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LBSTRACT

On the Transport Equations

for Anisotropic Plasmas

by

Abdallah R. Barakat, Doctor of Philosophy

Utah State University, 1982

Major Professor: Dr. R.W. Schunk
Department: Physics

First, I attempt to present a unified approach to the study of
transport phenomena in multicoponent anisotropic space plasmas. In the
limit of small temperacure anisotropies this system of generalized tran-
sport equations reduces to Grad's 13-moment system of transport equa-
tions. In the collisionless limit, the generalized transport equations
account for collisionless heat flow, collisionless viscosity, and large
temperature anisotropies. Also, I show that with the appropriate as-
sumptions, the system of generalized transport equations reduces to all
of the other major systems of transport equations for anisotropic plas-
mas that have been derived to date.

Next, for application to aeronomy and space physics problems in-
volving strongly magnetized plasma flows, I derive momentum and energy
exchange <c¢ollision terms for interpenetrating bi-Maxwellian gases.
Collision terms are derived for Coulomb, Maxwell moleculzs, and constant

collision crass section interaction potentials. The collision tarms ars
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valid for arbitrary flow velocity differences and temperature differ-
ences between the interacting gases as well as for arbitrary temperature
anisotropies. The collision temns have to be evaluated numerically and
the appropriat coefficients are presented in tables However, the colli-
sion terms are also fitted with simplified expressions, the accuracy of
which depends on both the interaction potential and the temperature ani-
sotropy. In addition, I derive the closed set of transport equations
that are associated with the momentum and energy collision terms.

Finally, I study the extent to which Maxwellian and bi-Maxwellian
series expansions can describe plasma flows characterized by
non-Maxwellian velocity distributions, with emphasis given to modeling
the anisotropic character of the distribution function. The problem
considered is the steady state flow of a weakly-ionized plasma subjected
to homogeneous electric and magnetic fields, and different collision mo-
dels are used. In the case of relaxation collision model, a closed form
expression 1is found for the ion velocity distribution function, while
for more regorous models (polarization and hard sphere) I have to use
the Monte Carlo simulation. These provided a basis for detemining the
adequacy of a given series expansion. I find that, 1in general, the
bi-Maxwellian-based expansions for the velocity distribution function is
better suited to describing anisotropic plasmas than the
ilaxwellian-based expansions.

(166 pages)




CHAPTER I

INTRODUCTION

A wide variety of plasma flow conditions can be found 1in all
areas of aeronomy and space plasma physics. For example, gentle
near—~equilibrium flows occur in corotating planetary ionospheres and
in the lower solar corona, while highly non-equilibrium flow condi-
tions exist in the solar and terrestrial polar winds, 1in planetary
magnetospheres, and in the terréestrial F-region at high latitudes,
where convection electric fields drive the charged particles through
the neutral atmosphere at speeds approaching a few kilometers per
second. In general, the plasma flows encountered are multispecies
flows that may be characterized by large temperature differences
between the interacting species or by anisotropic temperature distri-
butions for the individual species. The plasma flows may contain
transitions from collision dominated to collisionless regimes, from
subsonic to supersonic flow, or from one major ion species to another.
In addition, the flowing plasma may encounter a changing magnetic
field topology or it may be subjected to anomalous resistivity,
electrostatic shocks, double layers, or magnetic merging processes.

Many of the highly nonequilibrium flows found in the solar
terrestrial environment are characterized by appreciable temperature
anisotropies, i.e., wunequal species temperatures parallel and perpen-
dicular to a magnetic field, with the degree of the anisotropy given
by the parallel to perpendicular temperature ratio. For solar wind

protons the measured temperature anisotropy typically varies between a




factor of 2 and 4 at the orbit of the Earth (cf. Brandt 1970,
Hundhausen 1972), while in the terrestrial polar wind initial theore-
tical calculations indicate that the temperature anisotropy is about a
factor of 10 for Ot and about a factor of 20 for H' at a distance of
eight Earth radii (Holzer et al. 1971). In the Earth's dayside
magnetosheath and in the high-latitude F-region, the temperature
anisotropies are smaller, with the parallel-to-perpendicular ion
temperature ratio varying from 1 to 1/2 in both regions (cf. Crooker
et al. 1979, St.-Maurice and Schunk 1979).

It should be noted that appreciable temperature anisotropies
occur in a plasma at all 1levels of ionization. The temperature
anisotropy in the solar wind develops in a region of the flow where
only Coulomb collisions are important, i.e., the flow 1is effectively
fully~ionized. On the other hand, in the terrestrial polar wind the
H* temperature anisotropy develops in a region of the flow where
Coulomb collisions and nonresonant ion—-neutral interactions occur,
i.e., the flow is partially-ionized. Finally, we note that the
temperature anisotropy in the high-latitude F-layer occurs in a plasma
that is weakly-ionized and arises primarily as a result of the nature
of the 0% -0 resonant charge exchange process.

Understanding the behavior of both near-equilibrium and far-
from-equilibrium plasma flows 1is crucial to our understanding of the
coupling, through mass, momentum, and energy transfer, between the
different regions within the solar terrestrial environment. In gen-

eral, the quantitative study of such flows is begun through the use of




conservation equations which describe the spatial and temporal evolu-
tion of the concentration, bulk flow velocity, and temperature of the
plasma. To date, a variety of conservation equations have been used,
including the Euler, Navier-Stokes, and Chew-Goldberger-Low equations.
In addition, transport equations have been adopted from the classical
work of Chapman and Enskog.

Most of the conservation equations available for use in aeronomy
and space physics are based on an isotropic Maxwellian velocity
distribution function. Basically, the conservation equations are
obtained by taking velocity moments of Boltzmann's equation. Although
such a procedure may seem to be relatively straightforward, difficul-
ties arise because the -equation governing the moment of order r
contains the moment of order r+l. Consequently, it 1is necessary to
make an assumption about the form of the velocity distribution
function, f, in order to truncate the set of transport equations.
Typically, the velocity distribution function is expanded in an
orthogonal series about a Maxwellian weight factor and then the series
is truncated at some level. By taking velocity moments of the
resulting approximate expression for f, higher—order moments can be
expressed in terms of lower-order moments, and these expressions can
be used to close the system of transport equations (see, for example,
Tanenbaum 1967, Burgers 1969, Schunk 1977). Although various levels
of approximation can be considered, the 13-moment approximation
attracted most of the attention. At this 1level of approximation,

stress and heat flow are put on an equal footing with density, drift




velocity, and temperature, and therefore, these moments are described
by transport equations just as the density, drift velocity and
temperature moments are described by continuity, momentum, and energy
equations, respectively.

The 13-moment system of transport equations is fairly general and
can be used to describe a wide range of plasma flows. In the
collision-dominated 1limit, the 13-moment system of equations reduces
to the Euler, Navier—-Stokes, and Burnett equations depending on
whether terms proportional to the zeroth, first, or second power of
the collisional mean-free-path are retained. At the Navier-Stokes
approximation, transport processes such as ordinary diffusion, thermal
diffusion, thermal conduction, diffusion—-thermal heat flow, thermo-
electric heat flow, and viscosity are included at a level of
approximation that corresponds to either the first or second approxi-
mation of Chapman and Cowling (1970), depending on the particular
transport coefficient. In the <collisionless limit, the l13-moment
system of equations reduces to the Chew-Goldberger-Low (CGL) and
extended CGL equations depending on whether terms proportional to the
zeroth or first power of the Larmor radius are retained. The
13-moment system of transport equations also accounts for collision-
less heat flow, collisionless viscosity, and temperature anisotro-
pies.

With regard to anisotropic plasmas, the 13-moment transport
equations have limited applicability because they cannot be wused to

describe plasma flows that are characterized by large temperature




anisotropies. In the 13-moment formulation, the temperature aniso-
tropy enters through the stress and heat flow terms, which act to
modify the zeroth-order isotropic Maxwellian distribution, and the
restriction to a small temperature anisotropy results from the fact
that only small deviations from the Maxwellian are allowed, i.e.,
small stress and heat flow terms.

The flow of an anisotropic plasma is better described by
transport equations that are based on a two-temperature or bi-
Maxwellian velocity distribution function, which is shown schemati-
cally in Figure 1. The procedure for obtaining these transport
equations is similar to that of the 13-moment expansion except that
the transport equations are closed by expanding the velocity distri-
bution function in an orthogonal series about an anisotropic bi-
Maxwellian weight factor instead of an isotropic Maxwellian. This
change produces transport equations that can describe highly anisotro-
pic plasma flows.

Although a significant effort has been devoted to developing
transport equations that are based on an isotropic Maxwellian distri-
bution function (see, for example, Tanenbaum 1967, Burgers 1969), in
comparison much 1less effort has been directed toward developing
transport equations that are based on a bi-Maxwellian distribution
function. Chew et al. (1956) were the first to derive transport
equations based on a bi-Maxwellian distribution function for applica-
tion to collisionless anisotropic plasmas. In this now famous study,

corrections to the zeroth-order bi-Maxwellian distribution function




Figure 1. Schematic illustration of a drifting bi-Maxwellian velocity

distribution. The solid lines represent contours of constant f in the

W i plane, with the peak of the distribution centered at the drift

velocity point. For the case shown, the temperature along the VZ—axis

is greater than the temperature perpendicular to this axis.







Figure 2. Flow diagram showing the procedure for obtaining +transport
equations that are based on a bi-Maxwellian velocity distribution. Also

shown are the assumptions needed to arrive at various sets of simplified

transport equations.
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due to heat flow were neglected and the resulting transport equations
for the species temperatures parallel and perpendicular to the
magnetic field were termed 'double—adiabatic' energy equations. Since
this initial study, several authors (Kennel and Green 1966,
MacMahon 1965, Frieman et al. 1966, Bowers and Hains 1968, Oraevskii
et al. 1968) have extended the work of Chew et al. (1956) by deriving
transport equations for a collisionless anisotropic plasma including
transport phenomena such as collisionless 'viscosity' and heat flow.

All of the studies cited above were concerned with collisionless
anisotropic plasmas. However, Chodura and Pohl (1971) derived trans-
port equations for an anisotropic plasma that were based on a bi-
Maxwellian species distribution function and that included Coulomb
collisions between the interacting species. This study was extended
by Demars and Schunk (1979), who derived collision terms for an
anisotropic plasma of arbitrary degree of ionization. Specifically,
Demars and Schunk (1979) derived collision terms for a resonant charge
exchange interaction betewen an ion and its parent neutral and for an
arbitrary inverse-power interaction potential, which includes Coulomb,
nonresonant ion—-neutral (Maxwell molecule), and constant collision
cross section (hard sphere) interactions as special cases.

In chapter (IIL), I try to present a unified approach to the study
of transport phenomena in multicomponent anisotropic space plasmas.
In particular, a system of generalized transport equations is presen-

ted that can be applied to a highly anisotropic plasma of arbitrary

degree of ionization. This system of generalized transport equations




is shown to reduce to the l13-moment system of transport equations in
the 1limit of small temperature anisotropies. Also, the system of
generalized transport equations is shown to contain all of the other
major systems of transport equations for anisotropic plasmas that have
been derived to date.

The collision terms derived by Chodura and Pohl (1971) and by
Demars and Schunk (1979) are valid for arbitrary temperature differ-
ences between the interacting gases and arbitrary temperature aniso-
tropies, but are restricted to small relative drifts between the
interacting gases. In chapter (III), I remove the latter restriction
and calculate momentum and energy exchange collision terms for inter-
penetrating bi-Maxwellian gases that are valid for arbitrary drift
velocity differences and temperature differences between the interact-
ing gases as well as for arbitrary temperature anisotropies. I also
derive the closed set of transport equations that are associated with
the momentum and energy collision terms.

In chapter (IV) I study the extent to which transport equations
based on both Maxwellian and bi-Maxwellian series expansions can
describe plasma flows characterized by non—Maxwellian velocity distri-
butions, with emphasis given to modelling the anisotropic character of
the distribution function. For the Maxwellian expansion, I consider
the 5-, 13-, and 20-moment approximations of Grad (1958). For the bi-
Maxwellian expansion, I consider the 6- and l6-moment approximations

(cf. Chodura and Pohl 1971, Demars and Schunk 1979). To determine

the adequacy of a given series expansion, I select a simple plasma
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flow problem which possesses an analytic solution so that the distri-
bution functions obtained form the different series expansions can be
compared with the exact, closed-form solution.

This simple plasma flow problem is the steady state flow of a
homogeneous, weakly-ionized plasma subjected to homogeneous electric
and magnetic fields. By modelling the ion-neutral collision process
with a simple relaxation model, it is possible to obtain an exact,
closed-form solution for the ion velocity distribution function. A
range of non-Maxwellian ion velocity distributions 1is generated by
varying the magnitude and direction of the electric field and by
varying the ion collision-to-cyclotron frequency ratio. Although this
plasma flow model is relevant to both the terrestrial (St-Maurice and
Schunk 1979) and Venusian (Schunk and St-Maurice 1981) ionospheres,
in this study it is only used to generate non-Maxwellian ion velocity
distributions to test the adequacy of the different series expansions.
The main result I obtain 1is that the Maxwellian-based 20-moment
approximation is a reasonable approximation for temperature anisotro-

pies up to Tl /TL “ 2-3, while the bi-Maxwellian-based 16-moment

|
approximation can describe temperature anisotropies as large as TH/?L~
20.

Although the results of chapter (IV) are obtained for a homgen-
eous plasma and a simple collision model, they should be useful in

providing clues as to the extent to which a given series expansion can

account for the anisotropic character of a plasma. However, a more

realistic collision model will produce a smaller temperature aniso-
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tropy than the simple collision model for given electric and magnetic
fields, and it 1is not clear to what extent this will affect the
results. Therefore, in chapter (V) I use more rigorous collision
models and compare Maxwellian and bi-Maxwellian expansions with Monte
Carlo simulations in order to determine the adequacy of a given series
expansion. Also, it should be noted that Monte Carlo simulations with
crossed electric and magnetic fields have not been presented before.
In this work I do not discuss plasma instabilities and wave-
particle interactions. Although these processes undoubtedly affect
certain transport properties in, for example, the aurora and the solar
wind, they are difficult to include mathematically in a rigorous way.
The difficulty with wave-particle interactions 1is that accurate
expressions for the "collision”™ <cross sections are not available.
However, from classical collision theory we know that accurate
collision cross sections are needed to correctly describe transport
processes such as thermal diffusion and thermoelectric transport. For
example, thermal diffusion does not occur for elastic ion—-neutral
interactions, but is important for Coulomb interactions. A further
difficulty with wave-particle interactions is the inability to obtain
reliable approximations for the species velocity distribution func-

tions when these interactions are included. This, in turn, makes it

difficult to close the general system of transport equations.
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CHAPTER II

TRANSPORT EQUATIONS FOR MULTICOMPOMENT

ANISOTROPIC SPACE PLASMAS

In this chapter I present a unified approach to the study of
transport phenomena in multicompoment anisotropic space plasmas. In
particular, a system of generalized transport equations 1s presented
that can be applied to a highly anisotropic plasma of arbitrary degree
of ionization. This system of generalizad transport equations is shown
to reduce to the 13-moment system of transport equations in the limit of
small temperature anisotropies. Also, the system of generalized
transport equations is shown to contain all of the other major systems
of transport equations for anisotropic plasmas that have been derived to

date.

1. General transport equations
In dealing with gas wmixtures it 1is convenient to describe eacn
species in the mixture by a separate velocity distribution function,

b

fs(r, Voo t). The distribution function is defined such that fs(£’ Ve
t) dEdlS represents the number of particles of species s which at time t
have positions between r and r+dr and velocities between S and XS+QXS.
Alternatively, fs can be viewed as a probability density in the I,y
phase space. The evolution in time of the species distribution function

is determined by the net effect of collisions and the flow in phase

space of particles wunder the influence of oxternal forces. The

mathematical description of this evolution is given by the well known
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Boltzmann equation

df e 1 §f
S+ v *Vf +-2(E+—v xB)V f =-S5 (1)
—s —'s m, = ¢S il St

Jt

Y

where ¢ and m_ are thne charge and mass of species s, E is the electric
5 s =2

3

field, B is the magnetic field, c is the speed of light, EE'iS the time

derivitive, V 1is coordinate space gradient, and zv is the velocity
s
space gradient.
Sf
S

The quantity 524-in Boltzmann's equation represents the rate of

change of fs in a given region of phase space as a result of collisions.

For collisions governed by inverse power potentials and for resonant

St
charge exchange collsions, the appropriate expression for s is the
st
Boltzmann collision integral which is given by
S f
S g f'E'-f f
st i [qxt 4% 85t Ost(gst’x) [ st s tJ (2)

s

where dvC is tne velocity-space volume elemaent of species t, gsc is the

relative velocity of the colliding particles s and t, o (gst,x) is the

st
differential scactering cross-—section, dR is the element of solid angle
in the s particle reference frame, ¥ 1is the scattering angle, and the
primes denote quantities evaluated after a collision.

Although it would be nice to know the individual velocity distri-
bution functions of the different species, the mathematical difficulties
associataed with obtaining closed-form solutions to Boltzmann's equation
precludes this approach for most flow situatiouns. As a consequence, oie

is generally rescricted to obtaining information on a limitad number of

low-order velocity ioments of the species distribucion function.

Burgers (1969, p. 14) proposaed that the transport properties of a
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given species can be defined with respect to the average drift velocity
of that species. In terms of the species average drift velocity Uos the
random or thermal velocity is defined as

c. =V - u ()
and the physically significant moments of the species distribution

function are given by

u = <y > species drift velocity (&)
m 9
S
T =+—<¢c > parallel temperature (5)
shk s
m 2
T = — <¢c_ > erpendicular tewmperature 6)
sa 2k s perp P (6)
it 2
q = c e heat flow vector for parallel energy (7)
-5 s s s|i—s
i 1 2 < .
q =-wna <c_ .c > heat flow vector for perpendicular enargy
o 2 "s's s -s :
(8)
P =nm <c c > pressure tensor (9)
—Ss S's —s—s
T
T =P =g I - (p = e e. stress tensor 10
—s —s Ps = k*su psi} —3=3 c R
i _ 2 . 3
uy =nm <c.c c > higher order pressure tensor related to
-3 S s sii—s—s
parallel energy (11)
215 2 .
u =nm <c_ cc > higher order pressure tensor related to
—S Stis 3} —s—s
perpendicular energy (o1¥2)
Q =nm <ccc> heat flow tensor (13)
= S s —s—s—s
R =nm <cccc> higher order pressure tensor (14)
—s S 8§ —s—s—s—S
where p . =0 kT ., p =n kT , n 1is the number density of species
si s sl s, s sy’ s
s, K 1s Boltzmann's constant [ = e e, + e.e, + e.e is the unit
’ = — Il —2—=2 —3-3
dyadic, Qil’57’fd) iis - an orthogonal set of unit vectors with 25
aligned along the direction of the magnetic rfield, and the angle

brackets denote the average
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1
<A> = — (dv f A 155))
—~ n ; —s s —
=\))
The symboLsﬁ; and _L_are used to denote components of vectors parallel

and perpendicular to the magnetic field, respectively, as well as to
identify quantities related to parallel and perpendicular thermal

energy. In general subscripts are used, but for quantities such as q“

—S ’
1 i 4L .
4o Moo and vy superscripts are wused to relate them to the parallel

and perpendicular thermal energies, while subscripts are usead to

define components parallel and perpendicular to the magnetic fiela.

