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First, I attempt to present a unified appr oach to the study of 

transport p henomena in multicoponent anisotropic space plasmas. In the 

limit of small temperature anisotropies this system of generalized tran­

sport equations reduces to Grad's 13-moment system of transport equa­

tions. In the collisionless limit, the generalized transport equations 

account for collisionless heat flow, collisionless viscosity, and large 

temperature anisotropies. Also, I show that with the appropriate as­

sumptions, the system of generalized transport equations reduces to all 

of the other major systems of transport equations for anisotropic plas­

r.1a s that have been de rived to date. 

Next, for application to aeronomy and space physics problems in­

volving str:Jngly magnetized plasma flows, I derive momentum and energy 

exchange collision tenns for interpenetrating bi-Maxwellian gases. 

C:ollision terms are derived for Coulomb, Maxwell molecule, and constant 

collision cross section interaction potentials. The collision terms are 



xi 

valid for arbitrary flow velocity differences and temperature differ­

ences betwe en the interacting gases as well as for arbitrary temperature 

anisotropies. The collision tenns have to be evaluated numerically and 

the appropriat coefficients are presented in tables However, the colli­

sion terms are also f itted with simplified expressions, the accuracy of 

which depends on both the interaction potential and the temperature ani-

sotr0py. In addition, I derive the closed set of transport equations 

that are associated with the momentum and energy collision terms. 

Finally, I study the extent to which Maxwellian and bi-Maxwellian 

series expansions can describe plasma flows characterized by 

non-Maxwellian velocity distributions, with emphasis given to modeling 

the anisotropic character of the distribution function . The problem 

considered is the steady state flow of a weakly-ionized plasma subjected 

to homogeneous electric and magnetic f ields, and different collision mo­

dels a re used. In the case of relaxation collision model, a closed form 

expression is found for the ion velocity distribution function, while 

for more regorous models (polarization and hard sphere) I have to use 

the Monte Carlo simulation. These provided a basis for determining the 

adequacy of a given series expansion. I f ind that, in general, the 

bi-Maxwellian-based expansions for the velocity distribution function is 

better suited to describing anisotropic plasmas than the 

Maxwellian-based expansions. 

(166pages) 



CHAPTER I 

INTRODUCTION 

A wide variety of plasma flow conditions can be found in all 

areas of aeronomy and space plasma physics. For example, gentle 

near-equilibrium flows occur in corotating planetary ionospheres and 

in the lower solar corona, while highly non-equilibrium flow condi­

tions exist in the solar and terrestrial polar winds, in planetary 

magnetospheres, and in the terrestrial F-region at high latitudes, 

where convection electric fields drive the charged particles through 

the neutral atmosphere at speeds approaching a few kilometers per 

second. In general, the plasma flows encountered are multispecies 

flows that may be characterized by large temperature differences 

between the interacting species or by anisotropic temperature distri-

butions for the individual species. The plasma flows may contain 

transitions from collision dominated to collisionless regimes, from 

subsonic to supersonic flow, or from one major ion species to another. 

In addition, the flowing plasma may encounter a changing magnetic 

field topology or it may be subjected to anomalous resistivity, 

electrostatic shocks, double layers, or magnetic merging processes. 

Many of the highly nonequilibrium flows found in the solar 

terrestrial environment are characterized by appreciable temperature 

anisotropies, i.e., unequal species temperatures parallel and perpen­

dicular to a magnetic field, with the degree of the anisotropy given 

by the parallel to perpendicular temperature ratio. For solar wind 

protons the measured temperature anisotropy typically varies between a 
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factor of 2 and 4 at the orbit of the Earth (cf. Brandt 1970, 

Hundhausen 1972), while in the terrestrial polar wind initial theore­

tical calculations indicate that the temperature anisotropy is about a 

factor of 10 for o+ and about a factor of 20 for Ir+ at a distance of 

eight Earth radii (Holzer et al. 1971). In the Earth's dayside 

magnetosheath and in the high-latitude F-region, the temperature 

anisotropies are smaller, with 

temperature ratio varying from 1 

the parallel-to-perpendicular ion 

to 1/2 in both regions (cf. Crooker 

et al. 1979, St.-Maurice and Schunk 1979). 

It should be noted that appreciable temperature anisotropies 

occur in a plasma at all levels of ionization. The temperature 

anisotropy in the solar wind develops in a region of the flow where 

only Coulomb collisions are important, i.e., the flow is effectively 

fully-ionized. On the other hand, in the terrestrial polar wind the 

H+ temperature anisotropy develops in a region of the flow where 

Coulomb collisions and nonresonant ion-neutral interactions occur, 

i.e., the flow is partially-ionized. Finally, we note that the 

temperature anisotropy in the high-latitude F-layer occurs in a plasma 

that is weakly-ionized and arises primarily as a result of the nature 

of the o+ -0 resonant charge exchange process. 

Understanding the behavior of both near-equilibrium and far­

from-equilibrium plasma flows is crucial to our understanding of the 

coupling, through mass, momentum, and energy transfer, between the 

different regions within the solar terrestrial environment. In gen-

eral, the quantitative study of such flows is begun through the use of 
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conservation equations which describe the spatial and temporal evolu­

tion of the concentration, bulk flow velocity, and temperature of the 

plasma. To date, a variety of conservation equations have been used, 

including the Euler, Navier-Stokes, and Chew-Goldberger-Low equations. 

In addition, transport equations have been adopted from the classical 

work of Chapman and Enskog. 

Most of the conservation equations available for use in aeronomy 

and space physics are based on an isotropic Maxwellian velocity 

distribution function. Basically, the conservation equations are 

obtained by taking velocity moments of Boltzmann's equation. Although 

such a procedure may seem to be relatively straightforward, difficul­

ties arise because the equation governing the moment of order r 

contains the moment of order r+l. Consequently, it is necessary to 

make an assumption about the form of the velocity distribution 

function, f, in order to truncate the set of transport equations. 

Typically, the velocity distribution function is expanded in an 

orthogonal series about a Maxwellian weight factor and then the series 

is truncated at some level. Ry taking velocity moments of the 

resulting approximate expression for f, higher-order moments can be 

expressed in terms of lower-order moments, and these expressions can 

be used to close the system of transport equations (see, for example, 

Tanenbaum 1967, Burgers 1969, Schunk 1977). Although various levels 

of approximation can be considered, the 13-moment approximation 

attracted most of the attention. At this level of approximation, 

stress and heat flow are put on an equal footing with density, drift 
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velocity, and temperature, and therefore, these moments are described 

by transport equations just as the density, drift velocity and 

temperature moments are described by continuity, momentum, and energy 

equations, respectively. 

The 13-moment system of transport equations is fairly general and 

can be used to describe a wide range of plasma flows. In the 

collision-dominated limit, the 13-moment system of equations reduces 

to the Euler, Navier-Stokes, and Burnett equations depending on 

whether terms proportional to the zeroth, first, or second power of 

the collisional mean-free-path are retained. At the Navier-Stokes 

approximation, transport processes such as ordinary diffusion, thermal 

diffusion, thermal conduction, diffusion-thermal heat flow, thermo­

electric heat flow, and viscosity are included at a level of 

approximation that corresponds to either the first or second approxi­

mation of Chapman and Cowling (1970), depending on the particular 

transport coefficient. In the collisionless limit, the 13-moment 

system of equations reduces to the Chew-Goldberger-Low (CGL) and 

extended CGL equations depending on whether terms proportional to the 

zeroth or first power of the Larmor radius are retained, The 

13-moment system of transport equations also accounts for collision­

less heat flow, collisionless viscosity, and temperature anisotro­

pies. 

With regard to anisotropic plasmas, the 13-moment transport 

equations have limited applicability because they cannot be used to 

describe plasma flows that are characterized by large temperature 
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anisotropies. In the 13-moment formulation, the temperature aniso-

tropy enters through the stress and heat flow terms, which act to 

modify the zeroth-order isotropic Maxwellian distribution, and the 

restriction to a small temperature anisotropy results from the fact 

that only small deviations from the Maxwellian are allowed, i.e., 

small stress and heat flow terms. 

The flow of an anisotropic plasma is better described by 

transport equations that are based on a two-temperature or bi­

Maxwellian velocity distribution function, which is shown schemati-

cally in Figure 1. The procedure for obtaining these transport 

equations is similar to that of the 13-moment expansion except that 

the transport equations are closed by expanding the velocity distri­

bution function in an orthogonal series about an anisotropic bi-

Maxwellian weight factor instead of an isotropic Maxwellian. This 

change produces transport equations that can describe highly anisotro­

pic plasma flows. 

Although a significant effort has been devoted to developing 

transport equations that are based on an isotropic Maxwellian distri­

bution function (see, for example, Tanenbaum 1967, Burgers 1969), in 

comparison much less effort has been directed toward developing 

transport equations that are based on a bi-Maxwellian distribution 

function. Chew et al. (1956) were the first to derive transport 

equations based on a bi-Maxwellian distribution function for applica-

tion to collisionless anisotropic plasmas. In this now famous study, 

corrections to the zeroth-order bi-Maxwellian distribution function 



Figure 1. Schematic illustration of a drifting bi-Maxwellian velocity 

distribution. The solid lines represent contours of constant fin the 

v -v plane, with the peak of the distribution centered at the drift 
X Z 

velocity point. For the case shown, the temperature along the v -axis 
z 

is greater than the temperature perpendicular to this axis. 
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Figure 2. Flow diagram show ing the procedure for o btaining transport 

equations that are based on a bi-Maxwellian velocity distribution. Also 

shown are the assumptions needed to arrive at variou s sets of simplified 

transport equations. 
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due to heat flow were neglected and the resulting transport equations 

for the species temperatures parallel and perpendicular to the 

magnetic field were termed 'double-adiabatic' energy equations. Since 

this initial study, several authors (Kennel and Green 1966, 

MacMahon 1965, Frieman et al. 1966, Bowers and Hains 1968, Oraevskii 

et al. 1968) have extended the work of Chew et al. (1956) by deriving 

transport equations for a collisionless anisotropic plasma including 

transport phenomena such as collisionless 'viscosity' and heat flow. 

All of the studies cited above were concerned with collisionless 

anisotropic plasmas. However, Chodura and Pohl (1971) derived trans-

port equations for an anisotropic plasma that were based on a bi­

Maxwellian species distribution function and that included Coulomb 

collisions between the interacting species. This study was extended 

by Demars and Schunk (1979), who derived collision terms for an 

anisotropic plasma of arbitrary degree of ionization. Specifically, 

Demars and Schunk (1979) derived collision terms for a resonant charge 

exchange interaction betewen an ion and its parent neutral and for an 

arbitrary inverse-power interaction potential, which includes Coulomb, 

nonresonant ion-neutral (Maxwell molecule), and constant collision 

cross section (hard sphere) interactions as special cases. 

In chapter (II), I try to present a unified approach to the study 

of transport phenomena in multicomponent anisotropic space plasmas. 

In particular, a system of generalized transport equations is presen­

ted that can be applied to a highly anisotropic plasma of arbitrary 

degree of ionization. This system of generalized transport equations 
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is shown to reduce to the 13-moment system of transport equations in 

the limit of small temperature anisotropies. Also, the system of 

generalized transport equations is shown to contain all of the other 

major systems of transport equations for anisotropic plasmas that have 

been derived to date. 

The collision terms derived by Chodura and Pohl (1971) and by 

Demars and Schunk (1979) are valid for arbitrary temperature differ­

ences between the interacting gases and arbitrary temperature aniso­

tropies, but are restricted to small relative drifts between the 

interacting gases. In chapter (III), I remove the latter restriction 

and calculate momentum and energy exchange collision terms for inter­

penetrating bi-Maxwellian gases that are valid for arbitrary drift 

velocity differences and temperature differences between the interact-

ing gases as well as for arbitrary temperature anisotropies. I also 

derive the closed set of transport equations that are associated with 

the momentum and energy collision terms. 

In chapter (IV) I study the extent to which transport equations 

based on both Maxwellian and bi-Maxwellian series expansions can 

describe plasma flows characterized by non-Maxwellian velocity distri­

butions, with emphasis given to modelling the anisotropic character of 

the distribution function. For the Maxwellian expansion, I consider 

the 5-, 13-, and 20-moment approximations of Grad (1958). For the bi­

Maxwellian expansion, I consider the 6- and 16-moment approximations 

(cf. Chodura and Pohl 1971, Demars and Schunk 1979). To determine 

the adequacy of a given series expansion, I select a simple plasma 



10 

flow problem which possesses an analytic solution so that the distri­

bution functions obtained form the different series expansions can be 

compared with the exact, closed-form solution. 

This simple plasma flow problem is the steady state flow of a 

homogeneous, weakly-ionized plasma subjected to homogeneous electric 

and magnetic fields. By modelling the ion-neutral collision process 

with a simple relaxation model, it is possible to obtain an exact, 

closed-form solution for the ion velocity distribution function. A 

range of non-Maxwellian ion velocity distributions is generated by 

varying the magnitude and direction of the electric field and by 

varying the ion collision-to-cyclotron frequency ratio. Although this 

plasma flow model is relevant to both the terrestrial (St-Maurice and 

Schunk 1979) and Venusian (Schunk and St-Maurice 1981) ionospheres, 

in this study it is only used to generate non-Maxwellian ion velocity 

distributions to test the adequacy of the different series expansions. 

The main result I obtain is that the Maxwellian-based 20-moment 

approximation is a reasonable approximation for temperature anisotro-

pies up to T 
II 

/T
J._ 

- 2-3, while the bi-Maxwellian-based 16-moment

approximation can describe temperature anisotropies as large as Tu
/T

J_
-

20. 

Although the results of chapter (IV) are obtained for a homgen­

eous plasma and a simple collision model, they should be useful in 

providing clues as to the extent to which a given series expansion can 

account for the anisotropic character of a plasma. However, a more 

realistic collision model will produce a smaller temperature aniso-
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t ropy than the simple collision model for given electric and magnetic 

f ields, and it is not clear to what extent this will affect the 

r,esults. Therefore, in chapter (V) I use more rigorous collision 

models and compare Maxwellian and bi-Maxwellian expansions with Monte 

Carlo simulations in order to determine the adequacy of a given series 

expansion. Also, it should be noted that Monte Carlo simulations with 

c rossed electric and magnetic fields have not been presented before. 

In this work I do not discuss plasma instabilities and wave-

particle interactions. Although these processes undoubtedly affect 

c ertain transport properties in, for example, the aurora and the solar 

wind, they are difficult to include mathematically in a rigorous way. 

The difficulty with wave-particle interactions is that accurate 

expressions for the "collision" cross sections are not available. 

However, from classical collision theory we know that accurate 

collision cross sections are needed to correctly describe transport 

processes such as thermal diffusion and thermoelectric transport. For 

example, thermal diffusion does not occur for elastic ion-neutral 

interactions, but is important for Coulomb interactions. A further 

difficulty with wave-particle interactions is the inability to obtain 

reliable approximations for the species velocity distribution func-

tions when these interactions are included. This, in turn, makes it 

difficult to close the general system of transport equations. 



CHAPTER II 

TRANSPORT EQUATIONS FOR MULTICOMPOMENT 

ANISOTROPIC SPACE PLASMAS 

1 2 

In this chapter I present a unified approach to the study of 

transport phenomena in multicompoment anisotropic space plasmas. In 

particular, a system of generalized transport equations is presented 

that can be applied to a highly anisotropic plasma of arbitrary degree 

of ionization. This system of generalized transport equations is shown 

to re duce to the 13-moment system of transporc equations in the limit of 

small temperature ani sotropies. Also , the sys tem of generalized 

transport equations is shown to contain all of the other major sys terns 

of transport equations for anisotropic plasmas that have been derived to 

date. 

1. General transport equations

In dealing with gas mixtures it is convenient to describe each

species in the mixture by a separate velocity distribution function, 

f (r, V , t). 
s - --s 

The distrib ution function is defined such that f (r, v ,  
s - -s 

t) drdv represents the number of particles of species s which at time t---s

have positions 

Alternatively, 

between r and r+dr and velocities between v and v +dv . 

f 
s 

can be viewed as a 

-s -s -s

probability density in the r, v
- -s 

phase space. The evolution in time of the species distribution function 

is determin2d by the nee effect of collisions and the flow in phase 

space of particles under the influence of external forces. The 

machematical description of this evolution is given by the well known 
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Boltzmann equation 

a f e 1 6 f 
__ s 

+
. 17f + 

s (E + - V B )• 17 f s 
(1) V X 

� a t -s - s m C -S -v s
s s 

where e and m are the charge and mass of species s, Eis the electric 
s s 

field, B is the magnetic field, c is the speed of light, 
at is the tLne

derivitive, � is coordinate space gradient, and 17 is the velocity
-v 

space gradient. 

6f 
The quantity ot in Boltzmann's equation represents the rate of

change of f in a given region of phase space as a result of collisions.
s 

For collisions governed by inverse power potentials and for resonant 

6f 
charge exchange collsions, the appropriate expression for s is the 

Boltzmann 
6f 

ot 

collision integral which is given by 

= L (dv ctn g a (g ,x) (f'f'-f f ]-t st st st s t s t 
t

.,, 

ot 

(2) 

where dv is tne velocity-space volume element of species t g is the
-t ' -st 

relative velocity of the colliding particles s and t, o (g ,x) is the
st st 

differential scattering cross-section, dn is the element of solid angle 

in the s particle reference frame, x is the scattering angle, and tl1e 

primes denote quantities evaluated after a collision. 

Although it would be nice to know the individual velocity distri­

bution functions of the different species, tt1e mathematical Jifficulties 

associat2d with obtaining closed-form solutions to Boltzmann's equation 

precludes this approach for most flow situations. As a consequence, one 

is generally restricted to obtaining information on a limit2d nu,nber of 

low-order velocity moments of the speci2s distribution function. 

Burgers (1969, p. 14) proposed that the transport properties of a 

s 

s 
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given species can be defined with respect to the average drift velocity 

of that species. In terms of the species average drift velocity .:::g• the

random or thermal velocity is defined as 

C 

-s 
V - U -s -s (3) 

and the physically significant moments of the species distribution 

function are given by 

where 

u -s

T 
s It

S...L 

\! 

3.s 

.L 

p 
-s

T 
-s 

ii
µ 

..i.
µ 
-s 

� 

R
-s 

p s\1 

<v >-s 

� <c
2 > k Sil 

� 
< 

2 
>

2 k cs.1.. 

<c 
2 

n m 
s s s11-s 

1 2 

>

2 
n m <c .c > 

s s �-s 

n m  <c c >  s s -s-s 

p 
--s

2 

I 

n m <c c c > 
s s sji--s-s 

2
C C > n m <c s s sJ_-s-s 

n m <c C C > 
s s -s-s-s 

n m <c C C C 

s s -s-s-s-s >

= n kT 
ps.l.

.
= 

s sil' 
n 

s

species drift velocity (4) 

parallel temperature ( 5) 

perpendicular temperature (6) 

heat flow vector for parallel energy (7) 

heat flow vector for perpendicular e�ergy 
(8) 

pressure tensor ( 9) 

stress tensor (10) 

higher order pressure tensor related to 

parallel energy (11) 

higher order pressure tensor related to 

perpendicular energy (12) 

heat flow tensor (13) 

higher order pressure tensor (14) 

kT n is the number density or species 
s.L' s 

s, k is l1oltz111:rnn's constant, __!:_ = .::.l�l + �2
�

2 
+ ��3 

is the unit

orthogonal set of unit vectors with �J

aligned along the direction of the magnetic field, and the angle 

brackets denote the average 

m 

m 
T = 

C 

= 

= 
-s 

dyadic , (~ 1 ,~ 2 
,~) is an 



<A> = -

1
-Jdv f An -s s -
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(15) 

The symbols !i and _l_ are used to denote components of vectors parallel 

and perpendicular to the magnetic field, respectively, as well as to 

identi fy quantities related to parallel and perpendicu lar thermal 

energy. 1 l b . d b f · · h Ii n genera su scripts are use , ut or quantities sue as q , 

.l.. Ii .L 

_g_s, !:s, and � superscripts are used to relate them to the parallel

and perpendicular thermal energies, while subscripts are used to 

define components parallel and perpendicular to the magnetic fielct. 

I .l. Ii ...1.. The quantities p p q 1 q µ and µ can be expressed as s ii ' s..L' � ' � ' -s -s

contracted forms of the higher order tensors P , Q and R as follows-s -'-S -s 

p 
s Ii = � :..'.:.3..'.:.3 06) 

ps..L = (1/2) fs:(l_-..'.:.F-3) (17) 

ii 
.S.s � :..'.:.J..'.:.3 

= (l/2) -9.s:(l_-�J..'.:.3) 

= R :e
')
e3-s -..r-

= R : (1-e
')
e3)-s - -� 

(18) 

(19) 

(20) 

(21) 

The starting point for the derivation of transport equations 

for gas mixtures is Boltzmann's equation (1). The transport equations 

are obtained by multiplying Boltzmann's equations with an appropriate 

function of velocity, and then integrating over velocity space. The 

resulting transport equations describe the spatial and temporal behavior 

of the physically significant moments of the distribution function such 

as species concentration, drift velocity, parallel and perpendicular 

temperature, stress tensor, and parallel and perpendicular heat flow. 

If we multiply equation (1) by 2 2 m ,  m c, m c , m c ./2, m cc, 
S S-S S S/1 S S..l.. S-S-S 

2 2 m c c and m c c /2 and integrate over velocity space we obtain tlle 
S Slj-S S Sj_-S 

..L 

:ls 
·1 µI 

-s 

µ.l_ 
--s 

s 
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continuity, momentu m, parallel energy, perpendicular energy, pressure 

tensor, parallel heat flow, and perpendicular heat flow equations , 

respectively, for species s. The stress tensor equation is obtained by 

subtracting ��J times the pardllel energy equation and (.!_-�FJ) times 

the perpendicular energy equation from the pressure tensor equation. 

