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Abstract
Background: It has become increasingly evident that dietary Se plays a significant role in reducing
the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their
chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent.
Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch) contains
up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator
to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents
selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a
metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this
mechanism in other plants may provide a possible avenue for the genetic engineering of Se
tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we
describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer
Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress).

Results: By over producing the A. bisulcatus enzyme selenocysteine methyltransferase in A. thaliana,
we have introduced a novel biosynthetic ability that allows the non-accumulator to accumulate Se-
methylselenocysteine and γ-glutamylmethylselenocysteine in shoots. The biosynthesis of Se-
methylselenocysteine in A. thaliana also confers significantly increased selenite tolerance and foliar
Se accumulation.

Conclusion: These results demonstrate the feasibility of developing transgenic plant-based
production of Se-methylselenocysteine, as well as bioengineering selenite resistance in plants.
Selenite resistance is the first step in engineering plants that are resistant to selenate, the
predominant form of Se in the environment.
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Background
Selenium is an essential nutrient for animals, microorgan-
isms and some other eukaryotes [1]. While Se deficiency
is rare in the US, it does occur in several low Se parts of the
world such as China, and can lead to heart disease,
hypothyroidism and a weakened immune system [2,3].
The toxic effects of excess Se have been known for some
time. Short-term consumption of high levels of Se may
cause nausea, vomiting, and diarrhea, whereas chronic
consumption of high concentrations of Se compounds
can result in a disease called selenosis [4]. Only one form
of Se, selenium sulfide, has been implicated as a carcino-
gen [4]. The recognition of Se bioaccumulation and result-
ing wildlife toxicity at Kesterson reservoir in California
and other sites has resulted in a surge of interest in phy-
toremediation of Se [5-8]. Selenium in the environment
can be the result of either natural geological processes or
human activities. The USGS has identified 160,000 miles2

of land in the western US enriched in Se from natural
processes that is susceptible to irrigation-induced Se con-
tamination, including 4,100 miles2 of land currently irri-
gated for agriculture [9]. Selenium pollution can also arise
from various industrial and manufacturing processes
including procurement, processing, and combustion of
fossil fuels [10], and mining [11].

Interestingly, in the last decade it has become increasingly
evident that Se also has potential health benefits. Anticar-
cinogenic activities of specific organic forms of Se against
certain types of cancer have been demonstrated [3,12-14].
In a long term, double-blind study, supplemental dietary
Se was associated with significant reductions in lung,
colorectal and prostate cancer in humans [3]. Other stud-
ies have also demonstrated the chemoprotective effects of
Se against breast, liver, prostate, and colorectal cancers in
model systems [15-17]. Importantly, there is a great deal
of variation in the efficacy of different Se compounds
against cancer [13,18]. Numerous studies have demon-
strated the efficacy of Se-methylselenocysteine (MeSeCys)
in preventing mammary cancer in rat model systems
[16,19-23], and importantly, MeSeCys has been shown to
be twice as active as Se-methionine (the primary compo-
nent of Se-yeast supplements) in preventing the develop-
ment of mammary tumors in rats [18]. Furthermore,
MeSeCys in both garlic and broccoli has also been shown
to be more effective than either Se-methionine (SeMet) in
yeast, or broccoli supplemented with selenite, at reducing
both the incidence of mammary and colon cancer in rats
[19,21]. This nonprotein seleno amino acid is produced
in certain plants including members of the Brassica and
Allium genera [3,24], and in Se accumulating plants such
as Astragalus bisulcatus [25,26]. While the specific mecha-
nism for the anticancer activity of Se has not been fully
elucidated, multiple studies have demonstrated the ability
of Se to affect the cell cycle and induce apoptosis in cancer

cell lines [14,24,27-35]. There is also evidence that Se may
inhibit tumor angiogenesis [36,37]. Both of these activi-
ties would inhibit progression of early cancerous lesions.