. A \ i
The quantities H and can be expressed as
q PSH, PSL’ Ss’ ﬂs, ES ES p

contracted forms of the higher order tensors gs’ gs and RS as follows

Py~ 52383 e
Py, = (1/2) P :(l-e,eq) (47)
4 -9, (19)
g, = Q) grGEs (19)
R (20)
W egey) 21

The starting point for the derivation of transport equations
for gas mixtures is Boltzmann's equation (l). The transport equations
are obtained by multiplying Boltzmann's equations with an appropriate
function of velocity, and then integrating over velocity space. The
resulting transport equations describe the spatial and temporal behavior
of the physically significant moments of the distribution function such
as species concentration, drift velocity, parallel and perpendicular

temperature, stress tensor, and parallel and perpendicular heat flow.

P 9
If we multiply equation (1) by m e mc , mc /2, mcc
- Py =9 (DG s’ Ts=s’ Tsos’ s osi’ T Ts=s=3?

2 2 ) . .
c_ and =m_ ¢ 53/2 and integrate over velocity space we obtain the

fH g
S Si{—s s S\-
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continuity, moinentum, parallel energy, perpendicular energy, pressure

tensor, parallel heat flow, and perpendicular heat flow equations,

respectively, for species s. The stress tensor equation is obtained by

subtracting e,e. times the parallel energy equation and (l-e,e.) times
—=3=3 - =3=3

the perpendicular energy equation from the pressure tensor equation.

The resulting system of transport equations is given by

Continuity
aps
e (OSES) = 0 (22)
Momentum
D u -
p o v + V. p + Vet -n e (E+—=u x B)
s Dt <1LPSJ_ —lt " sii — =s s s = c—s
. M &3
+. - 2 = —
(Byyy = Pou) Tegeq) = —s (23)
st
Parallel energy
2y 1
s sli . ! : a o
be Poy (L° 8¢+ 2y o u) F 2 gyek dn, Ul v 10 g,
! Ds . S
el L T G
Perpendicular energy
D p 1
S"sd . 1
Ve h N + S S8 ° + V*
bt N Ps.L_&—-Es zu_gs) QE-E}iJ) Lls Ygsj ds
I, DS 1 GEsL
TEEshe sl Tl il B 820
Stress tensor
DT r T
S :
v + =/ = A e v S i
Dt + psulﬁrgs (zﬂgs) -i)—}—n Bs] pSLinPb (Tigs)
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D
1 ! S l
t o x Lo T I H Lot (gyTegy) T (egey) g (L73egey)
. D , oz,
*lTg B (2329) T & *Tlegey)] =gy 7

Parallel heat flow

D g
S=s ¢ il i i
—— [ ' + [ ] + av + Vo
bt 2 [Q°u_lieqey + g Vou + g Vu +Tu
DSES s 1 [ !
t f o= = === (E + = x B)[° B = T o '
Dt m (5 c s * ) L Psy= =3°3 (psul " 1s)
s
-5
T %8 T &F pr (238) TRy Wegey) =g 2D
Perpendicular heat flow
Jt
D.q
S—s A 4 1 4
B °v = it < + °V + = S
Dt L T gt g A S O g v
D u e 1 '
+]—=- 2 (E+=—uxB)|" I+ (I-eqe.) * (p_ L + 1)
L t m = p sy pS_L— e
i
D §qT
gL 1 s < 1 . -5
; 3 i s=——0 " + o= ] V(eye. = ——
R L P R e et To s ety B (28)
DS 3
where T éTi- _u_s'z is the convective derivative, pS = nsms is the mass
s
density, Q_S = mﬁéﬁ is the cyclotron frequency, and the siungle, double,

and triple dot products are defined, for example, as

3 )
T T LRIL=L T (—VL{)Ba’
o a a,B
Q:Ve_ e, = { 28
4 VL}—} : QaBY<—VL—JEJ‘)YBJ
a,B,Y

and where a, B and y are coordinate indices (cf. Chapman and Cowling

1970). The parallel and perpendicular components of a vector A are

defined by é“:‘ _35:35} and iJf (i'ig_eg)‘ﬁ’ respectively. A superscript T

on a tensor means the elements of the tensor should be transposed.
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The quantities on the right-hand sides of equations (23) - (28)
correspond to the velocity moments of the Boltzmann collision integral
(2) and describe, respectively, the rate of change of momentum, parallel
and perpendicular energy, stress, and parallel and perpendicular hneat

flow as a result of collisions; these quantities will be discussed in

detail in section (3).
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2. The sixteen-moment
approxXimation

The system of transport equations given in section (1) does not
constitute a closed set, since the equation governing the moment of
order & contains the moment of order & + l. In order to close the
system of transport equations, it is necessary to adopt an approximate
expression for the species distribution function. My approximation
expression is based on a bi-Maxwellian or two-temperature
species distribution function and takes the form

s

_ (b)Y
Eg= £y [1+e] (29)

where the zeroth-order bi-Maxwellian distribution is given by

(b) -3/2 L/2 2 1 2
- — - = 30
£ n, (2m) By gy exp (5 By, .4 "7 By CSw) (30)
and where
e S R, e )
s 2pS L si‘%s1” ©s2 8 ‘=151 - S1=27 ©51%62
2 2
;o _BS.L(l _Eslch_ o
sii—s —sLEsn CIN s Ssu
2 2 2
_Si s (1 *§¢Csi.) L _ Bs\i(l B ?sé s ) .
Pg 2 s sif  2p 3 1 Zs
B B ;
_osisio o . 25 N .
2“5 (1 BSHCS“) 9.,°Cqy (31)

In equations (30) and (31), B = mS/(k TS“) and le_= ms/(k TS ).

s it (LB

By taking the appropriate velocity moments of (29), it is easy to
verify that this distribution function correctly accounts for the
density, drift velocity, parallel and perpendicular temperatures, stress
tensor, and parallel and perpendicular heat flow moments. By taking the

higher-order velocity moments of equation (29) it is possible to express

these moments in terms of the 16 lower-order moments
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Q = 4, &523 * 234,85 * egea] 234
L i = q
el bes el ey P e AL T
1 A1 e £ i .
= = e = A
7 Mgy (L-egey) Tejgge) + oy dyey + (L egey) 4yl (52)
1 .
(BS)O.BYﬁ - Es [(ES)QB (gs)yé * kgs)ozY(Bs)B(‘S + (ES)QG(BS)BY
~ ~ 1 _ v 1 13
(ls)aB (15)76 (ls)aY(ls)Bd (ls)aé (ES)BY] (33)
H:psn‘ (3 -+ (L - e)+rl+21"ee + 2e.,e ']
B 70 Paij 8383 T Py (L = 8485) ¥ I+ I "8q85 T S8385°1
s (34)
'L'—p—s'):[Z + 4 (1I- )+6I-2" - ’T'
Bs "o, " Fay 2323 7 "Peu oS3 B, =20 YegterT coieh 235)

where we have temporarily introduced index notation into (33). From
equations (32)-(35) we can readily obtain the terms needed to close the

system of moment equations.

1l i T { 1 i o A5
o = S E t) =S e Ve* :f_.:)_ + = Iy +
X =S y-f(gs (Y{,is) —e~j—3~1 (is isv) 2 [—3(_9-3 -(lsh>
T A i Rl i i 1Ry
5 . ==t TN e vo
HELE+ 4 )) L~ eae )V (e + o )] + () -5 4 - 5 4y Tlegeq)
. s bl PN SR N s TRy
gl e3) (g 2 45 2 —q—sn) L4 (q:. 233“ 2 45 2 is\\) =554
(36)
(Q *Vu J:e,e, = e e q“ Tt e q“ veu + (V,u ) * q'L (37)
25 —=°'=3=3 =3-3 4s3'--s s —l| i =sli
. 5 8o L . 4 At A
[95 YL{S] (L e'}t’?)) (ZHBS) g-s_+ 2 [(E_LES) 4 F (gs " iSl\)(l_i_u 2
i L :
+ - A =3 + b 38
S iji})(g-s iSll) L Es} S
D D e D e
s 3 fi, s=3 = 8_3\ 9
lb Dt(eﬁ3) 2 { £335 "Dt r €3'1s "Dt o (39)
21 ! ,
{ Ve .pe = 2 il : e *a Vee 4
Q:9(eqe,) = 2[g e4:V ey + (g 72) (7 ey)] (40)
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2 \ . 7
Boub > Bley « Pt '
zf““ . zﬂ( sl SL} o 31“1 Sii ;+ (lengg)z. St . A+2z.. st T \
= i Xt \°s / s b/
P (3P w P ) P 1 1
sl Sl sl ane sii
1 . ¥regeq + 2 5 (z_:Vegeq + 1 V:iege,) (41)
2 /
P (PP / . (e -
L /
veus = 4y Sty gy —-S“—S*)+ ey LB g8 o )
= =S =N =1\ P e s, U R T T
s S s N8 /
2p_,(p_.~2p_ ) p ' '
eSS S o sl .

) o Teyey = 25 = (fgilegey T 1 Tie505) (42)
R :V n)=2—— P :(Ve,)e,*P + P *(Va,)e,:P +P :e, (Ve )P
ity g = 23783 25 T L5 MB3/83 T8 530 g

1 1 ! ' 1 ' 1 i
~ 2 o eydent RV 8 08 an R tes (R e R (43)

Equations (22) - (28) and the closing terms given by equations (36)
- (43) constitute, together with Maxwell's equations, a set of closed
transport equations that can be applied to a wide range of plasma flow
conditions. These generalized transport equations can describe subsonic
and supersonic flows, collision-dominated and collisionless flows,
plasma flows in rapidly changing magnetic field configurations, multi-
component plasma flows with large temperature differences between the
interacting species, and plasma flows that contain anisotropic temper-
ature distributions. In addition, these generalized transport equations

can describe certain aspects of electrostatic shocks, double layers, and

magnetic merging processes.
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3. Collision terms

Unfortunactely, at present there are no general expressions for the
collision terms for the l16-moment approximation; namely, collision terms
that are valid for arbitrary collision cross section, arbitrary relative
drift between different species, arbitrary parallel-to-perpendicular
temperature ratio, and arbitrary difference between species
temperatures. In this section I present collision terms appropriate for
some special cases.

3.1. Maxwell molecule
interactions

For the special case of Maxwell molecule interaction, where the
interaction force varies inversely as the fifth power of the particle
separation, collision terms can be derived without assuming a specific

form for the species distribution functions. The collision terms in

dyadic notation are given by (Demars and Schunk 1979)




Lo 2m [ 23
 Engtm (T T TAR A | TR k|l TTRE
\F i
Ty (1 T3 RAs) | BT By =)
Zees - 1 2 (I - eqey)
=B = Wl TEees s o B S E et (47)
6qg (7) N (3) Ps W (1) 1 2)7s &
St T T V) Hep 9 T g _t‘C—It * Hop Ig HtE;U—*t
1 _ .2 Ps
2 [Hst Hee E; g-tJ ==
+ (u u, ) H(l)P -+ H(z) E)E— b (I + 2e_e )
£ B £ st b, —t 353
(6) (4) Ps
i (—s - Et)“ /Hst g T Hop Py gt]
+ (u u_ ) H(8)p + 21'3) E +u'?) < H) D—S
s T 2t/ | "st Psy st b, Pt st Psy t9, Bl
1.(2) 2 . 1._(4) _ 2
" o lse gl = Tpl Hig B fld ut)“ ]
2
(2) { s . ,
g Pt)“ L3ps * BOt Py + pglug = uy) ] (48)
_‘Sﬁi_ e WO R T
St = ‘ = st p, 9 st 95 Sk o e
b U
f o
(2) s .
= i e Hy 5; C—ItJ (L -c2)
| P
. @ 12y 8
e (Es ut) HS E5 - Hst a E‘J (23— E383)




0
1(2) (2) Ps (10) o 8l ©s
e Et) Hst sl e P B )\ T Hgt Pgy st py Pr
(2) 3 2 1 ..(4) B 2
tHgp eglug T a4 3 Hgt Ps (U Et)_L
r . ]
(2) _ s 2
+HSt (Es U_t)l‘3ps+3¥pt+ps (L—ls_ut) |} (49)
where
T
= il el
L o
1
si c-
q—L - ‘F_Tl__ 22 n (Sl>
s t
1
Pg © §>(psﬂ £ ZPSJ? (52)
1 i i
95 =7 (gg * 29, ) (53)

and where Al(S), A2(5) and vst are defined by equations (63) ana (64).

1 0
The quantities H( ) to H<l )
st s

become pure numbers once the identity of
the colliding particles 1is specified; they are given by Demars and
Schunk (1979) and are not repeated here.

Equations (44) - (49) show some important features of the collision
terms. The rate of change of momentum due to collisions is proportional
to the relative drift velocity of the interacting species. The rate of
change of parallel energy due to collision 1is proportional ¢to the
difference between the parallel temperatures, the square of the relative
drifct velocity of the interacting species as well as the difference
between parallel and perpendicular cteiperatures for the same species.

The collision term dEslfdc has similar form as 6ES“/6t but it depends on

the difference between the perpendicular temperatures rather than the

parallel ones and the term due to the anisotropy (ou—qL) has an opposite
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sign because it represents tne energy transfer between the parallel and

perpendicular directions.

3.2. General inverse-power
interactions

For interparticle forces other tnan the inverse fifth-power force
discussed above, it is necessary to assume an approximate expression for
the distribution function in order to be able to evaluate collision
terms. Adopting the l6-moment approximation given by equation (29),
Demars and Schunk (1979) derived expressions for the collision terms
which are valid for a general inverse-power force, an arbitrary
difference between species temperatures and an arbitrary difference
between parallel and perpendicular temperatures for the same species.
However, they assumed small relative drift velocity, small stress
tensor, and small heat flow and kept only linear terms in these

quantities. These are known as "quasilinear collision terms” and given

by
M \ ‘ [ o
S5 __ 3 ___ st | g - :
e Ly s 4 ke dbgas Tl s Ll ug
£ © Tk (50 { L I
2 [ L%
+ == (2T = I la: = == g
oy |1 7220 200" =5 A 7ty
o 0 1
a1 { S 1
+ — (2I = I g c==— g )
O“ 202 002 =5 Ot ftn
G
1 d P
= - = - W o_ S i
* O“{f2 o I202 1200)(351_ F;-gtl?
o o p
1 271 : N s W
+ o, ) o, Tooa = Too2! @5y~ 7 9y, (54)
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5.8 il 4 Pebie A B e a
st =51 Oy St C—Is“ Py st =t %, st gtn
(@] - )
. R(7)0(1 o g _ —p:— (9) i O_J— R(lo)q\l \1 (58)
st =s O“ st sy Py st =t| o“ st 4’:“\3
41
el \Y
=5 3 st (1) (2)
== _ g = A= c _ -
t .2 _pom }‘DsKguqst (g - u) + 0 S5 M BL)H
R
L@ L @ L s | gL L S(6) L
st Isy © oy Tst sy b | TstStl oy st =t
o o [ o -
M ow L oL@ _Ps |, 2L 0N
* S5t sy * oy Sst sy Py [Sst Gy * o Sst g‘t% a8




28

where r(x) is a gamma function, a is the power of the particle

separation (r) in the interacction force law

KSC
Force = == (60)

&

and where n is related to a by the equation

4

n=—-—-1 (61)

o and o are given by equations (50) and (51) and the quantities mo,

Voo Al(a) and ILMN are defined as
m, = mg + m, (62)
— _' (n+l)/2
i -n/2 , /5 T AT -1/2  ~(n-1)/2
v = (2k) A (a)r o o
st 3 1 \2 m +mt Moy 1 G
s s (63)
Ag(a) = //r(l - coslx)vodvo (64)
o)
XL XH KN
o 2 ) Lo i S i
L. = //dx //dx dx, expl[-(x, + x. el )] - 2‘ = . (65)
LMN ) 1 2 3 1 2 L 2
. 7 . \( (x +x.+x.)
00! s T l Z jl
where Kst is constant, y is the scattering angle, 2 is the nondimen-

sional impact parameter (cf. Chapman and Cowling 1970), and Moe is the
reduced mass

msm[
- 66
uSt m +mn ( )
S C

The values of the R's and S's are given by Demars and Schunk. They
also give the values of the I's for general n and for Maxwell molecule
interactions (a=5, n=0), hard sphere interactions (a=«, n=-1), while the

case of Coulomb interactions (a=2, n=3) is given by Chodura and Poinl

(1971). These values will not be repeated here.




L)

For the special case of Maxwell molecule interactions (a=5)
equations (54) - (59) agree with the general Maxwell molecule collision
terms (44) - (49) up to the linear terms in the drift velocity, stress,
and heat flow.

3.3. Resonant charge
exchange interactions

The Quasilinear collision terms for resonant charge exchange
interactions were derived by Demars and Schunk (1979). They are similar
in form ¢to the collision terms for the general inverse power

interactions given in the previous subsection and they will not be

repeated here.
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4. Simplified sets of
transport equations

Several sets of simplified transport equations for anisotropic
plasmas have been derived during the last two decades. In this section
I show how all of the important sets of simplified transport equations
can be obtained from the generalized transport equations given in
section (2). First, I show that the generalized transport equations
reduce to Grad's 13-moment transport equations in the Llimit of small
temperature anisotropies. Next, I present a set of simplified transport
equations that is based on a finite Larmor radius expansion of the
generalized transport equations. Within the finite Larmor radius
approximation, previous authors have made several additional
assumptions, and the resulting transport equations are derived and
discussed. I also study the effect of collisions on the transport
equations for an anisotropic plasma, and present a set of simplified
transport equations for a hybrid case where the <collisional
mean—-free—-path is the small parameter in the magnetic field direction,
while perpendicular to the magnetic field the Larmor radius is the small
parameter.

It should be noted that many plasma flows may be adequately
modelled with a set of simplified transport equations. Therefore, in
what follows I outline the derivation of the sets of simplified
transport equations so that the intrinsic limitations of a given set

will be inore apparent.

4,1. 13-moment approximation

To recover Grad's 13-moment system of transport =2quations from the

set of generalized transport equations given in section (2), we musc
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assume that the species temperature (or pressure) anisotropy is small
and we must take account of the fact that the heat flow vectors for
parallel and perpendicular thermal energy become linearly dependent in

the 13-moment approximation,

Ipsu-psﬂ PPy (67)
N e . 68
9, =5 (L + 2e5e4)°q (68)
i 2

g =2l e (69)

Substituting equations (68) and (69) into the l6-moment distri-
bution function given by equations (29)-(31), expanding the distribution
function using the inequality (67), and retaining only linear terms in

', q and (p ) we recover the l3-moment approximation for the
=S

-s

s{[_sz_

species distribution function, which is given by

(M)
= +
£, = £ (1 + 0] (70)
where
m /2 " m c2
(M) _3‘_3 | s’s
s T 0% \ 2wkT_ eXP [T kT el
s s
2\
Mg / MsCs ) Mg
T — M - | - = 7
% T T 5 S "SsSs ‘.LL 3}:13/ kT p_ IsSs (72)
sts s's
and where T = 1/3 (T + 2T ), p = n kT and
S sil s\’ s S s
= U ¢ — —
Es Es 1/3 (ps“ psl) V5 3S—'}g3) (73)

and the prime is used to distinguish between the strees tensor corre-

sponding to the l6-moment approximation (ls) and that corresponding to

the 13-moment approximation (IS).

