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and organometallic chemistry and the advancement of polymetallic cluster chemistry. 

 
  

 

ABSTRACT:  The reductive chemistry of [Cp'2Ln(μ–H)(THF)x]y [Ln = Y, Dy, Tb; Cp' = 

(C5H4SiMe3)
1−; x = 2, 0 and y  = 2, 3] was examined to determine if these hydrides would be 

viable precursors for 4f n5d1 Ln2+ ions that could form 5d1-5d1 metal–metal bonded complexes.  

The hydrides were prepared by reaction of the chlorides, [Cp'2Ln(μ–Cl)]2, 1-Ln, with 

allylmagnesium chloride to form the allyl complexes, [Cp'2Y(η3
–C3H5)(THF)], 2-Ln, which 

were hydrogenolyzed.  The solvent-free reaction of solid 2-Ln with 60 psi of H2 gas in a Fischer-

Porter apparatus produced, in the Y case, the trimetallic species, [Cp'2Y(μ–H)]3, 3-Y, and in the 

*Revised Manuscript
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Dy and Tb cases, the bimetallic complexes [Cp'2Ln(μ–H)(THF)]2, 4-Ln (Ln = Dy, Tb).  The 

latter complexes could be converted to 3-Dy and 3-Tb by heating under vacuum.  Isopiestic data 

indicate that 3-Y solvates to 4-Y in THF.  Reductions of 4-Y, 4-Dy, and 4-Tb with KC8 in the 

presence of a chelate such as 2.2.2-cryptand or 18-crown-6 all gave reaction products with 

intense dark colors characteristic of Ln2+ ions.  In the yttrium case, with either chelating agent, 

the dark green product gives a rhombic EPR spectrum (g1 = 2.01, g2 = 1.99, g3 = 1.98, A = 24.1 

G) at 298 K.  However, the only crystallographically-characterizable products obtainable from 

these solutions were Ln3+ polyhydride anion complexes of composition, [K(chelate)]{[Cp'2Ln(μ–

H)]3(μ–H)}.  Reduction of 1-Y with KC8 in the presence of 2.2.2-cryptand also yields an 

intensely colored product with an axial EPR spectrum (gx = gy = 2.05, Ax = Ay = 35.5 G; gz = 

2.07, Az = 34.5) similar to that of (Cp'3Y)1− ion, but crystals were not obtained from this system.  

 

1.  INTRODUCTION 

  Recent results in reductive rare-earth metal chemistry have shown that the +2 oxidation 

state has been isolated for yttrium and all the lanthanides (except radioactive Pm) in the 

tris(cyclopentadienyl) ligand environments shown in eq 1.1,2,3,4  Density functional theory (DFT) 

calculations indicate that in this trigonal environment, a dz
2 orbital is low enough in energy for 

the new +2 ions to adopt a 4f n5d1 ground state with the lanthanides and a 4d1 electron 

configuration for yttrium.4,5,6  
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The 5d
1
 character of this electron configuration raises the possibility of generating rare-

earth metal complexes containing Ln−Ln bonds.  Traditionally, Ln−Ln bonding is considered 

unlikely due to the limited radial extension of the 4f orbitals.  In the (Cp'3Ln)
1− 

 and (Cp"3Ln)
1− 

 

complexes (Cp' = C5H4SiMe3; Cp" = C5H3(SiMe3)2), however, the additional electron is in a dz
2
 

orbital perpendicular to the trigonal plane of the three ring centroids.  Given the steric protection 

of the three cyclopentadienyl rings, (Cp'3Ln)
1−

 and (Cp"3Ln)
1−

 are not ideal complexes for 

forming bimetallic metal–metal bonded species.  In contrast, it was not known if bimetallic 

complexes like [(C5R5)2Ln(µ–X)]2 would have the appropriate geometries to lower a d orbital 

such that 4f
 n

5d
1
 electron configurations would be the ground state.  As described here, density 

functional theory (DFT) calculations on [Cp'2Y(µ–Cl)]2 and [Cp'2Y(µ–H)]2 suggested that 

reduction of these species could possibly lead to Y–Y bonds.  The hydrides are particularly 

interesting candidates since hydride ligands in rare-earth complexes are already involved in 

electron deficient three-center two-electron bonds,
7,8

 which could have a low-lying non-bonding 

orbital. 