Plants primarily take up Se as selenate or selenite [38],
which is then metabolized, via the sulfur assimilation
pathway, resulting in the production of selenocysteine,
SeMet and other Se analogues of various S metabolites, as
reviewed by Ellis and Salt (2003) [39]. The nonspecific
incorporation of seleno amino acids into proteins is
thought to contribute to Se toxicity [40]. One proposed
mechanism of Se tolerance in plants is the specific conver-
sion of potentially toxic seleno amino acids into nonpro-
tein derivatives such as MeSeCys [41,42]. Some Brassica
and Allium species, when grown in Se enriched medium,
can accumulate 0.1–2.8 µmol g-1 dry weight MeSeCys or
its functional equivalent γ-glutamylmethylselenocysteine
(γGluMeSeCys) [13,15,16,21,24,43]. However, certain
specialized Se accumulating plants, such as A. bisulcatus,
accumulate up to 68 µmol g-1 dry weight Se (6000 µg g-1

dry weight), of which 90–95% is MeSeCys in young leaves
[44-46].

Selenocysteine methyltransferase (SMT), the enzyme
responsible for the methylation of selenocysteine to
MeSeCys in A. bisulcatus, has recently been cloned and
characterized [47]. The availability of such genetic mate-
rial opens a practical avenue for the development of
plants with an enhanced ability to biosynthesize MeSe-
Cys. Such plants would be expected to not only be more
resistant to Se, a valuable trait for phytoremediation of Se
contaminated land, but also provide a plant based source
of the anticarcongenic compound MeSeCys [44]. Here, we
describe the successful use of A. bisulcatus genetic material
to engineer MeSeCys metabolism in the Se non-accumu-
lator A. thaliana. By over-producing the A. bisulcatus
enzyme SMT in A. thaliana, we have introduced a novel
biosynthetic ability that has increased the concentration
of MeSeCys and its functional derivative γGluMeSeCys,
from essentially non-detectable levels in the leaves of
wild-type A. thaliana up to 3.9 µmol g-1 dry weight in
shoots.

Results and Discussion
Se speciation and accumulation
Over-production of SMT in A. thaliana (Fig 1A) increased
the accumulation of MeSeCys from essentially zero in
control plants (Fig 1B) to an average of 0.5 µmol g-1 dry
weight in the highest SMT accumulating line (Fig 1B),
with MeSeCys concentrations ranging from 0.09 – 1.3
µmol g-1 dry weight in individual plants from this line.
MeSeCys accumulation was strongly correlated with the
level of SMT protein in transgenic plants (Fig 1A and Fig
1B), confirming a causal link between SMT accumulation
and the biosynthesis and accumulation of MeSeCys.
Page 2 of 11
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To further characterize the effect of SMT over-production,
Se was extracted from shoot tissue and speciated using
HPLC/ICP-MS and HPLC-ESI-MS. Of the total shoot Se in
smt2-9, 27% was unextractable in the aqueous phase of a
methanol/chloroform/water extraction, and assumed to
represent mainly Se assimilated into proteins. Of the
extractable Se, HPLC-ESI-MS and quantitative HPLC/ICP-
MS revealed that 26%, or 1.16 µmol g-1 shoot dry weight,
to be γGluMeSeCys, a derivative of MeSeCys (Table 1A,
Figure 2). The identity of this compound was confirmed
by coelution of Se in peak 4 with an ion of m/z = 313
[M+H]+ [80Se] (Figure 2A,2C) showing the predicted Se
isotopic ratio [76Se(9%), 77Se(8%), 78Se(24%),
80Se(50%), 82Se(9%)] [21] and a consistent empirical for-

mula derived from accurate mass measurement.
γGluMeSeCys, is known to accumulate to high concentra-
tions in both Se exposed garlic [21] and A. bisulcatus seeds
[25]. γGluMeSeCys is comparable to MeSeCys with regard
to its anticarcinogenic capacity [16], with γGluMeSeCys
being rapidly converted to MeSeCys by a transpeptidase in
the body.