As expected, by using the same set of dassumptions together with the

l6-moment transport equations (22) - (28), (36) - (43), we can recover




32

the 13-moment transport equations given by

aps
—_—— ° —
>+ 9 (pu) = 0 (74)
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b 2 z—(o ) vy z—(p Is} 5957 TS g @ Es)
s s 7
1 7
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5 i/ 8 Dt o = talici =0 —-( 7= i
S - — =
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-+ £ e
ES ? ﬂs st (78)
GES 6ES 615 638
where the collision terms 5t ’ 5t 5t and 3C  are siven by Schunk

(1977).

Since Grad's l3-moment transport equations correspond to a special
case of the more general l6-moment transport equations, the latter
equations are capable of describing all of the transport effects that

the 13-moment equations can, as outlined in the introduction.

4,2, Larmor radius expansion

In this subsection I consider a collisionless plasma immersed in a




33

magnetic field which is strong enough to make the Larmor radius (aL)S
much smaller than the other characteristic lengths of the problem,
namely (aL)S enly uST, (Vth)sT where L and T are the scale length and

scale time respectively and u_ and (vt are the coherent and thermal

h)s
speeds respectively. With this assumption the transport equations
simplify radically and we get a closed set of equations which consists

of Maxwell equations in addition to the following set of transport

equations

ap_
2 V. -
e+ 7T u) =0 (79)
D u D e
S sil ' s—=3
+ v + vV : - == °
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i d l'p
1 1 g SJ—] =L
QT = =—12p., — | l+ 4 e d_ :%u (93)
l52 QSZ P oz, \ P,/ LR R TRAALH
Exs
where EE = ¢ -z-—is the ExB drift velocity, and I used the relation
B
Dﬂe3
=
TR el T (o)

which is correct to the zeroth order, to get the above equations in that
form.

These equations are accurate up to first order terms. Although I
treatediislii and g:h as zeroth order terms, in practice they ought to be
small enough so that they do not invalidate the more general l6-moment
approximatione.

Equations (78) - (82) and (85) - (93) are similar to those derived
by MacMahon (1965) when a bi-Maxwellian =zeroth order distribution
function is adopted to evaluate his expressions. However, there is a
factor 2 error in his equations for qi& and qi&-

In the following paragraphs, some special cases will be studied.
For each case a set of assumptions will be needed in addition to the
general ones (collisionless plasma and small Larmor radius) stated in
the beginning of this subsection. These assumptions will be stated and

the above equations will be expanded accordingly.

Expansion I[. The extra assumption needed for this cases is that

L L
TG IR «95y)
EHMSS S

That is to say, the periodic time of oscillations is much less than all

characteristic times, except for the gyration period (ZW/QS).

The simplified closed set of equations is ‘ilaxwell equations,
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equations (79) - (82), (85) and

1
D q 9
st \_
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In the above equations (96) - (l05) I retained only the greatest

1

: - | .

non zero term in the small quantities ql, q. and T . These equations
= —S =S

are consistent with those found by Oraevskii, Chodura and Feneoperg

(1968). However, the latter had a missing p_ in the equations ror (q”N

\
H -,

and q;n) and an opposite sign for T,

Expansion II. The extra set of assumptions needed in this case is

)
S S

()= L J‘eLH (106)
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Gv) q' =g =0 (109)
lsm; qsh
(aL)S
where € = is the smallness parameter, and Li‘and QJ_are the
Ly

parallel and perpendicular scale lengths, respectively.

The proper closed set of equations is Maxwell equations, equations

(79) - (82), (85), (109) and

1 1 1
—3 = O
(ls>ll (15)22 (15)12 0 (110)
p du
! st " s3
( == el 111
L et QL)
] il
! Pgy l s3
= CE 112
20y . m S
sl QS sz \ P /
3
S Tsr il > (114)
s2 QS 3xl Py /
| -2p .
g - pSJ—i__ P st (115)
51 Q X P
s 2 s
. Do (PS‘L> (116)
L8 3 —
s QS axl OS /
Equations (110) - (l16) are consistent with the relations derived

by Srivastava and Bhatnagar (1975). tiowever, they used a different set
of coordinates whose X4 axis makes a small angle (6 << 1) with the
magnetic field. The assumption of zero parallel components of the heat

flow vectors restricts, to a large extent, the usefulness of these

equations in practical problems.
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If we keep only zeroth order terms, in addition to

the small Larmor radius and collisionless plasma assumptions,

(24) and (25) reduce to

8%\
\

(o
e

c‘ &
|

o

/

_ési\

DT P
which are similar

Moreover, if

transport equations,

equations
BZ

- -3 ey (T) i
S
1

to the results given by Chapman and Cowling (1970).
we apply the same assumptions to the closed l6-moment

they may be reduced to

; , L
Ds 'ps”BZ\ . { quu\ s
TR )“‘Fi'iﬁiiTHTZB Sl
X s s = -
, \ 4
{ {
Ds ps_i_\_ = D - ,v{qs!l\ (120)
Delp B pli=3 clR®
ie
[ 3 £ ]
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Ps {qst \ Psy .y [ Psii \ dB)
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Dt \ B} e 3 \p )
D fq . /p -p ) UB
8 (qsh\ = Psii ol = Psi i pstp A.psu) — 1 (122)
bE ta- } p? —3}—\0 PP B J
\ 87 s |\ s s sy
Equations (119) - (122), in addition to Maxwell's equations, the
continuity equation (79), and
D=, ap D e
s sii s i s—3
- - e ¢ + - ‘e, =0 123
Dt 3% 4 g8 'l —s Bt (ps” pil? =3 (A
ExB
U, = ¢ g (124)
are similar to the equations given by Whang (1971), except for an
algebraic error in his calculations.
Expansion IV. If, in addition to the small Larmor radius and

collisionless

get the following

plasma assuaptions,

we neglect the heat flow tensor, we

relations, which are accurate to the

zeroth order,
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T =0 (125)
NEEG i

e .'/psx_ \

o z5)
Nge g

These are the 'double adiabotic' energy equations of Chew, Goldberger
and Low (195 ). In this case the proper closed set of equations

consists of Maxwell's equations in addition to equations (79), and (123)

- (126).

4.3, Influence of collisions

To study the effect of collisions I consider the transport
equations for ions in a binary ion-electron plasma in wnich ion-ion
collisions dominate the collision terms. Specifically, 1 assume that
the ion-ion collision frequency is much greater than all characteristic
frequencies other than the gyration frequency (i.e. “ii >> 1/T, ui/L <<
vie)'

According to these assumptions, it is possible to prove that the
relations (67) - (69) are satisfied for ions. Therefore, the transport
equations reduce to the 13-moment approximation mentioned earlier.

Keeping only the greatest non-zero terms in the first order quantities

(ls’ gs) we get the following set of transport equations for the ions

9p .
3t LApates i)

Bl
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where the subscript i indicates quantities related to ions and where

L i gl e ,
e A L ey Ljas o

In the subsections that follow I consider the special cases when

v,. 1s much less and much greater than Q..
ii i

Collision dominant case. In addition to the assumptions needed for

the general case discussed above (\)1.j > 1/T, uj/L >> vie)’ we need to
assume that the ion-ion collision frequency is much greater than the ion
gyro-frequency (vjj >> Qj). In this case equations (130) - (136) reduce

to

== ].- —_ z ° f
5 * T 5, Ly LY -, b SR
1
25
4, == S 1)11(pi/oi) (139)

As expected, the influence of the magnetic field disappears because

rapid collisions prevent the ions from gyrating. These resulcs

correéspond to the Navier-Stokes equations (Schunk 1977) and cto what
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Chapman and Cowling call tne "first approximation” to the transport
equations.

The hybrid case. Assuming that Qi > Vi in addition ¢to the

general assumptions (vii>>l/T, ui/L>>vie), leads to the following

simplification of equations (130) - (136)

-1 5
- = L - — 140
Con T Sl T 7 Gy T T Y (140)
(1)1 = 7 (W, =H,) (141)
5 AN R, 1122
W
13
(1095 = 3 (142)
W
23 ,
a1 = ~q (s
U
25 Py 5 (o,
9 T T e Pily F\J’zn% Bl 31&1(;/ i
it i il y 1
where wzs was defined by equation (137).

The off-diagonal terms of I, as well as the tranverse component of
the heat flow vector, are inhibited by the strong magnetic field. On
the other hand, the diagonal terms of li and the longitudinal component
of q; are controlled by collisions, since the former corresponds to the
pressure anisotropy, which 1is opposed by collisions while the
longitudinal component of g, cannot be inhibited by the magnetic field
because it cannot exert a force parallel to itself.

These results are similar to those derived by Mikhailovskii and
Tsypin (1971). However, the extra terms appearing in their work are due

to two reasons. First, they used an expansion wnich is quantitatively

more accurate than the l3-moment expansion. This difference amounts to

about a 204 correction and can be compensated for by modifying the
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numerical value of Vige Second, they kept higher—-order terms in q. and

T These terms may be restored by keeping terms of the order of

~

— e compared to 1 and by keeping terms proportional to I and q;-
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CHAPTSR III

MOMENTUM AND ENERGY EXCHANGE COLLISION TZRMS

FOR INTERPENETRATING BI-MAXWELLIAN GASES

Here I follow steps similar to those of sections (1) and (2) in
chapter (1). However, in +this chapter the magnetic field B is
independent of time and co-ordinates. Also, in order to close the set
of transport equations, I adopt the bi-Maxwellian distribution function
given by equation (30).

The collision terms derived by <Chodura and Pohl (1971) and by
Demars and Schunk (1979) are valid for arbitrary temperature differences
between the interacting gases and arbitrary temperature anisotropies,
but are restricted to small relative drifts between the interacting
gases. In this chapter I remove the latter restriction and calculate
momentum and energy exchange collision terms for interpenetrating
bi-Maxwellian gases that are valid for arbitrary drift velocity
differences and temperature differences between the interacting gases as
well as for arbitrary temperature anisotropies. I also derive the
closed set of transport equations that are associated with the momentum

and energy collision terms.

1. Theoretical formulation
If we multiply equation (1) by m , m ¢ mc . and m_c 2/2 and
ply €eq y PO e SCEl
integrate over velocity space, taking into account that the velocity

distribution function takes the bi-tlaxwellian form given in equation

(30), we obtain the continuity, momentum, parallel energy and
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perpendicular energy equations, respectively, for species s. The
resulting closed system of transport equations is given by

Continuity

ap
S
v . -
. (B ) 0 (145)
Momentum
DsEs | GES
+ v + v - - o+ — B) S
Ps Dt -fj_pSJ_ — 1 psq psg nses(—- € Es * —) §t
(146)
Parallel energy
Ds st <SEsn
S 2 = 1
* P, W g, u) = 53 (147)
Perpendicular energy
SpéL ) CSES,L (
A Jom . ke 1
Dt ' ps;.<1 D, "By & B st 148)

The quantities on the right-hand sides of equations (146) - (148)
correspond t> the velocity moments of the Boltzmann collision integral
(2) and describe, respectively, the rate of change of momentum, parellel

energy, and perpendicular energy. These quantities will be evaluated in

Sections (2) and (3).
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2. Collision terms

In this section I will present collision terms for the general
inverse-power interaction and verify that the answer is consistent with
the literature in some limiting cases.

Following the steps mentioned in section (1), the collision terms

take the form:

M
—S _ [
D e o (8t f,om (el - c) (129)
2 4 (
—= 5 |ac.| de, | da g o, (g )f £, m_(c'2 - ) (150)
st L —SJ =t st*®’ st s s st
§E ( ( m
S = | S, '2 . "2
st % dgsj dey | da 8 oo (8x) Ty 5y - e ) (151)
J J

where Eé is the random velocity after scattering. Bxpressions (149) -
(151) are valid for a general distribution function and a general
differential scattering cross-section.

If we choose the distribution function to have the bi-Maxwellian
form given in equation (30) and assume a general inverse-power

interaction (equation (60)) the collision terms reduce o

s u
—s _ st's t (1) -(x-¢)
& T 3o dx g 8 Q_, (gle ==

(152)
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x.) (154)

where

ag, - (2, /ng)' /2 (155)

a = (k1 /m)'/2 (156)
. SELEN'S
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st

The above <collision terms can be expressed in the following

convenient forms

SM
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o nmov 6 .8 (167)
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\ "2/ ,

Only the limiting forms of the tensor ¢ are needed and these are given

below for a Cartesian coordinate system (x,, x

1 e% x3) with the magnetic

field parallel to the x,-axis.

>

2.1. Limiting forms

If the relative drift is much smmaller than the average thermal

speed (i.e.) |e| <<1 the quantities given above reduces %2

a 1 j

. R

3 : L A A

Aln) = ,} gy sl T &2 (177)
b o i
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-
Substituting the expressions given in equations (178) - (182) into

equations (167)-(169) the collision terms reduce to a form consistent
with the expressions derived by Demars and Schunk (1979).
Considering the opposite case when the relative drift is much

greater than the average thermal speed (|e|>>1) we find that

BYA a“ =0 (183)

A (n) = 37;7;:5; *ETH A A

2 /) =
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_ B =n, 2 (184)
ly n) = AT 5—n\ . ;_n A”
(S
3/ a
N 7 -n 2 (185)
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(1 af
\ 2/
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[

where I is a unit dyadic and A is the magnitude of the vector a.
In the limit when a“/aij 1 (isotropic temperatures) the collision
terms reduce to forms which agree with the results given by Burgers

(1969) and Schunk (1977).

2.2. Maxwell molecule interaction

For the special case of Maxwell molecule interactions, where the
interaction force varies inversely as the fifth power of the particle

separation (n=0), the integrations in equations (174)-(176) can be

reduced to a closed form,




2, (0) =
a(
a”

2,(0) = —
a

These results agree
Although

special case of

these

a bi-Maxwellian distribution function,

51

2 i\
1 A% -
_ _2” (189)
./
2
{in (190)
| & =
2
ay /
(191)
(192)
with Demars and Schunk (1979).
Maxwell molecule results were derived for the

they are wvalid

for arbitrary distribution functions.




3. Numerical results and
approximate expressions

The momentum, parallel energy, and perpendicular energy collision
Y]

terms, which depend on the quantities A, Q 9, Yn, and ¢, , must be

e ac

evaluated numerically for non-Maxwell molecule interactions. In order
to limit the number of tables needed to present the numerical results, I
restricted my calculations to the situations where the relative drift is
either parallel or perpendicular to the magnetic field, which are the

two most common cases in aeronomy and space physics.

In the case of parallel drift (g =_§“), the appropriate experssions

can be reduced to
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For the other special case, when the relative drift is perpendicular to

the magnetic field (é = A ), the appropriate experssions reduce to

. = (3-n)/2 ©
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In the above equations (193) - (200) the superscripts || and L oan
the @'s are used to denote the two cases when the relative drift is
either parallel or perpendicular to the magnetic field, respectively.
r(e,x) is the incomplete gamma function, NU,A (x) is the Whittaker
function, and Im (x) is the Bessel function of the first xind of order
m. They are defined in Gradshteyn and Ryzhik (1973).

These integrals still cannot be reduced to closed forms. However,
an approximation could be found by combining the asymptotes at small and

large relative drifts. These approximate expressions for nonzero

quantities are given by

e 5 & 1
s e f e e e )y
e n L R (193)"
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Where the a's and B's are constants, depending only on the interparticle
force law index n. They are to be chosen to minimize the relative error
between the exact and the approximate expressions. This will be

discussed in more detail below.

3.1. Coulomb integgotion

If the mutual force between the interacting particles obeys the
inverse squars law (a=2,n=3%), the integrals in equations (19%)-(200) can

be evaluated numerically. Tables 1 - 6 give the numerical values with a

1% wsccuracy for wide ranges of "Mach numbers” and parallel-<o-




Table 1.

drift) for different values of A/%Lénd T

Tll/Tl,: 1/16 1/9
A/al
1/64 2.1 1.91 1.5
1/32 2.10 1.90 1.
1/16 2.05 1.88 1.
1786 1.50 1.79 115
1/4 1.42 1.49 1.
1/2 6.22(-1) 8.04(-1) 9.
I 1.o6(-1) 2.24(-1) 3.
2 3.19(-2) 4.28(-2) 6
4 4.79(-3) 6.38(-3) 9
8 6.35(-4) 8.44(-q)
16 8.07(-8) 1.07(-4) 1
32 1.01(-5) 1.34(-5) 2
64 1.27(-5) 1.68(-6) 2.

1/4

The numerical values of ¢33(3) (

1/3

172

.29
.28

.26

.20

.85(-1)
4.92(-1)
.00(-1)
41(-2)
.81(-3)
.29(-4)
.87(-5)

.59(-6)
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Coulomb interaction and parallel

relative

9 16
3.26(-1) 2.26(-1)
3.26(-1) 2.26(-1)
3.26(-1) 2.26(-1)
3.26(-1) 2.26(-1)
3.24(-1) 2.26(-1)
3.19(-1) 2.23(-1)
3.00(-1) 2.16(-1)
2.36(-1) 1.87(-1)
9.62(-2) 1.08(-1)
1.01(-2) 1.89(-2)
IR (<8), T=g8i-3)
1.23(-4) 1.66(-4)
1.53(-5) 2.04(-5)
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2. The numerical values of ¢

1

drift) for different values of a/a, and Tﬂ”%.'

