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Over-improved stout-link smearing
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A new over-improved stout-link smearing algorithm, designed to stabilize instanton-like objects, is

presented. A method for quantifying the selection of the over-improvement parameter, �, is demonstrated.

The new smearing algorithm is compared with the original stout-link smearing, and Symanzik improved

smearing through calculations of the topological charge and visualizations of the topological charge

density. We find the incorporation of improvement in stout-link smearing to be essential for the accurate

study of QCD vacuum structure.
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I. INTRODUCTION

Studies of long distance physics in lattice QCD simula-
tions often require the suppression of short-range UV
fluctuations. This is normally achieved through the appli-
cation of a smoothing algorithm. The most common pre-
scriptions are cooling [1–3], APE [4,5], and improved APE
smearing [6], HYP smearing [7], and more recently, EXP
or stout-link smearing [8] and LOG smearing [9]. Filtering
methods such as these are also used regularly in calcula-
tions of physical observables to improve overlap with low
energy states.

All smoothing methods are based on an approximation
to the continuum gluonic action

Sg ¼ 1

2

Z
d4x tr½F��F���: (1)

Because space-time is approximated by a 4D lattice, these
approximations contain unavoidable discretization errors.
These errors can have a negative effect on the topological
objects present in the gauge field being studied and are
detrimental to the smoothing process.

There are two noteworthy approaches for dealing with
these discretization errors and both have been restricted to
cooling algorithms. One approach is to eliminate the dis-
cretization errors through a strategic combination of larger
Wilson loops [6,10–12] leading to the so-called 3-, 4-, and
5-loop Oða4Þ-improved actions. These actions are used in
the cooling algorithm to identify the individual link that
will maximally reduce the local action. The difficulty with
this approach is that relatively long link paths are com-
bined with the plaquette in improving the action. The
preferred 3- and 5-loop improved actions include the 3�
3 Wilson loop which involves 8 links more than the pla-
quette. Early in the application of cooling, it is essential to
accommodate for the large renormalizations of the im-
provement coefficients and the best practice [12] is to
consider tadpole improvement via the mean link, u0.
However, early in the cooling procedure, a mean-field
estimate of 1=u80 for the coefficient renormalization is not

accurate and the utility of highly improved actions on
rough configurations is of concern.
Ideally one seeks a solution involving only the most

local link paths, the plaquette and the rectangle.
Unfortunately, as shown by Perez, et al. [13] and briefly
reiterated below, the Oða4Þ errors remaining after the re-
moval of theOða2Þ errors act to spoil instanton-like objects
in the field. They proposed the second noteworthy ap-
proach of over-improved cooling as a means of taming
these errors via the introduction of a new tunable parameter
� into their action [13]. They selected the combination of
1� 1 and 2� 2 link paths, exacerbating problems associ-
ated with the renormalization of the coefficients.
Thus, there is a need to investigate the utility of over-

improvement in the maximally local case of 1� 1 and 1�
2 link paths. Here the standard tactics of tadpole improve-
ment will be most effective. To the best of our knowledge
this is the first derivation of the over-improved 1� 1 plus
1� 2 action and as such, the first investigation of its utility
in both classical instanton configurations and in preserving
topological structure in lattice Monte Carlo generated
configurations.
We also note that there has been remarkably little, if any,

focus on the role of improvement and over-improvement in
the context of smearing algorithms. As such this paper
leads an important new area of study and presents the first
application of (over-)improvement in the popular stout-
link smearing algorithm.
Smearing is preferred to cooling for several reasons.

Unlike cooling, smearing provides a well-defined and dif-
ferentiable lattice action suitable for use in dynamical-
fermion simulations. Moreover, the presence of a smearing
parameter enables a more extensive control over the
amount of smoothing performed in the important early
stages of the smoothing process.
In Sec. II we begin by presenting a brief summary of the

most common smoothing algorithms and illustrate the role
of the lattice action in both cooling and smearing. We then
describe the creation of a new over-improved stout-link
smearing algorithm based on 1� 1 plus 1� 2 paths in
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Sec. III. Here, the lattice discretization errors of a single
classical instanton are considered. As emphasized above,
this is the first exploration of over-improvement utilizing
the maximally local 1� 1 and 1� 2 link paths.