The majority of the remaining extractable Se eluted in an
early running Se peak that contains MeSeCys, as identified
by coelution of Se in this peak with an ion of m/z = 167
[M+H-NH3]+ [80Se] (Figure 2A,2B) showing the predicted
Se isotopic ratio [76Se(9%), 77Se(8%), 78Se(24%),
80Se(50%), 82Se(9%)], and a consistent empirical formula

Impact of SMT protein levels on accumulation of MeSeCys and total SeFigure 1
Impact of SMT protein levels on accumulation of MeSeCys and total Se. (A) Relative SMT protein accumulation. Rel-
ative SMT protein levels were determined from digitized immunoblots, and represent the average band intensity (± SE) from 
12 – 18 individual plants for each line. (B) Concentration of MeSeCys in transgenic plants. MeSeCys was quantified using HPLC 
(AccQ Tag amino acid analysis system) and its identify confirmed using MALDI-MS. Data represents the average (± SE) MeSe-
Cys concentrations in 11 – 18 individual plants for each line. (C) Concentration of total Se in transgenic plants. Total Se was 
quantified by ICP-MS, and data represents the average (± SE) of 7 – 13 individual plants for each line.
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derived from accurate mass measurement. Authentic
MeSeCys standard also showed a major ion with m/z =
167, representing the loss of 17 as ammonia from m/z =
184 (data not shown). This early running Se-containing
peak likely represents a mixture of Se-containing com-
pounds [43], and was further resolved using the strong
ion-pairing reagent HFBA to reveal the presence of three
Se-containing compounds (Figure 2C, peak 1, 2 and 3).
Peaks 1 and 2 were identified as MeSeCys by the presence
of an ion of m/z = 184 [M+H]+ [80Se] and fragmentation of
this ion, by the loss of ammonia, to m/z = 167 [M+H-
NH3]+ [80Se]. Elution of MeSeCys as a double peak has
been previously observed, and is though to be due to its
partial protonation [43]. Quantification of the total Se in
these two peaks revealed that MeSeCys represents 43% of
the total extractable Se (Table 1), or 2.4 µmol g-1 shoot dry
weight. For this analysis, smt2-9 shoot samples contain-
ing the highest concentration of MeSeCys, determined
using the AccQ Tag amino acid analysis system, were used.
MeSeCys concentrations of 1.3 and 2.4 µmol g-1 dry
weight, quantified using these two independent methods
differ significantly, and we suspect that AccQ Tag may
underestimate the concentration of MeSeCys due to the
reduced derivatization efficiencies observed with standard
MeSeCys. Of the Se injected onto the column, only 17%
was found to be unaccounted for by peaks 1–5 when
eluted with mobile phase containing 0.1% TFA (Figure
2A, Table 1). When using HFBA as the ion pairing reagent
(Figure 2D), γGluMeSeCys was not expected to be eluted
under the conditions used, leading to 28% reduction
(83% – 55%) in recovery of injected Se.

The minor Se peak (Figure 2, peak 5) representing 6 % of
total extractable Se (Table 1), most likely represent a dou-
blet peak of γGluMeSeCys produced by partial protona-
tion [43]. MeSeCys and its derivative γGluMeSeCys
comprise 75% of the total extractable Se, or 3.9 µmol g-1

shoot dry weight, in SMT over-producing A. thaliana line
smt2-9 (Table 1).

X-ray absorption spectroscopy (XAS) can be used to
obtain direct information on the in vivo speciation of Se in
plants, avoiding the possibility of extraction artifacts
[41,42]. XAS of shoot tissue from SMT over-producing A.
thaliana indicates that the majority of shoot Se is associ-
ated with two C atoms (R-Se-R) (Fig 3), and the concen-
tration of Se in this chemical form increases in direct
proportion to the level of SMT over-production (Fig 1A,
Fig 3). XAS results are consistent with MeSeCys and its
derivative γGluMeSeCys accounting for the majority of Se
in planta in the SMT over producing plants. The XAS also
revealed the presence of a minor selenonium species (Fig
3), which may represent Se-adenosylselenohomocysteine
as observed in yeast [21]. This compound would be
expected to be strongly retained during HPLC [43], and
may represent a portion of the 17% of Se in the smt2-9
extracts that was not recovered from the column during
HPLC/ICP-MS (Figure 2A, Table 1).