The resulting system of transport e quations is given by 

Continuity 

a P 

a/+v• (ps�s) = O

Momentum 

D u 
p 

s-s + V p + V p + V • T s Dt -::L s.i_ -Ii sU -s

+ (P 
1. - P

l.
) v· (e ')e3) s I s - -.r-

6M -s
ot 

1 
- n e (E + - u X B)

s s - c-s 

Parallel energy 
DS p Sli + p (V •
Dt Sit 

u -s + 2V • u ) + 2 [ 
1 

• 'vu ] + V • /I 
-/1 -s ��3: !s - -s .9.s 

oE 
S 11 

Perpendicular energy 
Ds ps.l. . '

j_ 

�+ Ps.L (2_·� + !..L�) + (.!_-�FJ):[!_s".'.?�s] + v·_g_s

+ -2 T 
-s

Stress tensor 

6E s.L
6t 

(22) 

(2J) 

(24) 

(25)

== 

l 

' ' ' T ' -(I-e ')e
3

)v . · u] + -r (V• u) + -r • vu + (-r • vu) - 2e')e')e')e
3

: [1 • vu] 
- -_;,- -..L -s - s - - s -s ---s -s -s -.;,-.;,-.;,- - s ---s 



D 
+ S1 X S1 (p

S \\-p�)
s 

(�F-3)X "C - "( + 
-s -s -s -s De 

' D 6, 
X l "C 

s 
(�F-3) + Q �!(�F-3)]

-s
:Dt-s -'-S 6t 

Parallel heat flow 
D q't 

ii 

0 �
-s + 2 [ � ·.:? l:s ] : � F-J + 3-s!.0 

� + _1� • � � + !." i!

l 
(_!_-3�F-3)- 2

[ 
D u e 

1 
X i)J 0 r p . I + 2e J"J • ( p . I + , ' ) JD�

-s
-

s (E + +- u m C -S L s11- - s,,- -s s 

D oq ii
X qH s ....o.s 

(�F-3) - R :!.(�F-3)+ S1 - Q : -s -s -s Dt -s ot 

Perpendicular heat flow 

D j_ 
� l � +l� + lQ/ -�--��): (_!_-�3�3) + 5s !." � + 5s • .?� 2 

..Lv•µ 
- -s

r D u e l J [ 
, J 

+ L 
s-s - � (E + - u xB) • p I+ (I-e e ) • (p I+, )De ms - c -s - SJ_- - -Y:::..3 S__L - -s 

oq�....o.s 
oe 

a 
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( 26) 

(27) 

(28) 

D 
where s

Dt --t- u •v is the convective derivative, psat -s rr m is the mass s s 

density, n =-s 

e 
s B is the cyclotron m C -

frequency, and the single, double, 

and triple dot pro ducts are defined, for example, as 

_g_ • V 

a 

L q 
a ax , 

a a 

"( Vu = L '
as 

(_?�)Sa'
a,S 

arrd wnere a, S arrd y are coordinate irrdices ( cf. Chapman and Cowling 

19 70). The parallel and perpendic:ular comporrents of a vector A are 

defirred by �I( �F-3.� and �.J..= (_!_-�F3).�, respectively. A superscript T

orr a terrsor mearrs the elemerrts of the tensor should be transposed. 

.l.. l 
+11 xq +-2Q - s -s ----s 

s 

D 
s( )+!R "( ) :Dt !:.~3 2 -s =~ !:.~3 
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The quantities on the right-hand sides of equations (23) - (28) 

correspond to the velocity moments of the Boltzmann collision integral 

(2) and describe, respectively, the rate of change of momentum, parallel

and perpendicular energy, stress, and par all el and perpendicular heat 

flow as a result of collisions; these quantities will be discussed in 

detail in section (3). 



2. The sixtee n-moment
approximation

19 

The sys tern of transport equations given in section (1) does not 

constitute a closed set, since the equation governing the mome nt of 

order ,Q, contains the moment of order ,Q, + 1. In order to close the 

system of transport equations, it is necessary to adopt an approximate 

expression for the species distribution function. My approximation 

express ion is based on a bi-Maxwellian or two-tempei:-ature 

spe cies distribution function and takes the for m  

f = f (b) [l + <P ]s s s 

where the zeroth-oi:-der bi-Maxwellian distribution is given by 

and where 

<P s

+ 2 8 
11' s -s

8 . 8
S.L. SH 

PS 

8 2 8 c2
S .L 

(1 
_ S i S ..L 

) q.l.. • C 
:�l � it

] - P s 4 -s -s ..i.

8 c
2

(l _ S..L sl_ )
2 

2 
j_ 

8s\\
q ·c --­
-s -S\\ 2p s 

2 
8 s i\ cs 11 

(1 -
3 

) q •c -s -s

8
S.l8si( 2 i) 
2p 

(l - 8slj c
S I\) 3.s-�s.Ls 

In equations (30) and (31), 8 ·t = m /(k T ) and 8 = m /(k T ).SI S S \I S_L S S_L 

( 29) 

(31) 

By taking the appropriate velocity moments of ( 29), it is easy to 

verify that this distribution function cori:-ectly accounts for the 

density, di:-ift velocity, parallel and perpendicular temperatui:-es, sti:-ess 

tensor-, and parallel and perpendicular heat flow moments. By taking the 

higher-order- velocity moments of equation (29) it is possible to expi:-ess 

these moments in terms of the 16 lower-order- moments



+ -
2
1 

[ �II ( I e e ) + e q
...L 

e + e q
..l..

. e + (I e e ) q
.l.. 

Jv - - -}=-3 -l-'-Si\-1 - 2  -'-S\\- 2 - -}=-3 -'-Si\

(R) = l l(P) 
0

(P) • + (P) (P )
02 + (P) 2

(P )
0 -s a$yo PS -s aµ -s yu -say -s µU -s au -s µy

-(, ) Q (, ) • - (, ) (, )Q . - (, ) • (, )Q 
I I I I I I 

J -s aµ -s yu -s 3.Y -s µ u -s au -s µy

JI psi/ I 
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(3 2) 

(33) 

µ 
=--

[ 3PsH �F3 + Ps_1._ C.!_ - �F3> + l + 2!s ·�F3 + 2�F3.! l-s p -s s(34) s 

.i.. P s..L I I 

µ 
=-- [2p eF3 + 4Ps..1- C.!_-�F3> + 6, - 2!s ·�F3

- 2�F3
°

! J
� p sl\ - -s s(35)s 

where we have temporarily introduced index notation into (33). From 

equations (32)-(35) we can readily obtain the terms needed co close the

system of moment equations. 

[ Q • vu ] : e '> e3 = e '> e3 i : 'vu + q ii 'v • u + ( �1 u ) • �II-'-5 - --s -J- -_J- -'-S - -s -S..L -II -s --::i.. -s ---_, 

'/ 1 
� 

j_ ' ..l 
[Q •vu ]:(I - e ')e3) = (v.

1
u )•q 1 + -2 ('v u )•q . + (q..!. + q ,)('v ·u)-s - --s - -.:,- ---1 -s -'-SJ.. -..L-s -'-S-L -'-S -'-S 1, --:..L -s 

D . De ..1_De l 
: - e e e q •-- + e • q --Q 

s 
( ) __ 2 \ 

Ii s-3 s-3 
-s De -3-=-3 _ -_}.:!.s De -3 -s De -1

(37) 

( 38) 

(39) 

(40)

( ) ( q H 1 .l.. 1 ..1.... ) C qi\ +!. ~ ~ 3 -----s - 2 ~ - 2 ~ H + -s 
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. 

( 

( P s,1 ' \ 
(

p
si/ ' \ 

:: -- T I +2'v • -- T \ Ip -s j - p -SJ\ S I S 

4'v ( 

p;J...) 
+

-.l p 

[ P :('ve
3

)e
3

•P + P •(ve
3

)e
3

:P +P :e
3

(ve
3

)•P 
-s ---s -s ---s-s---s 

(41) 

(42) 

(43) 

Equations (22) - (28) and the closing terms given by equations (36) 

(43) constitute, together with Maxwell's equations, a sec of closed

transport equations that can be applied to a wide range of plasma flow 

conditions. These generalized transport equations can describe subsonic 

and supersonic flows, collision-dominated and collisionless flows, 

plasma flows in rapidly changing magnetic field configurations, multi­

component plasma flows with large temperature differences between the 

interacting species, and plasma flows that contain anisotropic temper­

ature distributions. In addition, these generalized transport equations 

can describe certain aspects of electrostatic shocks, double layers, and 

magnetic merging processes. 

. 2 

~
PS!i \ 

3'v. -- ;' + (I+2ey:_ 3 )v 
-Ii PS - - -

s 
~ ps.L ') 2(31-e . e )'v : -- T -

- -1-=-3 - p -s 
s 

2p J_(p -2p ) ps..l. , 
+ s s 11 s...L "• e e - 2 ( " + " ·) 

~ -3-=-3 -P- !.s =~~3 !.s.::..=~~3 
PS S 
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3. Collision terms

Unfortunately, at present there are no general expressions for the

collision terms for the 16-moment approximation; namely, collision terms 

that are valid for arbitrary collision cross section, arbitrary relative 

drift between different species, arbitrary parallel-to-perpendicular 

temperature ratio, and arbitrary difference between species 

temperatures. In this section 1 present collision terms appropriate for 

some special cases. 

3.1. Maxwell molecule 

interactions 

For th e special case of Maxwell molec_ule interaction, wilere the 

interaction force varies inversely as the fifth power of the particle 

separation, collision terms can be derived without assuming a specific 

form for the species distribution functions. The collision terms in 

dyadic notation are given by (Demars and Scnunk 1 ()79) 

oE SJ.. 
at 

- I:
t

I: 
t 

r 2k(T - T ) - m (u -l_ SJ.. ti t -S 

2 
ut) 
- .l

(44) 

(45) 

mt A2 ( S) r 2 2 
] 

j 
+ -- i 2k ( a - a ) - 2 ( u - u

-=t.
) + 3 ( u-s - u .._ ).l _ ( 4 6) 

4 Al (5) L .l II 
-s

--... 

= -

-- = 
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+2[H (l) -H (2)
P

s J·ee st Ss st p 9.t -3-3t 
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H ( 2) PS II 
st -P q.._ t -l-

+ H(9) l.
st 9.s 
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H
(2) Ps 

+ -8 
st Pt t I\ 

H (10) H (5) Ps 
+ p + - p st sj_ st Pt t.J_

where 

H (2) ( + - u )st Ps � -=t 

+ H (2) st (u - �) 

a = . .l.. 

-s ..1. 

Ts li T I+ �
m m 

s t 

1 
( 

ii 2 .J..).9..s = 2 .9..s + .9..s 

2 + 

[3 

1:_ H(4) 
2

]p (u - ut) 2 st s -s - .L 

PS (u �t)
2

J,} PS + 3-p + p 
Pt t s -s (49) 

(50) 

(51) 

(52) 

(53) 

and where A/5), A
2

(5) and \/st are defined by equations (63) and (64).

(1) (10) The quantities H to H become pure numbers once the identity of
St St 

the colliding particles is specified; they are given by Demars and 

Schunk (1979) and are not repeated here. 

Equations (44) - (49) show some important features of the collision 

terms. The rate of change of momentum due to collisions is proportional 

to the relative drift velocity of the interacting species. The rate of 

cl1ange of parallel energy due to collision is proportional to the 

difference between the parallel temperatures, the square of the relative 

drift velocity of the interacting species as well as the difference 

between parallel and perpendicular temperatures for the same species. 

The collision term 6E /ot has similar form as 6E 
11

/ot but it depends on s� s 

the difference between the perpendicular temperatures rather than the 

parallel ones and the term due to che anisotropy (o11-o_1__) has an opposice

+ (u - ut) /'H(2t) p 
-s - L s SI\ 
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sign because it represents the energy transfer between the parallel and 

perpendicular directions. 

3.2. General inverse-power 
interactions 

For interparticle forces other than the inverse fifth-power force 

discussed above, it is necessary to assume an approximate expression for 

the distribution function in order to be able to evaluate collision 

terms. Adopting the 16-moment approximation given by equation (29), 

Demars and Schunk (1979) derived expressions for the collision terms 

which are valid for a general inverse-power force, an arbitrary 

difference between species temperatures and an arbitrary difference 

between parallel and perpendicular temperatures for the same species. 

However, they assumed small relative drift velocity, small stress 

tensor, and small heat flow and kept only linear terms in these 

quantities. These are known as "quasilinear collision terms" and given 

by 
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( 55) 

(56)
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( 57) 
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+ R (7) q ll + OJ_ R(8)q11 ps [R(9) ll + 0_1 R(l0)9.\\ \l 
st--s _L a l\ st--=s 11 pt stSLt. _1_ 0 11 st t 11)J 

( 58 ) 

(59) 
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wher e r (x) is a gamma function, a is the power of the particle

separation (r) in the interaction force law 

Force = 

K st
a 

r 

and where n is related to a by the equation 

n a-1 -l 

(60) 

(61)

a and a are given by equations (50) and (51) and the quantities Ill ' 
0 

vst
' A

9.,
(a) and I

LMN 
are defined as

m m + m 
0 s t

v;-
(2k)-n/2v st -3-

A (a) Jo 
9., 

0 

(5-�) nt mt ( Kstr+l)/
2 

A (a) r - -, - --1 2 m -rm µ 
s t st 

9., - cos x)v dv
0 0 

where Kst is constant, x is the scattering ang le, 

(62) 

-1/2 -(n-1)/2
a

l( 
a
..L 

(63) 

(64) 

(65) 

v is the nondimen­o 

sional impact parameter (cf. Chapman and Cowling 1970), and µ
s
t is the

reduced mass 

m m 
s t 

µst m +m 
s t 

(66)

The values of the R's and S's are given by Demars and Schunk. They 

al so give the values of the I's for general n and for Maxwell molecule 

inter actions (ci=5, n=o), hard sphere interactions (a=oo, n=-1), while the 

ca se of Coulomb interactions (a= 2, n=3) is given by Chodura and Pohl 

(1971). These values will  not be repeated here. 

4 

1LMN 
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For the special case of Maxwell molecule interactions (a=5) 

equations (54) - (59) agree with the general Maxwell molecule collision 

terms (44) - (49) up to the linear terms in the drift velocity, stress, 

and heat flow. 

3.3. Resonant charge 

exchange interactions 

The Quasilinear collision terms for resonant charge exchan ge 

interactions were derived by Demars and Sch unk (1979). They are similar 

in form to tile c ollision terms for th e general in verse power 

interactions given in the previous subsection a nd they will n ot be 

repeated he re. 



4. Simplified sets of

transport equations

30 

Several sets of simplified transport equations for anisotropic 

plasmas have been derived during the last two decades. In this section 

1 show how all of the important sets of simplified transport equations 

can be obtained from the generalized transport equations given in 

section (2). First, I show that the generalized transport equations 

reduce to Grad's 13-moment transport equations in the limit of small 

temperature anisotropies. Next, I present a set of simplified transport 

equations that is based on a finite Larmor radius expansion of the 

generalized transport equations. Within the finite Larmor radius 

approximation, previous authors have ma de several additional 

assumptions, and the resulting transport equations are derived and 

discussed. I also study the effect of collisions on the transport 

equations for an anisotropic plasma, and present a set of simplified 

transport equations for a hyb rid ca se where the collisional 

mean-£ ree-path is the small parameter in the magnetic field direction, 

while perpendicular to the magnetic field the Larmor radius is the small 

parameter. 

It should be noted that many plasma flows may be adequately 

modelled with a set of simplified transport equations. Therefore, in 

what follows I outline the derivation of the sets of simplified 

transport equations so that the intrinsic limitations of a given set 

will be more apparent. 

4.1. 13-moment approximation

To recover Grad's 13-moment system of transport equations from the 

s2t of generalized transport equations given in section (2), we must 
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assume that the species temperature (or pressure) anisotropy is small 

and we must take account of the fact that the heat flow vectors for 

parallel and perpendicular thermal energy become linearly dependent in 

the 13-moment approximation, 

( 6 7) 

i\ 

�
= (68) 

( 69) 

Substituting equations (68) and (69) into the 16-rnornent distri­

bution function given by equations (29)-(31), expanding the distribution 

function using the inequality (67), and retaining only linear terms in 

, ' q and 
---s

, -s 
(p .

1 
-p .L) we recover 

s1 s 
the 13-moment approximation for the

species distribution function, which is given by 

where 

f 
s 

f(M)
s 

$ 
s 

= f
(

M) 
[ l + gi l s s 

( m \ 3/2 
= n 2rr:T s js 

rn 
s

2kT p 
s s

T 
-s :c C -s-s

exp f 

2 

J
ill C 

s s 
2kT 

s

2 \ 
m c rn 

s s) s -
SkTs � 3.s -�s

s s 

and where T 
s 1/3 (T .

1
+ 2T ), p = n kT and

s \ s_L s s s 

T 
---s ,' - 1/3 (p .-p .1) (1 - 3e.,e

3
)

---S S \\ S- - -_;-

(70)

(71) 

(72) 

( 73) 

and the prime is used to distinguish between the strees tensor corre-

sponding to the 16-moment approximation (, ) and that corresponding to
-s 

the 13-moment approximation (, ). 
-s 

As expected, by using the same set of assumptions together with the

16-moment transport equations (22) - (28), (36) - (43), we can recover

J.. 2 
..1,, = z (21 - e e )•q 

_, J - -Y:.3 -s 

= ---



the 13-moment transport equations given by 

D T 

ap 

__ 
s

+v•(pu) 
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p 
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ct 
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(74) 

(75) 

(76) 

( 77) 

(78) 

where the collision terms 
s -s

and -
s 

'6t' ot lit 
are given by Schunk 

(1977). 

Since Grad's 13-moment transport equations correspond to a special 

case of the more general 16-moment transport equations, the latter 

equations are capable of describing all of the transport effects that 

the 13-moment equations can, as outlined in the introd uction. 

4.2. Larmor radius expansion 

In this subsection I consider a collisionless plasma immersed in a 

T 
+(T •v u ) 

-s - -s 

2 
- - (v•u )I] 

3 - -s -

(E + _.!.. u xB)1. [-25 
p l + T J 

- C -S -j S - ---S 

0 t: 
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ma gnetic field which is strong enough to make the Larmor radius (a1)s

much smaller than the other characteristic lengths of the problem, 

u T,
s 

(v h
) T where Land Tare the scale length and t s 

scale time res pectively and us and (vth)s are the coherent and thermal

s peeds respectively. With this assum ption the transport equations 

simplify radically and we get a closed set of equations which consists 

of Maxwell equations in addition to the following set of transport 

equations 

ap 

�t + 'v" (P u ) = 0
0 - s-s 

D u 
P 

s s 11 + e • 'v p 'v : T -n e Es Dt -3 - s\\ + !:.3- -s s-s l\
- u •-s

D e
3 s-

Dt 

Ds p s\\+ 
' ' 

DC p ( 'v • u + 2 'v 
1
• u ) + 2 [ T •'vu - (� u_s ) • !s ] : !:_,, e3SIi - -S -1 -S -s - --S � 

+ �-� -2 l�3 =��3 - 2 q�h Y...."!:.3 0 

D
s p s..L 

' ' ' 

Dt + p (V•u + 'v ,"u ) + T :'vu - [T •vu -(Vu )•T ]:e e s..1.. - -s ---:.L -s -s - -s -s - -s - -s -s -F3

.L I\ 
+ �· 3-c + _g_s!:_3 : � �3 + ql 'v • e" S\\ - -3 0 

·1
D I 

s q s ti
Dt 

: 'vu - --s [p .1 P + 2 P •e ')e3•P ]:ve3 Sl1 -S -S -� -S --

r. (� j_). 
(
1 (! -5=_ J!:.3). p )

P : e 'v � _s_ + 'v
-s 

-s 1-J-:-- p - p
s � s

0 

[ 2t. I + 2 q1i e
s11- ---'-SJ_-3

(79) 

( 80) 

(81) 

(82) 

(83)

s 

+ (p -p ) v•e = O 
S\\ SL - -3 
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(84) 

1 
�l.. = � + Q .'.:.3 [

D e3 D uE l s- s-
x u --+--+-

sij Dt Dt ps 
['v p I + (p '1-p . )e3"'ve3l}
-..J..: S_ S, S..L - --

( 85) 

(.::_s' )23 = 4:-J[(2p ·1-p ·) ele3"s \.
s l s.L - � 

j' _j__ (+ i:.1 (�i\- 23.s11 ) :�3 j 
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(86) 

( 87) 

(88) 

(89) 

(90) 

(91) 

( 92)

....L ..L 1 
-q e

3 
+ e

3
•q 1 ] :v'u + - [p P + 2P •e ,,e

3
•P ] :v'e
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e q :'vu 

.J.. J-l-s\1 -s (93) 

where� c is the ExB drift velocity, and I used the relation 
8

2 

(94) 

which is correct to the zeroth order, to get the above equations in that 

form. 

These equations are accurate up to first order terms. Although I 

Ii treated q .. and _s:::
11 

as zeroth order terms, in practice they ought to be 
-sl\ "' 

small enough so that they do not invalidate the more general 16-moment 

approximation. 

Equations (78) - (82) and (85) - (93) are similar to those derived 

by MacMahon (1965) when a bi-Maxwellian zeroth order distribution 

function is adopted to evaluate his expressions. However, there is a 

.l. .J.... 
factor 2 error in his equations for q

sl 
and qs 2 •

In the following paragraphs, some special cases will be studied. 

For eacl1 case a set of assumptions will be needed in addition to the 

general ones (col lisionless plasma and small Larmor radius) stated in 

the beginning of this subsection. These assumptions will be stated and 

the above equations will be expanded accordingly. 