In Sec. IV we present the first quantitative method for
tuning the over-improvement parameter, �. This is essen-
tial to ensuring topological objects larger than the disloca-
tion threshold are not distorted under continued smearing.
Whereas the previous study [13] simply selected the value
of�1, we have discovered this choice is less than optimal.

Finally, in Sec. V we demonstrate the utility of the over-
improved stout-link smearing algorithm on a variety of
lattices, including large 283 � 96 light dynamical gauge
fields from the MILC collaboration [14,15]. Of particular
note is our illustration of the destruction of topologically
nontrivial objects in real gauge field configurations under
standard stout-link smearing and the preservation of these
objects under over-improved stout-link smearing. To the
best of our knowledge, this is the first time such a com-
parison has been illustrated using any (over-)improved
smoothing algorithm.

II. SMOOTHING ALGORITHMS

Standard cooling proceeds via a systematic sequential
update of all links U�ðxÞ on the lattice, where at each link

update the local Wilson action [16] is minimized. The local
Wilson action corresponding to U�ðxÞ is defined as

SWðxÞ ¼ �
X
�

���

1

3
Re tr½1�U�ðxÞ���ðxÞ�; (2)

where

���ðxÞ ¼ U�ðxþ �̂ÞUy
�ðxþ �̂ÞUy

� ðxÞ
þUy

� ðxþ �̂� �̂ÞUy
�ðx� �̂ÞU�ðx� �̂Þ (3)

is the sum of the two staples touching U�ðxÞ which reside

in the �-� plane. From Eq. (2), we can see that SW will be
minimized when Re tr½1�U�ðxÞ���ðxÞ� ¼ 0. It naturally

follows that, when cooling, the aim is to replace U�ðxÞ
with a new link that optimizes

maxRe tr

�
U�ðxÞ

X
�

���

���ðxÞ
�
: (4)

When performing this update in parallel, one must be
careful not to replace any link which is included in the
local action of a neighboring link. This requirement means
that cooling is a relatively slow operation computationally,
but fast in regard to the removal of action from the gauge
field.

APE smearing differs from standard cooling in that all
links can be simultaneously updated in a single sweep
through the lattice, resulting in a significant speed increase.
In APE smearing, one first calculates a smeared link

U0
�ðxÞ, which is the weighted sum of its nearest neighbors,

U0
�ðxÞ ¼ ð1� �ÞU�ðxÞ þ �

6

X
�

���

�y
��ðxÞ; (5)

where ��� is defined as in Eq. (3), and � is a real

parameter, usually set to � 0:7. The new link U0
�ðxÞ is

then projected back into the SU(3) group via some projec-
tion operator P ,

~U�ðxÞ ¼ PU0
�ðxÞ: (6)

The projection of Eq. (6) is necessary because we have
performed an additive step in Eq. (5), which is not an SU(3)
group operation. The projection step is not uniquely de-
fined, but the preferred method is to select the new smeared
link U�ðxÞ such that it maximizes

Re trðU�ðxÞU0y
� ðxÞÞ: (7)

In the limit � ! 1 we see that Eq. (5) becomes

U0
�ðxÞ ! 1

6

X
�

���

�y
��ðxÞ: (8)

Substituting this result into Eq. (7) shows how the projec-
tion method has become equivalent to cooling equation (4),
and that there exists a direct link between APE smearing
and cooling in the limit that links are updated sequentially.
The simultaneous update of APE smearing limits �< 0:75
[17].
The more recent smearing technique, stout-link smear-

ing [8], makes use of the exponential function to remain
within the gauge group and remove the need for a projec-
tion step. Beginning with the staples equation (3), define

C�ðxÞ ¼
X
�

���

����
y
��ðxÞ; (9)

where we will choose an isotropic four-dimensional con-
stant ��� ¼ �sm, but other selections are possible. The

matrix Q�ðxÞ defined by

Q�ðxÞ ¼ i

2
ð�y

�ðxÞ ���ðxÞÞ � i

6
trð�y

�ðxÞ ���ðxÞÞ;
(10)

with

��ðxÞ ¼ C�ðxÞUy
�ðxÞ; (11)

is by definition Hermitian and traceless, and hence

eiQ�ðxÞ 2 SUð3Þ. The new smeared link is then defined by

~U�ðxÞ ¼ expðiQ�ðxÞÞU�ðxÞ: (12)

An expansion of the exponential in Eq. (12) results in the
same sum of paths, to first order in �sm, as for APE
smearing [8]. Given this, and the already established link
between APE smearing and cooling, it follows that there
exists a connection between cooling and stout-link smear-
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ing. Indeed, simulations of lattice QCD show that for any
given gauge field, the structures revealed by the smoothing
procedures are remarkably similar.