Exposure of plants to selenate produced no detectable
MeSeCys in either SMT over-producing plants or controls
(data not shown). Measurement of Se speciation by XAS
in selenate treated plants revealed that approximately
70% of total Se remained as selenate in both SMT over-
producing and control plants. This confirmed that reduc-
tion of selenate to selenite is a rate-limiting step for Se
assimilation into selenocysteine in plants as established
previously [48], and explains our observation that SMT
over-production does not significantly increase the bio-
synthesis of MeSeCys in selenate exposed plants. The XAS
speciation data also supports the conclusion that over
production of SMT does not affect the rate of selenate
reduction. However, by exposing SMT over-producing
plants to selenite, the rate-limiting step of selenate
reduction is bypassed and only 1 – 4% of the accumulated
Se remains as selenite in SMT over-producing plants, and
3 – 11% in control plants (Fig 3). This high rate of selenite
assimilation explains why, when SMT is present, MeSeCys

Table 1: Identity and percent composition of Se species in shoot tissue of SMT over-producing A. thaliana line smt2-9.

Se species Peak # tR (min) m/z µmol g-1dry weight % of extractable shoot Se

1Selenite nd nd nd 0.16 3
2MeSeCys 1 4.75 167 (M+H-NH3)+ 0.71 12
2MeSeCys 2 6.25 167 (M+H-NH3)+ 1.68 31
2Unidentified 3 8.75 nd 0.27 5
3 γGluMeSeCys 4 7.5 313 (M+H)+ 1.16 26
3Unidentified 5 10.5 nd 0.37 6
3Unaccounted - - - - 17

1Calculated using XAS data. 2Mobile phase water-methanol (99:1, v/v) 0.1% HFBA. 3Mobile phase water-methanol (99:1, v/v) 0.1% TFA. HPLC 
fractions (0.5 – 1.0 ml) were collected and analyzed for total Se by ICP-MS. Replicate chromatography was also performed using HPLC-ESI-MS to 
confirm the identity of the compounds in the Se containing peaks. The various Se compounds were quantified based on their Se content. 
Chromatography and mass spectroscopy data shown in Figure 2.
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and γGluMeSeCys are efficiently biosynthesized (Fig
1A,1B).

Significantly, along with accumulation of MeSeCys and
γGluMeSeCys, the concentration of total Se in shoots (Fig
1C) also positively correlates with SMT over production
(Fig 1A). Total Se increases from approximately 1 µmol g-

1 dry weight in control plants (range 31 – 168 µg g-1) up
to 8 µmol g-1 dry weight (range 358 – 1020 µg g-1) in the
highest SMT accumulating line (Fig 1C).

Selenium tolerance
Over-production of SMT resulted in a remarkable increase
in resistance to selenite, with SMT accumulating plants
showing both increased growth and reduced accumula-
tion of stress related anthocyanin pigments (Fig 4A). To
quantify selenite tolerance, a relative tolerance index was
calculated that represents the percentage difference
between the final fresh weight of each transgenic plant
line after growth in the presence and absence of selenite.
This relative tolerance measurement clearly establishes
that selenite tolerance is strongly correlated with accumu-
lation of MeSeCys, as well as SMT production in 4 inde-

Speciation of Se in shoots of A. thaliana over-producing SMTFigure 2
Speciation of Se in shoots of A. thaliana over-producing SMT. (A) Arabidopsis thaliana smt2-9 HCl extract injected onto 
a reverse phase C8 column, eluted with water:methanol (99:1 v/v) containing 0.1% TFA, and fractions analyzed for Se using 
ICP-MS with 83% recovery of injected Se. (B) Mass spectrum collected in the region of peak 1–3 from the chromatogram 
shown in Figure 2A, revealing the expected [M+H]+ m/z = 184 and [M+H-NH3]+ m/z = 167 for MeSeCys, as well as the 
expected Se isotopic signature. (C) Mass spectrum collected in the region of peak 4 from chromatogram shown in Figure 2A, 
revealing the expected ion m/z = 313 for γGluMeSeCys, as well as the expected Se isotopic signature. (D) Arabidopsis thaliana 
smt2-9 HCl extract injected onto a reverse phase C8 column, eluted with water:methanol (99:1 v/v) containing 0.1% HFBA, 
and fractions analyzed for Se using ICP-MS with 55% recovery of injected Se.
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pendent transgenic lines (Fig 4B). The correlation
between MeSeCys biosynthesis and selenite tolerance
strongly supports the proposed role of MeSeCys in Se tol-
erance in Astragalus [40,47]. However, SMT over-produc-
tion does not increase tolerance to selenate (data not
shown). Because selenate reduction to selenite is very inef-
ficient in A. thaliana and SMT acts to detoxify Se down-
stream of selenite, it is consistent that SMT does not confer