T =
/71

A/al

1/64
1/32
1716
1/8
1/4
172

1

2

4

8
16
32

64

1/16

1/9

44(-1)

.62(-2)

1/2

1.47(-2)

(%) (Coulomb interaction and parallel

.03(-1)
.03(-1)
.03(-1)
.03(-1)
.03(-1)
.02(-1)
.99(-1)
.75(-1)
.87(-1)
.59(-2)
.80(-2)
.40(-2)
.20(-2)

2.59(-1) 1.62(-1)

2.55(-1) 1.59(-1)
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Tahle 3. The numerical values of 02(3) (

relative

Coulomb interaction and parallel
drift) for different values of A/a‘L and T“/jL.
1/9 1/4 /3 1/2 ] 2 3 4 9

A/a_L

1/64 4.44(-1) 5.45(-1) 7.09(-1) 7.67(-1) 8.56(-1) 1.00 1.13 .20 .24 1.34
1/32 4.43(-1) 5.44(-1) 7.08(-1) 7.67(-1) 8.55(-1) 1.00 1.13 .20 .24 1.34
1/16 4.38(-1) 5.39(-1) 7.05(-1) 7.64(-1) 8.53(-1) 9.98(-1) 1.13 .20 .24 1.34

1/8 4.18(-1) 5.22(-1) 6.92(-1) 7.52(-1) 8.43(-1) 9.91(-1) 1.12 .19 o 1.34

1/4 3.59(-1) 4.62(-1) 6.42(-1) 7.07(-1) 8.04(-1) 9.63(-1) 1.1 .18 .23 1.33

1/2 2.26(-1) 3.11(-1) 4.88(-1) 5.59(-1) 6.72(-1) 8.63(-1) 1.04 13 .18 1.3

| 9.53(-2) 1.31(-1) 2.21(-1) 2.68(-1) 3.61(-1) 5.68(-1) 8.06(-1) 9.38(-1) 1.02 1.22

2 2.52(-2) 3.41(-2) 5.46(-2) 6.50(-2) 8.68(-2) 1.59(-1) 3.22(-1) 4.68(-1) 86(-1) 9.19(-1)
4 4.43(-3) 5.92(-3) 9.12(-3) 1.06(-2) 1.34(-2) 2.07(-2) 3.66(-2) .82(-2) 15(-2) 3.12(-1)
8 6.11(-4) 8.12(-4) 1.23(-3) 1.42(-3) 1.76(-3) 2.56(-3) 3.81(-3) .92(-3) 03(-3) 1.45(-2)
16 8.02(-5) 1.07(-4) 1.61(-4) 1.85(-4) 2.28(-4) 3.24(-4) 4.64(-4) .76(-4) 6.73(-4) 1.08(-3)
32 1.01(-5) 1.34(-5) 2.02(-5) 2.33(-5) 2.86(-5) 4.06(-5) 5 75(-5) 7.07(-5) 8.18(-5) 1.25(-4)
04 1.27(-6) 1.68(-6) 2.53(-6) 2.91(-6) 3.59(-6) 5.07(-6) 7.18(-6) 8.80(-6) .02(-5) 1.53(-5)

0 &
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.75(-1)
.22(-2)
.60(-3)
.70(-4)
.05(-5)
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Table 4. The numerical values of ¢11(3) (Coulomb interaction and

relative drift) for different values of A/ai_and T“/?L. (¢11=¢22)

perpendicular

AL 1/9 1/4 1/3 1/2 1 2 3 4 9
A/al

1/64 4.45(-1) 5.45(-1) 7.10(-1) 7.68(-1) 8.57(-1) 1.00 1.13 1.20 1.24 1.34
1/32 4.44(-1) 5.45(-1) 7.09(-1) 7.67(-1) 8.56(-1) 9 99(-1) 1.13 1.20 1.24 1.34
116 4.44(-1) 5.44(-1) 7.07(-1) 7.66(-1) 8.54(-1) 9 98(-1) 1.13 1.19 1.24 1.33

1/8 4.40(-1) 5.39(-1) 7.02(-1) 7.60(-1) 8.48(-1) 9 91(-1) 1.12 1.19 1.23 1.33

1/4 4.26(-1) 5.23(-1) 6.81(-1) 7.38(-1) 8.24(-1) 9 64(-1) 1.09 1.16 1.20 1.29

172 3.75(-1) 4.62(-1) 6.04(-1) 6.56(-1) 7.34(-1) 8.63(-1) 9.81(-1) 1.04 1.08 1.17

1 2.31(-1) 2.88(-1) 3.84(-1) 4.20(-1) 4.75(-1) 5.68(-1) 6.58(-1) 7.06(-1) 7.37(-1) 8.12(-1)
2 5.14(-2) 6.62(-2) 9.40(-2) 1.05(-1) 1.24(-1) 1.59(-1) 1.96(-1) 2.19(-1) 2.34(-1) 2.75(-1)
4 5.45(-3) 7.21(-3) 1.08(-2) 1.23(-2) 1.50(-2) 2.08(-2) 2.81(-2) 3.32(-2) 3.71(-2) 4.89(-2)
8, 6.56(-4) 8.70(-4) 1.31(-3) 1.50(-3) 1.85(-3) 2.60(-3) 3.63(-3) 4.40(-3) 5.02(-3) 7.19(-3)
16 8.14(-5) 1.08(-4) 1.63(-4) 1.87(-4) 2 30(-4) 3.25(-4) 4.58(-4) 5.59(-4) 6 44(-4) 9.52(-a)
32 1.00(-5) 1.35(-5) 2.03(-5) 2.33(-5) 2.87(-5) 4.06(-5) 5.73(-5) 7.02(-5) 8.09(-5) 1.21(-4)
64 1.27(-6) 1.68(-6) 2.54(-6) 2.91(-6) 3.59(-6) 5.07(-6) 7.17(-6) 8.78(-6) 1.01(-5) 1.52(-5)
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Table 5. The numerical values of 91(3) (Coulomb interaction and perpendicular

relative drift) for different values of A/aJ_ and TH/T_L.

UTATIRERAT 1/9 1/4 1/3 1/2 1 2 3 4 9 16
A/ai
ﬂ/64 1.05 9.53(-1) 7.91(-1) 7.32(-1) 6.44(-1) 5.00(-1) 3.70(-1) 3.03(-1) 2.60(-1) 1,63(-1) 1.13(-1)
1/32 1.05 9.53(-1) 7.90(-1) 7.31(-1) 6.43(-1) 5.00(-1) 3.70(-1)  3.03(-1) 2.60(-1) 1.63(-1) 1.13(-1)
1/16 1.05 9.52(-1) 7.88(-1) 7.30(-1) 6.42(-1) 4.99(-1) 3.69(-1) 3.02(-1) 2.60(-1) 1.63(-1) 1.13(-1)
1/8 1.04 9.43(-1) 7.81(-1) 7.24(-1) 6.37(-1) 4.95(-1) 3.67(-1) 3.01(-1) 2.59(-1) 1.62(-1) 1.12(-1)
1/4 1.00 9.08(-1) 7.54(-1) 7.00(-1) 6.17(-1) 4.82(-1) 3.57(-1) 2.94(-1) 2.53(-1) 1.59(-1) 1.11(-1)
1/2 8.56(-1) 7.81(-1) 6.59(-1) 6.14(-1) 5.45(-1) 4.31(-1) 3.24(-1) 2.69(-1) - 2.33(-1) 1.48(-1) 1.04(-1)
] 4.63(-1) 4.37(-1) 3.90(-1) 3.71(-1) 3.40(-1) 2.84(-1) 2.26(-1) 1.93(-1) 1.70(-1) 7.15(-1) 8.32(-2)
2 5.62(-2) 7.23(-2) 7.35(-2) 7.52(-2) 7.76(-2) 7.93(-2) 7.69(-2) 7.29(-2) 6.93(-2) 5.57(-2) 4.47(-2)
q 3.02(-3) 3.98(-3) 5.84(-3) 6.62(-3) 7.92(-3) 1.04(-2) 1.30(-2) 1.43(-2) 1.50(-2) 1.60(-2) 1.54(-2)
C] 3.36(-4) 4.45(-4) 6.67(-4) 7.64(-4) 9.34(-4) 1.30(-3) 1.78(-3) 2.10(-3) 2.36(-3) 3.09(-3) 3.53(-3)
16 4.09(-5) 5.42(-5) 8.17(-5) 9.38(-5) 1.15(-4) 1.62(-4) 2.28(-4) 2.76(-4) 3.16(-4) 4.56(-4) 5.76(-4)
32 5.08(-6) 6.74(-6) 1.02(-5) 1.17(-5) 1.44(-5) 2.03(-5) 2.86(-5) 3.50(-5) 4.03(-5) 5.98(-5) 7.86(-5)
( ( (<6) 7.57(-6) 1.01(-5)

64 6.34(-7) 8.41(-7) 1.27(-6) 1.46(-6) 1.79(-6 2.54(-6) 3.58(-6) 4.39(-6) 5.06

o
L
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Table 6. The numerical values of 92(3) (Coulomb interaction and perpendicular

relative drift) for different values of A/ai‘and T“/?L.

UL 1/9 1/4 1/3 172 1 2 3 4 9 16
83
/64 4.44(-1) 5.45(-1) 7.09(-1) 7.68(-1) &.56(-1) 1.00 1.13 1.20 1.24 1.34 1.39
1/32 4.44(-1) 5.45(-1) 7.09(-1) 7.68(-1) 8.56(-1) 1.00 1.13 1.20 1.24 1.34 1.39
1/16 4.44(-1) 5.44(-1) 7.09(-1) 7.67(-1) 8.55(-1) 9.99(-1) 1.13 1.20 1.24 1.34 1.39
1/8 4.42(-1) 5.42(-1) 7.06(-1) 7.65(-1) 8.53(-1) 9.97(-1) 1.13 1.19 1.24 1.34 1.39
1/4 4.34(-1) 5.38(-1) 6.97(-1) 7.54(-1) 8.43(-1) 9.88(-1) 1.12 1.19 1.23 1.33 1.38
1/2 4.06(-1) 5.01(-1) 6.60(-1) 7.18(-1) 8.06(-1) 9.52(-1) 1.09 1.16 1.21 1.31 1.37
l 3.19(-1) 4.02(-1) 5.46(-1) 6.90(-1) 6.86(-1) 8.36(-1) 9.83(-1) 1.06 1.12 1.25 1.32
2 1.76(-1) 2.29(-1) 3.32(-1) 3.75(-1) 4.46(-1) 5.83(-1) 7.36(-1) 8.29(-1) 8.95(-1) 1.07 1.18
4 (8:42(-2) 1.11(-1) 1.67(-1) 1.91(-1) 2.33(-1) 3.22(-1) 4.37(-1) 5.17(-1) 5.78(-1) 7.66(-1) 9.04(-1)
8 4.17(-2) 5.53(-2) 8.32(-2) 9.54(-2) 1.17(-1) 1.65(-1) 2.30(-1) 2.79(-1) 3.19(-1) 4.57(-1) 5.76(-1)
16 2.08(-2) 2.76(-2) 4.15(-2) 4.77(-2) 5.87(-2) 8.29(-2) 1I7(-1) 1.43(-1) 1.64(-1) 2.43(-1) 3.19(-1)
32 1.04(-2) 1.38(-2) 2.08(-2) 2.39(-2) 2.94(-2) 4.15(-2) 5.87(-2) 7.18(-2) 8.29(-2) 1.24(-1) 1.64(-1)
64 5.19(-3) 6.89(-3) 1.04(-2) 1.19(-2) 1.47(-2) 2.08(-2) 2.94(-2) 3.60(-2) 4.15(-2) 6.22(-2) 8.29(-2)

19
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perpendicular temperature ratios. However, the approximate experssions
(193)'-{200)' may be used instead of these tables. The values for the
a's and B's, which minimize the relative error, are given in Table 13.
The accuracy of the approximate experssions is given in Table 14.
In general, for the case of parallel relative drift, the relative error
does not exceed 63% when the parallel-to-perpendicular temperature ratio
(TH/TL> ranges from 1/4 to 4, and is less than 110% for T“/?Lvalues from
1/16 to 16. In the case of perpendicular drift, the error is less than

26% for 1/4 < T\,/7, < 4 and less than 96% for 1/16 ¢ T“/Tli 16.

However, the closer t> the isotropic condition (T“= ?L)’ the better the
approximate expressions. Also, when the relative drift is much higher,
or much lower, than the average thermal speed (i.e., A& >> aH, aL?r A <K<

a‘[, aL) the approximate expressions become very accurate.

To evaluate the collision terms on the right-hand-side of equations
(146) - (148) in the case of a Coulomb-force interaction, the following
steps are to be taken. TFirst, Tables 1-6 are to be used to find the ¢'s
and %'s, or alternatively, the approximate expressions given in
equations (193)' - (200)' can be used, taking n=3 and the values of the
a's and B8's given in Table 1%. Second, WH and ¥, are calculated using
equations (171) and (172), and the momentum transfer collision frequency

v is determined from equation (63), with A, (2) equal to the Coulomb

st 1

logarithm. Third, the substitution of +the above quantities 1into

equations (167) - (169) yields the desired collision terms 6ﬂs/6t,

5ES /8t and S /8t.
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5.2. Hard sphere interaction

In the case of a hard sphere interaction (a=m, n=-1) the integrals
in equations (193) - (200) can also be evaluated numerically. Tables 7
- 12 give the numerical values for wide ranges of "Mach numbers" and
parallel-to-perpendicular temperature ratios. However, the approximate
expressions (193)' - (200)' may be used instead of these tables. The
values for the 2¢'s and 8's, which minimize the ralative error, are given
in Table 13.

The accuracy of these approximate expressions for a hard sphere
interaction is much better than that obtained for a Coulomb interaction.
For parallel relative drift the error is less than 10% when 1/4 < T“/Tl_
< 4 and does not exceed 26% when 1/16 i_T“/TL < 16. As was mentioned in
the previous subsection, the accuracy gets better as we approach the
isotropic case and as 8 becomes much greater, or much less, than a“ and
e

To evaluate the collision terms (Gﬂs/ﬁt, 6ES“/Gt, and GESL/ﬁt),

steps similar to that mentioned for the Coulomb interaction are to be

followed. However, in this case we use n=-1 and a=«.




Table 7.

relative drift) for different values of A/a

32

64

1.06(+1) 1.41(+1) 2.

.65(-1) 4.
.65(-1) 4.
.65(-1) 4,
.67(-1) 4.
.74(-1) 4.
.01(-1) 4.
.95(-1) 5.
.60(-1) 8.
.38 1.
.68 3.
.33 6.
06(+1) 1
13(+1) 2.

L22(+1)

44(+1)

The numerical values of ¢33(—1)

(hard sphere interaction and parallel
N and %‘/Tl:

1/2 1 2 3 a 9 16
.89(-1) 1.00 1.78 .55 3.3 .09 1.24(+1)
.39(-1) 1.00 1.78 .55 3.31 .09 1.24(+1)
.90(-1) 1.00 1.78 .55 3.31 .09 1.24(+1)
.92(-1) 1.00 1.79 .55 3.31 .09 1.24(+1)
.00(-1) 1.01 1.80 .56 3.33 .10 1.24(+1)
.32(-1) 1.05 1.84 .61 3.37 4 1.24(+1)
.49(-1) 1.19 1.99 T 3.54 .32 1.26(+1)

10 1.64 2.54 .36 4.16 .07 1.33(+1)
.97 2.82 4. .18 6.14 L04(+1)  1.59(+1)
.80 5.40 7.70 .50 111(+1) 1.72(+1)  2.41(+1)
.54 1.07(+1) 1.51(+1) 1.86(+1) 2.15(+1) 3.25(+1) 4.40(+1)

51(+1) 2.13(+1) 3.01(+1) 3.69(+1) 4.26(+1) 6.41(+1) 8.58(+1)
L01(#1) 4.25(+1) 6.02(+1) 7.37(+1) 8.51(+1) 1.28(+2) 1.71(+2)

79




Table 8. The numerical values of 91(-1) (hard sphere interaction and parallel

relative drift) for different values of A/a.L and T"/T_L.

Tll/Tl = 1/16 1/9 1/4 1/3 1/2 1 2 3 4 9 16
=
/64 7.97(-2) 1.10(-1) 1.83(-1) 2.20(-1) 2.95(-1) 5.00(-1) 8.91(-1) 1.27 1.65 3.54 €.17
1/32 8.16(-2) 1.12(-1) 1.84(-1) 2.21(-1) 2.96(-1) 5.01(-1) 8.92(-1) 1.23 1.66 3.54 6.17
1/16 8.95(-2) 1.18(-1) 1.89(-1) 2.26(-1) 3.00(-1) 5.05(-1) 8.96(-1) 1.28 1.66 3.55 6.18
1/8 1.21(-1) 1.44(-1) 2.09(-1) 2.44(-1) 3.17(-1) 5.21(-1) 9.11(-1) 1.29 1.67 3.56 6.19
1/4 2.52(-1) 2.49(-1) 2.90(-1) 3.20(-1) 3.86(-1) 5.82(-1) 9.68(-1) 1.35 1.73 3.61 6.24
1/2 8.35(-1) 7.11(-1) 6.37(-1) 6.40(-1) 6.74(-1) 8.35(-1) 1.20 1.58 -1.95 3.83 6.46
] 3.92 3.10 2.34 2.18 2.02 1.96 2.19 2.52 2.87 4.78 7.32
2 2.42(+1) 1.85(+1) 1.28(+1) 1.14(+1) 9.78 7.91 7.02 6.90 7.03 8.44 1.09(+1)
4 1.76(+2) 1.34(+2) 8.97(+1) 7.86(+1) 6.48(+1) 4.78(+1) 3.66(+1) 3.22(+1) 2.99(+1) 2.66(+1) 2.72(+1)
8 1.37(+3) 1.04(+3) 6.90(+2) 6.02(+2) 4.91(+2) 3.51(+2) 2.54(+2) 2.12(+2) 1.87(+2) 1.38(+2) 1.18(+2)
16 1.09(+4) 8.23(+3) 5.46(+3) 4.76(+3) 3.87(+3) 2.74(+3) 1.95(+3) 1.60(+3) 1.40(+3) 9.57(+2) 7.46(+2)
32 8.72(+4) 6.57(+4) 4.36(+4) 3.80(+4) 3.08(+4) 2.18(+4) 1.55(+4) 1.26(+4) 1.10(+4) 7.36(+3) 5.58(+3)
64 6.97(+5) 5.26(+5) 3.49(+5) 3.03(+5) 2.47(+5) 1.74(+5) 1.23(+5) 1.01(+5) 8.72(+4) 5.83(+4) 4.38(+4)

<9
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Pable 9. The numerical values of 92(—1) (hard sphere interaction and parallel

relative drift) for different values of A/a and T /T .
L ho o

TH/Tl = 1/16 1/9 1/4 1/3 1/2 ] 2 3 4 ] 16
A/al

1/64 2.23(-1) 2.98(-1) 4.59(-1) 5.33(-1) 6.69(-1) 1.00 1.54 2.03 2.48 4.6 7.43
1/32 2.23(-1) 2.98(-1) 4.59(-1) 5.33(-1) 6.70(-1) 1.00 1.54 2.03 2.48 4.61 7.43
1/16 2.23(-1) 2.99(-1) 4.59(-1) 5.33(-1) 6.70(-1) 1.00 1.54 2.03 2.49 4.61 7.43

/8 2.24(-1) 2.99(-1) 4.61(-1) 5.35(-1) 6.72(-1) 1.00 1.55 2.03 2.49 4.6) 7.43

1/4 2.27(-1) 3.04(-1) 4.66(-1) 5.41(-1) 6.80(-1) 1.0 1.56 2.05 2.50 4.63 7.45

1/2 2.40(-1) 3.19(-1) 4.91(-1) 5.66(-1) 7.09(-1) 1.05 1.60 2.09 2.55 4.69 7.51

] 2.82(-1) 3.75(-1) 5.69(-1) 6.57(-1) 8.16(-1) 1.19 1.77 2.28 2.75 4.9] 7.75

2 4.05(-1) 5.37(-1) 8.11(-1) 9.33(-1) 1.15 1.64 2.36 2.95 3.48 5.78 8.€9

4 7.05(-1) 9.35(-1) 1.4 1.62 1.99 2.82 4.00 4.9) 5.63 8.70 1.21(+1)
8 1.35 1.79 2.70 3.10 3.82 5.40 7.64 9.35 1.08(+1) 1.62(+1) 2.17(+1)
16 2.67 3.54 5.34 6.13 7.55 1.07(+1) 1.51(+1) 1.85(+1) 2.14(+1) 3.20(+1) 4.27(+1)
32 5.32 7.06 1.06(+1)  1.22(+1) 1.51(+1) 2.13(+1) 3.01(+1) 3.69(+1) 4.26(+1) 6.39(+1) 8.52(+1)