Expansion I. The extra assumption needed for this cases is that 

T « 

L L 

(v h) t s 
)­

u s 
( 95)

That is to say, the periodic time of oscillations is much less than all 

characteristic times, except for the gyration period (2n/n ). 
s 

The simplified closed set of equations is Maxwel l equations, 



equations (79)

I 
1 (!_s)23 n s

I -1(.!_s)Jl n s

( 82), ( 85) and

[ ( 2P s\j-p sj_)�l�J

((2p 11-p ·) e2e3S S..L - -

+ ps..1..�F-1] :�

+ p e�2] :'vu SJ.:- -s
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( 96)

( 97) 

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

In the above equations (96) - (105) I retained only the greatest

non zero term . . II ..L I in the small quantities q , q and T • 
-'-S -'-S --s These equations

are consistent with those found by Oraevskii, Chodura and Feneberg 

(1:!68) • 
. If 

However, the latter had a missing p
8 

in the equations for (q�H

and qsll) and an opposite sign for 2:s,

Expansion II. The �xtra set of assumptions needed in this case is

( 106)

=-

Ii [ 3 / p ) pSII _ 1 s ii + 
(p -p ) e1e3: 9e3] qs2 - ~ Psl ax 1 ( ;-:-

1 

2-
PS s11 s..1...----

j_ -1 
[ 2pel:X2 ( ::L) I qsl n 
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J... 
l [ 

3 (P ) J =- 2 -- ~ qs2 n s - P s..i.. a x 1 \ P s 

..L 



(ii) 

(iii) 

(iv) 

where e: 

E ...L 
UE

= 

- J' e: u B s Ii 

1 a j 
I :x2 �31I ax1

�3 > « L_.L 

0 

(a ) L s 

L..1_ 
is the smallness parameter, and Li\ and �are the 

parallel and perpendicular scale lengths, respectively. 
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(107) 

(108) 

(109) 

The proper closed set of equations is Maxwell equations, equations 

(79) - (82), (85), (109) and
I I 

(!_s)22 = (!_s)l2

P sJ.. aus3
= -- ---

11s ax1

_ P s.l. a 
( 

P s\ t 
)----- --

Q 
axl p 

s s 

-2psJ. _
a 

( 
P s . .L) 

Q ax2
ps s 

2 P SJ.. a
( 

P sJ..
) ---- --

n ax1 P 
s s 

0 ( 110) 

(111) 

(112) 

(l 13)

(l 14)

(115) 

(l 16)

Equations (110) - (116) are consistent with the relations derived 

by Srivastava and Bhatnagar (1975). However, they used a different set 

of coordinates whose x3 axis makes a small angle (0 « l) with the

magnetic field. The assumption of zero parallel components of the heat 

flow vectors restricts, to a large extent, the usefulness of these 

equations in practical problems. 

l 

II _ q..L = 
qs \I - sl\ 

= ---
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Expansion III. If we keep only zeroth order terms, in addition to 

the small Larmor radius and collisionless plasma assumptions, equations 

( 24) and (2 5) reduce to

B 2 

--e e :(v'
0 Q) 3 -}=-3 - -'S p 

D

D
s (p s

B
I l = - -

2 
l

B (_!. - !=_'}e3): (y_• .SL)
t P

S 
P

S 
..r- "' 

(117) 

(118) 

which are similar to the results given by Chapman and Cowling (1970). 

Moreover, if we apply the same assumptions to the closed 16-moment 

transport equations, they may be reduced to 

3p B 
SIi 

..L 
qs\i 2 -B- v'

_ 
p

si! • ;, ( Ps...L \ ps.L( ps..L-ps\l) !Br , 
]p2" !=.3 l 2. l_P_ 1 + p p B s _ \ s / s sq 

Equations (119) - (1 22), in addition to Maxwell's 

continuity equation (79), and 

ExB 

�_1.. = C lf2 

(119) 

(120) 

(121) 

(12 2) 

equations, the 

0 ( 123) 

(124) 

are similar to the equations given by Whang (1971), ex cept for an 

algebr�ic error in his calculations. 

Expansion IV. If, in addition to the small Larmor radius and 

collisionless plasma assumptions, we n egle ct the heat flow tensor, we 

get the following relations, which are accurate co the zeroth order, 

D u I a p I D ej 
~ + ~ - n e E - u -~ + (p -p . ) v • e = 
Dt clx3 s s ii -s Dt s11 S_L - -3 



39 

0 (125) 

(126) 

These are the 'double adiabotic' energy equations of Chew, Goldberger 

and Low (1956 ). In this case the proper closed set of equations 

consists of Maxwell's equations in addition to equations (79), and (123) 

- (126).

4.3. Influence of collisions 

To stu dy the e ff ect of collisions I consider the transport 

equations for ions in a binary ion-electron plasma in which ion-ion 

collisions dominate the collision terms. Specifically, I assume that 

the ion-ion collision frequency is much greater than all characteristic 

frequencies other than the gyration frequency (i.e. v .. >> 1/T, u./L <<
1.1. 1. 

V . ) • 
ie 

According to these assumptions, it is possible to prove that the 

relations (67) (69) are satisfied for ions. Therefore, the transport 

equations reduce to the 13-moment approximation mentioned earlier. 

Keeping only the greatest non-zero terms in the first order quantities 

(.::_
s

, 3-
s

) we get the following set of transport equations for the ions 

ap 

__ 1. + v•(P.u.) = 0
at - 1.-1. 

0 

(127) 

0 (128) 

(129) 

(130)
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(131) 

(132) 

(133) 

(134) 

(135) 

(136) 

where the subscript i indicates quantities related to ions and where 

(137) 

In  the subsections that follow I consider the special cases when 

v .. is much less and much greater than n .• 
1.1 1. 

Collision dominant case. In addition to the assumptions needed for 

t he general case discussed above (v .. » 1/T, u. /L >> v. ), we need to 
1.1. 1. ie 

assume that the ion-ion collision frequency is much greater than the ion 

gyro-frequency (v .. >> n. ). In this case equations (130) - (136) reduce 
1.1. 1. 

to 

q, = 
-1. 

Sp.
[ T - -6 

1. 'vu. + ('vu.) 
\) . .  -1. -1. 

1. 1. 

25 

8v ii 
p.'v(p./p,) 

1.- 1. 1. 

2 - - 'i/"u
3 --i 

(138) 

(139) 

As expected, the influence of the magnetic field disappears because 

rapid collisions p reve nt t he ions from gyrati ng. These results 

correspond to the Navier-Stokes equations (Schunk 1977) and to what 

niw23 + 1• 2 viiwl3 
n 2 +(1.2v .. ) 2 

i l.l. 

WaB = p. [vu.+ (Vu. /-lv•u 11 
1. --1. -1. 3 - -i ~j aB 
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Chapman and Cowling call the "first approximation" to the transport 

equations. 

The hybrid case. Assuming that 11. >> v .. in addition to the 
l 11 

general assumptions (v .. »1/T, u. /L>>v. ) ,11 1 1e 
leads to the following 

simplification of equations (130)

(.::._i) 11 (.::._i) 22 
-1

= = 

2 (.::._i) 33 

(.::._i)l2 
1 

(Wll-W22) 411. 
l 

C.!_i)23 
W 13 

= 

n. 
l 

(.::._i)31 
w23 
11 . 

l 

25 
q. 
-l -� P i!II (pi) 5 

- +--

p. 211 �
ll 

where W :iS was defined by 

l/ l 

equation 

( 136)

12\/ .. w33 (140) 

ll 

(141) 

(142) 

(143)

P- n.
]. -i 

x V (pi)- \ p. 
\ 1 

(144) 

(137).

The off-diagonal terms of t., as well as the tranverse component of 
-1 

the heat flow vector, are inhibited by the strong magnetic field. On

the other hand, the diagonal terms of t. and the longitudinal component
-i 

of q. are controlled by collisions, since the former corresponds to the
-1 

pressure anisotropy, which is opposed by col lisions while the

longitudinal component of q. cannot be inhibited by the magnetic field
-1 

because it cannot exert a force parallel to itself.

These results are similar to those derived by Mikhailovskii ,md 

Tsypin ( 1971 ). However, the extra terms appearing in their work are due 

to two reasons. First, they used an expansion wnich is quantitatively 

more accurate than the 13-moment expansion. This difference amounts to 

about a 20% correction and can be compensated for by modifying the 

5 
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numerical value of v ..• 
1.1. 

Second, they kept higher-order terms in q. and 
-1. 

T . •  These terms may be restored by keeping terms of the order of 
-1. 

\) . 
1. 

fL 
1. 

2 

\) . 
1. 

, ;:;z_
compared to l and by keeping terms proportional to T. and q .• 

" -1. -1. 
1. 



CHAPTER III 

MOMENTUM AND ENERGY EXCHANGE COLLISION TERMS 

FOR INTERPENETRATING BI-MAXWELLIAN GASES 
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Here I follow steps similar to those of sections ( 1) and (2) in 

chapter (I). However, in this chapter the magnetic field B is 

independent of time and co-ordinates. Also, in order to close the set 

of transport equations, I adopt the bi-Maxwellian distribution function 

given by equation (30). 

The collision terms derived by Chodura and Pohl ( 1971) and by 

Demars and Schunk (1979) are valid for arbitrary temperature differences 

between the interacting gases and arbitrary temperature anisotropies, 

but are restricted to small relative drifts between the interacting 

gases. In this chapter I remove the latter restriction and calculate 

momentum and energy exchange collision terms for interpenetrating 

bi-Maxwellian gases that are valid for arbitrary drift velocity 

differences and temperature differences between the interacting gases as 

well as for arbitrary temperature anisotropies. I also derive the 

closed set of transport equations that are associated with the momentum 

and energy collision terms. 

1. Theoretical formulation

2 2 
If we multiply equation ( 1) by m , m c , m c ,. , and m c /2 and 

s s-s s s .I s s.L 

integrate over velocity space, taking into account that the velocity 

distribution function takes the bi-Maxwellian form given in equation 

(30), we obtain the continuit y, momentum, parallel energy and 
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perpendicular energy equations, respectively, for species s. The 

resulting closed system of transport equations is given by 

Continuity 

ap 
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S..L 
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--s ct 

( 145) 

cM -s
ct 

( 1 46) 

( 147) 

( 148) 

The quantities on the right-hand sides of equations (146) - (148) 

correspond to the velocity moments of the Boltzmann collision integral 

(2) and describe, respectively, the rate of change of momentum, parellel

energy, and perpendicular energy. These quantities will be evaluated in 

Sections (2) and (3).
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2. Collision terms

In this section I will present collision terms for the general

inverse-power interaction and verify that the answer is consistent with 

the literature in some limiting cases. 

Following the steps mentioned in section ( 1), the collision terms 

take the form: 

oM -s

oE s
---= 
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( 1 49) 

( 1 50) 

( 1 51 ) 

where c' is the random velocity after scattering. -s Expressions (149) -

( 151) are valid for a general distribution function and a general

differential scattering cross-section. 

If we choose the distribution function to have the bi-Maxwellian 

form giv en in equation (30) and assume a general inverse-power 

interaction 
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(166) 

1he above collision terms can be expr essed in the following 

convenient forms 
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( 173) 
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Only the limiting for ms of the tensor _t are needed and these are given 

below for a Cartesian coor dinate system (x
1

, x
2

, x
3) with the magneti c

field parallel to the x3-axi s.

2.1. Limiting forms 

If the relative drift is much smmaller than the average thermal 

speed (i.e.) Ji:.I «1 the quantities given above reduces to 
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( 179) 
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Substituting the expressions given in equations (178) - (182) into 

equations (167)-(169) the collision terms reduce to a form consistent 

with the expressions derived by Demars and Schunk ( 1979). 

Considering the op posite case when the relative drift is much 

greater than the average thermal speed (IEl>>1) we find that 
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where I is a unit dyadic and t:, is the magnitude of the vector t:,. 

In the limit when a ./a,+ 
\\ � 

(isotropic temperatures) the collision 

terms reduce to forms which agree with the results given by Burgers 

(1969) and Schunk (1977). 

2.2. Maxwell molecule interaction 

For the special case of Maxwell molecule interactions, where the 

interaction force vari es inversely as the f ifth power of the particle 

separation (n=O), the integrations in equations (174)-(176) can be 

reduced to a closed f orm, 
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Consequently,

j_ I 
( 1 91 )

( 1 92) 

These results agree with Demars and Schunk (1979).

Al though these Maxwell molecu le results were derived for the

special case of a bi-Maxwellian distribution function, they are valid

for arbitrary distribution functions.



3. Numerical results and
approximate expressions

52 

The momentum, parallel energy, and perpendicular energy collisi,)n 

terms, which depend on the quantities !, n1 
, n2

, :£_, t11, and ¥
.l.

, must be

evaluated numerically for non-Maxwell molecule interactions. In order 

to limit the number of tables needed to present the numerical results, I 

restricted my calculations to the situations where the relative drift is 

either parallel or perpendicular to the magnetic field, which are the 

two most common cases in aeronomy and space physics. 

In the case of parallel drift(�= �U), the appropriate experssions

can be reduced to 
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( 196) 

For the other spe cial ca se, when the relative drift is perpendicular to 

the magnetic field (t, = t, ), the appropriate experssions reduce to -
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In the above equations (193) - (200) the superscripts I\ and J__ on 

the S1' s are used to denote the two cases when the relative drift is 

either parallel or perpendicular to the magnetic field, re spec ti vely. 

r(a,x) is the incomplete gamma function, W A ( x)
µ' 

is the Whittaker 

function, and I (x) is the Bessel function of the first kind of order 
m 

m. They are defined in Gradshteyn and Ryzhik (1973).

These integ rals still cannot be reduced to closed forms. However,

an approximation could be found by combining the asymptotes at small and 

large relative drifts. 

quantities are given by 

These approximate expressions for nonzero 
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( 196) I 

( 197) I 

1/8/n) 

(199)' 

( 200) I 

Where the a's and S's are constants, depending only on the interparticle 

force law index n. They are to be chosen to minimize the relative error 

between the exact and the approximate expressions. 

discussed in more detail below. 

3,1. Coulomb interaction 

1'his will be 

If the mutual force between the interacting particles obeys the 

inverse square law (a= 2,n= 3), the integrals in equations (193)-(200) can 

be evaluated numerically. Tables - 6 give the numerical values with a 

1 % 3.ccuracy f,::ir wide ranges of "Mach numbers" and parallel-t::i-

=--

\
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Table 1. The numerical values of ¢33(3) (Coulomb interaction and parallel relative
drift) for different values of ti/a and T11

/'r
1

• 

J_ ' ....,_ 

T
ll

1Tl = 1/16 1/9 1/4 1/3 1/2 l 2 3 4 9 16 
6/al
-

1/64 2. 11 l. 91 l. 58 l. 46 l. 29 l.00 7. 40( · l) 6. 06(-l) 5. 21 (-1) 3. 26( -1) 2. 26( - l) 1/32 2. l 0 l. 90 l. 58 l. 46 l. 29 9. 99(-1) 7. 39(-1) 6. 06(-1) 5.21 (-1) 3. 26(-1) 2. 26(-1)1/lG 2.0S l.88 l. 57 l. 46 l. 28 9. 98(-1) 7 .·38(-1) 6. 05(-1) 5. 20(-1) 3. 26 (-1) 2. 26(-1)1/6 l. 90 l. 79 l. 53 l. 4 3 l. 26 9. 91 (-1) 7. 36(-1) 6. 04 (-1) 5. 19(-1) 3. 26(-1) 2. 26(-1)
1/4 l. 42 l. 49 l. 40 l. 33 l. 20 9. 63(-1) 7. 25(-1) 5. 97( � l) 5. 15(-l) 3. 24(-l) 2. 26(-1) 
1/2 6. 22(-1) 8. 04 (-1) 9. 86(-l) 1.00 9. 85(-l) 8. 63(-1) 6. 82(-1) 5. 73(-- l) 4. 99(-1) 3. 19(-1) 2. 23(-1)

l. ti6 (-1) 2. 24 ( -1) 3. 56(-1) 4. 12(-1) 4.92(-l) 5. 68(-1) 5. 39(-1) 4.86(-l) 4. 39(- l) 3. 00(-1) 2. 16 ( -1)
2 J. 19 (-2) 4.28(-2) 6.66(-2) 7.80(-2) l. 00 (-1) l. 59(-1) 2. 33(-1) 2. 61 (-1) 2. 69(-1) 2. 36(-1) l.87{-l)
4 4.79(-3) 6.38(-3) 9.73(-3) l.13(-2) l. 41 (-2) 2.08(-2) 3.26(-2) 4.a8(-2) 5. 70(-2) 9.62(-2) l. 08(-1)
8 6.35(-4) 8.44H) l.28(-3) l.47(-3) l. 81 (-3) 2.60(-3) 3.76(-3) 4.73(-3) 5. 61 (-3) l. 01 (-2) l. 89(-2)16 3.07(-5) l.07(-4) l. 62(-4) l. 86(-4) 2.29(-4) 3. 2!i( -4) 4._62(-4) 5.G9(-4) 6. 61 (-4) l.02(-3) l.43(-3)

32 1.01(-5) l. 34 (-5) 2.03(-5) 2.33(-S) 2.87(-5) '1.06(-5) 5.75(-5) 7 . 05 ( -5) 8.15(-5) l. 23(-4) l .G6(-4)
64 l.27(-5) l. 68(-6) 2.54(-6) 2. 91 (-6) 3.59(-6) 5.07(-6) 7. 17 (-6) 8.79(-6) l.01(-5) l. 53(-5) 2.04(-5)--------

l.n 

(l'\ 



Ii 
'l'able 2. The numerical values of 1(1'(3) (Coulomb interaction and parallel relative

drift) for different values of t,,/a:._ and T11/
'S_

. 

T II
/
Tl = 1/16 1/9 1/4 1/3 1/2 l 

ll/a
l 

-

1/64 l. 06 9. 56 (-1) 7. 91 (-1) 7. 32 (-1) 6. 44(-1) 5. 00( -1)
l/32 1.07 9. 60(-1) 7. 92(-1) 7. 33(-1) 6. 44 (-1) 5. 00(-1)

1/16 l. 10 9. 75(-1) 7. 97 (-1) 7. 36(-1) 6. 46(-1) 5. 00(-1)
1/8 l. 22 l. 03 8. 14(-1) 7 .47 (-1) 6. 50(-1) 5. 02 (-1) 

1/4 l. 61 l. 23 8. 75(-1) 7. 86(-1) 6. 70(-1) 5. 06(-1)

1/2 2.30 l. 67 1.05 9. 04 (-1) 7. 30(-1) 5. 21 (-1)

2.55 l. 91 l. 23 1.05 8. 27 ( -1) 5. 52(-1)
2 2.02 l. 52 l. 01 8. 81 (-1) 7. 16 (-1) 5. 03(-1)
4 l. 22 9. 22(-1) 6. l I) (-1) 5. 35(-1) 4. 36(-1) 3. 12(-1)
8 6.50(-1) 4. 90(-1) 3. 26(-1) 2. 83(-1) 2.31(-1) l. 64 (-1)

16 3. 30(-1) 2. 49(-1) l.65(-1) 1. 44 (-1) 1.17 (-1) 8.28(-2)
32 1. 66(-1) l.25(-1) 8.30(-2) 7.22(-2) 5.87(-2) 4. 15 (-2)

64 8. 31 (-2) 6.26(-2) 4. 15(-2) 3.62(-2) 2.94(-2) 2.08(-2)

2 3 4 9 16 

3. 70(-1) 3. 03(-1) 2. 60(-1) l. 63 (-1) l. 13 (-1) 

3. 70(-1) 3. 03(-1) 2. 60(-1) l.63(-1) l. 13( -1)

3. 70(-1) 3. 03(-1) 2. 60(-1) l.63(-1) 1. 13(-1)

3.70(-1)' 3.03(-1) 2.60(-1) l.63(-1) 1. 13 (-1)

3. 70(-1) 3. 03(-1) 2. 60(-1) l.63(-1) l. 13( -1)

3. 72(-1) 3. 02 (-1) 2. 59(-1) l.62(-1) l. 13 (-1)

3. 74 (-1) 2. 99( · l) 2. 55(-1) l. 59(-1) l.11(-1)

3. 46(-1) 2. 75(-1) 2. 34(-1) l.48(-1) l. 05(-1)

2. 25(--1) l . 87 ( -1 ) 1. 64 (-1) 1. 12 (-1) 8.45(-2)

l. 16(-1) 9.59(-2) 8.37(-2) 5.88(-2) 4.65(-2)

5.86(-2) 4.80(-2) 4. 16(-2) 2.80(-2) 2. 13 (-2) 

2.94(-2) 2.40(-2) 2.08(-2) 1. 39(-2) 1. 04 (-2)

l.47(-2) 1. 20( .. 2) l. 04 (-2) 6.93(-3) 5.20(-3)
l, 



Table 3. 
\\ Tho numerical values of n2(3) (Coulomh interaction and parRllel relative

drift) for different values of 6/a
.l 

and T1/TL.

TII/Tl. = 1/l 6 1/9 1/4 l/3 1/2 l 2 3 4 9 16 

Mal
-

l/64 4. 44 (-1) 5. 45(-1) 7. 09 (-1) 7. 6 7 ( -1 ) 8. 56(-1) 1.00 l. 13 1. 20 1. 24 l. 34 l. 39

l/32 4. 43 (-1) 5. 44 (-1) 7. 08(-1) 7. 67 (-1) 8. 55(-l) l.00 1. 13 1. 20 l. 24 l. 34 1. 39 

1/16 4. 38(-1) 5. 39(-1) 7. 05(-1) 7. 64 (-1) 8. 53(-1) 9. 98(-1) 1. 13 1. 20 1. 24 1. 34 1. 39

l/8 4. 18(-1) 5.22(-1) 6.92(-1) 7. 52(-l) 8. 43(-l) 9. 91 (-1) 1. 12 1. 19 1.�1 1. 34 1. 39

1/4 3. 59(-1) 4. 62(-l) 6. 42(-1) 7. 07 (-1) 8. 04 (-1) 9. 63(-1) 1. 11 1. 18 ·1. 23 1. 33 1 .18 

1/2 2. 26(-1) 3. 11 (-1) 4 .88(-1) 5. 59(-1) 6. 72(-1) 8. 63(-1) l. 04 l. 13 l. 18 l. 31 l. 37

9.53(-2) l. 31 (-1) 2. 21 (-1) 2. 68(-1) 3. 61 (-1) 5. 68(-1) 8. 06(-l) 9. 38(-1) l.02 l. 22 l. 31

2 2.52(-2) 3. 41 (-2) 5.46(-2) 6.50(-2) 8.68(-2) l. 59(-1) 3.22(-1) 4. 68(-1) 5. 86 (-1) 9. 19(-1) 1. 11 

4 4.43(-3) 5.92(-3) 9. 12(-3) l. 06(-2) l. 34 (-2) 2.07(-2) 3.66(-2) 5.82(-2) 9. 15(-2) 3. 12(-1) 5. 75 (-1)

8 6. 11 (-4) 8. 12 (-4) l. 23(-3) 1. 42(-3) 1.76(-3) 2.56(-3) 3. 81 (-3) 4.92(-3) 6.03(-3) l. 45(-2) 5.22(-2)
16 6.02(-5) l.07(-4) l.61(-4) 1. 85(-4) 2.28(-4) 3.24(-4) 4.64(-4) 5.76(-4) 6.73(-4) 1. 08(-3) l. 60(-3)
32 l.01(-5) l. 34 ( -5) 2.02(-5) 2.33(-5) 2.86(-5) 4.06(-5) 5.75(-5) 7.07(-5) 8. 18(-5) 1. 25 (-4) l. 70(-4)
64 l.27(-6) l.68(-6) 2.53(-6) 2. 91 (-6) 3.59(-6) 5.07(-6) 7. 18(-G) 8.80(-6) 1. 02(-5) l.53(-5) 2.05(-5)

Lil 

00 



Table 4- The numerical values of t 11(3) (Coulomb interaction and perpendicular 

relative drift) for different values of IJ./a.L and 
T11/T..L.