tolerance to selenate. From this, we propose that selenate
is directly toxic to plants and efficient reduction of
selenate to selenite is required for tolerance. This is sup-
ported by the earlier observation that efficient reduction
of selenate to selenite, by overexpression of ATP sulfury-
lase [48], confers significant tolerance to selenate in
Brassica juncia. Whereas Pilon-Smit et al. (1999) [48] con-
cluded that selenate tolerance was due to increased vola-

Se K X-ray absorption near-edge spectra of shoots of A. thaliana over-producing SMT and control plantsFigure 3
Se K X-ray absorption near-edge spectra of shoots of A. thaliana over-producing SMT and control plants. (A) 
Normalized spectra of different plant lines (filled circles), overlaid with the results of fitting each spectrum to a linear combina-
tion of spectra of standards (solid line). (B) Fit deconvolutions for two examples of the samples shown in A. Each panel shows 
the data and fit (as in A), the residual (dotted line beneath) and the spectra of standards scaled according to their contributions 
to the fit. The best fits were obtained using selenomethionine (RSeR), aliphatic selenonium (R3Se+), selenite (SeO3

2-) (all in 
aqueous solution) and elemental selenium (Se0). Other standards (not shown) were tested: aqueous selenate did not contrib-
ute to the fits, and dimethyl selenoxide gave poorer fits (as judged by the residuals) than the selenonium species. Note that 
selenomethioninine is chosen to be representative of RSeR species, and its spectrum is not reliably distinguishable from that of 
MeSeCys. (C) Chemical speciation of Se in planta in shoots of A. thaliana over-producing SMT and control plants. Se K X-ray 
absorption near-edge spectra were fit, as described in Figure 2, to produce quantitative data on the speciation of Se in shoots 
of A. thaliana. Total Se accumulation (Fig 1C) and percent speciation are combined to produce absolute concentrations of the 
various Se species.
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tilization of Se in the ATP sulfurylase over-producing
plants, we propose that the efficient reduction of selenate
is the primary cause of enhanced Se resistance. We would
predict that the increased selenocysteine produced in
these transgenic plants was detoxified by the low level
SMT activity known to exist in B. juncia [43]. In contrast,
overexpression of ATP sulfurylase in tobacco cell culture,
which does not produce MeSeCys, did not result in
measurable selenate tolerance [49]. We suggest that Se is
toxic to plants at two biochemical stages, directly as

selenate [41] and via the biosynthesis of Se analogues of S
amino acids [34]. The Se hyperaccumulator A. bisulcatus is
known to accumulate both selenate and MeSeCys [41,46].
Therefore, we propose that these plants use SMT to
detoxify selenocysteine, and also have the ability to
detoxify selenate by utilizing a mechanism that may
involve compartmentalization into the vacuole. This pro-
posed mechanism has yet to be identified.

Selenite tolerance of SMT over-producing A. thalianaFigure 4
Selenite tolerance of SMT over-producing A. thaliana. (A) Growth of SMT over-producing and empty vector control 
plants in soil treated with selenite. (B) Relative selenite tolerance in soil grown plants is positively correlated with the concen-
tration of methylselenocysteine, and (C) total shoot Se concentration. Relative tolerance is quantified as the percent fresh 
weight of selenite treated plants relative to the same line grown in the absence of selenite. Data represents averages (± SE) 
from between 10 – 16 individual plants from each line.
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Furthermore, selenite tolerance was strongly correlated
with total shoot Se accumulation, with the most tolerant
lines accumulating the highest shoot Se concentrations
(Fig 4C). This increased Se accumulation may be simply
due to the more efficient uptake and transport of selenite
in the healthy, SMT over-producing plants. However,
another possible explanation would be that over-produc-
tion of SMT may deplete cellular free cysteine, by methyl-
ation to methylcysteine (MeCys). Such depletion of
cysteine would act to increase the activities of the sulfur
assimilation enzymes serine acetyltransferase and O-ace-
tylserine thiol lyase [50], leading to increased incorpora-
tion of Se into selenocysteine. This increased biosynthesis
of selenocysteine, and accumulation of MeSeCys, would
be expected to form a sink for Se, driving increased accu-
mulation of Se into shoot tissue.