1.70(+2)

64 1.06(+1) 1.41(+1) 2.13(+1) 2.45(+1) 3.01(+1) 4.26(+1) 6.02(+1) 7.37(+1) 8.51(+1) 1.28(+2)

99




Table 10. The numerical values of ¢>H(-1) (hard sphere interaction and

rerpendicular relative drift) for different values of A/ai_ and T /1T, - (¢11:¢22)
UTATRERTAL: 1/9 1/4 1/3 1/2 1 2 3 4 9 16
b/a,

1/64 2.23(-1) 2.98(-1) 4.59(-1) 5.33(-1) 6.70(-1) 1.00 1.54 2.03 2.9 4.61 7.43
1/32 2.23(-1) 2.98(-1) 4.59(-1) 5.33(-1) 6.70(-1) 1.00 1.54 2.03 2.49 4.61 7.42
1716 2.23(-1) 2.98(-1) 4.59(-1) 5.33(-1) £.70(-1) 1.00 1.54 2.03 2.49 4.6 7.43

1/8 2.264(-1) 2.99(-1) 4.60(-1) 5.34(-1) 6.72(-1) 1.00 1.55 2.03 2.49 4.62 7.43

174 2.31(-1) 3.08(-1) 4.65(-1) 5,40(-1) 6.92(-1) 1.01 1.56 2.05 2.51 4.64 7.46

1/2 2.37(-1) 3.16(-1) 4.35(-1) 5.62(-1) 7.06(-1) 1.05 1.61 2.1 2.57 4.72 7.56

] 2.74(-1) 3.65(-1) 5.58(-1) 6.46(-1) 8.07(-1) 1.19 1.79 2.32 2.81 5.04 7.94

2 3.94(-1) 5.24(-1) 7.94(-1) 9.16(-1) 1.14 1.64 2.0 3.05 3.63 6.15 9.29

4 6.96(-1) 9.24(-1) 1.40 1.61 1.98 2.82 4.05 5.02 5.87 9.30 1.32(+1)
8 1.35 1.78 2.69 3.09 3.8] 5.40 7.67 9.42 1.09(+1) 1.67(+1) 2.27(+1)
16 2.67 3.5% 5.33 6.13 7.55 1.07(+1) 1.51(+1) 1.85(+1) 2.14(+1) 3.23(+1) 4.33(+1)
32 5.32 7.06 1.06(+1) 1.22(+1) 1.51(+1) 2.13(+1) 3.01(+1) 3.69(+1) 4,26(+1) 6.40(+1) 8,55(+1)
64 1.06(+1) 1.41(+1) 2.13(+1) 2.44(+1) 3.01(+1) 4.25(+1) 6.02(+1) 7.37(+1) 8.51(+1) 1.28(+2) 1,70(+2)

L9
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Table 11. The numerical values of 91(-1) (hard sphere interaction and perpendicular

relative drift) for different values of A/a,L and ’I‘“/TL.

U 1/16 1/9 1/4 1/3 1/2 ] 2 3 4 9 16
A/al

1/64 7.90(-2) 1.09(-1) 1.82(-1) 2.20(-1) 2.94(-1) 5.00(-1) 8.91(-1) 1.27 1.65 3.54 6.17
1/32 7.90(-2) 1.09(-1) 1.83(-1) 2.20(-1) 2.95(-1) 5.00(-1) 8.91(-1) 1.27 1.65 3.54 6.17
1/16 7.91(-2) 1.09(-1) 1.83(-1) 2.20(-1) 2.95(-1) 5.00(-1) 8.92(-1) 1.27 1.66 3.54 6.17
1/8 7.95(-2) 1.10(-1) 1.83(-1) 2.21(-1) 2.96(-1) 5.01(-1) 8.93(-1) 1.28 1.66 3.54 6.18
1/4 8.12(-2) 1.12(-1) 1.86(-1) 2.24(-1) 2.99(-1) 5.06(-1) 8.99(-1) 1.28 1.66 3.55 6.18
1/2 8.74(-2) 1.20(-1) 1.98(-1) 2.37(-1) 3.14(-1) 5.25(-1) 9.21(-1) 1.31 1.69 3.58 6.21

] 1.10(-1) 1.50(-1) 2.40(-1) 2.83(-1) 3.69(-1) 5.94(-1) 1.00 1.40 1.78 3.69 6.33

2 1.79(-1)  2.4G(-1) 3.70(-1) 4.30(-1) 5.43(-1) 8.21(-1) 1.29 1.72 2.13 4.10 6.78

4 3.39(-1) 4.50(-1) 6.83(-1) 7.88(-1) 9.77(-1) 1.4 2.08 2.63 3.14 5.40 8.28

8 6.68(-1) 8.37(-1) 1.34 1.54 1.90 2.70 3.86 4.78 5.58 8.79 1.24(+1)
16 1.33 1.77 2.66 3.06 3.77 5.34 7.57 9.30 1.08(+1) 1.64(+1) 2.23(+1)
32 2.66 3.53 5.32 6.11 7.53 1.06(+1) 1.51(+1) 1.85(+1) 2.13(+1) 3.21(+1) 4.30(+1)

64 5.32 7.05 1.06(+1) 1.22(+1) 1.50(+1) 2.13(+}) 3.01(+1) 3.69(+1) 4.26(+1) 6.39(+1) 8.53(+1)




1 .
Table 12. The numerical values of i,(-1) (hard sphere interaction and perpendicular

relative drift) for different values of A/aL_and Tﬂ/Tl.

TH/Tl = /16 1/9 1/4 1/3 172 1 2 3 4 9 16
A/al

1/64 2.23(-1) 2.98(-1) 4.59(-1) 5.33(-1) 6.73(-1) 1.00 1.54 2.03 2.49 4.61 7.43
1/32 2.23(-1) 2.99(-1) 4.59(-1) 5.33(-1) 6.70(-1) 1.00 1.55 2.03 2.49 4.62 7.43
1/16 2.24(-1) 3.00(-1) 4.61(-1) 5.35(-1) 6.73(-1) 1.00 1.55 2.04 2.50 4.63 7.46

1/8 2.28(-1) 3.05(-1) 4.65(-1) 5.45(-1) 6.85(-1) 1.02 1.58 2.07 2.54 4.70 7.56

1/4 2.44(-1) 3.26(-1) 5.01(-1) 5.81(-1) 7.30(-1) 1.09 1.67 2.23 2.68 4.96 7.96
/2 3.09(-1) 4.12(-1) 6.32(-1) 7.32(-1) 9.18(-1) 1.36 2.08 2.7 3.28 6.01 9.58

] 5.95(-1) 7.92(-1) 1.21 1.40 1.74 2.55 3.83 4.92 5.94 1.05(+1) 1.64(+1)
2 2.1 2.80 4.24 4.89 6.06 8.73 1.28(+1) 1.61(+1) 1.91(+1) 3.21(+1) 4.81(+1)
4 1.21(+#1) 1.61(+1) 2.44(+1) 2.80(+1) 3.46(+1) 4.92(+1) 7.05(+1) 8.74(+1) 1.02(+2) 1.62(+2) 2.29(+2)
6 8.81(+1) 1.17(+2) 1.76(+2) 2.03(+2) 2.50(+2) 3.54(+2) 5.02(+2) 6.17(+2) 7.15(+2) 1.09(+3) 1.49(+3)
16 6.87(+2) 9.11(+2) 1.37(+3) 1.58(+3) 1.94(+3) 2.75(+3) 3.89(+3) 4.77(+3) 5.51(+3) 8.31(+3) 1.12(+4)
32 5.46(+3) 7.24(+3) 1.09(+4) 1.25(+4) 1.54(+4) 2.18(+4) 3.09(+4) 3.78(+4) 4.37(+4) 6.56(+4) 8.77(+4)
64 4.36(+4) 5.78(+4) 8.72(+4) 1.00(+5) 1.23(+5) 1.74(+5) 2.47(+5) 3.02(+5) 3.49(+5) 5.23(+5) 6.98(+5)

o
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Optimum values of a's and B8's.

Coulomb Interaction

Parallel Drift Perpendicular Drift

Gp Bp
1.0 1.05]
6.0 -1.07
21.07 -2.35

Hard Sphere Interaction

Parallel Drift Perpendicular Drift

aﬂ 8£
2.0 2.0
0.58 20
2.08 0.62
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able 14. Maximum percentage error of the approximate expressions given in

equations (193)'-(200)".

Coulomb Interaction Hard Sphere Interaction

T T T T T i)

L L L L L L
CP” 10.0 32.5 73.5 1.3 2.0 2.4
Q“ 9.5 351/ 108 2.1 o6 26
Q%l 7.7 62.6 109 0.2 3.1 6.3
¢’22 8.4 19.6 551l 1.4 1.7 1.9
Q—% 8.0 25.9 85.8 1.5 3.0 3R
QJZ- 0.7 6.6 12.5 0.¢ 3.6 7.8

|WA




Table 15. The Iy y for Coulomb and Hard sphere interactionms.
gl

L M N L
- 0 s oo
0 0 2 T - 4 (A)]
2 0 0 T [0+ 0+ )t ()]
Hard Sphere

0 0 2 2 [F%T - (1—+2m +0'(XN)]
2 0 0 %-[3-T%A+(3X—1)rb'()]

S e ot
¢'(2) ={than—]rr ,)=:—%I—-1 M
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CHAPTER IV

COMPARISON OF TRANSPORT ZQUATIONS BASED ON MAXWELLIAN
AND BI-MAXWELLIAN DISTRIBUTIONS

FOR ANISOTROPIC PLASIAS

1. Theoretical formulation

For a weakly-ionized homogeneous (Vf = O) plasma, the steady state
3
@gg = 0) distribution function for ions (s=1i) is governed by the

following equation;
/g +~-v. xB|l.V f =—= (201)

Moreover, if a simple relaxation model is used to describe ion neutral
collisions (Tanenbaum 1967), the right-hand-side of Boltzman's equation

takes the form

8t
ol (fi - fim) (202)
where | 2
m, 3/2 . -(m,v,.“/2kT )
f, =n, |\ 5=\ o " (203)

gas (Tn), ni is the ion density, and v. 1is the velocity independant
1
ion-neutral collision frequency. This collision term acts to drive the

ion distribution toward the Maxwellian distribution at a rate governed

by the relaxation time vi_1

1.1. Closed form solution

Zquations (201) and (202) can be integrated into a closed form for

general electric and magnetic fields. However, this general case is not
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of immediate interest to the purpose of this work. I will consider the
two special cases when the electric field is parallel or perpendicular
to the magnetic field. The egquations related to the case of parallel
electric and magnetic fields will be designated by an 'L' next to their
numbers, while the ones related to the case of perpendicular fields will

be designated by a next to their numbers.

The coordinates were chosen such that

B=B e, (204)

- —>

o= Q.. [

3= Byes (205)L
or

g = 5 e (206)T

For parallel electric and magnetic fields, the integration of

ejuations (201) and (202) yields,

r

My / M1V 2
fi = ni 4—:?(*1;'];‘ eXpL—é"EE;— exp (Lll ) eI‘fC(y) (237)11
n d n
waere
e. ?“
L T
u = (208)L
ii
£, e
= — . — | == v
Vi g a2 S il
i di o n
aid "erfc" is the complementary error function.

For perpendicular electric and magnetic fields, the solution is

given by
/ m 3/2 / m \
f = el ean =t [(v., - u )2 + v N 7 ‘. u2Wl
i\ 2wkT *L EKTn i8] 3 i2 i3 B |
/
2. 3
-an f’ om - .
a dn e exp) - 5o L2k (v ;T u.) cosn - 2u, ) 31nnj?
5 \ 4 (210)T
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where

i)

(212)T

Bquation (210) is consistent with the results given by 3t.-Maurice and

Schunk (1973), and by Whealton and Woo (1972) for the case of B3 = 0.

1.2. Zxpansion based on
a Maxwellian distribution

According to Grad (1958), f. can be expanded about a zeroth-order

function fgo) as follows
(o)
= Z 1 . 21
S e ’ a_(r) 1z, ¢;) (213)
where f;o> is chosen to represent a local Maxwellian distribution
function
z /5 - 5
(o) - . o
o) ol o T
i, i t2nkTil BEDl o i ' (214)

M 's are a set of complete orthogonal polynomials, aY's are the
expansion coefficients, and the subscript y is used to indicate that the
summation is generally over more than one variables. In equations (213)
and (214) c. is the random ion velocity and Ti is the ion temperature,
defined below.

The expansion is truncated by setting all expansion coefficients of
order higher than some value to zero, and the remaining set of
coefficients are found in terms of the 1lower-order moments of the

distribution function, such as

= <y > (Bulk drift velocity) (213)

~ =l

N
N

16)

n.m. <c.c.> (Pressure tensor)




2
- <> P 1
p;, =3 n.m <c; (Pressure) (217)
5 Pl 3
T, %P -y b (Stress tensor) (218)
Q. = n.m, <c.c.c.> (Heat flow tensor) (219)
= i1 EiEi
! 2
q; =3 n,m <cj c.> (4eat flow vector) (220)

In the above equations, the angle brackets denote the average 1in
velocity space, and Ei is defined as
oo Ry (221)
Within Grad's formulation, various levels of approximations (such
as 5-, 13-, and 20-moment approximation) are possible depending upon the
number of terms retained in the series expansion for the distribution
function.

The 5-moment approximation. At this 1level of approximation the

species distribution function is assumed to be represented adequately by
the first term in the series expansion, that is, by the Maxwellian given
in equation (214).

To find the equations which govern the relevant moments, we
multiply equation (201) by 1, mooc, and mic§/2 and integrate over
velocity space.

These 'moment equations' are
Continuity

0=0 (222)

Momen tum

u. x 3) ==-v.n, . m u (223)

la)
C




77

Znergy

1

0=-v. [znKe -1)- 5 nimiui] (224)

Solving equations (222) - (224) for the required moments, we get

40, \
sl o
T o= S S e 6)1
T T + 3 \ = / dd (226)

[N

for parallel electric and magnetic fields and

Un
1, = - 3 (e, + ae,.) (227)T
— _1 L=
1 + a
2
1 /m, DL
T =TT + —./ _E\ e B (223>T
i n 3\ k / oy a2

for perpendicular electric and magnetic fields.

Alternatively, the relations (225)-(228), as well as all of the
moments in this section, may be found by taking the proper velocity
moments of the exact distribution functions given in equations (207) and
(210). In practice, however, series expansions are needed only when
exact solutions are not available, and therefore, in general it 1is
necessary to obtain the velocity moments from the appropriate moment
equations.

The 13-moment approximation. The level of approximation that

properly accounts for the stress tensor and heat flow vector 1is the
13-moments approximation. For this approximation, the ion distribution

function takes the form

: o)
where f.
L

is defined in equation (214).
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The corresponding set of moment equations is (222) - (224) in

addition to the following equations:

Stress
€5 o
— (Bxt, -1, xB) ==v, [t. ~nmn(uu -=zu I) (230)
m.c =" i —i — i ——i i ==l S
Heat flow
e, 1 ) el
= —= (R - ( R ) o = =
e N lcLage B) Sy 2 Fj D) mod; X2
il i
5 1 5
= - — 1 1 —
v lag ¢ gk Toug t g agmn T ] (231)

which can be solved for the relevant set of moments.

FTor the case of parallel fields, the required moments are given by

(225), (226), and

_ 2 _
T, = ngmouyg (3§6g5 1) (232)
4. = nimiuj es (233)1L

while for the case of perpendicular fields they are given by (227),

(288) and
(£>11 = == m.ug ‘2"'1-']-2- g___:__[l42 (234)’V
. e (R R C U
1 2 4
D +
(1 )22 3 n,m.ui 232 L1 > (235)T
* s (1 +a7)° (4 + a%)
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1
B
(1.) (1.) bR e = (2a2 =) (237)T
=4 & =t 2 I (1 + a2)2(4 . 2)
(215 = (29)5y = (5)p5 = (15, = 0 6B
3 a r 2
q. = n.m,u L3ae, + (a” - 2)e,, ] (239)T
1 1150 (1 o 0.2)2 (4 o 0.2) 1 2

The 20-moment approximation. At this 1level of approximation the

ion heat flow tensor is properly accounted for. The ion distribution

function takes the form

m 3 = - m, e
fi i (o) j 1 *—*i_ajT CLiC +}*~g£«5__§Q ¢L.e.C —l : !
i i l ?kTipi;—i =i=i h_k“rl*pl;—l =i=i=i [kT.p 5
- 5 i - =
J

The moment equations that are associated with this distribution

function are (222) - (224), (23%0) and

e 1 er.
—1-[‘/’5‘ ) S ik S _
- m. E c 4 ¥ E> Bi] v m,c (E E Q—i>
- s
vy 19 * 3 nkl (@, D7 + nymy wugu, ] (et
where the superscript "s" denotes that the tensor is symmetrized (e.g.)
1
(5D
A = — (! + A
e TE Y A
s 1
A = == {(A + A + + + +
(— )uBY 6 ( aBy ayB ABuY AYQB ABYG A‘ych)

The resulting velocity moments are similar to those of the

1%5-moment approximation, except for




80

gi 2nimiud ;33395 (242)L
and
.2 4
Q)44 = nimiu?‘ z 320a - ;% 5 (243)1
S (1 a%)” (4 +a%) (9 + a%)
2 4
(i e, ——me il saga (244)7
(1 +a%)” (4 +a%) (9 + a7)
2 4 6
- 14a’” + 6 a -
(9_) = n.m.uz e 1 (243 m
1427 kil o OL2>3 i a2) (9 + 32)
3 4 3
. i - 30a + 12 a” - 4a  + 2a P
(Q; )55 = mymyug 2.5, 2 2 (EegiT
(1 +a%)” (4 +a%) (9 + a)
(@) 445 = @)y05 = (8)0p3 = (8435 = (o33 = (@y)535 =0 (247)T

and 91 is symmetric with respect to a change in any two coordinate

indices (e.g. <gi>a8Y ) <gi)a78>

1.3. Bxpansion based on
a bi-Maxwellian distribution

With regard to anisotropic plasmas, Grad's approximations have
limited applicability because they cannot be used to describe
distribution functions that are characterized by large temperature
anisotropies. These cases are better described by expanding the
distribution function about a two-temperature (or bi-llaxwellian)
zeroth-order distribution function.

Following a 1line parallel to that in subsection (1.2), the 1ion
distrubtion function is expanded about a bi-Maxwellian fuanction. Then,
the expansion coefficients, of order higher than some value, are set to

zero. The remaining coefficients are found in terms of the lower-order

moments, e.g.,




LI (Bulk drift velocity) (248)
P. = n.m.<c.c.> (Pressure tensor) (249)
—i i1 =i=i
2
= < > 0
pi“ nym,<e.y (Parallel pressure) (250)
1 ,
pii_: > nimi < Cil? (Perpendioular pressure) (251)
P =P - I - - D. i 252
T BN (piH pkl?§335 (Stress tensor) (252)
“ = n.m.<c? C.> (Heat flow vector for
i i1 Tig =i
parallel energy) (253)
i ! 2
Lot 5 n.m <c. c.> (Heat flow vector for
i 2 ii ij—i
perpendicular energy) (254)

where the prime on li is used to distinguish the two definitions given
in eguations (218) and (252).