Yttrium was chosen initially since its I = ½ nuclear spin is useful in NMR and EPR 

spectroscopic studies and (Cp')
1−

 was chosen since it has allowed the stabilization of dz
2 orbital 

and isolation of the +2 oxidation state to all the lanthanides and yttrium.
2,3,4,6

  Although 

bimetallic rare-earth metallocene hydrides such as [(C5H5)2Y(µ–H)(THF)]2 have been known 
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since 1982,9 the (Cp')
1−

-ligated analogs had not previously been reported in the literature.  As a 

result, multi-step syntheses of new rare-earth metal hydride complexes had to be developed to 

provide the starting materials including syntheses of the paramagnetic Dy
3+

 (µ = 10.6 µB) and 

Tb
3+

 (µ = 9.7 µB) complexes that required crystallographic verification at each step.  Reported 

here are the DFT calculations that originated this project as well as the synthesis of the hydrides, 

their reductive chemistry, and the polymetallic polyhydride complexes that were isolated from 

the reduction reactions. 

 

2. RESULTS AND DISCUSSION 

 DFT Calculations.  DFT calculations show that the LUMO of the trivalent [Cp'2Y
III(μ–

H)]2 and the HOMOs of the mixed valent [Cp'2Y
III(μ–H)2Y

IICp'2]
1− and the divalent {[Cp'2Y

II(μ–

H)]2}
2−, Figure 1, are overlapping yttrium d orbitals, which suggests that the reduction of 

[Cp'2Y(μ–H)]2 could lead to complexes with metal–metal bond character between the two 

yttrium ions.  The calculated Y–Y distances corroborate the metal–metal bonding:  the distance 

decreases from 3.52 Å in the neutral species [Cp'2Y(μ–H)]2 to 3.46 Å and 3.48 Å in the 

negatively charged {[Cp'2Y(μ–H)]2}
1− and {[Cp'2Y(μ–H)]2}

2−, respectively.  Similar Y–Y bonds 

are predicted for the bimetallic chloride complexes, Figure 2, where the Y–Y distance decreases 

from 4.03 Å in [Cp'2Y(μ–Cl)]2 to 3.79 Å and 3.59 Å in {[Cp'2Y(μ–Cl)]2}
1− and {[Cp'2Y(μ–

Cl)]2}
2−, respectively.  Applying Boys orbital localization10 to {[Cp'2Y(μ–H)]2}

2−, we obtained 

localized molecular orbitals that resemble the three-center two-electron bonds in B2H6, Figure 3. 

In addition, the localization procedure mixes some H contribution into the Y–Y bonding orbital, 

Figure 4, making its bonding character more prominent. 
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Figure 1.  LUMO of [Cp'2Y(μ–H)]2 (left), HOMO of {[Cp'2Y(μ–H)]2}
1− (middle), and HOMO 

of {[Cp'2Y(μ–H)]2}
2− (right) with a contour value of 0.04.  Hydrogen atoms in Cp' rings are 

omitted for clarity. 

 

Figure 2.  LUMO of [Cp'2Y(μ–Cl)]2 (left), HOMO of {[Cp'2Y(μ–Cl)]2}
1− (middle), and HOMO 

of {[Cp'2Y(μ–Cl)]2}
2− (right) with a contour value of 0.04.  Hydrogen atoms are omitted for 

clarity. 
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Figure 3.  Three-center two-electron localized molecular orbitals of {[Cp'2Y(μ–H)]2}
2− with a 

contour value of 0.04.  Hydrogen atoms in Cp' rings are omitted for clarity. 

 

Figure 4.  Y–Y bonding localized molecular orbital of {[Cp'2Y(μ–H)]2}
2− with a contour value 

of 0.04.  Hydrogen atoms in Cp' rings are omitted for clarity. 