III. DISCRETIZATION ERRORS AND
IMPROVEMENT

The corrosion of topological structures during the
smoothing process is a well known side effect of both
cooling and smearing [6,11,12]. It is the unavoidable dis-
cretization errors in the lattice action that are the cause of
this observed behavior. This obviously inhibits our ability
to study the topological excitations on the lattice with the
most local operators and it would be beneficial if it could
be prevented.

When a gauge field is smoothed, the topological struc-
tures within are subjected to the effects of lattice discreti-
zation errors. One such topological excitation is the
instanton. To understand how the errors will alter instanton
distributions, first consider the clover Wilson action given
by

SW ¼ �
X
x

X
�>�

ð1� P��ðxÞÞ; (13)

where P��ðxÞ denotes 1=3 of the real trace of the clover

average of the four plaquettes touching the point x.
Following Ref. [13], SW can be expanded in powers of

the lattice spacing, a, giving

SW ¼ a4
X
x

X
�>�

tr

�
1

2
F2
��ðxÞ � a2

24
ððD�F��ðxÞÞ2

þ ðD�F��ðxÞÞ2Þ � a4

24

�
g2F4

��ðxÞ

� 1

30
ððD2

�F��ðxÞÞ2 þ ðD2
�F��ðxÞÞ2Þ

� 1

3
D2

�F��ðxÞD2
�F��ðxÞ þ 1

4
ðD�D�F��ðxÞÞ2

��

þOða10; g4Þ; (14)

where igF�� ¼ ½D�;D��, D�¼@�þ igA�, and D�� ¼
½D�;��, for arbitrary �.

The goal is to substitute the instanton solution [18] given
by

A�ðxÞ ¼ x2

x2 þ �2
inst

�
i

g

�
@�ðSÞS�1; (15)

where

S � x4 � i ~x � ~�ffiffiffiffiffi
x2

p ; (16)

for instantons/anti-instantons with � the Pauli matrices,
into the expanded Wilson action equation (14). This re-
quires the use of the lattice approximation a4

P
x �

R
d4x.

Substituting the instanton solution equation (15) into

Eq. (14) and performing the integration then yields

SinstW ¼ 8	2

g2

�
1� 1

5

�
a

�inst

�
2 � 1

70

�
a

�inst

�
4
�
: (17)

Notice that the leading error term in Eq. (17) is negative
and depends upon the instanton size �inst. When theWilson
action is used in a smoothing algorithm these errors result
in an underestimation of the action density. Additionally,
by decreasing �inst the action will be further reduced. The
smoothing algorithms, which are trying to decrease the
action, will therefore shrink �inst in order to reduce the
action. Repeated application of the smoothing procedures
will eventually lead to overwhelming discretization errors
and cause instantons to ‘‘fall through the lattice’’ and
disappear.
Improved actions aim to fix the problem of discretization

errors by including different sized Wilson loops in the
calculation of the action. By choosing the coefficients of
the loop combinations carefully, it is possible to eliminate
the leading order error terms.
The Symanzik improved action uses a linear combina-

tion of plaquette and rectangular loops to eliminate the
Oða2Þ errors:

SS ¼ �
X
x

X
�>�

�
5

3
ð1� P��ðxÞÞ � 1

12
ðð1� R��ðxÞÞ

þ ð1� R��ðxÞÞÞ
�
: (18)

Analogous to P��, R�� and R�� denote the different

possible orientations of the rectangular loops.
This can be expanded in terms of a, and the instanton

solution substituted as above to find, in agreement with
[13], that

SinstS ¼ 8	2

g2

�
1� 17

210

�
a

�inst

�
4
�
: (19)

The Oða2Þ error term has been removed by design, but we
see that the Oða4Þ term is still negative. Therefore, this
action will still not preserve instantons.