In support of this, expression of SMT does result in the
accumulation of MeCys, a metabolite not normally
observed in A. thaliana (data not shown). Methylcysteine
and MeSeCys are produced in approximately equal
concentrations, and biosynthesis of MeCys in the SMT-
producing plants demonstrates that in vivo SMT has signif-
icant methyltransferase activity using either cysteine or
selenocysteine as substrates. This contrasts the situation in
vitro where SMT has very low activity with cysteine as a
substrate [51]. Such in planta methyltransferase activity
with cysteine as a substrate is also supported by the earlier
observations that increasing the concentration of selenate
in nutrient solution resulted in increased concentration of
MeSeCys and a decrease in MeCys in A. bisulcatus [52],
while increasing sulfate resulted in the increase in MeCys
and a decrease in MeSeCys. This suggests that a common
pathway is involved in the synthesis of both compounds.

Conclusions
Although MeSeCys is one of the most biologically active
Se compounds, the less active SeMet and selenite are the
Se forms currently available in the majority of nutritional
supplements. The genetic modification of plants to
increase the levels of enzymes involved in Se metabolism
into MeSeCys would provide a possible source of this che-
mopreventative molecule. The results presented here
demonstrate, for the first time, the practicality of using
genetic material from the Se hyperaccumulator A. bisulca-
tus to bioengineer plants that are enriched in MeSeCys, as
previously proposed by Orser et al., (1999) [44]. Shoot
tissue of A. thaliana over-producing SMT has a combined
concentration of MeSeCys, and its functional equivalent
γGluMeSeCys, of up to 3.9 µmol g-1 shoot dry weight
(Table 1) after only 6-weeks growth including a 2-week
exposure to selenite. Concentrations of MeSeCys and
MeCys were also approximately equal in SMT over-pro-
ducing plants. Since MeCys has been identified as a chem-
opreventative agent [53], such a dual function of SMT is

expected to further enhance the anticarcinogenic potential
of this transgenic plant material. While garlic and ramps
have been used to produce similar concentrations of
MeSeCys and γGluMeSeCys [15,21], production of plant
material took 6 months [20] and biomass yields can be
expected to be low. The ability to transfer the SMT gene
into a higher biomass, rapidly growing, and edible plant
could lead to a cost effective method of producing
MeSeCys/γGluMeSeCys enriched plant material.

The over-production of SMT in A. thaliana also leads to
increased Se accumulation and selenite resistance. In the
environment, Se occurs mainly as the selenate oxyanion.
Detoxification of accumulated selenate requires its reduc-
tion to selenite and metabolism into a dead end metabo-
lite such as MeSeCys. Therefore, the ability to engineer
selenite resistance in plants, as demonstrated here, is a
critical first step in the development of plants capable of
hyperaccumulating Se from selenate. Further important
steps in this process will be the engineering of enhanced
uptake of selenate over sulfate, and its reduction to
selenite. In our study, SMT over-producing plants were
able to grow normally while containing up to 1020 µg g-1

total foliar Se. Tolerance to such high internal foliar Se
concentrations are within the same range observed for
naturally evolved Se accumulator plants such as A. bisulca-
tus (25, 26), and if reproduced in a high biomass plant,
these foliar Se concentrations are within the range
required for practical phytoremediation of Se contami-
nated soils and waters. Therefore, engineering of selenite
tolerance in plants moves us one step closer to our goal of
bioengineering plants ideally suited for phytoremediation
of Se.