(
¢11=¢22)

T II /Tl = 

l / l 6 1/9 1/4 l/3 l/2 l 2 3 4 9 16 
Mal
-

l/64 4. 45 (-1) 5. 45 (-1) 7. 10(-l) 7. 68(-l) 8. 57 (-1) 1.00 1. 13 1. 20 l. 24 l. 3� l. 39
l/32 4. 44 (-1) 5. 45(-l) 7. 09(-l) 7. 67 (-1) 8. 56(-l) 9.99(-1) l. l 3 l. 20 l. 24 l. 34 l. 39 
l/16 4. 44 (-1) 5. 44 (-1) 7.07(-1) 7. 66(-1) 8. 54 (-1) 9. 98(-1) l. 13 l. 19 l. 24 l. 33 l. 38
l/8 4. 40(-l) 5. 39 (-1) 7 .02 (-1) 7. 60(-1) 8. 48(-1) 9. 91 (-1) l. 12 l. 19 l. 23 l. J3 l. 38 
l/4 4. 26(-l) 5. 23(-1) 6. 81 (-1) 7. 38(-l) 8. 24 (-1) 9. 64 ( -1) 1.09 l. 16 l. 20 l. 29 l. 34
l/2 3. 75 ( -l) 4. 62 (-l) 6. 04 (-1) 6.56(-1) 7. 34 (-1) 8.63(-1) 9. 81 (-1) 1.04 1.08 l. 17 l. 22 

2.31 (-1) 2.88(-1) 3 .84 (-1) 4.20(-1) 4. 75 ( -l ) 5. 68(-1) 6. 58(-1) 7. 06(-l) 7. 37 (-1) 8. 12 (-l) 8. 51 ( -1)
2 5.14(-2) 6.62(-2) 9.40(-2) l.05(-l) l. 24 ( -l ) l. 59(-1) 1. 96(-l) 2. 19(-1) 2. 34 (-1) 2. 75(-1) 2. 99 (-1)
4 5.45(-3) 7. 21 (-3) l. 08(-2) l. 23 (-2) l. 50(-2) 2.08(-2) 2.81(-2) 3.32(-2) 3. 71 (-2) 4.89(-2) 5.75(-2)
8, 6.56(-4) 8.70(-4) l.31(-3) l. 50(-3) l. 85 ( -3) 2.60(-3) 3.63(-3) 4.40(-3) 5.02(-3) 7. 19(-3) 9.06(-3)

16 8. 14 (-5) 1. 08(-4) l. 63 (-4) l. 87(-4) 2.30(-4) 3.25(-4) 4.58(-4) 5.59(-4) 6. 44 (-/\) 9. 52(-4) l. 25 (-3)
32 1.01(-5) l.35(-5) 2.03(-5) 2.33(-5) 2.87(-5) 4.06(-5) 5.73(-5) 7.02(-5) 8.09(-5) l.21(-4) l. 60(-4)
64 l.27(-6) l.68(-6) 2.54(-6) 2. 91 (-6) 3.59(-6) 5.07(-6) 7. 17(-6) 8.78(-6) 1.01 (-5) 1. 52 (-5) 2.02(-5)-------



..L 'I'ahl8 5. 'l'he nurner i.cal values of n1(3) (Coulomb interaction and perpendicular
relative drift) for different values of t:./a_j_ and T

1
/TJ_ •

T II /Tl = l /16 1/9 1/4 1/3 1/2 I 2 3 4 9 16 ti/a
l

--

1/64 1.05 9. 53(-1) 7. 91 (-1) 7. 32 (-1) 6. 44 (-1) 5. 00 ( -l ) 3. 70(-1) 3, 03(-1) 2. 60( -1) l. 63 (-1) l. l 3 (-1) l/32 l.05 9. 53( -1) 7. 90(-1) 7. 31 (-1) 6. 43(-1) 5. 00(-1) 3. 70(-1) 3. 03(-1) 2.60(-1) l.63(-1) l. 13( -1)1/16 l.05 9. 52(-1) 7 .88(-1) 7. 30(-1) 6 .42(-1) 4. 99(-1) 3. 69(-1) 3. 02(-1) 2.60(-1) l. 63(-1) l. 13(-1)1/8 l. 04 9.43(-1) 7. 81 (-1) 7. 24 (-1) 6. 37(-1) 4. 95 (-1) 3. 67 (-1) 3. 01 (-1) 2.59(-1) 1 . 62 ( -1) 1.12(-1)1/4 1.00 9.08(-1) 7. 54 (-1) 7. 00(-1) 6. 17(-1) 4. 82 (-1) 3. 57 (-1) 2. 94 (-1) 2. 53(-1) 1.59(-1) 1.11(-1)
1/2 8.56(- l) 7. 81 (-1) 6. 59(-l) 6. 14 (-1) 5. 45 (-1) 4. 31 ( - l) 3.24(-1) 2.69(-1) · 2.33(-1) 1.48(-1) 1. 04 ( -1)

4.63(-1) 4. 37(-1) 3. 90(-1) 3. 71 (-1) 3. 40(-1) 2. 84(-l) 2. 26(-1) 1.93(-1) 1.70(-1) 1. 15(-1) 8.32(-2)2 5.62(-2) 7.23(-2) 7.35(-2) 7.52(-2) 7.76(-2) 7.93(-2) 7.69(-2) 7.29(-2) 6.93(-2) 5.57(-2) 4.47(-2)4 3.02(-3) 3.98(-3) 5.84(-3) 6.62(-3) 7.92(-3) 1. 04 (-2) 1. 30(-2) 1 .43(-2) 1.50(-2) 1. 60(-2) 1.54(-2)
l::l 3.36(-4) 4.45(-4) 6.67(-4) 7.64(-4) 9.34(-4) 1.30(-3) 1. 78(-3) 2.10(-3) 2.36(-3) 3.09(-3) 3.53(-3)16 4.09(-5) 5.42(-5) 8. 17 (-5) 9.38(-5) l. 15(-4) l. 62(-4) 2.28(-4) 2.76(-4) 3. 16(-4) 4.56(-4) 5.76(-4)32 5.08(-6) 6.74(-6) l. 02(-5) 1.17(-5) l. 44 (-5) 2.03(-5) 2.86(-5) 3.50(-5) 4.03(-5) 5.98(-5) 7.85(-5)64 6. 34 (-7) 8.41(-7) l. 27 (-6) l. 45( -6) 1.79(-6) 2.54(-6) 3.58(-6) 4.39(-6) 5.06(-6) 7.57(-5) 1.01(-5)



..L 
Table 6. The numerical values of n2 (3) (Coulomb interaction and perpendicular 

relative drift) for different values of t:;/ a. and T. /T
1 

• 
-L.. II 

..1... 

T l 1/TJ_ = 1/16 l/9 1/4 l/3 1/2 l 2

ll/al
-

-

1 /64 4. 44 (-1) 5. 45(-1) 7. 09(-1) 7. G8(-l) 8. 56(-1) 1.00 l. 13 

l/32 4. 44 (-1) 5. 45 (-1) 7. 09 (-1) 7. G8(-l) 8. 56(-1) 1.00 l. 13 

1/16 4 .44 (-1) 5. 44 (-1) 7.09(-1) 7. 67 (-1) 8. 55(-1) 9. 99(-1) l. 13 
1/8 4. 42 (-1) 5. 42(-1) 7. 06 (-1) 7.65(-1) 8. 53(-1) 9. 97(-1) l. 13 

1/4 4. 34 (-1) s. 34(-1) 6. 97 (-1) 7. 54 (-1) 8. 43(-1) 9.88(-1) l. 12

1/2 4.06(-1) 5. 01 (-1) 6.60(-1) 7. 18(-1) 8.06(-1) 9. 52(-1) 1.09

3. 19(-1) 4. 02(-1) 5. 46 (-1) 6. IJ0(-1) 6. 86(-1) 8. 35(-1) 9 .83 (-1)
2 1. 76(-1) 2. 29(-1) 3. 32 (-1) 3. 75(-1) 4.46(-1) 5. 83(-1) 7. 36(-1)
4 ,8.42(-2) l.11(-1) l. G7 ( -l ) l. 91 (-1) 2. 33(-1) 3. 22 (-1) 4. 37 (-1}
8 4. 17(-2) 5.53(-2) 8. 32 ( -2) 9.54(-2) l. 17 (-1) l. 65 ( -1) 2.30(-1)

16 2.08(-2) 2.76(-2) 4. 15 (-2) 4.77(-2) 5.87(-2) 8.29(-2) l. 17 (-1)
32 l. 04 (-2) l.38(-2) 2.08(-2) 2.39(-2) 2.94(-2) 4. 15 (-2) 5.87(-2)
64 5. 19(-3) 6. 8'.J(-3) l. 04 (-2) l.19(-2) l . 4 7 ( -2) 2.08(-2) 2. 9!, (-2)

3 4 9 16 

l. 20 l. 24 l. 34 l. 39

1.20 l. 24 l. 34 l. 39 

l. 20 l. 24 l. 34 l. 39 

l. 19 l. 24 l. 34 l. 39

l. 19 l. 23 l. 33 l. 38 

1.16 l. 21 l. 31 l. 37

1.06 l. 12 l. 25 l. 32

8. 29(-1) 3. 95(-1) 1.07 l. 18

5. 17 (-1) 5.78(-1) 7. 66( -1) 9. 04 (-1)

2. 79(-1) 3. 19(-1) 4. 57 ( -1) 5. 76 ( - l)

l.43(-1) 1. 64 ( -1) 2. 43 (-1) 3. 19(-1)

7. l 8(-2) 8.29(-2) 1. 24 (-1) l. 5,: (-1)

3.60(-2) 4. 15(-2) 6.22(-2) 8.29(-2)
°' 

. ,..... 
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perpendicular temperature ratios. However, the approximate experssions 

(193)'-(200)' may be used instead of these tables. The values for the 

a's and S's, which minimize the relative error, are given in Table 13. 

The accuracy of the approximate experssions is given in Table 14. 

In general, for the case of parallel relative drift, the relative error 

does not exceed 63% when the parallel-to-perpendicular temperature ratio 

(T!1/T_.1_) ranges from 1 /4 to 4, and is less than 110% for T1lS,_ values from

1/16 to 16. In the case of perpendicular drift, the error is less than 

26% for 1 / 4 i T\i /T.L i 4 and less than 96% for 1 /16 < T
l\ 

/Tl. i 16.

However, the closer to the isotropic condition (T
li 

= 'll_
), the better the 

approximate expressions. Also, when the relative drift is much higher, 

or much lower, than the average thermal speed (i.e., !::. » a
11

, a
_J..

or !::. «

a .. , a.) the approximate expressions become very accurate. 
II . .1.. 

To evaluate the collision terms on the right-hand-side of equations 

(146) - (148) in the case of a Coulomb-force interaction, the following

steps are to be taken. First, Tables 1-6 are to be used to find the �·s 

and n's, or alternatively, the approximate expressions given in 

equations (193)' - (200)' can be used, taking n= 3 and the values of the 

a' s and S's given in Table 13. Second, 'I' ii and 'l'J__ are calculated using

equations (171) and (172), and the momentum transfer collision frequency 

v st is determined from equation (63), with A1 (2) equal to the Coulomb

logarithm. Third, the substitution of the above quantities into 

equations (167) - (169) yields the desired collision terms 6M /6t,-s 

6 E / 6 t and 6 E / 6 t . 
s s 



63 

3.2. Hard sphere interaction 

In the case of a hard sphere interaction (a=00
, n= -1) the integrals 

in equations (193) - (200) can also be evaluated numerically. Tables 7 

- 12 give the numerical values for wide ranges of "Mach numbers" and

parallel-to-perpendicular temperature ratios. However, the approximate 

expressions (193)' - (200)' may be used instead of these tables. The 

values for the a's and S's, which minimize the ralative error, are given 

in Table 13. 

The accuracy of these approximate expressions for a hard sphere 

interaction is much better than that obtained for a Coulomb interaction. 

For parallel relative drift the error is less than 10% when 1/4 ..s_ T
1\

/T
..L 

< 4 and does not exceed 26% when 1/16 < T /TL < 16. As was mentioned in
- tl . -

the previous subsection, the accuracy gets better as we approach the 

isotropic case and as !:. becomes much greater, or much less, than a 
Ii 

and 

a _L

To evaluate 

steps similar to 

the collision terms ( 6M /6 t, 6 E .
1

/ot, and 6 E /6 t), 
-s S\ s.L 

that mentioned for the Coulomb interaction are to be 

followed. However, in this case we use n= -1 and a=00
• 



'l'able 7. The numerical values of ct,33(-1) (hard sphere interaction and parallel 

relative drift) for different values of 6./a
l 

a nd T
11

/T
J....

. 

T II /Tl
= 1/16 1/9 1/4 l/3 1/2 1 2 3 4 9 16 

Mal

l /64 l. S!J(-1) 2. 19(-1) 3. 65(-1) 4.40(-1) 5. 89(-1) 1.00 l. 7!3 2.55 3.31 7.09 l.24(+1) 

1/32 l.58(-1) 2. 19(-1) 3.65(-1) 4. 40(-1) 5. 39(-1) 1.00 l. 78 2.55 3. 31 7.09 1. 24 ( + 1)

1/16 l.58(-1) 2. 19(-1) 3. 65(-1) 4. 40(-1) 5. 90(-1) 1.00 l. 7!3 2.55 3.31 7.09 l. 24( + 1) 

1/8 1. 60(-1) 2. 21 (-1) 3. 67(-1) 4.42(-1) 5. 92 (-1) 1.00 l. 79 2.55 3. 31 7.09 l.24(+1) 

1/4 1.64(-1) 2.26(-1) 3. 74 (-1) 4. 50(-1) 6. 00(-1) 1.01 l. 80 2.56 3.33 7. 10 1.24(+1) 

1/2 1.81(-1) 2.47(-1) 4. 01 (-1) 4. 79(-1) 6. 32 (-1) l.05 l. 84 2.61 3.37 7. 14 1.24(+1) 

2. 34 ( -l ) 3. 15 (-1) 4. 95(-1) 5. 81 (-1) 7 .49(-1) l. 19 1. 99 2. 77 3.54 7.32 1.26(+1) 

2 3. 73(-1) 4. 97 (-1) 7. 60(-1) 8. 81 (-1) l. 10 1. 64 2.54 3.36 4. 16 8.01 1. 33 ( + l) 

4 6. 86(-1) 9. 11 (-1) l. 38 l. 59 l. 97 2.82 4. 11 5.18 6. 14 1 .04 ( +1) 1.59(+1) 

8 l. 34 l. 78 2.68 3.09 3.80 5.40 7. 70 9.50 l.11(+1) l.72(+1) 2. 41 ( + l) 

16 2.66 3. 54 5.33 G. 13 7.54 1 .07(+1) l. 51 ( + 1) 1.36(+1) 2. 15(+1) 3. 25( + l) 4 .�0(+l) 

32 5.32 7.06 1. 06( + l) l. 22(+1) l. 51 ( + l) 2. 13( + l) 3. 01 (+1) 3. 69( + 1) 4. 26( + 1) 6. 41 ( +l) 8. 58( + 1)

64 1. 06(+ 1) 1. 41 (+ 1) 2. 13( + 1) 2 .44 ( + 1) 3. 01 ( +l) 4. 25( + l) 6.02(+1) 7. 37( + 1) 8. 51 (+1) 1. 28( +2) 1.71(+2)



ll 
Table 8. The numerical values of n1(-1) (hard sphere interaction and paral lel 

relative d rift) for different values of tJ./a, and T. /T •
-L. lj ...1... 

T II
/Tl

= 1/16 1/9 1/4 l/3 1/2 l 2

t,/a
l

1/64 7.97(-2) l. l 0(-1) l. 83 (-1) 2. 20(-1) 2. 95(-1) 5.00(-1) 8. 91 (-1)

l/32 8. 16 (-2) l. 12(-1) l. 84 (-1) 2. 21 (-1) 2. 96(-1) 5. 01 (-1) 8. 92(-1)

1/16 8.95(-2) l. 18(-1) l. 89 (-l) 2. 26(-1) 3. 00(-1) 5. 05(-1) 8.96(-1)

1/8 l. 21 (-1) 1.44(-1) 2.09(-1) 2. 44 (-1) 3. 17(-1) 5. 21 (-1) 9. 11 (-1)

1/4 2. 52(-1) 2. 49(-1) 2. 90(-1) 3. 20(-1) 3. 86{ -1) 5. 82(-1) 9. 68(-1)

1/2 8. 35 (-1) 7. 11 (-1) 6. 37 (-1) 6. 40(-1) 6. 74 (-1) 8. 3.5 ( -1 ) 1.20

3.92 3. 10 2.34 2. 18 2.02 l.96 2. 19

2 2. 42 ( + l) 1.85(+1) 1.28(+1) 1. 14( + l) 9. 78 7. 91 7.02 

4 l. 76( +2) l. 34 ( +2) 8.97(+1) 7. 86( + l) 6. 48(+1) 4. 78( + l) 3. 66(+1)

8 1.37(+3) l. 04 ( +3) 6.90(+2) 6.02(+2) 4. 91 ( +2) 3. 51 ( +2) 2.54(+2) 

16 l. 09( +4) 8.23(+3) 5.46(+3) 4.76(+3) 3.87(+3) 2.74(+3) 1.9!i{+3)

32 8.72{+4) 6.57(+4) 4.36(+4) 3.80(+4) 3.00(+4) 2 .18( +4) l.55(+4) 

64 6.97(+5) 5.26(+5) 3.49(+5) 3.03(+!i) 2.47(+5) l. 74 ( +5) l. 23( +5) 

3 4 9 16 

l. 27 l. 65 3.54 E. 17 

1. 28 1. 66 3.54 6. 17 

1. 28 l. 66 3.55 6.18 

l. 29 l. 67 3.56 6 .19 

l. 35 1. 73 3.61 6.24 

l. SB . 1. 95 3. 83 6.46 

2.52 2.87 4.78 7.32 

6.90 7.03 8.44 1.09(+1) 

3. 22(+1) 2.99(+1) 2. 66 ( + l) 2. 72 ( + l)

2. 12(+2) l. 87( +2) 1. 38( +2) l. 18(+2)

1. 60( +3) 1.40(+3) 9.57(+2) 7 .1\6(+2) 

1.26(+4) 1. 10(+4) 7.36(+3) 5.58(+3) 

1.01(+5) 8.72(+4) 5.83(+4) 4.30(+4) 

°' 

\J1 



Table 9. 'l'he numerical values of 
Ii 

fl2 (-1 ) ( hR rd sphere 

relative drift) for different values of 6/a and T1 /T •
.L I ..L. 

T II /Tl
= 1/16 1/9 l/4 l/3 l/2 l 2

Mal
--

l/64 2. 23(-1) 2. 98(-1) 4. 59(-1) 5. 33 (-1) 6. 69(-l) 1.00 1. 54 

l/32 2. 23(-1) 2. 98(-1) 4. 59(-1) 5. 33(-l) 6. 70(-l) l.00 l. 54

l/16 2. 2 3(-l) 2. 99(-l) 4. 59 (-1) 5. 33(-l) 6. 70(-l) l.00 l. 54 

1/8 2. 24 (-1) 2. 99(-1) 4. lil (-1) 5. 35 (-1) 6. 72 (-1) l.00 l. 55

l/4 2. 27(- l) 3. 04 (-1) 4. 66(-l) 5. 41 (-1) 6. 80(-l) l.01 1. 56 

l/2 2. 40(-1) 3. 19(-1) 4. 91 (-1) 5. 66(-1) 7 .09(-1) 1.05 l. 60

2. 82(-1) 3. 75 (-1) 5.69(-1) 6. 57 (-1) 8. 16(-1) l.19 l. 77

2 4. 05(- l) 5. 37 (-1) 8. ll (-1) 9. 33(- l) l. 15 l. 64 2.36 

4 7. 05 (-1) 9. 35(-l) l. 41 l. 62 l. 99 2.82 4.00 

8 l. 35 1. 79 2.70 3. 10 3.82 5.40 7.64 

16 2.67 3.54 5.34 6. 13 7.55 l.07(+1) l. 51 ( + l) 

32 5. 32 7. 06 1. OG( +l) l. 22 ( + l) l. 51 ( +l) 2. 13( + l) 3 .01 ( +l)

64 1. 06( +1) l.'11 (+l) 2. 13( + l) 2. 45( + l) 3. 01 ( + l) 4. 26( + l) 6. 02(+1)

interaction and pani.llel 

3 4 9 16 

2.03 2.48 4.61 7.43 

2.03 2. 48 4.61 7.43 

2.03 2. 49 4. 61 7.43 

2.03 2.49 4.61 7.43 

2.05 2.50 4.63 7. 45 

2.09 2.55 4.69 7. 51 

2.28 2.75 4.91 7.75 

2.95 3.48 5.78 8.59 

4. 91 5.68 8. 70 l. 21 ( + l) 

9.35 1.08(+1) 1. 62( +l) 2. 17( + l) 

l. 85( +1) 2. 14(+1) 3 .20( +l) 4. 27 ( + l) 

3. 69( +l) 4. 26( +1) 6. 39 { +l) 8. 52( + l)

7. 37 ( +l) 8. 51 ( +l) 1. 28( +2) 1.70(+2)
°' 

°' 



Table 1 o. The numerical values of it> 11 ( -1 ) (hard sphere interaction and 

perpendicular relative drift) for different values of 1:,./a and T1/T
1,_

·
..L 

( ¢1 ('4>22) 

TII/Tl = 1/16 1/9 1/4 l/3 1/2 1 2 3 4 9 16 

Mal

1 /64 2. 23 (--1) 2. 98(-1) 4. 59(-1) 5. 33(-1) 6. 70(-· 1) 1.00 1. 54 2.03 2.'19 4.61 7. 43 

l/32 2. 23(-1) 2. 98(-1) 4. 59 (-1) 5. 33(-1) 6. 70(-1) 1.00 1. 54 2.03 2. 49 4.61 7.12 

1/16 2. 23 (-1) 2. 98(-1) 4. 59(-1) 5. 33(-1) 6. 70(-1) 1.00 1. 54 2.03 2 .49 4. 61 7_a3 

1/8 2. 24 (-1) 2. 99 (-1) 4. 60(-1) 5. 34 (-1) 6. 72(-1) 1.00 1. 55 2.03 2. 49 4.62 7.43 

1/4 2. 31 (-1) 3. 08(-1) 4. 65 (-1) 5. 40(-1) 6. 92(-1) 1. 01 1.56 2.05 2.51 4.64 7. 46

1/2 2. 37 ( -1) 3. 16(-1) 4. 85(-1) 5. 62(-1) 7. 06 (-1) 1 .05 1. 61 2. 11 2.57 4.72 7.56 

2. 74 (-1) 3. 65(-1) 5. 58(-1) 6. 46(-1) 8. 07( -1) 1. 19 1. 79 2.32 2 .81 5.04 7.94 

2 3. 94 (-1) 5. 24 (-1) 7. 94 (-1) 9. 16 (-1) 1. 14 1. 64 2.41 3.05 3.63 6. 15 9.29 

4 6. 96 (-1) 9. 24(-1) 1.40 1. 61 1. 98 2.82 4.05 5.02 5.87 9.30 l. 32 ( + 1) 

B l. 35 l. 78 2.69 3.09 3.81 5.40 7.67 9. 42 l.09(+1) l.67(+1) 2. 27 ( + l) 

16 2.67 3.51 5.33 6. 13 7.55 l .07( +1) l. 51 (+l) l. 85(+1) 2. 14( + 1) 3. 23( +1) 4. 33( + l) 

32 5. 32 7.06 1. 06( +l) 1. 22( + l) 1. 51 ( + l) 2. 13( + l) 3. 01 (+l) 3. 69( +l) 4, 26( + l) 6.40(+1) 8. 55( + l)

64 1. 06 ( + 1 ) 1. 41 ( + 1) 2. 13 (+l) 2. 44(+1) 3. 01 ( + 1) ft .25(+1) 6. 02(+1) 7. 37 ( + l) 8. 51 (+l) 1 .28(+2) 1 , 70( +2)

°' 

-...J 



Table 11. 
_J._ 

The numerical values of �1(-1) (hard sphere interaction and perpendicular 

relative d rift) fo r different values of 1:i/a
..1._ 

and T/r:s_. 