IV. OVER-IMPROVEMENT

A. Formalism

In 1993, Perez et al. [13] introduced the notion of over-
improved cooling, also known as �-cooling. The essential
idea was that, instead of trying to use different loop com-
binations to completely eliminate higher order error terms,
they would instead choose their coefficients such that the
leading error terms become positive.
Introducing the parameter �, they defined the following

action:
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SPð�Þ ¼ �
X
x

X
�>�

�
4� �

3
ð1� P��ðxÞÞ

þ �� 1

48
ð1�W��ðxÞÞ

�
; (20)

where W��ðxÞ denotes the clover average of the 2� 2

squares (windows) touching the point x. Note that in
Eq. (20), � has been introduced such that � ¼ 1 gives the
standard Wilson action and � ¼ 0 results in an Oða2Þ
improved action. Expanding Eq. (20) in terms of a and
substituting the instanton solution equation (15) gives

SinstP ¼ 8	2

g2

�
1� �

5

�
a

�inst

�
2 þ 4� 5�

70

�
a

�inst

�
4
�
; (21)

where the Oða2Þ term is directly proportional to��. Thus,
by making � < 0, the leading order discretization errors
become positive, and the modified action should preserve
instantons.

In the interests of preserving locality, we choose to use
the traditional combination of plaquettes and rectangles as
in the Symanzik improved action in preference to the
combination of the 1� 1 and 2� 2 loops used in [13].
As emphasized in the Introduction, this has the benefit of
reducing the coefficient renormalization that is applied to
the link paths, because of the smaller difference in the
number of links utilized. This then enables precision tuning
of �.

We now introduce the parameter � into the Symanzik
improved action equation (18). By requiring that � ¼ 0
gives theOða2Þ improved Symanzik action, and that � ¼ 1
gives the standard Wilson action. This implies the follow-
ing form for the action:

Sð�Þ ¼ �
X
x

X
�>�

�
5� 2�

3
ð1� P��ðxÞÞ

� 1� �

12
ðð1� R��ðxÞÞ þ ð1� R��ðxÞÞÞ

�
: (22)

Performing the expansion in a gives

Sð�Þ ¼ a4
X
x

X
�>�

tr

�
1

2
F2
��ðxÞ � �a2

24
ððD�F��ðxÞÞ2

þ ðD�F��ðxÞÞ2Þ þ a4

24

�
g2ð1� 2�ÞF4

��ðxÞ

þ 5�� 4

30
ððD2

�F��ðxÞÞ2 þ ðD2
�F��ðxÞÞ2Þ

þ 2�� 1

3
D2

�F��ðxÞD2
�F��ðxÞ þ 1� 2�

4

�ðD�D�F��ðxÞÞ2
��

þOða10; g4Þ; (23)

into which we substitute the instanton solution to find that

Sinstð�Þ ¼ 8	2

g2

�
1� �

5

�
a

�inst

�
2 þ 14�� 17

210

�
a

�inst

�
4
�
: (24)

As in Eq. (21), negative values of � will result in a positive
leading error term, and should preserve instantons.
We introduce the over-improvement parameter into the

stout-link smearing algorithm by modifying the link com-
binations used in Eq. (9). Whereas the original C�ðxÞ ¼
�sm

Pf1� 1 paths touching U�ðxÞg, the modified stout-

link C�ðxÞ has the form

C�ðxÞ ¼ �sm

X�
5� 2�

3
ð1� 1 paths touching U�ðxÞÞ

� 1� �

12
ð1� 2

þ 2� 1 paths touching U�ðxÞÞ
�
; (25)

and the definition of the smearing parameter �sm is un-
changed. Note that both forward and backward horizon-
tally orientated rectangles are included in the 2� 1 paths,
such that ��ðxÞ resembles the local action.

B. Tuning

Of course, this now begs the question: How negative
should � be in order to preserve instantons? Perez et al.
reported a value of � ¼ �1 to preserve instantons, and
indeed it does. However, just as positive values of � can
shrink instantons, so too can negative values cause instan-
tons to grow. Just as small instantons can fall through the
lattice, big instantons can grow so large that they are
destroyed by the smoothing procedure [19]. Additionally,
one does not want to unnecessarily distort the instanton-
like objects in the gauge field. Care must therefore be taken
not to choose a value of � that is too negative.
In order to quantify the selection of �, we propose that

one considers the ratio Sð�Þ=S0, where S0 ¼ 8	2=g2 is the
single instanton action. Ideally Sð�Þ=S0 should be equal to
1 for all values of the instanton size, �inst, as it is in the
continuum.
Plots of Sð�Þ=S0 versus �inst for the Wilson and