Various 1levels of approximations (such as 6- and 16- moment
approximations) can be obtained depending on the number of terms
retained in the series expansion of the distribution function.

The 6-moment approximation. In this case the approximate

expression for the ion distribution function takes the form

: i
(v) 5/2 1/2 2 2
3 S\ ~ 5 s _ ¢
5 2 = n, (27) 6,(8“) exp( > %Lcil_ 5 B“ci“) (259)
Wwhere
i
(7 (2356)
iy
gt !
= AR 2
By = i T (257)
it
The required moment equations are (222), (223) and
Parallel energy
0=-v. ‘nx(T. ~7) -n.mu.‘ | (238)
1 1 iy n 1 1 1§
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Perpendicular energy

1

_ N >
2 Vi [nikmi_\: T) -3 TiM%yy

(259)

The moments, found by solving this set of equations, are given by

equations (225) and

m\
Ti” =T @ E—> uy (260)L
T, , =T (261)L

when the electric field 1is parallel to the magnetic field, and by

equations (227) and

JOR =l (262)T

T, =T & o == e (263)7

when the electric field is perpendicular to the magnetic field.

The 16-moment approximation. For the 16- moment approximation, the

ion distribution function takes the form

£, = f(,lb) (1 + @i] (264)

i

where f§b> is defined in equation (255) and ¢i is given by

Bl 2 P . ) .
%t T Zngm, 8y (egy - ey )lxiieqey) + 28,(x;5:0085)e 0,5 + 28 150c; oy
2 ' 2
By : Bjc LL) A B_LBU(1 E,SJ_C{_L_ AL By
" n.m - 4/ 4 Sii T am \ " 2 4 iy 2n.m
11 a5 ol \y i

5 @ c. R
=iil  2n.m. i iy 1; =id
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The corresponding moment equations are (222), (223), (258), (259)

and

Stress tensor

ei 1 5
—— (Bx 1t =1 xB)=-v.li1t' -uu +u . + —u. (I-e_e ) ]
- —i =1 — i =1 i%5—1 2 iy = =3=37-
e i i it Hi—1. =it 3 T8 5—=> (266)
Parallel heat flow
3 T ]
- - == (5 + — 3 . + . o E
moe = ‘4 T BE+gu x3B) Ly L ™ 28585 (= pi”;‘t_)]
r [‘ 2
= -v.lq. +20kTu., +nklTu +nmu . u.] (267)
LR, i "n—i? i n—i % P =
Perpendicular heat flow
el, e 1
1 i _
L _Bxg, - —(E+—= u xB).[P.I+(I-e.e,) !+ 1)] =
m.c — il ul = c -1 = Ll e 1 14
al i
[ 1
= ‘= + %XT + X + = 268
vilqy n kT u,; + n kT u, 5 ngm u;Lg ] (268)

For the case of parallel electric and magnetic fields, the velocity
moments that are obtained from these equations are given by (225),

(260), (261) and

1, =0 (269)L
1 Pl

gi 2 nimi uj 93 (270)L
A_ oy

q; =0° (271)1L

while for perpendicular electric and magnetic fields they are given by

equations (227), (262), (263) and




]
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(275)7

(276)T




2. Comparison of transport equations

In this section I compare different series expansions of the ion
distribution function. These expansions fall into two categories;
Maxwellian-based and bi-Maxwellian-based expansions. The
Maxwellian-based expansions, which depend on the technique developed by
Grad (1949), include the 5-moment, the 13-moment and the 20-moment
approximations. The 5-moment approximation assumes that the
distribution function can be represented by the local Maxwellian given
sby equation (214). This level of approximation only accounts for the
bulk drift velocity u, and temperature Ti’ which are given by equations
(225) and (226) for the case of parallel electric and magnetic fields,
or equations (227) and (228) for the case of perpendicular fields. In
the 13-moment approximation, the expression for the ion distribution
function contains a local Maxwellian term in addition to correction
terms proportaional to the stress tensor li and the heat flow vector 85~
These corrections allow for temperature anisotropy and asymmetry in the
distribution function. At this level of approximation the appropriate
expression for the distribution function is given by equation (229) and
the relevant moments are given by equations (225), (226), (232), and
(233) for the case of parallel fields or equations (227), (223), and
(234) - (239) for the case of perpendicular fields. The 20-moment
approximation accounts for the heat flow more accurately because it
represents the heat flow by a tensor Qi instead of the vector 1, used in

the 13-moment approximation. At this 1level, the ion distribtuion

function is given by equation (240) and the moments that enter into this
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expression are given by equations (225), (226), (232), and (242) for
parallel electric and magnetic fields and by equations (227), (228),
(234) - (238), and (243) - (247) for perpendicular fields.

The bi-Maxwellian-based expansions include the 6-moment and the
16-moment approximations. The 6-moment approximation represents the ion
distribution function by a local bi-Maxwellian (255). It accounts only
for the bulk drift velocity U parallel temperature Tiﬂ and
perpendicular temperature vPi;_’ which are given by equations (225),
(260), and (261) for parallel electric and magnetic fields or by
equations (227), (262), and (263) for perpendicular fields. The
16-moment approximation contains, in addition to the local bi-iMaxwellian
term, corrections proportional to the stress tensor 1'i and the heat
flow vectors for parallel and perpendicular energy gg and 9;; For this
approximation, the distribution function is given by equations (255),
(264), and (265) and the relevant moments are given by equations (225),
(260), (261), and (269) - (271) or by equations (227), (262), (263), and
(272) - (276) for the case of parallel or perpendicular fields, respec-
tively. Since the approximations based on a bi-Maxwellian are found by
expanding about an anisotropic function, they are expected to handle
large anisotropies better than those based on a Maxwellian.

In the following subsections, the different levels of approximation
are compared among themselves and with the closed form solution. I
consider a wide range of conditions; that 1is, both parallel and
perpendicular electric and magnetic fields, and different values for the

electric field and for the collision-to-cyclotron frequency ratio. The

different conditions produce a range of non-Maxwellian characteristics.
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The comparison of the different expressions <{or the 1ion
distribution function is shown in Figures 3 to 12, which are obtained as
follows. The relevant moments are computed and the distribution
function in the required plane is found by substituting for the moments

and taking the component of the random velocity perpendicular to this

plane equal to zero. Finally, the distribution function is represented
by contours at levels decreasing by a factor of e1/2 starting from the
maximum.

2.1. Parallel electric

and magnetic fields

Figure 3 shows a comparison between different expansions based on a
Maxwellian; namely, the 5-moment, 13-moment and 20-moment
approximations. As mentioned earlier, the 5-moment approximation only
accounts for the bulk drift velocity Ei and the temperature Ti. As the
electric field strength increases, both u, and T.l increase. Jowever,
the increase in the bulk drift velocity does not show up because the
contours are plotted against the ion random velocity Ei' The 13-moment
approximation allows for anisotropic and asymmetric features through
corrections proportional to the stress tensor and the heat flow vector.
As the electric field strength increases, these correction terms
increase. At moderate and high electric field strengths (D§|= 1 and 3),
the distribution function differs significantly from that for the
5-moment approximation, where D) e (eiE“/mivi)/(szn/mi) 1/2] is the
normalized drift velocity. The 20-moment approximation is similar to

the 13-moment approximation, however, it describes the heat flow better

through the tensor 'li. For intermediate and high values of 3“, the




Figure 3. Contours of the ion distribution function in the principal
velocity plane parallel to the electric field for the Maxwellian-based
expansions and for parallel electric and magnetic fields. Three series
expansions are shown, including the 5-moment (top row), the 13-moment
(middle row), and the 20-moment (bottom row). In addition, three values
of the normalized parallel drift velocity were considered; D = 0.3 (left
column), 1.0 (middle column), and 3.0 (right column), where
D“=(eiE /mivi)/(Zan/mi)T/g. The contours are plotted against the nor-
malized random velocity_gi/(2an/mi)1/2. The contour levels decrease by

a factor of e1/2 starting from the maximum, shown by the dot. Contour

numbers have been omitted whenever they are obvious.
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Figure 4. Contours of the ion distribution function in the principal
velocity plane parallel to the electric field for the
bi-Maxwellian-based expansions and for parallel electric and magnetic
fields. Two expansions are shown, including the 6-moment (top row) and
16-moment (bottom row). In addition, three values of the normalized
parallel drift velocity were considered; D“= 0.3 (left column), 1.0
(middle column), and 3.0 (right column), where
D.=(eiE /mivi)/(Ean/mi)1/2. The plotting format is the same as that

1
for Figure 3.
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Figure 5. Comparison of the exact form with the 16-moment and the

20-noment expansions for the ion distribution function in the principal

velocity plane parallel to the electric field for the case of parallel

electric and magnetic fields. Three values of the normalized parallel

drift velocity were considered, D”= 0.3 (left column), 1.0 (middle co-

lumn) and 3.0 (right column), where q(=(eiE /miv;)/(2an/mi)1/2. The

plotting format is the same as that for Figure 3.
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Figure 6. Contours of the exact ion distribution function in the prin-
cipal velocity (EfEX§> plane for the case of perpendicular electric and
magnetic fields. Three values of the collision-to-gyro frequency ratio
were used; a = 0.1 (bottom row), 1.0 (middle row), and 10 (top row),
where a=vimic/eiB. In addition, three values of the normalized pepen-
dicular drift velocity were considered; ?L: 0.3 (left column), 1.0 (mid-

dle column), and 3.0 (right column), where ?L=(C§L/B)/(2an/mi)1/2. The

plotting format is the same as that for Figure 3.
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Figure 7. Contours of the ion distribution function in the principal
velocity (g—g;g) plane for the exact form and the Maxwellian-based ex-
pansions and for perpendicular electric and magnetic fields. The exact
form (top row) is compared with the 5-moment (second row), the 13-moment
(third row), and the 20-moment (bottom row) expansions. In addition,
three combinations of QLand a were considered; [QL=1.O,a=O.1] (left co-

lumn), [D‘L= 1.0, a = 1.0] (middle column), and [DJ_: 3.0, a = 1.0] (right

(R 1/2 _ L.
column), where QL (cnl/B)/(2an/mi) and o vimic/eiB. The plotting

format is the same as that for Figure 3.
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Figure 8. Contours of the ion distribution function in the principal
velocity (§;§x§)—plane for the exact form and the bi-Maxwellian-based
expansions and for perpendicular electric and magnetic fields. The
exact form (top row) is compared with the 6-moment (middle row) and the
16-moment (bottom row) exapnsions. In addition, three combinations of QL
and a were considered; [QL= 1.0, a = 0.1] (left column), [D4f 1.0, a =

1.0] (middle column), and [DL: 3.0, a = 1.0] (right column), where

- . 1/2 _ . .
DJ:(CEL/B)/(szn/mi) and a—vimic/eiB. The plotting format is the

same as that for Figure 3.
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Figure 9. Comparison of the exact form with the 16-moment and the
20-moment expansions of the ion distribution function for the case of
perpendicular electric and magnetic fields and for QL: 1.0 and o« = 0.1,

The <contours are plotted in the three principal velocity planes. The

plotting format is the same as that for Figure 3.
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Figure 10. Comparison of the exact form with the 16-moment and the
20-moment expansions of the ion distribution function for the case of
perpendicular electric and magnetic fields and for D_L= 1.0 and a = 1.0.

The contours are plotted in the three principal velocity planes. The

plotting format is the same as that for Figure 3.
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Figure 11. Comparison of the exact form with the 16-moment and the
20-moment expansions of +the ion distribution function for the case of
perpendicular electric and magnetic fields and for D_L_: 3.0 and a = 1.0.

The contours are plotted in the three principal velocity planes. The

plotting format is the same as that for Figure 3.
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Figure 12. Comparison of the exact form with the 16-moment and the
20-moment expansions of the ion distribution function for the case of
perpendicular electric and magnetic fields and for D;= 3.0 and a = O0.1.
The contours are plotted in the principal velocity (gjgxg)—plane. The

plotting formmat is the same as that for Figure 3.
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effect of the 20-moment correction terms becomes significant, but the

results are qualitatively similar to those of the 13%-moment

approximation. Finally, when the electric field is weak (D, = 0.3) the

Il

distribution 1is <close to Maxwellian and all three 1levels of
approximation are acceptable.

In Figure 4, expansions based on a bi-Maxwellian (6- and
16-moments) are compared. The 6-moment approximation accounts for the

bulk drift velocity u, and parallel and perpendicular temperatures, Tiﬁ

and T, = As B i increases, u, and T,
sl s ik il

i i

because of the absence of any mechanism to transfer the parallel energy,

increase while Tilftays constant
absorbed from the electric field, to the perpendicular direction. The
increase in the drift velocity does not show up in this case for reasons
similar to those mentioned in the previous paragraph. The 16-moment
expansion allows for skewness through the correction terms proportional
to 3! and j;. When D” = 0.3, the two expansions are near to laxwellian.
As Eﬂ increases <Dli = 1 and 3), the effect of the correction terms
becomes apparent and the 16-moment result departs significantly from
that of the 6-moment.

The 20-moment approximation, having more terms is expected to be
better than the 5- and 13-moment approximations. By the same token, the
16-moment approximation should be ©better than the 6-moment
approximation. A detailed comparison indicates that this is indeed the
case. Furthermore, for anisotropic plasmas, we would expect that an

expansion based on a Dbi-¥Maxwellian 1is Dbetter than one based on a

Maxwellian. In Figure 5 I compare the 20-moment and the 16-moment

o

approximations to the exact distribution function. For small values of
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E“(Du = 0.3), both approximations are close to the exact solution which
is close to Maxwellian. As 3, increases, and hence the anisotropy

i\

increases, the 16-moment approximation gives much better results than

those given by the 20-moment approximation even though the former

contains fewer terms. The 16-moment approximation is in excellent
agreement with the exact solution for D“= 1 and in good agreement for
D. = 3. Therefore, the 16-moment approximation is capable of describing

temperature anisotropies as large as 19 (see Table 16).

From the previous discussion, it is apparent that expansions based
on a bi-Maxwellian are better than those based on a WMaxwellian in
describing anisotropic plasmas even if fewer terms are retained. Also,
the 16-moment approximation can handle very large anisotropies <Tiﬁ/Ti‘w

-—

20).

2.2. Perpendicular electric
and magnetic fields

For the case of parallel electric and magnetic fields, the main
effect of the electric field is to cause a parallel-to-perpendicular
temperature anisotropy. However, when the fields are perpendicular,
significant deviations from the Maxwellian shape can occur in the
direction perpendicular to the magnetic tield in addtion to the unequal
temperatures in the directions parallel and perpendicular to the
magnetic field. Therefore, the 16-moment approximation is not expected
to describe the distribution function as well as when the fields are
parallel, especially in the velocity plane perpendicular to 3.

Figure 6 shows the behavior of the exact solution for the ion

distribution function in the principal velocity plane perpendicular to




Table 16. lon teuperature anisotropy ﬁ‘i'\/[yi L).

E ) B £ELB
| w
—-— —— l - - — —
a 0.1 1.0 10.0
D = ONC |

0.3 Lig 11 0.3 | 0.9 0.95 1.00
1.0 3.00 1.0 0.50 0.66 0.99
| 3.0 19.00 11 3.0 0.09 0.17 0.91

-
o
()
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B. The distribution function is shown for a = 10, 1, 0.1 (from top to
bottom) and for By, = 03, 15 3(from left to right), where afz vimic/eiB]
is the collision-to-cyclotron frequency ratio and Dy
k= (cﬂi_/B)/(Ean/mi)1/2] is the normalized perpendicular drift
velocity. As shown, when a = 10 (large collision frequency) and when D
= 0.% (weak electric field) the distribution function is very close to
the Maxwellian shape. However, when D§ approaches or exceeds unity and
a approaches or becomes less than unity, the distribution function shows
significant deviation from the Maxwellian form. For example, the
distribution function takes a bean shape (D_Lf 3, a = 1) and a toroidal
shape (Dy = 3, a = 0.1), as noted by St-Maurice and Schunk (1974).
Also, for the cases (DJ_: ', «a =1) and (D, =1, a = 0.1), as well as
for the two cases mentioned above, the peak of the distribution function
(marked by the dot) does not coincide with the average drift velocity
(at the origin). In addition to the non-Maxwellian characteristics that
occur for these four cases in the plane perpendicular to B, the ion

velocity distribution also exhibits a pronounced temperature anisotropy,

i

with T. . > 7. (see Table 16).
e

From the four cases that display significant non-Maxwellian
characteristics, I select three cases (namely, DJ_= 1, sa =L ORI Dy = 18

i
g gDy - 5, 8 S ) for my comparison of the different expansions for
the ion distribution function. The fourth case (DJ_= 3, a = 0.1), where
all expansions fail, will be discussed later.

The 5-moment, the 13-moment and the 20-moment approximations are

conpared with the exact form of the distribution function in Figure 7.

The distribution function is plotted in the plane perpendicular to 3.
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The 5-moment approximation is unacceptable in all three cases. Jn the
other hand, the results of the 13-moment and the 20-moment
approximations are comparable, although the 20-moment approximation is
slightly better. Generally, when the distribution function is not too
far from Maxwellian, the 1%-moment and 20-moment approximations are in
good agreement with the exact solution (left and middle columns).

In Figure 8, the 6- and 16-moment approximations are compared with
the exact answer for the same three cases and the same velocity plane
considered above. It is clear that the 16-moment expansion can account
for all three cases. Although it fails to handle the bean feature for
the case (DJ_ = 3, a = 1), it still accounts very well for the
temperature anisotropy. Moreover, the 6-moment approximation is not
that bad considering its very few degrees of freedom.

In the previous two figures, the comparisons were between
distribution functions displayed in one velocity plane. However, it is
necessary to consider the three principal velocity planes in order to
see the 3-dimensional structure of the distribution function. The 20-
and 16-moment expansions (as the best candidates from the Maxwellian-
based and bi-Maxwellian-based expansions) are compared with the exact
solution in Figure 9 (D = 1, a = 0.1), Figure 10 <QL_= 1, a = 1) and
Figure 11 (D; = 3, @ = 1). For each case the distribution function is
plotted in the three principal planes. In the first two cases, both
series expansions are quite acceptable in all three planes; that is, the
three-dimensional shape is well represented. Iowever, in the third case

(Figure 11), the 16-moment expansion is better in the two planes

parallel to the magnetic field because it provides a better description
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for the temperature anisotropy, which is the major feature in these
planes. On the other hand, both expansions tend to produce the bean
shape appearing in the plane perpendicular to the magnetic field (middle
column of Figure 11). Since this shape is produced by the terms
proportional to the heat flow, the 20-moment expansion produces it
slightly better because it accounts for the heat flow tensor accurately.