·---

T l I/Tl
= 1/16 1/9 1/4 l/3 1/2 l 2 3 4 9 16 

Ii/a
l

----

l /64 7.90(-2) l. 09(-1) l.82(-1) 2. 20(-1) 2. 94 (-1) 5. 00(-1) 3. 91 (-1) 1. 27 1. 65 3.54 6. 17

l/32 7.90(-2) l.09(-1) 1. 83 ( -l) 2. 20(-1) 2. 95 (-1) 5. 00(-1) 8. 91 (-1) 1. 27 1. 65 3.54 6. 17

1/16 7. 91 (-2) l.09(-1) l.33(-1) 2. 20(-1) 2. 95(-1) 5. 00(-1) 8. 92(-1) 1. 27 1. 66 3.54 6. 17 

1/8 7.95(-2) l. l 0(-1) l. 83(-1) 2. 21 (-1) 2. 96(-1) 5. 01 (-1) 8. 93(-1) 1. ?.3 l.66 3. 54 6. 18

1/4 8. 12 (-2) 1. 12 (-1) 1. 86 (-1) 2. 24(--1) 2. 99(-1) 5. 0G(-1) 8. 99(-1) 1. 28 1. 66 3.55 6. 18

1/2 8.74(-2) l.20(-1) l.98(-1) 2. 37 (-1) 3. 14 ( -1 ) 5. 25 (-1) 9.21(-1) 1. 31 1. 69 3.58 6.21 

l.10(-1) l.50(-l) 2. 40(-1) 2. 83(-1) 3. 69(-1) 5. 94 (-1) 1.00 1. 40 l. 78 3.69 6.33 

2 l.79(-1) 2. 40(-1) 3. 70(-1) 4. 30(-1) 5. 43(-1) 8. 21 (-1) 1. 29 l. 72 2. 13 4. l 0 6.78 

4 3. 39(-1) 4. 50(-1) 6. 83(-1) 7. 88(--1) 9. 77(-1) l. 41 2.08 2.63 3. 14 5.40 8.20 

8 6. 68(-l) 8. 37 (-1) l. 34 1. 54 l. 90 2. 70 3.86 4.78 5.58 8. 79 1. 24 (+l) 

l(j l. 33 l. 77 2.66 3.06 3. 77 5. 34 7.57 9.30 1.08(+1) 1. 64(+1) 2. 23( + l) 

32 2.66 3.53 5.32 6. 11 7.53 l. 06(+1) l. 51 (+l) l .85(+1) 2. 13( +l) 3.21 (+l) 4. 30(+1)

64 5.32 7.05 l. 06( +l) l. 22 ( + l) 1.50(+1) 2.13(+1) 3.01 (+l) 3. 69( + l) 4.26(+1) 6.39(+1) 8. 53(+1)



'rable 12. The numerical values of n�(-1) (hard sphere interaction and perpendj_cular 

relative drift) for different values of t,/a
L 

and Ti/T_1.:

T l 1 1Tl = 

1/16 1/9 1/4 l/3 1/2 l 2 3 4 9 16 

l.1/ 
al

1/64 2. 23(-1) 2. 98(-1) 4. 59(-1) 5. 33(-1) 6. 70(-1) 1.00 l. 54 2.03 2.49 4. 61 7.43 

l/32 2. 23(-1) 2. 99(-1) 4. 59(-1) 5. 33(-1, 6. 70(-1) 1.00 l. 55 2.03 2.49 4.62 7.43 

1/16 2. 24 (-1) 3. 00(-1) 4. 61 (-1) 5. 35 (-1) 6. 73(-1) 1.00 · 1. 55 2. 04 2.50 4.63 7.46 

1/8 2. 28(-l) 3. 05(-1) 4. 69(-1) 5. 45 (-1) 6. 85(-1) l. 02 l. 58 2.07 2.54 4. 70 7.56 

1/4 2. 44 (-1) 3. 26(-1) 5. 01 (-1) 5.81(-1) 7. 30(-1) l. 09 l. 67 2.23 2.68 4.96 7.96 

1/2 3. 09(-1) 4. 12 (-1) 6. 32 (-1) 7. 32 ( -1) 9. l 8(-1) l. 36 2.08 2. 71 3.28 6.01 9. 58 

5. 95(-1) 7. 92 (-1) l. 21 l. 40 l. 74 2.55 3.83 4.92 5.94 l.05(+1) l. 64(+ l) 

2 2. 11 2.80 4.24 4.89 6.06 8. 73 l .28(+ l) l. 61 ( + l) 1. 91 (+l) 3. 21 ( + l) 4. 81 (+l)

4 l. 21 ( + l) l. 61 ( + l) 2. 44 ( + l) 2. 80( + l) 3. 46( + l) 4. 92(+ l) 7. 05 ( + l) 8. 74 ( + l) l. 02(+2) l. 62 ( +2) 2.29(+2)

6 8. 81 ( +l) l.17(+2) l.76(+2) 2.03(+2) 2.50(+2) 3.54(+2) 5.02(+2) 6. 17( +2) 7. 15(+2) l .09(+3) l. 49( +3)

16 6.87(+2) 9. ll (+2) l. 37 ( +3) l. 58( +3) l. 94 ( +3) 2.75(+3) 3 .fl9( +3) 4.77(+3) 5. 51 ( +3) 8. 31 (+3) l. 12( +4)

32 5.1\6(+3) 7. 2'1 (+3) l .09(+4) l. 25( +4) l. 54 ( +4) 2 .18( +'1) 3.09(+4) 3.78(+'1) 4.37(+4) 6.56(+4) 8.77(+4)

64 4.36(+4) 5. 78(+4) 8.72(+4) l. 00(+5) l. 23( +5) l. 74 ( +5) 2.47(+5) 3.02(+5) 3.49(+5) 5.23(+5) 6.98(+5) 



Table 13. Optimum values of a's and B's. 

l 

2 

3 

Coulomb Interaction 

Parallel Drift Perpendicular Drift 

a
.t 

S
.e_ 

-1.0 - l . 051

-6.0 -1 . 07

-1 .07 -2.35

Hard Sphere Interaction 

Parallel Drift 

a
t 

2.0 

0.58 

2.08 

Perpendicular Drift 

S
,e_ 

2.0 

2.0 

0.62 

'-I 

0 

l 



Table 14. Maximum percentage error of the approximate expressions given in

equations (193)'-(200) '. 

�ll = 1 T
l

¢11 10. 0

oil
1 9.5 

oil
2 7.7 

¢22 8.4 

rf 8.0 

�
0.7 

Coulo�b Interaction 

l < � < 44 - T -
1 

32.5 

35.7 

62.6 

19. 6

25.9

6.6 

-1 < �-'' < 1616 - T -
l 

73. 5

108 

109 

55. l 

95.8 

12.5 

Hard Sphere Interaction 

T 
l< �< 4 �= lT

l
4 - T

l 
-

1. 3 2.0 

2. l 9.6 

0.2 3. l

l. 4 l. 7

l.5 3.0 

0.9 3.6 

-

_l <�<16 16 - T -
1 

2.4 

26 

6.3 

1. 9

3.9 

7.8 

-..J 

f--' 



L 

0 

2 

0 

2 

Table 15. The I1M N for Coulomb and Hard sphere interactions.
, 

M N 

0 2 

0 0 

0 2 

0 0 

1
LM,N 

Coulomb 

2
)..

TT [ l _ ¢ 1 ( A ) J

f [-1 + (1 + >..)¢'(>-)J 

Hard Sphere 

;).. [l 1 ).. - (l +
2

>..)2 + ¢'(>..)]

4: [3 - l �A + (3>.. - 1)¢'(>..)] 

¢' (>-) = -1- tan -1 a 2 
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CHAPTER IV 

COMPARISON OF TRANSPORT EQUATIONS BASED ')N MAXWELLIAN 

AND BI-MAXWELLIAN DISTRIBUTIONS 

FOR ANIS')TROPIC PLASMAS 

1. Theoretical formulation
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For a weakly-ionized homogeneous ('!_f = 0) plasma, the steady state 
a 

(- = 0) distribution function for ions (s= i) is governed by theat 

following equation; 

e .  [ 
...2:. E + m -

i 
�v. xB\ 
C -1. -J • 'i/ f. 

-v 1.
i 

of 1.
ot 

(201) 

Moreover, if a simple relaxation model is used to describe ion neutral 

collisions (Tanenbaum 1967), the right-hand-side of Boltzman's equation 

takes the form 

where 

of.1.

f. 
1.m 

- \)_ (f. - f. )1. 1. 1.m 

\ m. 1\3/2
= n

i l2rr�Tnj

2 
-(m.v. /2kT)e 1. 1. n 

(202) 

(203) 

is a Maxwellian distribution function at the temperature of the neutral 

gas (T ) , n. is the ion density, and \!_ is the velocity independantn 1. 1. 

ion-neutral collision frequency. This collision term acts to drive the 

ion distribution toward the :vraxwellian distribution at a rate governed 

-1by the relaxation time\!. 
1. 

1 .1. Closed form solution 

Equations (201) and (202) can be integrated into a closed form for 

general electric and magnetic fields. However, this general case is not 

ot 
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of immediate interest to the purpose of this work. I will consider the 

two special cases when the electric field is parallel or perpendicular 

to the magnetic field. The equations related to the case of parallel 

electric and magnetic fields will be designated by an '1' next to their 

numbers, while the ones related to the case of perpendicular fields '.,ill 

be designated by a 'T' next to their numbers. 

The coordinates were chosen such that 

B B 
�3 

i!:: 8
\\ �3 

or 

E = E.L '.:.2

For parallel electric and 

e1uations (201) and (202) yields, 

w'.1ere 
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a.1d "erfc" is the complementary error function.
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For perpendicular electric and magnetic fields, the solution is 

gi.ven by 
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where 

a -= 

u = 
z 

\!. m. C 
l l 

e. B

E C 
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(211 )1' 

(212)T

Equation (210) is consistent with the results given by 3t.-Maurice and 

Schunk ( 1 973) , and by Wheal ton and ',foo ( 1 972) for the case of B = 0. 

1 .2. Expansion based on 
a Maxwellian distribution 

According to Grad ( 1958), f. can be expanded about a zeroth-o rder
l 

function f�
o) as follows 

f. = f
(
_ 0) <' ( ) M ( ) ,. a r a r, c. 

l l y - y - -l 

(o) 
Y 

where f. is chosen to represent a local Maxwellian distribution 
l 

function 

(213) 

(214) 

M 's are a set of complete orthog o nal polynomials, a s are the 
y y 

expansion coefficients, and the subscript y is used to indicate that the 

summation is generally over more than one variables. In equations (213)

and (214) c. is the random ion velocity and T. is the ion temperature, 
-i l

defined below.

The expansion is truncated by setting all expansion coefficients of 

order higher than some value to zero, and the remaining set of 

coefficients are found in ter ms of the lower-order moments of the 

distribution function, such as 

<v > 
-i 

n. m. <c. c. > 
l l -i-i 

(Bulk drift velocity) 

(Pressure tensor) 

(215)

(216)

l. 

.L 
B 

1. 

- 21 I m. c. 

exp\-~kT ~ 
L l. 



p. 
l 

T .  
-l

.9..· 
l 

2 
(Pressure) 3 n.m. <c. > 

l l l 

P. - p. I (Stress tensor) 
-i l -

n.m. <c.c.c.> (�eat flow tensor)
l l -i-i-i 

2 

2 n.m. <c. c.> (Heat flow vector) 
l l l -i 

76 

(217) 

(218) 

(219) 

(220) 

In the above equations, the angle brackets denote the average in 

velocity space, and c. is defined as 
-i 

(221 ) 

Within Grad's formulation, various levels of approximations ( such 

as 5-, 13-, and 20-moment approximation) are possible depending upon the 

number of terms retained in the series expansion for the distribution 

function. 

The 5-moment approximation. At this level of approximation the 

species distribution function is assumed to be represented adequately by 

the first term in the series expansion, that is, by the Maxwellian given 

in equation (214). 

To find  the equations which govern the relevant moments, we 

multi ply equation (201) 

velocity space. 

These I moment equations 

Continuity 

0 = 0 

:fomentum

n. e . (� + u. X 
l l C -i

by 1' m. C .  
l -i
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B) \) n. 
i l 
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m. u.
l -i

2 
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l l 

(222) 
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Q. = 
-1. 

c. 
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Energy 

0 - vi. [ -2 n.k(T. - T) -
i i n 

1 
2 -2 n.m.u.]

l l l 

Solving equations (222) - (224) for the required moments, we get 

U. 
-i 

T. 
l 

T + 
n 

for parallel electric and magnetic fields and 

T. 
l n

u,..,, I.', 

2 (�1+ a

+ � ( :
i

) 

+ ae )- 2

2u,..,, 

1 2 + a

for perpendicular electric and magnetic fields. 
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(224) 

( 225) L

(226)1

(227)T

(228)T

Alternatively, the relations (225)-(228), as well as all of the 

moments in this section, may be found by taking the proper velocity 

moments of the exact distribution functions given in equations (207) and 

(210). In practice, ho'tJ"ever, series expansions are needed only when 

exact solutions are not available, and therefore, in general it i s  

necessary to obta in the velocity moments from the appropriate moment 

equations. 

The 13-moment approximation. The level of approximation that 

properly accounts for the stress tensor and heat flow vector is the 

13-moments approximation. For this approximation, the ion d i stribution

function takes the form 

f_(o) /1
m. 

f. l 
+ T .  c.c.

l l i. 2kT.p. -i -i-i 

L .L l 
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The corresponding set of moment equations is (222) - (224) in 

addition to the following eq uations: 

Stress 

e. 
l 

(� X '· 
m.c 

l 

Heat flow 
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l 
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2 
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which can be solved for the relevant set of moments. 

(230) 

(231 ) 

For the case of parallel fields, the required moments are given by 

(225), (226), and 

2 
,. = n. m.ud (3e

3
e

3 
-f)

-i l l - -
(232) 

(233)1

while for the case of perpendicular fields they are given by (227), 

(288) and
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(236)T
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2
+ (4 + (l) 

(239)T

The 20-moment approximation. At this level of approximation the 

ion heat flow tensor is properly accounted for. The ion distribution 

function takes the form 

f. 
1. 

(240) 

The moment equations that are associated with this distribution 

function are (222) - (224), (230) and 

e. e. 
-3

1. 

[ (f + B) P. J 8 

3
1. 

(Jl Q. )s u. X + X m. C -1. - -1. m.c -1. 
1. 

-\) [Q. + 3 n.kT (u.I)s 
+ n.m. u.u.u.]

1. -1. 1. n -1.- 1. 1. -1.-1.-1. 

where the superscript " ti denotes that the tensor is symmetrized 

(A
s

) = - (A + A + A + A + A + A ) 
- a8y 6 a8y ay8 Bay ya8 8ya y8a 

(241) 

(e.g.) 

The res u lting velocity moments are s i m ilar to thos e of the 

13-moment approximation, except for

f (o) j 1 

i l 
n .• c .· J .::i..1 -1 

f"__'.'.i___ J~ 
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Q. 
-i 

and 

(g_i) 222 = 

3 26a
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+ 7 4a
4 

n.m.u� ____ 
2_3_;:_ __ _:_2�----2-

l l w (1 + a ) (4 + a ) (9 + a )

- 6 - 34 a
2 

+ 20 a4 

(1 + a
2

)
3 

(4 + a2
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2
)

2Ba2 - 14a4 + 6 a
6

3 4 6 
- 30a + 12 a - 4 a + 2a 

(1 + a2)
3 (4 + a2) (9 + a

2
)

(g_i)113 = (g_i)123 = (g_i)223 = (g_i)133 = (g_i)233 = (g_i)333 
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(242)1

(243)T

(244)T

(245)T

(246)T

0 (247)T

and Q. is symmetric with respect to a change in any two coordinate 
-i 

indices (e.g. (Q.) 8 = (Q.) 8)-i a y -i ay 

1 .3. Expansion based on 
a bi-Maxwellian distribution 

With regard to anisotropic plasmas, Grad's approximations have 

limited app licability because they cannot be used to describe 

distribution functions that are characterized by large temperature 

anisotropies. These cases are better described by expanding the 

distribution function about a two-temperature (or bi-ilaxwellian) 

zeroth-order distribution function. 

Following a line parallel to that in subsection (1 .2), the ion 

dis trubtion function is expanded about a bi-Maxwellian function. Then, 

the expansion coefficients, of order higher than some value, are set to 

zero. The remaining coefficients are found in terms of the lower-order 

moments, e.g., 
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81 

(248) 

(249) 

(250) 

(251 ) 

( 252) 

(253) 

(254) 

where the prime on , . is used to distinguish the two definitions given 
-i 

in equations (218) and (252).

Various levels of approximations (such as 6- and 16- moment 

approximations) can be obtained depending on the number of terms 

retained in the series expansion of the distribution function. 

The 6-moment approximation. In this ca se the approximate 

expression for the ion distribution function takes the form 

where 

f. 
l 

m. 
l 

k Till
m. 

l 
8 

= 

--.l.. k TiL

The required moment equations are (222), (223) and 

Parallel energy 
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1
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(259) 

The moments, found by solving this set of equations, are given by 

equations (225) and 

Ti II = 
T n 

(mi) 2 + - u k d
(260)1

T. I = ·r 
l.- n 

(261 )L 

when the electric field is parallel to the magnetic field, and by 

equations (227) and 

Ti 11 
T n (262)T

2 m.
UE 

T. T 
l 

(263)T+ -

l j_ n 2 k 2 
+ (l 

when the electric field is perpendicular to the magnetic field. 

The 16-moment approximation. For the 16- moment approximation, the 

ion distribution function takes the form 

f. = /b) [1 + (j>_]
l l l 
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b) 

is defined in equation (255) and()>_ is given by 
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The corresponding moment equations are (222), (223), (258), (259) 

and 

Stress tensor 

e. l 
m.c 

l 
(_B X T.-i 

Parallel heat f low 

e. l 
m. c l 

\I BX .9.· - l
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'/ 
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(266) 

(267) 

(2 68) 

For the case of parallel electric and magnetic fields, the velocity 

moments that are obtained from these equations are given by (225), 

(260), (261) and 

I 0 (269)LT.-i
I\ 2 3 (270)L9..· n.m. ud �31. 1. 1. 

..)... 0 (2 71 )L9... l 

while for perpendicular electric and magnetic fields they are given by 

equations (227), (262), (263) and 
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2. Comparison of transport equations

In this section I compare different series expansions of the ion

distribution function. These expansions fall into two categories; 

Maxwellian-based and bi-Maxwellian- based expansions. ':'he 

Maxwellian-based expansions, which depend on the technique developed by 

Grad (1949), include the 5-moment, the 13-moment and the 20-moment 

approximations. The 5-moment approximation assumes that the 

distribution function can be represented by the local Maxwellian given 

sby equation (214). This level of approximation only accounts for the 

bulk drift velocity u. and temperature T., which are given by equations 
-i l 

(225) and (226) for the case of parallel electric and magnetic fields,

or equations (227) and (228) for the case of perpendicular fields. In 

the 13-moment approximation, the expression for the ion distribution 

function contains a local Maxwellian term in addition to correction 

terms proportaional to the stress tensor �
i 

and the heat flow vector �i·

These corrections allow for temperature anisotropy and asymmetry in the 

distribution function. At this level of approximation the appropriate 

expression for the distribution function is given by equation (229) and 

the relevant moments are given by equations (225), (226), (232), and 

(233) for the case of parallel fields or equations (227), (228), and

(234) (239) for the case of perpendicular fields. The 20-momen t 

approximation accounts for the heat flow more accurately because it 

represents the heat flow by a tensor� instead of the vector-¾ used in

the 13-moment approximation. At this level, the ion distribtuion 

function is given by equation (240) and the moments that enter into this 
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expression are given by equations (225), (226), (232), and (242) for 

parallel electric and magnetic fields and by equations (227), (228), 

(234) - (238), and (243) - (247) for perpendicular fields.