Symanzik actions are shown in Fig. 1. Note that it is the
slope of the curve that will govern whether an instanton
shrinks or grows. Although the Symanzik action is closer
to the ideal action than the standard Wilson action, the
slope is still positive for all �inst and using this action will
shrink instantons.
The goal is now to select a value of � that results in the

flattest line possible, thereby ensuring the stability of in-
stantons. A plot for three different values of � is shown in
Fig. 2. With � ¼ �1 the curve for �inst > 1a is similar to
the mirror image of the Wilson action. For �inst=a > 1:5,
� ¼ �0:25 and �0:35 give curves closer to the ideal,
however as j�j is decreased the maximum occurs at larger
�inst. Since it is the slope that is responsible for how an
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instanton’s size changes, the maximum of Sð�Þ gives the
dislocation threshold of the smearing algorithm. Assuming
that any topological excitation of length � 2a is not an
unphysical UV fluctuation or lattice artifact, one should
aim for a dislocation threshold of 	2a.

Given this, we propose that a value of � ¼ �0:25will be
sufficient. This choice gives a dislocation threshold of
	2:0a, and a curve that is mostly flat down to values of
�inst 	 1:7a. The action Sð�Þ=S0 is also very close to the
ideal.

In Fig. 3 we provide a comparison of the Perez et al.
over-improved action, our over-improved action Sð�0:25Þ,
and the standard Wilson action. It is clear that Sð�0:25Þ
will produce the best results, and presents an important
advance beyond the work of Ref. [13].

Given a value for �, one can find a suitable value for the
smearing parameter, �sm. Starting from an arbitrary value,
systematically increase �sm until u0 (the mean-plaquette
value) no longer increases when smearing. This value sets
an upper threshold for �sm and one should then choose

some �sm suitably below this threshold. In what follows we
use a value of �sm ¼ 0:06. A typical value for standard
stout-link smearing is �sm � 0:1. The over-improved al-
gorithm is more sensitive to the smearing parameter than
standard smearing because of the larger loops used in the
smoothing procedure.

V. ALGORITHM COMPARISONS

Given the selection of � ¼ �0:25, it is now important to
make a comparison of over-improved stout-link smearing
with standard stout-link smearing. We are primarily con-
cerned with the stability of the topological charge under
smearing, and the structure of the gluon fields after
smearing.
We use two sets of gauge fields for this study. First, an

ensemble of large 28� 96 dynamical MILC lattices
[14,15], with light quark masses; amu;d ¼ 0:0062, ams ¼
0:031. We will also use a quenched MILC ensemble of the
same size and lattice spacing a ¼ 0:09. The gauge fields
were generated using a Tadpole and Symanzik improved
gauge action with 1� 1þ 1� 2þ 1� 1� 1 terms and
an AsqTad staggered dynamical fermionic action for the
2þ 1 flavors of dynamical quarks.
We also use quenched CSSM gauge fields created with

the Oða2Þ mean-field improved Lüscher-Weisz plaquette
plus rectangle gauge action [20] using the plaquette mea-
sure for the mean link. The CSSM configurations are
generated using the Cabibbo-Marinari pseudo-heat-bath
algorithm [21] using a parallel algorithm with appropriate
link partitioning [22]. To improve the ergodicity of the
Markov chain process, the three diagonal SU(2) subgroups
of SU(3) are looped over twice [6] and a parity trans-
formation [23] is applied randomly to each gauge field
configuration saved during the Markov chain process.

A. Topological charge

Let us first consider the evolution of the total topological
charge of a gauge field under stout-link smearing. Typical

FIG. 2 (color online). Sð�Þ for three different values of �. The
larger �� is made the further the curve moves from the ideal
behavior and the sharper the maximum.

FIG. 3 (color online). A comparison of Sð�Þ=S0 for the Perez
over-improved action, our over-improved action Sð�0:25Þ, and
the standard Wilson action.

FIG. 1 (color online). Sð�Þ=S0 versus the instanton size for the
Wilson and Symanzik improved actions. The ideal action would
produce a flat line at Sð�Þ=S0 ¼ 1. The positive slope on both
curves means that instantons will shrink if the Wilson or
Symanzik actions are used to smooth the gauge field.