Figure 12 shows the case (DJ_= 3, a = 0.1) where the distribution
function takes the form of a torus with the major axis parallel to B.
The figure shows the intersection of this torus with a plane passing
through this axis. The toroidal character can be accounted for only by
expansions including moments higher than the third order. Consequently,

both the 20-moment and 16-moment approximations fail in producing this

shape.
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CHAPTER V

COMPARISON OF MAXWELLIAN AND BI-MAXWELLIAN EXPANSIONS
WITH MONTE CARLO SIMUIAIONS FOR ANISOTROPIC

PLASMAS

Although the results of chapter (IV) were obtained for a homogene-
ous plasma and a simple collision model, they should be useful in pro-
viding clues as to the extent to which a given series expansion can ac-
count for the anisotropic character of a plasma. However, a more real-
istic collision model will produce a smaller temperature anisotropy than
the simple collision model for given electric and magnetic fields, and
it is not clear to what extent this will affect the results. Therefore,
in this chapter I wuse more rigorous collision models and compare
Maxwellian and bi-Maxwellian expansions with Monte Carlo simulations in

order to determine the adequacy of a given series expansion.

1. Monte Carlo simulation

My aim is to use the Monte Carlo Simulation (referred to hereafter
as MCS) to find the velocity distribution function of a system of ions
moving under the influence of electric and magnetic fields in a neutral
gas. The neutrals are assumed to have a non-drifting Maxwellian veloci-
ty distribution function and the ion density 1is assumed to be much

smaller than that of the neutrals, so that ion-ion collisions can be ne-

glected.
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1.1. The Monte Carlo technique

The standard procedure of the MCS is to follow the motion of one
ion for a large number of collisions, and its velocity is continually
monitered. Then, various kinds of time averages for the ion are comput-
ed, which can be equated to the corresponding ensemble averages of the
system.

In practice, the ion motion is simulated as follows. The time in-
terval between every two successive collisions is found via a proper
random number generator. The ion trajectories during these intervals
are determined by the classical laws of motion of a charged particle
under the influence of electric and magnetic fields. Changes of ion
velocity due to collisions are determined using another set of random
numbers having the statistical properties determined according to the
chosen collision model. Then, a suitable grid in velocity space is used
to register the ion's behavior. The time that an ion spends in each
bin, divided by the bin's volume, is taken to be proportional to the ion
velocity distribution function at its center. Moreover, the individual
segments of the trajectory can be directly used to find different velo-
city moments, as will be explained later. The general aspects of this
technique are discussed in more detail by Lin and Bardsley (1977), while
some fine details, which depend on the specific collision model, are

discussed later.

1.2. Relaxation model

For this collision model, the total collision cross section g, is

inversely proportional to the relative velocity (g) between colliding




106

particles. That is, the collision rate K(g)[EGT(g)g] is independent of
the colliding particles' velocities. In this case the time intervals
between successive collisions have an exponential probability density
function and can be generated easily. Also, according to this model,
the colliding particles exchange their velocities (or equivalently, ex-
change identities) during a collision. This is equivalent to assuming
that the ions and neutrals have the same mass (ions in their parent gas)

and that the differential scattering cross section varies as

o(g,x) = 8(x-71)/g (277)
where y 1s the scattering angle in the center-of-mass frame of reference
and d(x) is the delta function.

For this simple model, a closed-form expression can be found for
the ion velocity distribution function (see chapter (IV)). However, the
MCS was used to find the ion velocity distribution functions and the
corresponding velocity moments for a couple of cases. The ion was fol-
lowed for 105 collisions in each case. The results were compared with
the closed-form solutions as a check on the simulation process, and ex-
cellent agreement was found. This shows that the MCS, with +the probe
ion followed for 1O5 collisions, is accurate enough for our purpose.
Therefore, in all of the cases presented in this work the computations

were performed for 10° ‘real' collisions.

1.%3. Polarization model

For the polarization c911lision model, the collision rate K is con-

stant as in the case of the relaxation model. On the sther hand, the

collisional scattering is assumed to be isotropic in the center-of-mass
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frame of reference. This approximation, used by Wannier (1953), intro-
duces about a 10% error for relative energies that are sufficiently
small, compared to the minimum of the interaction potential (St.-Maurice
1975).

I adopt this approximation for some reasons beyond computatignal
simplicity. First, I am mainly interested in the comparison between
transport equations and the results of MCS, rather than their absolute
values. Second, this 10% error introduced by this approximation is
lower than the uncertainties in the interaction potentials. Bhibrd, i
the 1limit of high relative velocity, where this approximation fails, the
collision properties can be approximated by using the hard sphere model

discussed below.

1.4. Hard sphere model

For the hard sphere collision model, the total collision cross sec-
tisn O is independent of the colliding particles' velocities; that is,
the collision rate X is proportional to their relative velocity (g).
Contrary to the two previous cases, it is difficult to generate, direct-

ly, the time intervals between collisions. I use the concept of ‘'null

collision' explained in detail by Lin and Bardsley (1977). This techni-

que requires the existence of an upper bound Kmax for the collision
rate, i.e., K(g) < Kmax for all values of g. In the case under consi-
deration, Kmax is infinite, which causes a computational problem. This

problem can be overcome by using a finite value for Kmax’ which intro-

duces an error through collisions corresponding to relative velocities

greater than a certain value. However, the resulting error can be arbi-
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trarily reduced by taking Kmax large enough, although still finite, such
that the error-causing collisions are highly improbable.
The collisional scattering is isotropic in the center-of-mass frame

of reference. This 1s a typical characteristic of hard sphere colli-

sions.
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2. Velocity distributions for
the polarization model

In this section, the ion velocity distribution functions resulting
from the MCS are compared with those of the 20- and 16-moment approxima-
tions for a variety of cases. For parallel electric and magnetic
fields, different values of the normalized parallel drift velocity (Dn)
are considered, while for perpendicular electric and magnetic fields
different combinations of the normalized perpendicular drift velocity
<?l? and the collision-to-cyclotron frequency ratio (a) are considered.
The different parameters produce a range of non-Maxwellian characteris-
tics for the ion velocity distribution function.

It is important to choose the values of these parameters to match
the cases presented in chapter (IV) to facilitate comparison with the
results for the relaxation collision model used there. Unfortunately,
the definitions wused 1in that chapter are not useful for the collision
models considered here. On the other hand, the relevant definitions
available in the literature (e.g., the definition of collision frequency
v; presented by Schunk (1977)) are limited to specific forms of the dis-
tribution function. Different, yet more general, definitions are used
here when necessary. For example, the normalized parallel drift veloci-

ty (Dr) is defined as
|

D” = ui/(2an/mn)1/2 (278)

The normalized perpendicular drift velocity (?l) is

» r 12 s
11 (c l/B)/(Zan,mn) (279)

and a is defined as
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o (280)

m,+m -
i 'n

a e av [tc(eiB/mic)]/av[(1—cosx)

where uy is the ion drift velocity, Tn and m are the neutral tempera-
ture and mass, respectively, ?l_ and B are the electric and magnetic
fields, ¢ is the speed of light, ei and mi are the ion charge and mass,
tc is the time interval Dbetween two successive collisions, x is the
scattering angle in the center-of-mass frame of reference and the "av"
denotes an average over the path of the probe ion in the MCS.

These definitions are chosen such that they satisfy certain guide-
lines. First, they are consistent with the corresponding definitions
given in chapter (IV). Second, when the collision frequency vy is inde-
pendent of the distribution function (K(g) = const), they are consistent
with those in the literature (Schunk 1977). Finally, they account for

the angular dependence of the differential cross section and for the

'velocity persistence', mentioned by Chapman and Cowling (1970), through

m
n

m.+m
1 n

The comparison between the ion distribution functions resulting

the weighting factor (1-cosx) in equation (280).

from the MCS, the 20-moment, and the 16-moment approximations is pre-
sented in Figures 13-18, which are obtained as follows. The MCS is used
to follow the probe ion for 1O5 collisions so that the ion distribution
function can be calculated. Also, the resulting velocity moments are
found as explained in the next two subsections . These velocity moments
are substituted into equations (240) and (264) for the 20- and 16-moment
approximations of the distribution function, respectively. Finally, the

ion distribution functions are represented by contours at levels decre-

1/2

asing by a factor of e

starting from the maximum.




Figure 13. Comparison of the MCS with the 16-moment and 20-moment ex-
pansions of fi in the principal velocity plane parallel to the electric
field for the polarization collision model, equal ion and neutral
masses, and parallel -electric and magnetic fields. Two values of the
normalized parallel drift velocity were considered, DK=1 (left column)
and 3 (right column), where D”=ui/(2an/mn)1/2. The contours are ploi-
ted against the normalized random velocity_gi/(kTi/mi)1/2. The contour

levels decrease by a factor of e‘i/2 starting from the maximum, shown by

the dot.
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Figure 14. Contours of fi obtained from the MCS in the principal velz-
city (E - ExB) plane for the polarization collision model, equal ion

neutral masses, and perpendicular electric and magnetic fields. Two va-
lues of the collision-to-cyclotron frequency ratio were used; a=0.1
(bottom) and 1 (top), where a is defined in equation (280). In addi-
tion, two values of the normalized perpendicular drift velocity were
considered; D=1 (left) and 3 (right), where D, = (cgi/B)/(szn/mn)1/2.

1
The plotting format is the same as that for Figure 13, but the dotted

contour (bottom, ri«gh 't panel) is lower than the maximum by a factor of

2/(e”1/241y,
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Figure 15. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of fi for the polarization collision model, equal ion and neu-

tral masses, perpendicular electric and magnetic fields, ?lfS, and

a=0.1. The contours are plotted in the three principal velocity planes.

The plotting format is the same as that for Figure 13.
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FPigure 16. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of fi for the polarization collision model, equal ion and neu-

tral masses, perpendicular electric and magnetic fields, ?L-1, and

a=0.1. The contours are plotted in the three principal velocity planes.

The plotting formmat is the same as that for Figure 13.
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Figure 17. Comparison of the MCS with the 16-moment and 20-moment ex-
pansions of fi for the polarization collision model, equal ion and neu-
tral masses, perpendicular electric and magnetic fields, plfB, and o=1.

The contours are plotted in the principal velocity (E - Exg) plane. The

plotting format is the same as that for Figure 13.







Figure 18. Comparison of the MCS with the 16-moment and 20-moment ex-
pansions of fi for the polarization collision model, equal ion and neu-
tral masses, perpendicular electric and magnetic fields, D

lﬁ1, and a=1.

The contours are plotted in the principal velocity (E_— E;g) plane. The

plotting format is the same as that for Figure 13.
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Although a closed form expression for the ion distribution function
caniot be found for realistic collision models, the velocity moments can
be found directly by solving the proper transport equations. These
'exact' values for the moments were compared with those computed by the
MCS as follows. FEach set of moments was substituted into equations
(24)) and (264) and the results were plotted in a contour form. The
difference in the resulting distribution functions, due to using differ-
ent sets of moments (the exact and the MCS), was almost undetectable.
This is another indication that the MCS is adequate for the purpose of
this work.

2.1, Parallel electric
and magnetic fields

As mentioned earlier, in the MCS a suitable grid is used to record
the probe ion's velocities. 1In the case of parallel electric and mag-
netic fields, the grid has the velocity components parallel and perpen-
dicular to the magnetic field as coordinates, while the azimuthal depen-
dence is taken care of by virtue of cylindrical symmetry. Between col-
lisions the motion of the ion is represented, on the grid, by a straight
line parallel to the fields. The time spent by the ion in a certain bin
is proportional to the length of that portion of the line lying inside
the bin.

The ion distribution function can be represented as

£, =0z (¢.) (281)

where




(0, = { L P By

vy, < (
D, =1 =

£

) elsewhere (282)

and where 6(x) is the Dirac Delta function, VI and v,,. are the initial

II's £
and final parallel velocities, {L is the perpendicular velocity, C is a
constant, and the subscript & is used to denote that the summation 1is
over all continuous segments of the probe ion trajectory in velocity
space. With this expression, it is possible to accumulate the data ne-

cessary to compute the velocity moments while following the probe ion's

motion. For example, the ion drift velocity is simply

_ l r 2\ = R 2 = - = 1
J_‘J_ = i L(V,|f/2 \¥HS>2J/;' [<\/‘If>ﬁ' (V”S>Q‘Jl (283)

Figure 1% shows a comparison between the MCS and the 20- and
16-moment approximations of the ion distribution function for the polar-
ization collision model and for parallel electric and magnetic fields.
Two values of the normalized parallel drift velocity (D”) were consi-
dered; namely, DH=1 and 3. The case of D“:O.B, corresponding to that
presented 1in chapter (1IVv) , 1s not shown here because in this case the
ion distribution function is sufficiently close to Maxwellian +that it
can be handled by any level of approximation. Comparing the polariza-
tion model results shown in Figure 13 with the relaxation model results,
we find that for the polarization collision model, the ion distribution
functions are closer to Maxwellian for a given value of DJ( For exam-

ple, in the case of D“=3, the parallel-to-perpendicular temperature ani-

sotropy is 2.2 for the polarization model, which is much less than that

found for the relaxation model (v20). This is due to the fact that the
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polarization model permits the transfer of kinetic energy between the
parallel and perpendicular directions, while the relaxation model does
not.

As the electric field strength increases, the drift velocity (Ei)
and the temperature (Ti) increase. These changes do not appear in Fig-
ure 13 because the contours are plotted against the normalized ion ran-

1/2. However, the ion parallel temperature in-

d om velocity<gi/(kTi/mi)
creases more rapidly than the perpendicular temperature (i.e., the tem-
perature anisotropy increases), and such changes show up because of
their relative nature. For DH>3, the shape of +the ion distribution
function does not change significantly with D” and starts to 'saturate’.

The shape of the distribution function for D” = o, given by Wannier

(1953), does not differ much from that shown in Figure 13 for D =3.

I

This saturation does not occur for the relaxation model; the temperature

anisotropy increases indefinitely with D“.
For DP:1 (left column), the 16-moment approximation of fi shows an
|

excellent agreement with the MCS, while the 20-moment approximation

shows a good agreement. As D, increases and the ion distribution func-

tion deviates more from the Maxwellian, the approximate distribution
functions deviate from those found by the MCS. When Pulﬁ (right co-
lumn), the 20-moment approximation starts to fail, while the 16-moment

approximation still compares favorably with the MCS. Further increases

of D, are not expected to result in significant changes in the degree of

I

agreenent due to the shape saturatiosn mentioned earlier.
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In general, for the case of parallel electric and magnetic fields,
the bi-Maxwellian-based 16-moment approximation shows better agreement
“=1) to acceptable (%

does the Maxwellian-based 20-moment approximation. However, both ap-

(ranging from excellent (D PZB)) with the MCS than
proximations did much better for the polarization collision model than
for the relaxation model , for which a greater temperature anisotropy

occurs for the same D,.

2.2. Perpendicular electric
and magnetic fields

In this case, between collisions the probe ion moves in circles 1in
velocity space with constant angular velocity (Qi = eiB/mic). These
circles are centered at the E;E drift velocity BE' Therefore, in the
MCS we used a three-dimensional grid whose coordinates are the parallel
and perpendicular velocities relative to u, and the azimuthal angle §.
The time spent by an ion in one bin is proportional to the angular dis-
tance it scans while lying inside this bin. Using this criterion we can
compute the time that the probe ion spends in each bin.

The ion velocity distribution function is

s el (284)
2
where
{ & ) - J 6(VI[—(VI‘)Q) i(j‘—%ﬁ‘l:-g) for <9S)Q i 6 i <ef)2
\,'}l 2 -
L 2 L elsewhere (285)

where §(x) is the Dirac delta function, v7, and v are the parallel and

perpendicular components of_z'[;ziigp], 2 denotes that the summation is

taken over all continuous segments of the ion trajectory, and 6 and 6
S

f




19251

are the initial and final azimuthal angles for such a segment. This ex-
pression is used to accumulate the data required to calculate the velo-
city moments in a way similar to that discussed in the previous subsec-
GalOne

Of the nine cases considered in chapter (IV) for the relaxation
collision model, I only chose the four cases that showed significant de-~
viations from a Maxwellian because the polarization model is expected to

produce much smaller non-Maxwellian deviations for a given D.. These

cases correspond to the following parameter values: ?lf1’ a=1; ?lfB,
a=1; Pl=1, a=0.1; and DI=3’ a=0.1. For the relaxation model, the re--

sulting distribution functions showed some interesting non-Maxwellian
characteristics, i.e., bean and toroidal shapes.

Figure 14 shows the ion distribution functions resulting from the
MCS for the four cases mentioned above. 1In general, they show less de-
viations from a Maxwellian compared with the distribution functions ob-

tained from the relaxation model for the same values of Dl and a. As

mentioned in the previous subsection, this is due +to energy transfer
between the parallel and perpendicular directions.

For the case (D =1, g=1), the distribution function is the closest

L

to Maxwellian. As D increases or o decreases, the deviation from a

=l

Maxwellian increases. For the case (D,=3, a=1), the bean shape starts

L

to appear, while weak toroidal features (e.g., flat maximum) appear as

the collision frequency decreases (a=0.1). As D, increases from 1 to 3,

—_—

the maximum of fi in the plane perpendicular to B broadens and a small
dip occurs along the ExB axis. The shape saturation mentiored in the

previous subsection occurs again in this case for large values of D[ and
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small values of q.

The case of (?1?3’ @=0.1) is shown in more detail in Figure 15,
where the MCS (top) is compared with the 20-moment (middle) and
16-moment (bottom) approximations. The distribution functions are re-
presented by contours in the three principal velocity planes to demon-
strate their three-dimensional structure. Comparison with the relaxa-
tion model results indicates that the toroidal features are much less
evident for the polarization model. Moreover, the distribution function
obtained with +the polarization model and (D,=3%, a=0.1) is very similar

4

to that obtained with the relaxation model and (Plf1, 0=0.1). This in-
dicates that the relaxation model can give the correct physical charac-
teristics, provided that the proper value of the (reduced) electric
field is used.

This case of (?lfB, 2=0.1) is the worst with regard to the ability
of the 20- and 16-moment expressions for fi to approximate the MCS.
This is because fi displays its strongest toroidal features for this
case, which are very difficult to account for with these levels of ap-
proximation. However, both approximations show quite reasonable agree-
ment with the MCS (the 20-moment is a little better) in comparison with
the results obtained for the relaxation model, for which the 16- and
20-moment approximations completely failed for this case.

For the other three cases, the distribution functions are expected
to be closer to Maxwellian, and consequently the series expansions

should be in better agreement with the MCS. Figure 16 shows that is re-

ally the case when D,=1 and o¢=0.1. Both approximations display reason-

l

able resemblance to the MCS result, but the 20-moment approximation han-
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dles the flat maximum better.

Since the distribution function is close to Maxwellian, it is suf-
ficient to present the distribution functions for the two remaining
cases only in the plane perpendicular to the magnetic field. The case
of (D|=3, a=1) 1is presented in Figure 17. The distribution function
generé;;d by the MCS takes the bean shape. This feature is well ac-
counted for by both the 20- and 16-moment approximations, but the former
is a little better. Compared to the corresponding case in chapter (IV),
the distribution function displays less deviations from Maxwellian; con-
sequently, the moment approximations are in better agreement with the
MCS. Also, the resemblance between this case and the case of (?Lf1,
a=1) for the relaxation model supports the argument that the relaxation
model, with +the proper reduction in the electric field intensity, can
give a qualitatively correct picture of the shape of the ion distribu-
tion function.