Methods
Plant transformation and growth
The gene encoding selenocysteine methyltransferase
(SMT1) was amplified from A. bisulcatus as described pre-
viously [45], and cloned in the pKYLX plant transforma-
tion vector [54,55] downstream of the cauliflower mosaic
virus (CaMV) 35S promoter [45]. Arabidopsis thaliana was
transformed using Agrobacterium by floral dipping [56],
and transformed seed selected on kanamycin. Empty
pKYLX vector control lines were generated concurrently.
Selected T1 plants were allowed to self fertilize, and plant
lines homozygous for the SMT1 transgene selected in the
T3 generation. Bulk T4 seed was collected and used in all
experiments presented. Seeds were planted in Scotts Redi-
earth artificial soil mix in 72-cell plug trays, cold treated at
4°C for 3-days to synchronize germination and grown in
a climate-controlled room at 19–24°C with 10 hours of
light at 90 to 150 µ E. After 4-weeks growth vegetative
plants were watered with 100 µM sodium selenite as
needed for a further 2 weeks after which shoot tissue of
individual plants was harvested, fresh weight determined,
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washed in 18 MΩ water, ground in liquid nitrogen and
stored at -80°C. Each individually stored plant sample
was subsampled and used for subsequent analyses.

Analysis of total shoot Se
For analysis of total Se, samples of frozen plant material
were dried overnight at 60°C, weighed and digested in
concentrated HNO3 acid (EM Omni Trace) at 118° C for
4 hours. Se was quantified in the samples using a Thermo
Elemental PQ ExCell ICP-MS (Thermo elemental, Frank-
lin, MA) with a gallium internal standard, a NIST traceable
calibration standard and external drift correction [57].

Analysis of shoot Se speciation
To determine extractable and non-extractable Se, shoot
tissue (0.25 g – 0.5 g fresh weight) was extracted in 10 ml
methanol for 24 hr at 4°C, 6 ml water and 5 ml chloro-
form added [58] and total Se measured by ICP-MS in the
aqueous phase, and in the chloroform and residual tissue.
Extractable Se was functionally defined as the total Se
extracted into the aqueous phase, and non-extracted Se
was defined as the sum of that in the residual tissue and
the chloroform. For routine quantification of SeMeCys
and MeCys plant samples were extracted over night at 4°C
in 50 mM HCl (2:1 v/w), with 78% recovery of total
extractable Se. Alpha amino butyric acid was added to
each extracted sample as an internal standard, the samples
derivatized and analyzed using the AccQ Tag amino acid
analysis system (Waters Corp., Milford, MA) using a
Waters HPLC system consisting of a Waters Separation
module 2695 with a Waters 2475 fluorescence detector.
The identity of MeSeCys in the chromatogram was con-
firmed by coelution with an authentic MeSeCys standard
and of the m/z = 354 ion characteristic of the MeSeCys [6-
aminoquinolyl-N-hydroxy-succinimidyl carbamate]
AccQ Tag derivative using MALDI-MS on post column
fractions after cleanup on Dowex-1-acetate. The presence
of Se in the fractions containing MeSeCys was confirmed
by ICP-MS (Thermo Elemental PQ ExCell). Recoveries of
MeSeCys during HPLC analysis were determined to be
100% using a MeSeCys spiked sample. The identity of
MeCys was confirmed by coelution with an authentic
standard and by GC-MS after 24 h of extraction in 50 mM
HCl and subsequent derivatization with MTBSTFA follow-
ing standard procedures [59]. Se speciation was further
analyzed by HPLC/ICP-MS and HPLC-ESI-MS. Tissue was
extracted in 50 mM HCl (2:1 v/w), injected onto a 5-µm
Symmetry Shield RP8 (15 cm × 3.9 mm) column (Waters
Corp., Milford, MA) and eluted with a mobile phase of
water-methanol (99:1, v/v) containing either 0.1% TFA or
HFBA at the resulting pH [43]. For quantification of Se in
the eluant, fractions (0.5 – 1 mL) were collected and ana-
lyzed by ICP-MS (Thermo Elemental PQ ExCell). For
molecular mass spectral studies the eluant was analyzed
using electrospray ionization on a FinniganMAT LCQ

(ThermoFinnigan Corp. San Jose, CA), or LC-Q-Tof micro
(Waters Corp., Milford, MA) mass spectrometer system. A
tissue sample from one representative plant from each
transgenic and empty vector control line was also shipped
on dry ice to the Stanford Synchrotron Radiation Labora-
tory (SSRL) for Se K-edge XAS analysis following our
established protocols [45].

SMT protein quantification
Production of SMT in tissue samples from individual
plants was determined by immunoblotting and quanti-
fied by digitizing developed immunoblots [45].
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