OVER-IMPROVED STOUT-LINK SMEARING PHYSICAL REVIEW D 77, 094501 (2008)

094501-5



studies in the past have rated a smearing algorithm’s suc-
cess by its ability to generate and maintain an integer
charge. We will also use this test to evaluate the effective-
ness of the smearing procedures. It should be noted that we
will be smoothing extremely large 283 � 96 lattices.
Because of the vast amount of nontrivial topological
charge field fluctuations present, it will take a lot of
smoothing to generate a stable charge.

Figure 4 provides a sample of 4 different gauge fields
smeared by standard (� ¼ 1), Symanzik improved (� ¼ 0),
and over-improved (� ¼ �0:25) stout-link smearing. The
first two are 283 � 96 quenched MILC gauge fields, the
third is a 283 � 96 light dynamical MILC field, and the last
is a smaller 163 � 32 quenched field.

The top graph shows an example of the over-improved
stout-link smearing producing a stable result. In this in-
stance, the standard stout-link smearing curve is fluctuating
widely, and is unable to reach a stable charge within 200
sweeps of smearing. The Symanzik improved smearing is
better in that it stabilizes at around 120 sweeps; however
the over-improved stout-link smearing is clearly superior,
stabilizing 50 sweeps earlier. At around 70–120 sweeps
there must exist a small instanton-like object that has been
removed by the errors in the standard and improved smear-
ing algorithms, but preserved by the tuned over-improved
stout-link smearing.

The second graph is another typical example of what one
sees when using the three different smearing algorithms.
The standard stout-link smearing curve is still clearly the
worst of the three, fluctuating the most. Meanwhile, the
Symanzik and over-improved smearings are fairly similar
in their behavior. Both stabilize at the same integer charge,
but the over-improved algorithm stabilizes earlier. This is
also the case in the third graph.

The final graph is a sample of a 163 � 32 lattice. It is
shown here to represent how it is generally easier to
smooth a smaller gauge field. For the larger lattices, their
larger size means that there is a greater probability of
finding an unstable topological object and it becomes
more difficult to achieve integer charges rapidly.

These four graphs all demonstrate the benefits of using
an improved smearing algorithm over the standard stout-
link smearing commonly used in the field at present. Over-
improved stout-link smearing typically provides a topo-
logical charge that is stable over hundreds of smearing
sweeps, and one that approaches an integer much more
rapidly than with conventional stout-link smearing.

B. Topological charge density

For the next part of the analysis we will directly observe
the topological charge density of the gauge fields. Our aim
is to observe the differences in the gauge fields revealed by
using the standard and over-improved stout-link smearing
algorithms.

FIG. 4 (color online). Plots showing how the topological
charge evolves under standard (� ¼ 1), Symanzik improved
(� ¼ 0), and over-improved (� ¼ �0:25) stout-link smearing.
The two top graphs are from an ensemble of 28� 96 quenched
gauge fields. The third graph is from an ensemble of 28� 96
dynamical fields with light quark masses. The bottom is a
smaller 16� 32 quenched gauge field. The features of the
graphs are explained in the main text.
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To achieve this we will require a gauge field where the
final topological charges from the two smearing proce-
dures differ. The topological charge, as a function of the
number of smearing sweeps, is shown in Fig. 5. It appears
as though an anti-instanton is being destroyed by the
standard stout-link smearing from about 20 sweeps on-
wards. It will be interesting to visualize qðxÞ in this region
to see if we can observe this behavior. Indeed, by consid-
ering the differences in the charge density, we are able to
locate the ‘‘anti-instanton’’ that is removed by the standard
stout-link smearing.

In Fig. 6 we show how the anti-instanton is affected by
the standard stout-link smearing, and in Fig. 7 we have the
corresponding charge density from the over-improved
stout-link smearing. The pictures present a single slice of
the charge density of the 4D lattices as they evolve under
the stout-link smearing.

After 30 sweeps we see that both smearing methods have
revealed a similar vacuum structure. The effects of the
errors in the standard smearing are first seen after 33
sweeps, when the anti-instanton-like object on the right
begins to unwind in the upper-right corner. Here the charge
density is approaching zero and therefore is not rendered.
In a few sweeps the action density in this region will
manifest itself in the opposite winding, largely eliminating
the total topological charge. The net effect is to suggest that
the instanton-like object on the right invades the neighbor-
ing negative object. However, the change in Q indicates
that this is not an instanton-anti-instanton annihilation. At
this point the majority of the negative topological charge
density is lost and the total Q for the configuration ap-
proaches 1. This kind of phenomenon should not be seen as
filtering is applied to a lattice, and indeed it does not occur
when using the over-improved smearing.