The bi-Maxwellian-based expansions include the 6-moment and the

16-moment approximations. The 6-moment approximation represents the ion

distribution function by a local bi-Maxwellian (255). It accounts only 

for the bulk 

perpendicular 

drift velocity 

temperature 'I' 
i.L

, which 

parallel temperature T
il\ and

are given by equations (225),

(260), and (261) for parallel electric and magnetic fields or by 

equations (227), (262), and (263) for perpendicular fields. The 

16-moment approximation contains, in addition to the local bi-Maxwellian

term, corrections proportional to the stress tensor 

. 1! 
flow vectors for parallel and perpendicular energy�-

1 

, and the heat
- i 

and�-. For this 
l 

approximation, the distribution function is given by equations (255), 

(264), and (265) and the relevant moments are given by equations (225), 

(260), (261), and (269) - (271) or by equations (227), (262), (263), and 

(272) - (276) for the case of parallel or perpendicular fields, respec-

tively. Since the approximations based on a bi-Maxwellian are found by 

expanding about an anisotropic function, they are expected to handle 

large anisotropies better than those based on a Maxwellian. 

In the following subsections, the dif ferent levels of approximation 

are compared among themselves and with the closed form solution. I 

consider a wide range of conditions; that is, both parallel and 

perpendicular electric and magnetic fields, and different values for the 

electric field and for the collision-to-cyclotron frequency ratio. The 

different conditions produce a range of non-Maxwellian characteristics. 
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The comparison of the different expressions for the ion 

distribution function is shown in Figures 3 to 12, which are obtained as 

follows. The relevant moments are computed and the distribution 

function in the required plane is found by substituting for the moments 

and taking the component of the random velocity perpendicular to this 

plane equal to zero. Finally, the distribution function is represented 

by contours at levels decreasing by a factor of e 112 starting from the

maximum. 

2.1. Parallel electric 
and magnetic fields 

Figure 3 shows a comparison between different expansions based on a 

Maxwellian; namely, the 5-moment, 1 3-moment and 20-moment 

approximations. As mentioned earlier, the 5-moment approximation only 

accounts for the bulk drift velocity u. and the temperature T .• As the 
-i l 

electric field strength increases, both u. and T. increase. 
. -i l 

However, 

the increase in the bulk drift velocity does not show up because the 

contours are plotted against the ion random velocity c .. The 13-moment 
-i 

approximation allows for anisotropic and asymmetric features through

corrections proportional to the stress tensor and the heat flow vector.

As the electric field strength increases, these correction terms

increase. At moderate and high electric field strengths (D11 = 1 and 3),

the distribution function differs significantly from that for the 

5-moment approximation, where D ll [= (e. E ./m. v. )/(2kT /m.) 112 1 is the
i \\ i i n i -

normalized drift velocity. The 20-moment approximation is similar to 

the 13-moment approximation, however, it describes the heat flow better 

through the tensor For intermediate and high values of 



Figure 3. Contours of the ion distribution function in the principal 

velocity plane parallel to the electric field for the Maxwellian-based 

expansions and for parallel electric and magnetic fields. Three series 

expansions are shown, including the 5-moment ( top row), the 13-moment 

(mid dle row), and the 20-moment (bottom row). In addition, three values 

of the normalized parallel drift velocity were considered; D = 0.3 (left 
If 

column), 1 .O (middle column), and 3.0 (right column), where 

-( 
1 /2 

D - e.E /m. v.)/(2kT /m.) • 
(i i i i n i 

The contours are plotted against the nor-

malized random velocity c./(2kT /m.)
1
1

2
. 

-1 n i 
The contour levels decrease by 

a factor of e1 /2 
starting from the maximum, shown by the dot. 

numbers have been omi tted whenever they are obvious. 

Contour 
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Figure  4. Contours of the ion distribution function in the principal 

velocity plane parallel to the electric field for the 

bi-Max wellian-based expansions and for parallel electric and magnetic 

fields. Two expansions are shown, including the 6-moment (top row) and 

16-moment (bottom row). In addition, three values of the normalized

parallel drift velocity were  considered; D = 0.3 (left column), 1 .0 

(mid dle column), and 3.0 (right column), where 

D11
= (e.E /m. v. )/(2kT /m.) 112•

i i i n i 

The plotting format is the same as that 

for Figure 3. 
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Figure 5. Comparison of the exact form with the 16-moment and the 

20-moment expansions for the ion distribution f unction in the principal 

velocity plane parallel to the electric f ield for the case of parallel 

electric and magnetic f ields. Three values of the normalized parallel 

drift velocity were considered, D
li

= 0.3 (left column), 1.0 (mid dle co­

lumn) and 3.0 (right column), where D =(e.E /m.v.)/(2kT /m. )
1/2

. The 
I{ l l l n l 

plotting fonnat is the same as that for Figure 3. 
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Figure 6. Contours of the exact ion distribution f unction in the prin­

cipal velocity (�-�x�) plane for the case of perpendicular electric and 

magnetic fields. Three values of the collision-to-gyro frequency ratio 

were used; a 0.1 (bottom row), 1.0 ( middle row), and 10 (top row), 

where a= v.m.c/e.B. In addition, three values of the normalized pepen­i l l 

dicular drift velocity were 

d 1 e c o 1 urnn ) , and 3 . 0 ( r igh t 

cons idered; D.= 0.3 (left column), 1 .0 (rnid­
-L 

column), wh ere �=(c�/B)/(2 kTn/mi
) 112 . The

p lotting fonnat is the same as that for Figure 3. 
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Figur e  7- Contours of the ion distribution function in the principal 

velocity (!-�x!) plane for the exact form and the Maxwellian-based ex­

pansions and for perpendicular electric and magnetic fields. The exact 

form (top row) i s  compared wi th the 5-moment (second row), the 13-moment 

(third row), and the 20-moment (bottom row) expansions. In addition, 

three combinations of D
l.

and a were considered; [�=1.0,a=0.1] (left co­

lumn), [D = 1.0, a = 1 .o] (middle column), and [D. = 3.0, a = 1 .o] (right 
..L -L 

column), where D
j_

=(cE_JB)/(2kT
n/mi)112 and a= vimic/eiB. The plotting

format is the same as that for Figure 3. 



N 
en 
x_ 

EXACT ANS. CO,=I.O&a::Q.Jl 

'f 
�o-f1itft,lt1:---'1r-:--/-tHttJt----j 

' 

"'-+---�-1-.---�-,---,-
'-3 -2 -I O I 2 3 4 5 

ExB-AXIS 

cn,--'-5-_ M_ O_M_E_N_Trl_O:•_=_I_._O _&_a;;_- O_. _I l� 

N 
en 

�-
' 

mo+--fm+!-1-+-if-+-H-l#ff----, 

' 

N 
' 

-2 -I O 1 2 3 4 5 
E xB-AXIS 

.,, _ __.:
I..:3_-_M_O_M..cE_NrT -'-ro'-'''--=--1 ·c..:O_&_cx_=..:O_._l_l _ 

N 
en 
x_ 

'f 
�o+tH+I-H+-t--++++H*·-----j 

' 

"'-+--.-�-i-i.---�-r-,---i 0-3 -2 -I O I 2 3 
Ex8-AXIS 

.,,
.,....

_2_0_-_H_O _H E_N
'T�

I D_,,�=__.:l_ • ..:O _&_CX_=.;.O_. _I _J � 

N 
en 
x_ 

�O-ffi+tt+++-1--+-+++l+H----, 

, 

N ' 

"'-+--.--,--1---,--�_,.-.,....� 0-3 -2 -I O I 2 3 4 5 
ExB-�-n: 15 

N 

en 

x_ 

' 

EXACT ANS. CO, =I. O & <X= I. OJ 

�o,.L...Ull-U-/..l..�+--l--1-4-H-IH----i 

' 

M.L.--�-1--.---�-r-,---, 

'-3 -2 -I 0 I 2 
ExB-AXIS 

5 

.,, __ S:._-_M__.:0:.._M..:E:.._N_Tr!-"O._, _=.;.l .;... 0:...&_=_ -_ I_._O_ l-
, 

N 
en 
x_ 

�o+---ttt+t+++-1--H-t+J-Ht--

' 

-2 -I O I 2 3 
ExB-AXIS 

.,, __ 1_3_- _H..cO_H..cE_NrT _I D_,s,._•_l__;·__.:O_&_cx_,..:l..:.·..:.O _l
, 

N 
en 
x_ 

�o+--Hf<'++-1+�1--1 

, 

N 
' 

"'+----,-,r-+-�·-,---,-�--1 
'-3 -2 -I O I 2 

ExB-AXIS 

"''
-r-_2_ 0_-_Mc:O_ H.::cE..:.N

r
T ..:.' 0=,<e..•_:.._l·:..:0:.._&_a:_,..:I..:.. c::0.:.1 -, 

N 
en 
x_ 

�O+--fftH-fiK-�f-+-!-+�H 

, 

N ' 

+----,-,r-+--, - ,--3 -2 - I O I 2 
ExB-AXiS 

EXACT ANS. rn,=3.0&<X=I.Ol 

"' 

5-MOM E NT CO,= 3. 0� ao: I. 01 
.,,,_.....:... __ :...__.:.;___.,....�------, 

N 
en 
x_ 

'f 
�o-+1--+.-<-,--t--+--Hl+*H--l 

-2 -I D I 2 3 Q 5 
ExB-AXIS 

.,,_..:1..:3_- _H__:O _ H.=E_NrT_l:...0<,._-_-3:...·__.:0:.._&_cx_=..:l..:.·..:.0_1-, 

N 
en 
x_ 

-2 -I O I 2 3 4 5 
ExB-AXIS 

20-HOHENT ID, :3.0&<X:J.Ol 

�O-+t+-t-�-'-H+-=-+.::..c1->-1-.wi 

' 

' 

-2 - I O I 2 
ExB-AXIS s 

92 

' ' ' • 3 ij 

.,.,..--..-..-_ 
:, 

'" 



Figure 8. Contours of the ion distribu tion function in the principal 

velocity (!-ix!)-plane for the exact form and the bi-Maxwellian-based 

expansions and for perpendicular electric and magnetic f ields. The 

exact form (top row) is compared with the 6-moment (middle row) and the 

16-moment (bottom row) exapnsions. In addition, three com binations of�

and a were considered; [D
i..

= 1 .0, a = 0.1] (left column), [D. = 1 .0, a
...J... 

1 .O] (middle column), and [D
.L

= 3.0, a 1.0] (right column), where

D...L=(cE /B)/(2 kT /m.) 112 and a= v.m.c/e.B. The plotting format is thel.. n i i i i 

same as that for Figure 3. 
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Figure 9. Comparison of the exa ct form with the 16-moment and the 

20-moment expansions of the ion distribu tion function for the case of

perpendicu lar electric and magnetic fields and for D
..L

= 1 .O and a 0.1. 

The contours are plotted in the three principal velocity planes. The 

plotting forma t is the same as that for Figure 3. 
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Figure 10. Comparison of the exact form with the 16-moment and the 

20-rnoment expansions of the ion distribution function for the case of 

perpendicular electric and magnetic fields and for D
-L

= 1 .O and a =  1 .o.

The contour s are plotted in the three principal velocity planes. The 

plotting format is the same as that for Figure 3. 
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Figure 11. Comparison of the exact form with the 16-moment and the 

20-moment expansions of the ion distribution function for the case of 

perpendicular electric and magnetic fields and for D
-1..

= 3.0 and a =  1.0.

The contours are plotted in the three principal velocity planes. The 

plotting format is the same as that for Figure 3. 
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Figure 12. Comparison of the exact form with the 16-moment and the 

20-moment expansions of the ion distribu tion function for the case of

perpendicular electric and magnetic f ields and for D
J_

= 3.0 and a =  0.1. 

The contours are pl otted in the principal velocity (!-!x!)-plane. The 

plotting forma t is the same as that for Figure 3. 
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effect of the 20-moment correction terms becomes significant, but the 

results a re qualitatively similar to those of the 13-moment 

approximation. Finally, when the electric field is weak (Dl! 
= 0.3) the

distribution is close to Maxwellian a nd all three levels of 

approximation are acceptable. 

In Figure 4, expansions based on a bi-Maxwellian ( 6- and 

16-moments) are compared. The 6-moment approximation accounts for the

bulk drift velocity �i and parallel and perpendicular temperatures, Tiii

and T. 
lJ__ 

As E \\ increases, u. and T. · 
t 

increase while T .. stays constant
-i l\ �.L 

because of the absence of any mechanism to transfer the parallel energy, 

absorbed from the electric field, to the perpendicular direction. The 

increase in the drift velocity does not show up in this case for reasons 

similar to those mentioned in the previous paragraph. The 16-moment 

expansion allows for skewness through the correction terms proportional 
•' 

j_ to� and .9..i. When Dii = 0.3, the two expansions are near to :faxwellian.

As E
H 

increases (DH and 3), the effect of the correction terms

becomes apparent and the 16-moment result departs significantly from 

that of the 6-moment. 

The 20-moment approximation, having more terms is expected to be 

better than the 5- and 13-moment approximations. By the same token, the 

16-moment approximation should be better than the 6-moment

approximation. A detailed comparison indicates that this is indeed the

case. Furthermore, for anisotropic plasmas, we would expect that an

expansion based on a bi-Maxwellian is better than one based on a

?faxwel 1 ian. In Figure 5 I compare the 20-momen t and the 1 6-momen t

approximations to the exact distribution function. For small values of
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8
\\ 

(D
11 

= 0.3), both approximations are close to the exact solution which

is close to Maxwellian. As E Ii increases, and hence the anisotropy

increases, the 16-moment approximation gives much better results than 

those given by the 20-moment approximation even though the former 

contains fewer terms. The 16-moment approximation is in excellent 

agreement with the exact solution for D II = 1 and in good agreement for

Dil = 3. Therefore, the 16-moment approximation is capable of describing

temperature anisotropies as large as 19 (see Table 16). 

From the previous discussion, it is apparent that expansions based 

on a bi-Maxwellian are better than those based on a Maxwellian in 

describing anisotropic plasmas even if fewer terms are retained. Also, 

the 16-moment approximation can handle very large anisotropies (T. 1 /T. ;J' 
lh l-

20). 

2.2. Perpendicular electric 
and magnetic fields 

For the case of parallel electric and magnetic fields, the main 

effect of the electric field is to cause a parallel-to-perpendicular 

temperature anisotropy. However, when the fields are perpendicular, 

significant deviations from the Maxwellian shape can occur in the 

direction perpendicular to the magnetic field in addtion to the unequal 

temperatures in the directions parallel and perpendicular to the 

magnetic field. Therefore, the 16-momen t approximation is not expected 

to describe the distribution function as well as when the fields are 

parallel, especially in the velocity plane perpendicular to 3. 

Figure 6 sho·,rs the behavior of the exact solution for the ion 

distribution function in the principal velocity plane perpendicular to 



Table 16. Ion teuperature anisotropy (T. /'l'. ). 
l\\ l.L 

f II � 

�a 0. l

D II

0.3 l . 18 0.3 0.91 

l. 0 3.00 1.0 0.50 

3.0 19. 00 3.0 0.09 

E .L 8 
- -

1.0 

0.95 

0.66 

0 .17 

10.0 

1.00 

0.99 

0. 91

I-' 

0 

0 
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B. The distribution function is shown for a = 10, 1, 0.1 (from top to

bottom) and for D
...L

= 0.3, 1, 3(from left to right), where a[= v.m.c/e.B] 
l l l 

is the collision-to-cyclotron frequency ratio and

[= (cE_..l.. /B)/(2kTn/mi) 112] is the normalized perpendicular drift

velocity. As shown, when a = 10 ( large collision frequency) and when D..L 

= 0. 3 ( weak electric field) the distribution function is very close to 

the Maxwellian shape. However, when �j_ approaches or exceeds unity and 

a approaches or becomes less than unity, the distribution function shows 

significant deviation from the Maxwellian form. 

distribution function takes a bean shape (DJ_= 3, a 

For example, the 

1) and a toroidal 

shape (D_L. 
= 3, a = 0.1), as noted by St-Maurice and Schunk (1974). 

Also, for the cases (D ..L = 1, a = 1) and (D .l = 1, a = 0.1), as well as 

for the two cases mentioned above, the peak of the distribution function 

(marked by the dot) does not coincide with the average drift velocity 

(at the origin). In addition to the non-Maxwellian characteristics that 

occur for these four cases in the plane perpendicular to i, the ion 

velocity distribution also exhibits a pronounced temperature anisotropy, 

with Ti.J_> Til( 
(see Table 16).

From the four cases that display sig nificant non-Maxwellian 

characteristics, I select three cases (namely, D ..1.. = 1, a = 0.1; D
.L 

= 1, 

1) for my comparison of the different expansions for

the ion distribution function. The fourth case (D
J_

= 3, ex = 0.1), where 

all expansions fail, will be discussed later. 

The 5-moment, the 13-moment and the 20-moment approximations are 

compared with the exact form of the distribution function in Figure 7. 

The distribution function is plotted in the plane perpendicular to E. 

a=1;D..1-=3,a 
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The 5-moment approximation is unacceptable in all three cases. On the 

other hand, the results of the 13 -moment a nd the 20-moment 

approximations are comparable, although the 20-moment approximation is 

slightly better. Generally, when the distribution function is not too 

far from Maxwellian, the 1 3-momen t and 20-momen t approximations are in 

good agreement with the exact solution (left and middle columns). 

In Figure 8, the 6- and 16-moment approximations are compared with 

the exact answer for the same three cases and the same velocity plane 

considered above. It is clear that the 16-moment expansion can account 

for all three cases. 

the case (D · = 3 ex 
. ..L ' 

temperature anisotropy. 

Although it fails to handle the bean feature for 

1), it still accounts very well for the 

Moreover, the 6-moment approximation is not 

that bad considering its very few degrees of freedom. 

In the previous two figures, the comparisons were between 

distribution functi,.)ns displayed in one velocity plane. However, it is 

necessary to consider the three principal velocity planes in order to 

see the 3-dimensional structure of the distribution function. The 20-

and 16-moment expansions (as the best candidates from the Maxwellian­

based and bi-Maxwellian-based expansions) are compared with the exact 

solution in Figure 9 (�.L 
= 1, a = 0.1), Figure 10 (D

..L. 
= 1, a = 1) and 

Figure 11 (D
_L 

= 3, a = 1). For each case the distribution function is 

plotted in the three principal planes. In the first two cases, both 

series expansions are quite acceptable in all three planes; that is, the 

three-dimensional shape is ·t1ell represented. However, in the third case 

(Figure 11), the 16-moment expansion is better in the two planes 

parallel to the magnetic field because it provides a better description 
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for the temperature anisotropy, which is the major feature in these 

planes. On the other hand, both expansions tend to produce the bean 

shape appearing in the plane perpendicular to the magnetic field (middle 

column of Figure 11 ). Since this shape is produced by the terms 

proportional to the heat flow, the 20-moment expansion produces it 

slightly better because it accounts for the heat flow tensor accurately. 

Figure 12 shows the case (D ..L = 3, a 0.1) w here the distribution 

function takes the form of a torus with the major axis parallel to �­

The figure shows the intersection of this torus with a plane passing 

through this axis. The toroidal character can be accounted for only by 

expansions including moments higher than the third order. Consequently, 

both the 20-moment and 16-moment approximations fail in producing this 

shape. 



CHAPTER V 

COMPARISON OF MAXWELLIAN AND BI-MAXWELLIAN EXPANSIONS 

WITH MONTE CARLO SIMULAIONS FOR ANISOTROPIC 

PLASMAS 
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Although the results of chapter (IV) were obtained for a homogene­

ous plasma and a simple collision model, they should be useful in pro­

viding clues as to the extent to which a given series expansion can ac­

count for the anisotropic character of a plasma. However, a more real­

istic collision model will produce a smaller temperature anisotropy than 

the simple collision model for given electric and magnetic fields, and 

i t  is not clear to what extent this will affect the results. Therefore, 

in this chapter I use more rigorous collision models and compare 

Maxwellian and bi-r.Taxwe llian expansions with Monte Carlo simulations in 

order to determine the adequacy of a given series expansion. 

1. Monte Carlo simulation

My aim is to use the Monte Carlo Simulation ( referred to hereafter 

as MCS) to find the velocity distribution function of a system of ions 

moving under the influence of electric and magnetic fields in a neutral 

gas. The neutrals are assu med to have a non-drifting Maxwellian veloci­

ty distribution function and the ion density is assumed to be much 

smaller than that of the neutrals, so that ion-ion collisions can be ne­

glected. 
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1 .1. The Monte Carlo technique 

The standard procedure of the MCS is to follow the motion of one 

ion for a large number of collisions, and its velocity is continually 

monitered. Then, various kinds of time averages for the ion are comput­

ed, which can be equated to the corresponding ensemble averages of the 

system. 

In practice, the ion motion is simulated as follows. The time in­

terval betwe en every two successive collisions is found via a proper 

random number generator. The ion trajectories during these intervals 

are determined by the classical laws of motion of a charged particle 

under the influence of electric and magnetic fields. Changes of ion 

velocity due to collisions are determined using another set of random 

numbers having the statistical properties determined according to the 

chosen collision model. Then, a suitable grid in velocity space is used 

to register the ion's behavior. The time that an ion spends in each 

bin, divided by the bin's volume, is taken to be proportional to the ion 

velocity distribu tion function at its center. Moreover, the individual 

segments of the traje ctory can be directly used to find different velo­

city moments, as will be explained later. The general aspects of this 

technique are discussed in more detail by Lin and Bardsley (1977), while 

some fine details, which depend on the specific collision model, are 

discussed later. 

1 .2. Relaxation model 

For this collision model, the total collision cross section a
T 

is

inversely proportional to the relative velocity (g) between colliding 
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particles. That is, the collision rate K(g)[=aT(g)g] is independent of

the colliding particles' velocities. In this case the time intervals 

betwe en successive collisions have an exponential probability density 

f unction and can be generated easily. Also, according to this model, 

the colliding particles exchange their velocities (or equivalently, ex­

change identities) during a collision. This is equivalent to assuming 

that the ions and neutrals have the same mass (ions in their parent gas) 

and that the differential scattering cross section varies as 

a(g,x) « o(x-�)/g (277)

where x is the scattering angle in the center-of-mass frame of reference 

and o(x) is the delta f unction. 

For this simple mo del, a closed-form expression can be found for 

the ion velocity distribu tion f unction (see chapter (IV)). However, the 

MCS was used to find the ion velocity distribution f unctions and the 

corresponding velocity moments for a couple of cases. The ion was fol­

lowed for 1 o5 collisions in each case. The results were compared with 

the closed-form solu tions as a check on the sirnula tion process, and ex­

cellent agreement was found. This shows that the MCS, with the probe 

ion followed for 105 collisions, is accurate enough for our purpose. 