Figure 18 shows the comparison between the 20- and 16-moment ap-
proximations and the MCS for the case (le1, a=1). The distribution

function is close to Maxwellian. Therefore, the 16- and 20-moment ap-

proximations show, as expected, an excellent agreement with the MCS.




3. Velocity distributions for
the hard sphere model

To compare the ion distribution functions of the 20- and 16-moment
approximations with the MCS for the hard sphere model, a line parallel
to that of the previous section is followed. The MCS code was modified
to use the 'null collision' concept, mentioned earlier. A probe ion was
followed for ‘lO5 'real' collisions. The grid used in this case was ex-
actly identical to that mentioned in the previous section. Finally, the
ion distribution functions obtained from the MCS and the 20- and
16-moment approximations were computed and plotted using a format simi-
lar to that of Figures 13-18.

The major difference between the polarization and hard sphere col-
lision models is that the collision rate K[Eng] is proportional to the
relative speed (g) for the hard sphere model, while it is constant for
the polarization model. That is, in the former case, faster ions col-
lide, on the average, more rapidly and lose their energy. This inhibits
the tail of the distribution function and brings it closer to Maxwelli-
an. Therefore, better agreement is expected between the series expan-

sions and the MCS.

3.1. Parallel electric

and magnetic fields

Figure 19 shows a comparison between the !MCS and the 20- and
16-moment approximations of fi for the case of parallel electric and
magnetic fields. The cases of D“:1 (left) and 3 (right) are presented,

where D” is the normalized drift velocity. 1In general, the behavior of

the ion distribution function is similar to the corresponding cases 1in




Figure 19. Comparison of the MCS with the 16-moment and 20-moment ex-
pressions of fi in the principal velocity plane parallel to the electric
field for the hard-sphere collision model, equal ion and neutral masses,
and parallel electric and magnetic fields. Two values of the normalized
parallel drift velocity were considered, D”=1 (left) and 3 (right),

where DH=ui/(2an/mn)1/2. The contours are plotted against the normal-

ized random velocity<gi/(kTi/mi)1/2. The contour levels decrease by a

1/2

factor of e starting from the maximum, shown by the dot.
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Figure 20. Contours of fi obtained from the MCS in the principal (g -
gxg) plane for the hard-sphere collision model, equal ion and neutral
masses, and perpendicular electric and magnetic fields. Two values of
the collision-to-gyro frequency ratio were used; @=0.1 (bottom) and 1
(top), where a is defined in equation (280). In addition, two values of

the normalized perpendicular drift velocity were considered; D, =1 (left)

and 3 (right), where D_L=(<:E-L/B)/(2}<Tn/mn)1/2. The plotting format is

the same as that for Figure 19.
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Figure 21. Comparison of the MCS with the 16-moment and 20-moment ex-
pansions of fi for the hard-sphere collision model, equal ion and neu-
tral masses, perpendicular electric and magnetic fields, D,=%, and

1

a=0.1. The contours are plotted in the three principal velocity planes.

The plotting format is the same as that for Figure 19.
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Figure 22. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of fi for the hard-sphere collision model, equal ion and neu-

tral masses, perpendicular electric and magnetic fields, D,=1, and

1

a=0.1. The contours are plotted in the principal velocity (g - Exg)

plane. The plotting format is the same as that for Figure 19.
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Figure 23. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of fi for the hard-sphere collision model, equal ion and neu-

tral masses, perpendicular electric and magnetic fields, ?if", and

The contours are plotted in the principal velocity (E_— Exg) plane. The

g_:7 o

plotting format is the same as that for Figure 19.
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Figure 24. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of fi for the hard-sphere collision model, equal ion and neu-

tral masses, perpendicular electric and magnetic fields, ?Lf1, and qo=1.

The contours are plotted in the principal velocity (E_— Exg) plane. The

plotting format is the same 2s that for Figure 19.
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el

the previous section. For example, as the electric field intensity in-
creases, u, and Ti increase, but this does not show up for the same rea-
son mentioned earlier. However, the increase of the temperature aniso-
tropy (Tiﬂ/Til? is noticeable. For D”>3, the relative shape of the dis-
tribution function starts to saturate. The case of Dh=m, presented by

Scullerud (1973), is not much different from the case of D, =3 presented

I
here. On the other hand, the distribution function is closer to Maxwel-
lian and its tail is less populated. The 20- and 16-moment approxima-
tions are showing better agreement with the MCS. In fact, the 16-moment
approximation is excellent in both cases, and the 20-moment approxima-
tion, although not as good as the 16-moment approximation, still shows
good agreement.

3.2. Perpendicular electric
and magnetic fields

I consider here the same four cases discussed in the previous sec-

tion (namely, D,=1, o=1; D,=3, a=1; D, =1, «=0.1; and D, =3, ¢=0.1). The

{IE l | |

ion distribution functions obtained from the MCS for these four cases

are presented in Figure 20. For the case of (D =1, o=1) the distribu-

L

tion function is very close to Maxwellian. For higher values of ?L

(DL=3, a=1), the distribution function takes the bean shape. As a de-

creases to 0.1, weak toroidal features start to appear in the form of
flat maxima in the velocity plane perpendicular to B. This is more ap-
parent for larger values of ?l:
The 16- and 20-moment approximations are compared with the MCS for

each case in Figures 21-24. The case which shows the strongest toroidal

features (Dlj’, a=0.1) is presented in Figure 21, where the contours 1in
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the three principal velocity planes are shown. Compared to Figure 15
(Polarization model) the distribution function has weaker toroidal fea-
tures (e.g., the maximum in the plane perpendicular to B is less flat
and the dip disappears) and, as expected, the moment approximations are
in better agreement with the MCS. Although the agreement between the
20- and 16-moment approximations and the MCS is not especially good, it
is still acceptable.

For the other three cases presented in Figures 22-24, fi is closer
to Maxwellian and therefore it is sufficient to show the distribution
functions only in the plane perpendicular to B. The distribution func-
tions show similar behavior to the corresponding ones in the previous
section (see Figures 16-18). However, they are closer to Maxwellian;
for example, the tail of the bean distribution is inhibited in the case
(?LfB, a=1) and the toroidal features are reduced in the case (?lf1,
a=0.1). Consequently, the 20- and the 16-moment approximations show
better agreement with the MCS (especially for ?ljg, a=1), with the
20-moment approximation a little better.

For the case of (le1, a=1), as well as the corresponding case in
the previous section,.the ion distribution function is close to Maxwel-
lian and all levels of approximation agree very well with the MCS.

I conclude that, in general, the distribution functions resulting
from the hard sphere model are similar to those of the polarization
nodel. However, the former case gives results closer to Maxwellian and

consequently the 20- and 16-moment approximations show better agreement

with the MCS.
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CHAPTER VI

SUMMARY AND CONCLUSION

In chapter (II), I presented a closed system of transport
equations for multicomponent anisotropic space plasmas. These general
transport equations offer the opportunity to take a wunified approach
to the study of widely different plasma flow situations. This system
of transport equations can be applied to both collisicen-dominated and
collisionless flows and provides a continuous transition between the
two regimes; it can be applied to subsonic, transonic, and supersonic
flows and provides a continuous transition between the regimes; it can
describe multicomponent plasmas with large teumperature differences
between the interacting species; it can describe plasmas that contain
large temperature anisotropies; it can describe plasma flows 1in
rapidly changing magnetic field configurations; and account 1is taken
of Coulomb, nonresonant ion-neutral, neutral-neutral, and resonant
charge exchange interactions. Furthermore, if Maxwell's equations of
electricity and magnetism are added to the system of transport
equations, it can be used to describe electrostatic shocks, double
layers, and magnetic merging processes.

This system of generalized transport equations is based on an
anisotropic bi-Maxwellian velocity distribution function and corres-
ponds to a 16-moment approximation. The system of equations

contains a continuity equation, a momentum equation, parallel and

perpendicular energy equations, a stress tensor equation, and heat
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flow equations for the flow of parallel and perpendicular energy for
each species in the plasma.

The system of generalized transport equations reduces to Grad's
13-moment system of transport equations in the limit of small tempera-
ture anisotropies. If this latter system is ordered with respect to
the collisional mean—free-path, the result is the Euler, Navier-
Stokes, and Burnett equations depending on whether terms proportional
to the zeroth, first, or second power of the mean-free-path are
retained. At the Navier-Stokes approximation, transport processes
such as ordinary diffusion, thermal diffusion, thermal conduction,
diffusion-thermal heat flow, thermoelectric heat flow, and viscosity
are included at a 1level of approximation that corresponds to either
the first or second approximation of Chapman and Cowling (1970),
depending on the particular transport coefficient. Also, 1if the
plasma is treated as a single fluid and if Maxwell's equations are
included, the system of generalized transport equations reduces to the
familiar magnetohydrodynamic equations.

In the limit of a collisionless plasma, the system of generalized
transport equations 1is equivalent to the 1level of approximation
usually considered in kinetic models. These collisionless transport
equations include the effects of collisionless heat flow, collision-
less viscosity, and temperature anisotropies. They also contain terms
which act to regulate both the heat flow and temperature anisotropy

(cf. Schunk and Watkins 1979, 1981), processes which appear to be

operating in the solar wind. Also, it should be noted that the system
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of generalized transport equations reduces to all of the other major
systems of transport equations for anisotropic plasmas that have been
derived to date. The assumptions needed to derive these other sets of
simplified transport equations are summarized in Figure 2.

In chapter (III), I derived a closed set of transport equations
assuming that the distribution functions of the interacting gases were
anisotropic bi-Maxwellian (or two-temperature) distributions. I also
derived the appropriate momentum, parallel energy and perpendicular
energy collision terms for Coulomb, Maxwell molecule, and constant
collision cross section interaction potentials. The collision terms
are valid for arbitrary temperature anisotropies, arbitrary tempera-
ture differences between interacting gases, and arbitrary relative
drift velocities both parallel and perpendicular to the magnetic
field.

The closed set of transport equations is given by equations (145)
- (148). This set of equations contains a continuity, momentunm,
parallel energy, and perpendicular energy equation for each species in
the plasma. For Maxwell molecule interactions, the appropriate colli-
sion terms are given by equations (167) - (169), with vg given by
equation (173) and the quantities A, Qp, Qo, ¢, T‘\, and ¥, given by
equations (188) - (192).

For Coulomb and constant collision cross section interactions the
collision terms had to be evaluated numerically. However, I also

fitted simplified expressions to the numerical results for the conve-

nience of users. The accuracy of the approximate collision terms
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depends on both the interaction potential and the temperature aniso-
tropy (see Table 14). The procedure for obtaining the Coulomb and
constant cross section collision terms is as follows:
(1) Tables 1-12 are to be wused to find the appropriate ¢'s and
's if the 17 accuracy associated with the numerical integra-
tions is needed. Alternatively, the approximate expressions
given in equations (193)'-(200)' can be used with the values
of the a's and B's given in Table 13 and the I's given in
Table 15. The index n is 3 and -1 for Coulomb and hard
sphere interactions, respectively.
(2) The ¥ and ¥ are calculated using equations (171) and (172),
and Vg is obtained from equation (173). In equation (173),
A1(2) = 1n A and Aj(®) = 0.5 for Coulomb and hard sphere
interactions, respectively; 1n A is the well-known Coulomb
logarithm (cf. Burgers 1969, Chapman and Cowling 1970).

(3) The substitution of these quantities into equations (167) -
(169) yields the collision terms of SMs/St, 6ES“/6t and
(SES_\_/Gt.

In chapter (IV), I studied the extent to which transport
equations based on both Maxwellian and bi-Maxwellian series expansions
can describe plasma flows characterized by non-Maxwellian velocity
distributions, with emphasis given to modeling the anisotropic
character of the distribution function. The specific problem I

considered was the steady state flow of a homogeneous, weakly-ionized

plasma subjected to homogeneous electric and magnetic fields.
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For parallel electric and magnetic fields, the dominant non-
Maxwellian characteristic is a parallel-to-perpendicular temperature
anisotropy (Ti“> Til}’ although there is also an appreciable asymmetry
in the electric field direction. On the other hand, for perpendicular
electric and magnetic fields, the temperature anisotropy is reversed
(Tii> Tiy{) and a large non-Maxwellian deviation occurs in the velocity
plane perpendicular to B as the electric field strength 1is increased.
For sufficiently large electric fields, the three-dimensional ion
velocity distribution can be toroidal or bean-shaped, depending on the
collision-to-cyclotron frequency ratio.

As expected, for the Maxwellian expansion, the 20-moment approxi-
mation can describe larger non-Maxwellian deviations than the 5- and
13-moment approximations because of the greater number of terms
retained at this 1level of approximation. Likewise, for the bi-
Maxwellian expansion, the l6-moment approximation is better than the
6—-moment approximation. Also, as expected, an expansion based on a
bi-Maxwellian distribution is better suited to describing anisotropic
plasmas than one based on a Maxwellian, even if fewer terms are
retained in the bi-Maxwellian expansion.

As far as the bulk of the particles is concerned, both Maxwellian
and bi-Maxwellian—-based series expansions can describe larger devia-
tions from a Maxwellian than probably had been anticipated. For
example, if the main non-Maxwellian characteristic is a temperature

anisotropy, the Maxwellian-based 20-moment approximation is a reason-

able approximation for temperature anisotropies up to Tin/TiL SN2
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while the bi-Maxwellian-based l6-moment approximation can describe
temperature anisotropies as large as Ti“ /T£L~ 20. For cases when
there is a significant non-Maxwellian character in the velocity plane
perpendicular to B in addition to the parallel/perpendicular tempera-
ture anisotropy, the bi-Maxwellian-based l16-moment expansion is better
for describing the anisotropic character of the distribution function,
but the Maxwellian-based 20-moment approximation provides a slightly
better description of the distribution function in the velocity plane
perpendicular to B. Also, depending on the conditions, both Maxwell-
ian and bi-Maxwellian-based expansions can describe non-Maxwellian
distributions that do not peak at the average drift velocity point.

Finally, the same problem in chapter (IV) was solved using more
rigorous collision models (chapter (V)). For the ion-neutral colli-
sion process we considered both polarization and hard sphere collision
models. For each collision model, a range of non-Maxwellian distribu-
tion functions was generated by varying the magnitude and direction of
the electric and magnetic fields. However, for the more rigorous
collision models contained in this study, it was necessary to do Monte
Carlo simulations in order to obtain ion velocity distributions which
would serve as a basis for comparison. In this regard it should be
noted that the Monte Carlo simulation for a weakly-ionized plasma in
crossed electric and magnetic fields have not been published to date,
and these results are useful in their own right.

For the polarization and hard sphere collision models, the ion

distribution functions have characteristics similar to those obtained
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with the simple relaxation model. For parallel electric and magnetic
fields, the dominant non-Maxwellian characteristic is a parallel-to-
perpendicular temperature anisotropy (Ti“> Til)’ although there is
also an asymmetry in the electric field direction. For perpendicular
electric and magnetic fields, on the other hand, the temperature
anisotropy is reversed (T2L> Tiﬁ) and a non-Maxwellian deviation also
occurs in the velocity plane perpendicular to B as the electric field
strength is increased. For sufficiently large electric fields, the
three-dimensional ion wvelocity distribution displays toroidal and
bean-shaped characteristics, depending on the collision-to-cyclotron
frequency ratio.

The confirmation of the Monte Carlo simulations that toroidal and
bean-shaped characteristics occur for realistic collision models has
important implications for space physics, particularly with regard to
the stability of the terestrial F-region plasma at high latitudes.
Although the non-Maxwellian characteristics obtained with the polar-
ization and hard sphere collision models are similar to those obtained
with the relaxation model, the deviations from a Maxwellian are much
smaller for the realistic collision models for given electric and
magnetic field strengths. Also, for given field strengths, the
distribution functions obtained with the hard sphere model are closer
to Maxwellian than those obtained with the polarization model. For
both collision models, the deviations from a Maxwellian 'saturate' as

the electirc field is increased. For the relaxation model, on the

other hand, the non-Maxwellian deviations increase without 1limit as




the electric field is increased.

The basic conclusions that we presented in chapter (IV) about the
adequacy of a given series expansion were confirmed for the more real-
istic collision models considered in chapter (V). In particular, the
bi-Maxwellian-based 16-moment expansion for the distribution function
is generally better suited to describing anisotropic plasmas than the
Maxwellian-based 20-moment expansion. However, for the more realistic
collision models considered in chapter (V), the deviations from a
Maxwellian are not very large, and consequently, both series expan-
sions are good approximations for the plasma flow problem considered.

As mentioned earlier, although the results obtained in chapters
(Iv) and (V) are not directly applicable to most of space physics
problems, it should provide clues to the adequacy of different approx-
imations for solving these problems. For example, in the high lati-
tude F-region, where the O—O+ resonant <charge exchange interaction
dominates, accuracies similar to those found for the relaxation model
are expected. For the polar wind, results similar to those of the po-
larization model are more probable. The Coulomb collision, which is
dominant in the case of the solar wind,was not discussed in this work.

However, it should give results somewhere between the relaxation model

and the polarization model.
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Here, I discuss in more detail the Monte Carlo simulation technique
used in chapter (V). In general, the Monte Carlo method is a way of ga-
ining statistical information about a system by following an individual
member through a large number of random processes. The result of such a
procedure is knowledge about one member of the assembly for a long peri-
od of time. Time averages of various kinds can be obtained from such
data; these time averages are then set equal to instantaneous averages
over the assembly, in accordance with ergodic theory. In the following
paragraphs,l explain the procedures used to implement this method for
the different collision models presented in chapter (V).

For the case of hard sphere collision model, the following steps
are followed;

1. The probe ion starts with zero initial velocity.

2. The time interval between collisions is randomly generated such that
it has an exponential probability density function [pr(x)w_exp(—kx)].
The subroutine GGEXN, from the International Mathematical and Statisti-
cal Library (IMSL),is used for this purpose. Then, the ion final vloci-
ty is coputed.

3. A neutral particle is randomly picked from a Maxwellian distribution
(of temperature T ) using the subroutine GGNQF from the IMSL.

4. The relative speed between the colliding particles (g) is computed
and used to decide if the collision is 'real' or 'null' as explained by
Lin and Bardsley (1977). If the collision is null we return to step 2,
otherwise, we proceed to the next step.

5. The time spent in each velocity bin is registered wusing an array

corresponding to the proper grid (see chapter (V)).
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6. The scattering angle (in the center-of-mass frame of reference) is
randomly generated such that it corresponds to isotropic scattering
(i.e. pr(y,s)=const.). The subroutine GGUBFS (from the IMSL) is used
to generate such angles.

7. The ion velocity after collision is computed and steps 2-7 are rpe-
ated using this velocity as the initial ion velocity.

For the case of the polarization model, similar steps are followed
except that all collisions are real. As a matter of fact, the same code
was used and the parameter (VMAX) was set to zero. Moreover, the proce-
dure used for the relaxation model is similar to that used for the po-
larization model, except that the ion velocity after collision is taken
to be the neutral velocity before collision.

The codes used to implement these procedures is listed in the fol-

lowing pages. However, dimensionless normalized variables are used in

these codes for convenience.
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