymer and the formation water, the polymer

front should not bypass the compatible waterfront

before they both reach the production row xD=1,

which could be achieved by the injection of a

sufficient volume of compatible water. Determination

of the minimum water slug size can be achieved by

the solution of the auxiliary system only—if the

polymer and compatible water fronts do not meet

for xDb1 in the solution of the auxiliary system,

they also do not meet in the solution of the general

system.

Design of injection gas composition and minimum

miscibility pressure calculations may be performed

using the auxiliary system only and does not involve

transport properties of rock and fluids.

5. Summary and conclusions

The (n +1)� (n +1) system of conservation laws for

two-phase n-component chemical flooding in porous

media with adsorption can be splitted into an (n)� (n)

auxiliary system and one independent lifting equation.

The splitting is obtained from the change of indepen-

dent variables (xD, tD) to (xD, u). This change of

coordinates also transforms the water conservation

law into the lifting equation. In the case of gas/solvent

injection, the (n�1)� (n�1) system of conservation
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laws is splitted into an (n�2)� (n�2) auxiliary sys-

tem and one independent lifting equation through the

change of independent variables (xD, tD) to flow poten-

tials (w, u). This change of coordinates transforms the

conservation law for the n-th component into the lifting

equation.

The lifting procedure for the solution of the large

system consists of:

! Solution of the auxiliary system;

! Solution of the lifting equation;

! Inverse transformation of independent variables.

The auxiliary system contains only equilibrium ther-

modynamic variables, while the large system contains

both hydrodynamic (phases relative permeabilities and

viscosities) functions and equilibrium thermodynamic

variables. Therefore, phase transitions occurring during

displacement are determined by the auxiliary system,

i.e. they are independent of hydrodynamic properties of

fluids and rock. For example, the minimum miscibility

pressure (MMP) is independent of relative permeabil-

ities and phase viscosities.
T
862
863
864
865

866
Nomenclature

ai Concentration of i-th adsorbed component

bi Equilibrium concentration

ci Chemical concentration in water, volumetric
867
fraction
868
869
870
871
872
RECC Overall volumetric fraction of n-th component

Ci Overall volumetric fraction of i-th component

D Shock speed for the large system

f Liquid fractional flow

F Overall volumetric fractional flow of n-th
873
component
874
RFi Overall volumetric fractional flow of i-th
component
875

876
877
878
879
880
881
882
883
884
885
886
887
UNCOYg Vector of independent fractions of gas phase

G Gas phase composition

kr Relative permeability

l Reservoir size

L Liquid phase composition

n Number of components

s Saturation

S Volumetric liquid fraction

t Time

T Temperature

tD Dimensionless time

u Total flux

V Shock speed for the auxiliary system

x Distance
x0 Position of rear slug front

xD Dimensionless distance

Greek letters

a Geometric parameter of thermodynamic
equilibrium
b Geometric parameter of thermodynamic
equilibrium
ED P
ROOF

D Polymer slug volume, solvent slug volume

U Porosity

C Proportionality coefficient

u Potential

k Eigenvalue of auxiliary system

K Eigenvalue of large system

l Viscosity

H Transformation of independent variables

X Closed domain

w Flow potential of overall flux

Subscripts

g Gas phase

i Component index

k Wave index

l Liquid phase

o Oil phase

w Water phase

Superscripts

+ Value ahead of the shock

� Value behind the shock

D Drive condition

I Initial condition

J Injection condition

L Behind the slug

R Inside the slug
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Appendix A. Proof of splitting for chemical flooding

If s(xD, tD), ci(xD, tD), i=1, 2, . . ., n is a solution of

system (2), and u(xD, tD) is the potential function (8),

then the function ci(xD,u) obeys the following conser-

vation law:

l
BX

cidu � aidxD ¼ 0 ðA-1Þ

where X is a closed domain XoR2.

System (2) can be derived from the following con-

servation laws in the integral form:

l
BX

cifð ÞdtD � cisþ aið ÞdxD ¼ 0 ðA-2Þ

Applying the definition of the potential (8) in (A-2):

l
BX

ci f dtD � sdxDð Þ � aidxD ¼ l
BX

cidu � aidxD ¼ 0

ðA-3Þ

In domains X where the solution is a smooth func-

tion, from the integral conservation laws (A-3) follows

the system of partial differential equations (11). In

narrow domains around shock trajectories, from (A-3)

follows the Hugoniot–Rankine conditions.

Appendix B. Proof of splitting for gas flooding

If C(xD, tD), bi(xD, tD), i=2, 3, . . ., n�1 is a solu-

tion of system (26), and u(xD, tD) and w(xD, tD) are the

potential functions (34) and (35), then the function

bi(w,u) obeys the following conservation law:

l
vBX

aidu � bidw ¼ 0 ðB-1Þ

where X is a closed domain XoR2.

The system (29) was derived from the conservation

law of i-th component volume balance in the integral

form:

l
BX

aiF þ bið ÞdtD � aiC þ bið ÞdxD ¼ 0 ðB-2Þ

From (B-2), and using the definition of potentials

(34) and (35), we obtain:

l
BX

ai FdtD � CdxDð Þ � bi dxD � dtDð Þ

¼ l
BX

aidu � bidw ¼ 0 ðB-3Þ

In domains X where the solution is a smooth func-

tion, from the integral conservation law (B-3) follows
ED P
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the system of partial differential equations (38). In

narrow domains around shock trajectories, from (B-3)

follows the Hugoniot–Rankine conditions.
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