Therefore, in all of the cases presented in this work the computations 

were performed for 105 'real' collisions. 

1 .3. Polarization model 

For the polarization collision model, the collision rate K is con­

stant as in the case of the relaxation model. On the other hand, the 

collisional scattering is assumed to be isotropic in the center-of- mass 
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frame of reference. This approximation, used by Wannier ( 1953), intro­

duces about a 10% error for relative energies that are sufficiently 

small, comp ared to the minimum of the interaction potential (St.-Maurice 

1975). 

I adop t  this approximation for some reasons beyond computational 

simplicity. First, I am mainly interested in the comparison between 

transport equations and the results of MCS, rather than their absolute 

values. Second, this 10% error introduced by this approximation is 

lower than the uncertainties in the interaction potentials. Third, in 

the limit of high relative velocity, where this approximation fails, the 

collision properties can be approximated by using the hard sphere model 

discussed below. 

1 .4. Hard sphere model 

For the hard sphere collision model, the total collision cross sec­

tion a
T 

is independent of the colliding p articles' velocities; that is,

the collision rate K is proportional to their relative velocity (g). 

Contrary to the two previous cases, it is difficult to generate, direct­

ly, the time intervals between collisions. I use the concept of 'null 

collision' explained in detail by Lin and Bardsley (1977). This techni-

que requires the existence of an upper bound K 
max for the collision

rate, i.e., K(g) < K for all values of g. - max In the case under consi-

deration, K is infinite, which causes a comp utational problem. max This 

problem can be overcome by using a finite value for K , which intro­
max 

duces an error through collisions corresponding to relative velocities 

greater than a certain value. However, the resulting error can be arbi-
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trarily reduced by taking K large enough, although still finite, such 
max 

that the error-causing collisions are highly improbable, 

The collisional scattering is isotropic in the center-of-mass frame 

of reference. This is a typical characteristic of hard sphere colli-

sions. 



2. Velocity distribu tions for
the polarization model 
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In this section, the ion velocity distribution functions resulting 

from the MCS a re compared with those of the 20- and 1 6-moment approxima-

tions for a variety of cases. For parallel electric and magnetic 

f ields, different values of the normalized parallel drift velocity 
( 
D II)

are considered, wh ile for perpendicular electric and magnetic f ields 

different combinations of the normalized perpendicular drift velocity 

(
� 

and the collision-to-cyclotron frequency ratio (a) are considered.

The different parameters produc e a range of non-Maxwellian characteris­

t ics for the ion velocity distribution function. 

It is important to choose the values of these parameters to match 

the cases presented in chapter (IV) to facilitate comparison with the 

results for the relaxation collision model used there. Unfortunately, 

the definitions used in that chapter are not useful for the collision 

models considered here. On the other hand, the relevant definitions 

available in the literature (e.g., the definition of collision frequency 

v. presented by Schunk (1977)) are limited to specific forms of the dis-
l

tribu tion function. Different, yet more general, definitions are used 

here when necessary. For example, the normalized parallel drift veloci-

ty ( D
I\

) is defined as

D = u./( 2kT /m ) 112 

II i n n 

The normalized perpendicular drift velocity (DjJ is 

and a is defined as 

(278)



a
-1

= av [ t (e.B/m.c)]/av[(1-cosx) 
C l l 
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(280) 

where u. is the ion drift velocity, T and m are the neutral tempera-
l n n 

ture and mass, respectively, l and Bare the electric and magnetic

f ields, c is the speed of light, e. and m. are the ion charge and mass, 
l l 

t is the time interval b etwe en two successive collisions, x is the 
C 

scattering angle in the center-of-mass frame of reference and the "av" 

denotes an average over the path of the probe ion in the MCS. 

These definitions are chosen such that they satisfy certain guide-

lines. First, they are consistent wi th the corresponding definitions 

given in chapter (IV). Second, when the collision frequency v. is inde­
l 

pendent of the distribu tion function (K(g) = const), they are consistent 

with those in the literature (Schunk 1977), Finally, they account for 

the angular dependence of the differential cross section and for the 

'velocity persistence', mentioned by Chapman and Cowling (1970), through 

the we ighting factor 
m 

n

(1-cosx) in equation (280).m. +m i n 
The comparison betwe en the ion distribu tion functions resulting 

from the MCS, the 20-moment, and the 16-moment approximations is pre­

sented in Figures 13-18, which are obtained as follows. The MCS is used 

to fo llow the probe ion for 105 collisions so that the ion distribu tion 

f unction can be calculated. Also, the resulting velocity moments are 

found as expl ained in the next two subsections These velocity moments 

are substituted into equations ( 240) and (264) for the 20- and 16-moment 

approxima tions of the distribu tion function, respectively. Finally, the 

ion distribu tion functions are represented by contours at levels decre­

asing by a factor of e 112 starting from the maximum.



Figure 13, Comparison of the MCS with the 1 6-moment and 20-moment ex-

pansions of f. in the principal velocity plane parallel to the electric l 

field for the po larization collision mo del, equal ion and neutral 

ma sses, and parallel electric and magnetic fields. Two values of the 

normalized parallel drift velocity were considered, D( 1 (left column)

and 3 (righ t column), where n
1 1
=u. /(2kT /m ) 1 /2. The contours are plot-i n n 

ted against the normalized random velocity c./(kT./m.) 1 12. The contour
-i l l 

levels decrease by a factor of e112 
starting from the maximum, shown by

the dot.
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Figure 14. Contours of f. o btained from the MCS in the principal velG-1 

city(! - !x�) plane for the polarization collision model, equal ion a�l 

neutral masses, and perpendicular electric and magnetic fields. Two va­

lues of the collision-to-cyc lotron frequency ratio were used; a=0.1 

(bottom) and 1 (top), where a is defined in equation (280). In addi-

tion, two values of the normalized perpendicular drift velocity were 

considered; D
..L.

=1 (left) and 3 (right), where D
.1_

= (cE,/B)/(2kT /m ) 1 12.
...t..:. n n 

The plotting format is the same as that for Figure 13, but the dotted 

contour (bottom, righ t  panel) is lower than the maximum by a factor of 
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Figur e 15. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of f. for the polarization collision model, equal ion and neu­
i 

andtral masses, perpendicular electric and magnetic f ields, D
_L

=3, 

a=0.1. The contours are plotted in the three principal velocity planes. 

The plotting format is the same as that for Figur e 13. 
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Figure 16. Com parison of the MCS with the 16-moment and 20-moment ex-

pans ions off. for the polarizat ion collision model, equal ion and neu­
i 

andtral masses, perp endicular el ectric and magnetic fields, D
_.1_

=1, 

a=0.1. The contours are plott ed in t h e  three princi pal velocity planes. 

The plotting fonnat is the same as that for Figure 13. 
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Figure 17. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of f. for the polarization collision model, equal ion and neu­
l 

tral masses, perpendicular electric and magnetic fields, D
_i

=3, and 

The contours are plotted in the principal velocity (E - ExB) plane. 

plotting fonnat is the same as that for Figure 13. 

a=1 .

The 



MONTE CARL0(D.J.
= 3.01 O=1.0l 

V>,------.-------------, 

n 

N 

(/) 

x_ 
< 
I 

WO---r---rtt1"1"ne---r----r---r--i--r--,....-,....--,--H---i 

N 

I 

n---r---.---,---t---r--,.-......,..---,----i 
1

-3 -2 -1 0 1 2 3 
ExB-AXIS 

4 5 

20-M0MENT CO.J. =3.01 a =1 .OJ 
!/),------.-�---------, 

I"} 

N 

(/) 

x_ 
< 
I 

WO-t-itfftt-H---t-t--r--,'--t-tt-tt---� 

N 

I"} ---r---.--.---r-----,----.---.--.----, 
1

-3 -2 -1 0 I 2 3 
ExBc-AXIS 

4 5 

16-H0HENT (DJ. =3.0: a =1 .OJ 
V>-.------,------------, 

n 

N 

(/) 

x_ 
< 
I 

WO-H,rtti--t-t-1---+-+-t--t--t-+-t-tt---

N 

I 

n ---r---.--.---r-------,,----.---,----.----, 
1

-3 -2 -1 0 1 2 3 4 s 

ExB-AXIS 

115 

• • t • • • • • ' 



Figure 18. Comparison of the MCS with the 16-moment and 20-moment ex-

pans ions of f. for the polarization collision model, equal ion and neu­l 

tral masses, perpendicular electric and magnetic f ields, Dl=1, and

The contours are plotted in the principal velocity(! - !x�) plane. 

plotting format is the same as that for Figure 13. 

a=1. 

The 
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Although a closed form expression for the ion distribution function 

can�ot be found for realistic collision models, the velocity moments can 

be found directly by solving the proper transport equations. These 

'enct' values for the moments were compared with those computed by the 

MCS as follows. Each set of moments was substituted into equations 

(24J) and (264) and the results were plotted in a contour form. The 

difference in the resulting distribution functions, due to using differ­

ent sets of moments (the exact and the MCS), was almost undetectable. 

Thi3 is another indication that the MCS is adequate for the purpose of 

thi3 work. 

2.1. Parallel electric 
and magnetic fields 

As mentioned earlier, in the MCS a suitable grid is used to record 

the probe ion's velocities. In the case of parallel electric and mag-

netic fields, the grid has the velocity components parallel and perpen­

dicular to the magnetic field as coordinates, while the azimuthal depen­

dence is taken care of by virtue of cylindrical symmetry. Between col­

lisions the mo tion of the ion is represented, on the grid, by a straight 

line parallel to the fields. The time spent by the ion in a certain bin 

is proportional to the length of that portion of the line lying inside 

the bin. 

where 

The ion distribu tion function can be represented as 

f. 
l 



( 4> _ ) 
= 

{ 
o ( V

J_
-( v _i_) 

Q.) / J_
l Q, 

fo r 
( vii s ) Q, < I I < ( vi I f ) Q, 

elsewhere 

and where o(x) is the Dirac Delta function, v
\ls and v

\!f are the

11 8 

(282) 

initial 

and final parallel velocities, v
j_ 

is the perpendicular velocity, C is a

constant, and the subscript Q. is used to denote that the summation is 

over all continuous segments of the probe ion trajectory in velocity 

space. With this expression, i t  is possible to accumulate the data ne­

cessary to compute the velocity moments while following the probe ion's 

motion. For example, the ion drift velocity is simply 

(283) 

Figure 1 3 shows a comparison between the MCS and the 20- and 

16-moment approxinations of the ion distribution function for the polar­

ization collision model and for parallel electric and magnetic fields, 

Two values of the normalized parallel drift velocity (D
l l
) were consi­

dered; namely, D
i l
=1 and 3, The case of D

i l
=0,3, corresponding to that 

presented in chapter (IV) , is not shown here because in this case the 

ion distribution function is sufficiently close to Maxwellian that it 

can be handled by any level of approximation. Comparing the polariza­

tion model results shown in Figure 13 wi th the relaxation model results, 

we find that for the polarization collision model, the ion distribution 

functions are closer to Maxwellian for a given value of 
DJ!' 

For exam-

ple, in the case of D
i(

3, the parallel-to-perpendicular temperature ani-

sotrop y is 2.2 for the polarization model, which is much less than that 

found for the relaxation model (�20). This is due to the fact that the 

0 
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polarization model permits the transfer of kinetic energy between the 

parallel and perpendicular directions, while the relaxation model does 

not. 

As the electric field strength increases, the drift velocity ( u.)
-i 

and the temperature (T.) increase. These changes do not appear in Fig­
l 

ure 1 3 because the c ontours are plotted against the normalized ion ran-

dom velocity c./(kT./m.) 1 /2• However, the ion parallel temperature in­
-i l l 

creases more rapidly than the perpendicular temperature (i.e., the tem-

perature anisotrop y increases), and such changes show up because of 

their relative nature. For D
l i
>3, the shape

function does not change significantly 

The shape of the distribu tion function 

with D
I ! 

for D
I / 

of the ion distribution 

and starts to 'saturate'. 

ro, given by Wannier 

(1953), d oes not differ much from that shown in Figure 13 for D
l
(3·

This saturation does not occur for the relaxation model; the temperature 

anisotropy increases indefinitely with D 
II"

anFor D
f

1 (left colu mn), the 16-moment approximation of fi shows 

excellent agreement with the MCS, while the 20-moment approximation 

shows a good agreement. As D
II 

increases and the ion distribution func-

tion deviates more from the Maxwellian, the approximate distribution 

functions deviate from those found by the MCS. When ( right co-

lumn), the 20-moment approximation starts to fail, while the 16-moment 

approximation still c ompares favorably with the MCS. Further increases 

of D
I ( 

are not expected to result in significant changes in the degree of

agreement due to the shape saturation mentioned earlier. 
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In general, fo r the case of parallel electric and magnetic f ields, 

the bi-Maxwellian-based 16-moment approximation shows better agreement 

( ranging from excellent (D
\r1) to acceptable (D

l \
2_3)) with the MCS than

does the Maxwellian-based 20-moment approximation. However, both ap-

proximations did much better for the polarization collision mo del than 

for the relaxation mo del , for which a greater temperature anisotropy  

occurs for the same D\i"

2.2. Perpendicular electric 
and magnetic fields 

In this case, betwe en collisions the probe ion moves in circles in 

velocity space with constant angular velocity (n. = e.B/m.c). 
l l l 

These 

circles are centered at the ExB drift velocity 2::
E

· Therefore, in the

MCS we used a three-dimensional grid whose coordinates are the parallel 

and perpendicular velocities relative to �E and the azimuthal angle e.  

The time spent by an ion in one bin is proportional to the angular dis­

tance it scans while lying inside this bin. Using this criterion we can 

compute the time that the probe ion spends in each bin. 

where 

The ion velocity distribution f un ction is 

f. 
l 

J 6 ( 
v it- ( v II\_ )

l 0 

for ( e ) < e < ( ef) n
s £ - x., 

elsewhere 

(284) 

(285) 

where 6(x) is the Dirac delta function, v1 1 and vl are the parallel and

perpendicular components of v�[=v--u�J, £ denotes that the summation is - -1 -j'., 

taken over all continuous segments of the ion trajectory, and e
s 

and ef

= C~(4>.) 
JI. J. JI. 

( <I> . ) 
J. JI. 

6(v;-(v ') ) 
-L J_ JI. 

VJ_ 
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are the initial and final azimuthal angles for such a segment. This ex­

pression is used to accumulate the data required to calculate the velo­

city moments in a way similar to that discussed in the previous subsec­

tion. 

Of the nine cases considered in chapter (IV) for the relaxation 

collision model, I only chose the four cases that showed significant de­

viations from a Maxwellian because the polarization model is expected to 

produce much smaller non-Maxwellian deviations for a given � These 

cases correspond to the following parame ter values: D
J_

= 1 , a=1 ; 1j_=3,

For the relaxation model, the re-· a=1 ; D__L1 , a=0.1; and D
J_

=3, a=0.1. 

s ulting distribution functions showed some interesting non-Maxwellian 

characteristics, i.e., bean and toroidal shapes. 

Figure 14 shows the ion distribu tion f unctions resulting from the 

MCS for the four cases mentioned above. In general, they show less de­

viations from a Maxwe llian compared with the distribution functions ob-

tained relaxation model for the same values of land a• 

mentioned in the previous.subsection, this is due to energy transfer 

from the As 

betwe en the parallel and perpendicular directions. 

For the case (D
J._

=1, 0
= 1 ), the distribution function is the closest 

to Maxwellian. As l increases or a decreases, the deviation from a 

Maxwe llian increases. For the case (D_c3, a= 1 ), the bean shape starts 

tQ appear, wh ile we ak toroidal features (e.g., flat maximum) appear as 

the collision frequency decreases (a =0.1). As D
_l_

increases from to 3,

the maximum Qf f. in the plane perpendicular to B broadens and a small 
l 

dip occurs along the ExB axis. The shape saturation mentioned in the 

previous subsection occurs again in this case for large values of D
J_ 

and 



small values of a, 

The case of (D
.1

=3, a=0.1) is shown in more detail in Figure 15,

where the MCS ( top) is compared with the 20-moment (middle) and 

16-moment (bottom) approximations. The distribution functions are re­

presented by contours in the three principal velocity planes to demon­

strate their three-dimensional structure. Comparison with the relaxa­

tion model results indicates that the toroidal features are much less

evident for the polarization model. Moreover, the distribution function

(1J.:3, a=0.1) is very similar

and (D
.1

=1, a=0.1). This in­

dicates that the relaxation model can give the correct p hysical charac-

obtained with the polarization model and 

to that obtained with the relaxation model 

teristics, provided that the proper value of the (reduced) electric 

field is used.

This case of (DJ:3, a=0.1) is the worst with regard to the ability

of the 20- and 16-moment expressions for f. to approximate the MCS.l 

This is because f. displays its strongest toroidal features for this 
l 

case, which are very difficult to account for with these levels of ap-

proximation. However, both approximations show quite reasonable agree­

ment with the MCS (the 20-moment is a little better) in comparison with 

the results obtained for the relaxation model, for which the 16- and 

20-moment approximations compl etely failed for this case.

For the other three cases, the distribution functions are expected 

to be closer to Maxwellian, and consequently the series expansions 

should be in better agreement with the MCS. Figure 16 shows that is re-

ally the case when D
l

= 1 and a=0.1. Both approximations display reason-

able resemblance to the MCS result, but the 20-moment approximation han-
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dles the flat maximum better. 

Since the distribu tion function is close to Maxwellian, it is suf­

ficient to present the distribution functions for the two remaining 

cases only in the plane perpendicular to the magnetic field. The case 

of 
(D 1 =3, 

a= 1 ) is presented in Figure 17. The distribution function 

generated by the MCS takes the bean shape. This feature is well ac­

counted for by both the 20- and 16-rnoment approximations, but the former 

is a little better. Compared to the corresponding case in chapter (IV), 

the distribu tion function displays less deviations from Maxwellian; con­

sequently, the moment approximations are in better agreement with the 

MCS. Also, the resemblance between this case and the case of (DJ_= 1,

a= 1) for the relaxa tion mo del supports the argument that the relaxation 

model, with the proper reduction in the electric field intensity, can 

give a qualitatively correct p icture of the shape of the ion distribu­

tion function. 

Figure 18 shows the comparison betwe en the 20- and 16-moment ap­

proximations and the MCS for the case (D_e1, a = 1 ). The distribu tion

function is close to Maxwellian. Therefore, the 16- and 20-moment ap­

proximations show , as expected, an excellent agreement with the MCS. 



3. Velocity distributions for
the hard sphere model
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To compare the ion distribution functions of the 20- and 16-moment 

approximations with the MCS for the hard sphere model, a line parallel 

to that of the previous section is followed. The MCS code was modified 

to use the 'nul l collision' concept, mentioned earlier. A probe ion was 

followed for 105 'real' collisions. The grid used in this case was ex­

actly identical to that mentioned in the previous section. Finally, the 

ion distribution fun ctions obtained from the MCS and the 20- and 

16-moment approximations were computed and plotted using a format simi­

lar to that of Figures 13-18. 

The major difference between the polarization and hard sphere col­

lision models is that the collision rate K[=crTg] is proportional to the

relative speed (g) for the hard sphere model, while it is constant for 

the po larization mo del. That is, in the former case, faster ions col­

lide, on the average, more rapidly and lose their energy. This inhibits 

the tail of the distribution function and brings it closer to Maxwelli­

an. Therefore, better agreement is expected between the series expan-

sions and the MCS. 

3.1. Parallel electric 
and magnetic fields 

Figure 19 shows a comparison between the MCS and the 20- and 

16-moment approximations of f. 
l 

for the case of parallel electric and

magnetic fields. The cases of D l f1 (left) and 3 (right) are presented,

where D ii is the normalized drift velocity. In general, the behavior of

the ion distribution function is similar to the corresponding cases in 



Figure 19. Comparison of the MCS with the 1 6-moment and 2 0-moment ex­

pressions of f. in the principal velocity plane parallel to the electric 
l 

field for the hard-sphere collision mo del, equal ion and neutral masses, 

and p arallel electric and magnetic fields. Two values of the normalized 

parallel drift velocity were considered, D
l(

1 (left) and 3 (right),

where n
1 1
=u./(2kT /m ) 112 • 

i n n 
The contours are plotted against the normal-

ized random velocity c./(kT./m.)112. The contour levels decrease 
-i l l 

f actor of e112 starting from the maximum, shown by the dot.

by a
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Figure 20. Contours of f. o btained from the MCS in the principal (!l 

!x!) plane for the hard-s phere collision model, equal ion and neutral

masses, and perpendicular electric and magnetic fields. Two values of

the collision-to-gyro frequency ratio were used; a=0. 1 (bottom) and 1

(top), where a is defined in equation (280). In addition, two values of

the normalized perpendicular drift velocity were considered; D
J_

=1 (left)

and 3 (righ t), where D
1_

=(cEJ!B)/(2kTn/mn) 1 /2. The plotting format is

the same as that for Figure 19. 



I..() 

('\J 

U) 

x_ 

-< 

I 

MONTE CARLO<D.1
= 1.0:a = l.O)

WO�rt++-+-+-+-�"l----t-1r-t---t-tt---�

('\J 
I 

I") +-.---,.=:::=t===-.---.--.-----,----1 
1

-3 -2 -1 0 1 2 3 
ExB-AXIS 

4 5 

MONTE CARLO <D.1 =1 .O: a =0.1)
I..()-.-------,------------, 

N 

U) 

x_ 

< 
I 

WO-tt-ttt-H--t-ir-�'1---t-t-++t-t++----� 

("\J 

n+-.----.---=::=:;:===--.---.--.-----,-----1 
1

-3 -2 -1 0 1 2 3 
ExB-AXIS 

4 5 

I..() 

('\J 

U) 

x_ 

-< 

I 

126 

WO--r-t-t-r-rr--H"--r---..-t--1--1--t-T--+-,H--1�-�

('\J 

n+-.---.,....::===t===--,--r---,----.-------1 
1
-3 -2 -1 0 1 2 3 4 

I..() 

('\J 

U) 

x_ 

-< 
I 

5 
ExB-AXIS 

WO----tti-ttt-t-ir--_._t---,--++t+ttt------,i 

('\J 

n+-.----r""-==r==.c::;�-,---.--.-------1 
1
-3 -2 -1 0 1 2 3 

ExB-AXJS 
4 5 

. 