After 36 sweeps the opposite winding has grown in size
and it continues to grow in size as more smearing is applied

to the lattice. After 39 sweeps the negatively charged
object has all but disappeared. Although not shown, even-
tually the neighboring positive object expands to engulf the
region originally occupied by the negatively charged
excitation.
Here we have directly demonstrated how the discretiza-

tion errors in the standard stout-link smearing algorithm
have resulted in an erroneous picture of the vacuum, and

FIG. 5 (color online). The topological charge evolution under
smearing for a 16� 32 lattice. We see that when standard
smearing (� ¼ 1) is used an anti-instanton is destroyed at
around 20–40 sweeps. Visualizations of the topological charge
density in this region are discussed in the following text.

FIG. 6 (color online). The evolution of the topological charge
density for various sweeps of standard stout-link smearing. The
sweeps shown are: 30 (top), 33, 36, 39 (bottom). We see that a
rather large anti-instanton is unstable under this smearing and is
removed from the lattice, presenting an erroneous view of the
vacuum. In color: blue to green represents negative topological
charge, and red to yellow represents positive. In gray scale: dark
regions represent negative topological charge, and the lighter
regions represent positive.

FIG. 7 (color online). A visualization of the topological charge
density of the same gauge field shown in Fig. 6, this time with
over-improved stout-link smearing. We see that in this case the
anti-instanton in the lower right corner of the lattice is stable
under smoothing, and remains stable for at least 200 sweeps.
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how by modifying these errors in the over-improved algo-
rithm we are able to present a more accurate representation
of the vacuum.

C. Single instanton evolution

We can also contrast the effects of different smearing
algorithms by smearing a single instanton gauge field
configuration. We create an instanton in singular gauge
[24] and avoid Nahm-transform issues [19] via the action
appearing at the boundaries of the lattice. Given that over-
improved stout-link smearing with � ¼ �0:25 has a dis-
location threshold of about 2a, we generate a gauge field
containing a single instanton of size �inst ¼ 3a.

We compare our over-improved smearing against stan-
dard stout-link smearing and a stout-link implementation
of the Perez et al. over-improvement scheme. An instanton
of this size should stay relatively constant under over-
improved smearing at � ¼ �0:25. From Fig. 3 we antici-
pate that the Perez et al. over-improvement scheme will
cause the instanton to grow in size. Similarly, standard
stout-link smearing is expected to shrink the instanton.
The size of the instanton is monitored by fitting the clas-
sical instanton action profile to the lattice action density in
a 34 hypercube located at the center of the instanton.

The instanton’s size evolution is presented in Fig. 8. We
see that the instanton’s size has remained constant under
over-improved smearing. As predicted, Perez et al.’s im-
plementation of over-improvement has caused the instan-

ton to grow. In a study of QCD vacuum structure this would
lead to an over-estimation of instanton sizes in the vacuum.
Also as predicted, using standard stout-link smearing has
caused the instanton to shrink. Further smearing would
destroy the instanton. This calculation showcases the ob-
vious need for over-improvement in the stout-link smear-
ing algorithm.

VI. CONCLUSION

We have demonstrated how to define an over-improved
stout-link smearing algorithm, with the aim of preserving
instanton-like objects on the lattice. To the best of our
knowledge, this is the first time link paths beyond the
staple have been included in the stout-link smearing
algorithm.
Using maximally local improvement we presented a new

quantitative method of selecting a suitable value of the
parameter �. With the procedure defined, we demonstrated
the success of the over-improved stout-link algorithm in
preserving topological structures which were destroyed
when using the standard stout-link smearing algorithm.
This was done by analyzing both the topological charge
and through visualizations of the topological charge den-
sity. We also performed a comparison of the over-improved
smearing method with standard methods by smoothing a
single instanton of size �inst ¼ 3:0. Over-improved stout-
link smearing is the only algorithm capable of smoothing
an instanton of this size without distorting it.
This paper highlights the need for improvement schemes

to be incorporated into today’s modern smearing algo-
rithms. Over-improved stout-link smearing can be used
in future studies of vacuum structure or other similar
applications, where preserving topology on the lattice is
important. Of particular interest is a quantitative compari-
son with the overlap-Dirac measure of topological charge
density [25], and the impact of dynamical fermions on
QCD vacuum structure [26].
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