MONTE CARLO W.1 =3.Q: a =1 .OJ 

' • I • , , • • I I I I j 4 I I I 

I I I ! 1 t o I I o 1 , , o , t t I 



Figur e 21. Comparison of the MCS with the 16-mome nt and 20-momen t ex-

pansions of f. fo r t he hard-sphere collision m odel, equal ion and neu­
l 

tral masses, perpendicular electric and magnetic fields, 
11_=3, 

and

a=0.1. The contours are plotted in the three p rincipal velocity pl anes. 

The p lot ting forma t is the same as that for Figure 19. 
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Figure 22. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of f. fo r the hard-sphere collision model, equal ion and neu­
l 

t ral masses, perpendicular 

a =0.1. The contours are

electric and magnetic fields, D
l..

= 1,

pl otted in the principal velocity (E 

plane. The plotting fo rmat is the same as that for Figure 19. 

and 

ExB) 



MONTE CARLOCO.L
= l .Oia =O.ll 

V>-r------.--...c=_----------, 

{\J 
en 

x_ 
< 
I 

WO-tt-1-tt--t-+-t-t-�"!---t-t--t--r-rttt----� 

{\J 
I 

n+-.---.--==t==--,-----,--,--,--j 

'-3· -2 -1 0 1 2 3 
ExB-AXIS 

4 5 

20-MDMENTC0.1.
=l .Q,a =O.ll 

!0-,------...-----------,

{\J 
(/) 

x_ 
< 
t 

WO-tt-1r+t++-t--t---t--t-t-Hrt++t----� 

{\J 
I 

I") +-,--.--=:;==---,---,--,---,---j 
1

-3 -2 -1 0 1 2 3 
ExB-AXIS 

4 5 

16-MOMENT (O.L =1. o,a =O. 1 J
!0-,------.,-----------, 

{\J 
(/} 

x_ 
< 
I 

W0""1H-t-t-++-+-1----r-+-H-H-tt----� 

{\J 
t 

n+-.-----,...::::::::::t==:=,---,---,----,---1
1

-3 -2 -1 0 1 2 3 
ExB-AX!S 

4 5 

128 



Figure 23. Comparison of the MCS with the 16-mo ment and 20-moment ex-

pansions of f. for the hard-sphere collision model, equal ion and neu­
l 

tral masses, perpendicular electric and magn etic f ields, 13, and a=1.

The contours are pl otted in the principal velocity (E - �x�) plane. The 

plotting format is the same as that for Figure 19. 
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Figure 24. Comparison of the MCS with the 16-moment and 20-moment ex-

pansions of f. for the hard-sphere collision model, equal ion and neu­
l 

tral masses, perpendicular electric and magnetic fields, D
J_

=1, and 

The contours are plotted in the principal velocity(! - !x..!!_) plane. 

plotting format is the same as that for Figure 19. 

a=1.

The 
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the previous section. For example, as the electric field intensity in-

creases, u. and T. increase, but this does not show up for the same rea-
-1 l 

son mentioned earlier. However, the increase of the temp erature aniso-

trop y (Ti\�
/Tij_) is noticeable. For Djf3, the relative shape of the dis-

tribu tion f unction starts to saturate. The case of Dlfoo, presented by

Scul lerud ( 1973), is not much different from the case of Dl(3 presented

here. On the other hand, the distribution function is closer to Maxwel­

lian and its tail is less populated. The 20- and 16-moment approxima­

tions are showing b etter agreement with the MCS. In fact, the 16-moment 

approximation is excellent in both cases, and the 20-moment approxima­

tion, although n ot as good as the 16-moment approximation, still shows 

good agreement. 

3.2. Perpendicular electric 
and magnetic fields 

I c onsider here the same four cases discussed in the previous sec-

tion (namely, D
j__

=1, a=1; D_c3, a =1; D
l
=1, a =0.1; and D

_(
3' a=0.1 ). The

ion distribu tion functions o btained from the MCS for these four cases 

are presented in Figure 20. For the case of (D
_L

=1, a=1) the distribu-

tion function is very close to Maxwellian. For higher values of 

(D_i_:=3, a =1 ), the distribu tion function takes the bean shape. As a de­

creases to 0.1, weak toroidal features start to app ear in the form of 

flat maxima in the velocity plane perp endicular to B. This is more ap-

parent for larger valu es of l 

The 16- and 20-moment approximations are compared with the MCS for 

each case in Figures 21-24. The case which shows the strongest toroidal 

features (D_i:3, a=0.1) is presented in Figure 21, where the contours in 
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the three principal velocity planes are shown. Compared to Figure 15 

(Polariza tion mo del) the distribu tion function has weaker toroidal fea­

tures (e.g., the maximum in the plane perpendicular to Bis less flat 

and the dip disappears) and, as expected, the moment approximations are 

in better agreement with the MCS. Although the agreement betwe en the 

20- and 16-moment approxima tions and the MCS is not especially good, it

is still acceptable.

For the o ther three cases presented in Figures 22-24, f. is closer � 
l 

to Maxwellian and therefore it is sufficient to show the distribution 

functions only in the plane perpendicular to�- The distribu tion func­

tions show similar behavior to the corresponding ones in the previous 

section (se e  Figures 16-18). However, they are closer to Maxwellian; 

for example, the tail of the bean distribu tion is inhibited in the case 

(1:J_
=3, a=1) and the toroidal features are reduced in the case (1]_=1,

a=0.1). Consequently, the 20- and the 16-moment approxima tions show 

better agreement wi th the MCS ( especially for 
1i:'3, 

a= 1), with the 

20-mo ment approxima tion a little better.

For the case of ( �J_
= 1 , a=1 ) , as we 11 as the corresponding case in 

the previous section, the ion distribu tion function is close to Maxwel-

lian and all levels of approxima tion agree very well with the MCS . 

I conclude that, in general, the distribu tion functions resulting 

from the hard sphere mo del are similar to those of the polarization 

model. However, the former case gives results closer to Maxwellian and 

consequ ently the 20- and 16-moment approxima tions show better agree ment 

with the MCS. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

In chapter (II), I presented a closed system of transport 

equations for multicomponent anisotropic space plasmas. These general 

transport equations offer the opportunity to take a unified approach 

to the study of widely different plasma flow situations. This system 

of transport equations can be applied to both collision-dominated and 

collisionless flows and provides a continuous transition between the 

two regimes; it can be applied to subsonic, transonic, and supersonic 

flows and provides a continuous transition between the regimes; it can 

describe multicomponent plasmas with large temperature differences 

between the interacting species; it can describe plasmas that contain 

large temperature anisotropies; it can describe plasma flows in 

rapidly changing magnetic field configurations; and account is taken 

of Coulomb, nonresonant ion-neutral, neutral-neutral, and resonant 

charge exchange interactions. Furthermore, if Maxwell's equations of 

electricity and magnetism are added to the system of transport 

equations, it can be used to describe electrostatic shocks, double 

layers, and magnetic merging processes. 

This system of generalized transport equations is based on an 

anisotropic bi-Maxwellian velocity distribution function and corres-

ponds to a 16-moment approximation. The system of equations 

contains a continuity equation, a momentum equation, parallel and 

perpendicular energy equations, a stress tensor equation, And heat 
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flow equations for the flow of parallel and perpendicular energy for 

each species in the plasma. 

The system of generalized transport equations reduces to Grad's 

13-moment system of transport equations in the limit of small tempera-

ture anisotropies. If this latter system is ordered with respect to 

the collisional mean-free-path, the result is the Euler, Navier­

Stokes, and Burnett equations depending on whether terms proportional 

to the zeroth, first, or second power of the mean-free-path are 

retained. At the Navier-Stokes approximation, transport processes 

such as ordinary diffusion, thermal diffusion, thermal conduction, 

diffusion-thermal heat flow, thermoelectric heat flow, and viscosity 

are included at a level of approximation that corresponds to either 

the first or second approximation of Chapman and Cowling (1970), 

depending on the particular transport coefficient. Also, if the 

plasma is treated as a single fluid and if Maxwell's equations are 

included, the system of generalized transport equations reduces to the 

familiar magnetohydrodynamic equations. 

In the limit of a collisionless plasma, the system of generalized 

transport equations is equivalent to the level of approximation 

usually considered in kinetic models. These collisionless transport 

equations include the effects of collisionless heat flow, collision­

less viscosity, and temperature anisotropies. They also contain terms 

which act to regulate both the heat flow and temperature anisotropy 

(cf. Schunk and Watkins 1979, 1981), processes which appear to be 

operating in the solar wind. Also, it should be noted that the system 
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of generalized transport equations reduces to all of the other major 

syst�ns of transport equations for anisotropic plasmas that have been 

derived to date. The assumptions needed to derive these other sets of 

simplified transport equations are summarized in Figure 2. 

In chapter (III), I derived a closed set of transport equations 

assuming that the distribution functions of the interacting gases were 

anisotropic bi-Maxwellian (or two-temperature) distributions. I also 

derived the appropriate momentum, parallel energy and perpendicular 

energy collision terms for Coulomb, Maxwell molecule, and constant 

collision cross section interaction potentials. The collision terms 

are valid for arbitrary temperature anisotropies, arbitrary tempera­

ture differences between interacting gases, and arbitrary relative 

drift velocities both parallel and perpendicular to the magnetic 

field. 

The closed set of transport equations is given by equations (145) 

- (148). This set of equations contains a continuity, momentum, 

parallel energy, and perpendicular energy equation for each species in 

the plasma. For Maxwell molecule interactions, the appropriate colli­

sion terms are given by equations (167) - (169), with vst given by

equation (173) and the quantities!:_, �l, �2, 1_, �\\, and �J_ 
given by

equations (188) - (192). 

For Coulomb and constant collision cross section interactions the 

collision terms had to be evaluated numerically. However, I also 

fitted simplified expressions to the numerical results for the conve-

nience of users. The accuracy of the approximate collision terms 



depends on both the interaction potential and the temperature aniso-

tropy (see Table 14). The procedure for obtaining the Coulomb and 

constant cross section collision terms is as follows: 

(1) Tables 1-12 are to be used to find the appropriate �'s and

n's if the 1% accuracy associated with the numerical integra-

tions is needed. Alternatively, the approximate expressions

given in equations (193)'-(200)' can be used with the values

of the a's and S's given in Table 13 and the I's given in 

Table 15. The index n is 3 and -1 for Coulomb and hard 

sphere interactions, respectively.

(2) The f and f are calculated using equations (171) and (172),

and vst is obtained from equation (173). In equation (173),

A1(2) = ln A and A1(00) = 0.5 for Coulomb and hard sphere

interactions, respectively; ln A is the well-known Coulomb

logarithm (cf. Burgers 1969, Chapman and Cowling 1970).

(3) The substitution of these quantities into equations (167) -

(169) yields the collision terms of o�s/ot, oEs\\/ot and

oEsJ.jot.

In chapter (IV), I studied the extent to which transport 

equations based on both Maxwellian and bi-Maxwellian series expansions 

can describe plasma flows characterized by non-Maxwellian velocity 

distributions, with emphasis given to modeling the anisotropic 

character of the distribution function. The specific problem I 

considered was the steady state flow of a homogeneous, weakly-ionized 

plasma subjected to homogeneous electric and magnetic fields. 

136 



137 

For parallel electric and magnetic fields, the dominant non­

Maxwellian characteristic is a parallel-to-perpendicular temperature 

anisotropy (Ti\t> T
i_i

_), although there is also an appreciable asymmetry 

in the electric field direction. On the other hand, for perpendicular 

electric and magnetic fields, the temperature anisotropy is reversed 

(Til> Ti!!) and a large non-Maxwellian deviation occurs in the velocity 

plane perpendicular to Bas the electric field strength is increased. 

For sufficiently large electric fields, the three-dimensional ion 

velocity distribution can be toroidal or bean-shaped, depending on the 

collision-to-cyclotron frequency ratio. 

As expected, for the Maxwellian expansion, the 20-moment approxi­

mation can describe larger non-Maxwellian deviations than the 5- and 

13-moment approximations because of the greater number of terms

retained at this level of approximation. Likewise, for the bi-

Maxwellian expansion, the 16-moment approximation is better than the 

6-moment approximation. Also, as expected, an expansion based on a

bi-Maxwellian distribution is better suited to describing anisotropic 

plasmas than one based on a Maxwellian, even if fewer terms are 

retained in the bi-Maxwellian expansion. 

As far as the bulk of the particles is concerned, both Maxwellian 

and bi-Maxwellian-based series expansions can describe larger devia­

tions from a Maxwellian than probably had been anticipated. For 

example, if the main non-Maxwellian characteristic is a temperature 

anisotropy, the Maxwellian-based 20-rnoment approximation is a reason­

able approximation for temperature anisotropies up to Ti/1/Ti.l. � 2-3, 
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while the bi-Maxwellian-based 16-moment approximation can describe 

temperature anisotropies as large as Ti\\ /T
:iJ.

- 20. For cases when

there is a significant non-Maxwellian character in the velocity plane 

perpendicular to Bin addition to the parallel/perpendicular tempera­

ture anisotropy, the bi-Maxwellian-based 16-moment expansion is better 

for describing the anisotropic character of the distribution function, 

but the Maxwellian-based 20-moment approximation provides a slightly 

better description of the distribution function in the velocity plane 

perpendicular to!· Also, depending on the conditions, both Maxwell-

ian and bi-Maxwellian-based expansions can describe non-Maxwellian 

distributions that do not peak at the average drift velocity point, 

Finally, the same problem in chapter (IV) was solved using more 

rigorous collision models (chapter (V)). For the ion-neutral colli-

sion process we considered both polarization and hard sphere collision 

models. For each collision model, a range of non-Maxwellian distribu­

tion functions was generated by varying the magnitude and direction of 

the electric and magnetic fields, However, for the more rigorous 

collision models contained in this study, it was necessary to do Monte 

Carlo simulations in order to obtain ion velocity distributions which 

would serve as a basis for comparison. In this regard it should be 

noted that the Monte Carlo simulation for a weakly-ionized plasma in 

crossed electric and magnetic fields have not been published to date, 

and these results are useful in their own right. 

For the polarization and hard sphere collision models, the ion 

distribution functions have characteristics similar to those obtained 
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with the simple relaxation model. For parallel electric and magnetic 

fields, the dominant non-Maxwellian characteristic is a parallel-to­

perpendicular temperature anisotropy (Till> Til ) , although there is

also an asymmetry in the electric field direction. For perpendicular 

electric and magnetic fields, on the other hand, the temperature 

anisotropy is reversed (T
iJ..> Tiil) and a non-Maxwellian deviation also

occurs in the velocity plane perpendicular to B as the electric field 

strength is increased. For sufficiently large electric fields, the 

three-dimensional ion velocity distribution displays toroidal and 

bean-shaped characteristics, depending on the collision-to-cyclotron 

frequency ratio. 

The confirmation of the Monte Carlo simulations that toroidal and 

bean-shaped characteristics occur for realistic collision models has 

important implications for space physics, particularly with regard to 

the stability of the terestrial F-region plasma at high latitudes. 

Although the non-Maxwellian characteristics obtained with the polar­

ization and hard sphere collision models are similar to those obtained 

with the relaxation model, the deviations from a Maxwellian are much 

smaller for the realistic collision models for given electric and 

magnetic field strengths. Also, for given field strengths, the 

distribution functions obtained with the hard sphere model are closer 

to Maxwellian than those obtained with the polarization model. For 

both collision models, the deviations from a Maxwellian 'saturate' as 

the electirc field is increased. For the relaxation model, on the 

other hand, the non-Maxwellian deviations increase without limit as 
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the electric field is increased. 

The basic conclusions that we presented in chapter (IV) about the 

adequacy of a given series expansion were confirmed for the more real-

istic collision models considered in chapter (V). In particular, the 

bi-Maxwellian-based 16-moment expansion for the distribution function 

is generally better suited to describing anisotropic plasmas than the 

Maxwellian-based 20-moment expansion. However, for the more realistic 

collision models considered in chapter (V), the deviations from a 

Maxwellian are not very large, and consequently, both series expan­

sions are good approximations for the plasma flow problem considered. 

As mentioned earlier, although the results obtained in chapters 

(IV) and (V) are n ot directly applicable to most of space physics

problems, it should provide clues to the adequacy of different approx­

imations for solving these problems. For example, in the high lati-

. + 
tude F-region, where the 0-0 resonant charge exchange i�teraction 

d ominates, accuracies similar to those found for the relaxation model 

are expected. For the polar wind, results similar to those of the po­

larization model are more probable. The Coulomb collision, which is 

d ominant in the case of the solar wind,was not discussed in this work. 

However, it should give results somewhere betwe en the relaxation model 

and the polarization model. 
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Here, I discuss in more detail the Monte Carlo simulation technique 

used in chapter (V). In general, the Monte Carlo method is a wa y of ga­

ining statistical information about a system by following an individual 

member through a large number of random processes. The result of such a 

procedure is knowledge about one member of the assembly for a long peri-

o d of t i.TJ1e. Time averages of various kinds can be obtained from such 

data; these time averages are then set equal to instantaneous averages 

over the assembly, in accordance with ergodic theory. In the following 

p aragraphs,I expla in the procedures used to implement this method for 

the different collision models presented in chapter (V). 

For the case of hard sphere collision model, the following steps 

are followed; 

1. The probe ion starts with zero initial velocity.

2. The time interval betwe en collisions is randomly generated such that

it has an exponential probability density function [ pr( x) '"'- exp(-kx)]. 

The subroutine GGEXN, froCT the International Mathematical and Statisti­

cal Library (IMSL),is used for this purpose. Then, the ion final vloci­

ty is cop uted. 

3. A neutral particle is randomly picked from a Maxwellian distribution

(of temperature T ) u sing the subroutine GGNQF from the IMSL. 
n 

4. The relative speed betwe en the colliding particles (g) is computed

and used to decide if the collision is 'real' or 'null' as explained by 

Lin and Bardsley (1977). If the collision is null we return to step 2, 

otherwise, we proceed to the next step. 

5. The time spent in e ach velocity bin is registered using an array

corresponding to the proper grid (see chapter (V)). 
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6. The scattering angle (in the center-of-mass frame of reference) is

randomly generated such that it corresponds to isotropic scattering 

(i.e. pr(x,�)=const.). The subroutine GGUBFS (from the IMSL) is used 

to generate such angles. 

7. The ion velocity after collision is computed and steps 2-7 are rpe­

ated using this velocity as the initial ion velocity. 

For the case of the polarization model, similar steps are followed 

except that all collisions are real. As a matter of fact, the same code 

was used and the parameter (VMAX) was set to zero. Moreover, the proce­

dure used for the relaxation model is similar to that used for the po­

larization mo del, except that the ion velocity after collision is taken 

to be the neutral velocity before collision. 

The codes used to L�plement these procedures is listed in the fol-

lowing pages. However, dimensionless normalized variables are used in 

these codes for convenience. 
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REAL GGUBFS.GGNQF 

DIJU8LE PREC IS IOl-l DTl ·'
DT2 ., )JT3,, nscnr i, DSrnT2 .• DCOL .• Ill'IUL 

c: :.::F;ACTER TLE·:qs 

D Hi:.:! JS ilJ!l R ( 1), '-/I (3). 'vF (J'.1 .• VTC3) .• D r1H3) ., 

Z CO: 9 .• --9: J. 5) _. 'v'2 ( 3) .• \/CG ( 3) 

T')PE:::., 'E�ffER THE SEf:D FIL!:: �:nr-1::·· 

1".1CCEPT' (A) ·· .• TLC: 
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f"lCCEPT::-:, D, SC'/, \/ti,l; 

TYPE:::_.-· Ei'Hrn M/i'lT' 

(.)CCEPT:::,. r�n

�r,2" 1. /( 1. -Hm) 
Ti,ICP ! =6. 2;:i3 

TYPE:::., . �IITER ;� OF COLLI S ro:-1s·· 

P.CCEPT:::, I l 

IF Cl I. rn. ·· !00) STOP 
;:,o ;.:!o r,: 1 .• 11 

UlLL GfT;(t I CD COL .. D, LR) 
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DO 30 J= L 3 
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IF ( 'v'im�"lG. LT. GGUBFS ( DIWL) ::,'/�11'..l>;) GO TO 2 
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REAL GGNOF.GGUSFS 
Cl :1:i:-;(:::CTER TU�,:(! 0 
DUU8LE PREC IS IOi1 DTl, DT2 .. DTJ, DSC(lTl .. DSCAT2 .• DCOL .• Dt-'lr-1>; 

DIMENSION RR(ll.VT(3),VCGC3),V�(3).VIC3l,VFC3l.DIR(3), 

> ZC0:8.O:8,O:23)

Drn;-1 \ /IC 3) ,'O. 0/, Tl·l[Tn I/0. 0/, DELT! 1/0. 0/, St·i/0. 0/_,

> STi !ETi:1/1]. 0/.. z,,- 194..'.J.:::8. \'.l/ .. T[,JOP I/6. i�OJ/
T'y'PE,:;, 'El-!Trn Yi!E r-ILE 01� sc:rns·

(-,CCEP
T

"' CA) . , TLE
OPEH (Ul-J IT=3 .. l·U"-ll'1;::=TU: .. l'/:-'E=·· OLD·')

REi::1D (3 .• ::() DT 1. DT2 .. DTJ .. DSC(IT 1, DSCi'.ff2 .• DClJL., Dr·1::-;;<
CLOSc CUI·! IT'-'3)
TYPE�:,_. 'rnTER i'1/t-1T .. VD .• f�Lffi-'

r�CCEPT;:,. R:-t. \--'D. f.1LF(;
Ri12= 1. /( 1. +i�fD
Tl,.!UJP I =2-·1. /WOP I
1WH=VD
T\,PE :'._, 'EiHER SCV .. \/iln>C
1:1CCEPT::.:_. SC\/_. Vi'·1.�><
TYi.J E ::_. · E!HER �:, OF COLLI�-;rrn1s·· 

f'.'iCCEPT,i;, 11 
IFCH.EQ.-100)STOP 
uO .:;8 I " 1 .. i'I 

2 UiLL GGC:XI I CDCOL.J:LFn .• L fHD 
D[:LTH =DELT:-1-:-�1� ( 1) 
TllcTnF=TIIEWII+DEL Tl·I 
'·/F ( 1) �:-101-h:cos (THETnF) 
\/F ( 2, �Rm! :<S 111 CTIH:Tr�F) 
''F (3) ='v'l (3) 

'/l( 1) ,_,'·/D i-8.?071,:GCIH.!F CDTl) 
'·/1 C 2) "O. 78"? 1 ,::GG: lOF rnr;�) 
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