 Synthesis of Bridging Hydride Complexes.  The synthesis of the hydride complexes 

was accomplished by hydrogenolysis of allyl precursors obtained from the bridging chlorides as 

shown in Scheme 1.  The bridging chlorides, [Cp'2Ln(μ–Cl)]2, 1-Ln (Ln = Y, Tb, Dy), were  
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Scheme 1.  Synthesis of [Cp'2Ln(μ–Cl)]2, 1-Ln, and Cp'2Ln(η
3
–C3H5)(THF), 2-Ln (Cp' = 

C5H4SiMe3). 
 

synthesized by treating anhydrous LnCl3 with 2 equivalents of KCp'.  The paramagnetic 

dysprosium and terbium complexes were characterized by X-ray crystallography, Figure 5, and 

found to have conventional bimetallic structures.  These structures are isomorphous with the 

yttrium,11 lutetium,12 ytterbium,13 and samarium14 analogues.  Their structural parameters are 

summarized in Table S3 in the Supplementary Content.   

  

Figure 5.  ORTEP depiction of [Cp'2Dy(μ–Cl)]2, 1-Dy (left), and Cp'2Dy(η3
–C3H5)(THF), 2-Dy 

(right), with thermal ellipsoids drawn at the 50% probability level.  Hydrogen atoms and co-

crystallized solvent molecules have been omitted for clarity.  Complexes 1-Tb, 2-Y, and 2-Tb 

are isomorphous. 

 Treatment of [Cp'2Ln(μ–Cl)]2 with 2 equivalents of allylmagnesium chloride (C3H5)MgCl 

yielded Cp'2Ln(η3
–C3H5)(THF), 2-Ln (Ln = Y, Tb, Dy), Scheme 1.  These complexes 
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crystallized as monometallic THF adducts as determined by X-ray crystallography, Figure 5.  

Bond distances and angles were unexceptional (Table S7).  In contrast, the reaction of 

[Cp'2Lu(μ–Cl)]2 with 2 equivalents of (C3H5)MgCl gave the unsolvated tetramer, [Cp'2Lu(η3
–

C3H5)]4.
11  

 
Complexes 2-Ln (Ln = Dy, Tb, Y) were treated with 60 psi of H2 gas using a Fischer-

Porter pressure reactor in the absence of solvent, Scheme 2.  The reaction of solid 2-Y with 60 

psi of H2 gas produced a white solid identified by X-ray crystallography as the trimetallic 

complex [Cp'2Y(μ–H)]3, 3-Y, Figure 6.  This is analogous to the previously reported [(1,3-

Me2C5H3)2Y(μ–H)]3.
15 

 
Scheme 2.  Reactions between 2-Y and 2-Ln (Ln = Dy, Tb) with 60 psi of H2.   
 
 In contrast, treatment of solid 2-Ln (Ln = Dy, Tb) with 60 psi of H2 gas produced 

colorless crystals identified by X-ray crystallography as the solvated bimetallic complexes 

[Cp′2Ln(μ–H)(THF)]2, 4-Ln, Scheme 2, (Ln = Dy, Tb), Figure 7.  These are analogous to [(1,3-
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Me2C5H3)2Y(μ–H)(THF)]2.
15  Structural details of 4-Ln are given in the Supplementary Content 

(S16). 

 
Figure 6.  ORTEP depiction of [Cp'2Y(μ–H)]3, 3-Y, with thermal ellipsoids drawn at the 50% 

probability level.  Co-crystallized solvent and hydrogen atoms, except for the bridging hydride 

ligands, have been omitted for clarity.  Complexes 3-Dy, and 3-Tb are isomorphous. 

 
Figure 7.  ORTEP depiction of [Cp'2Dy(μ–H)(THF)]2, 4-Dy, with thermal ellipsoids drawn at 

the 50% probability level.  Hydrogen atoms, except for the bridging hydride ligands, have been 

omitted for clarity.  Complex 4-Tb is isomorphous. 

Initial attempts to expose solutions of 2-Y to 1 atmosphere of H2 gas produced crystals of 

[Cp'2Y(THF)]2(μ–O),  5-Y, Figure 8, upon workup.  While the source of oxygen is unknown, 5-
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Y was consistently observed in solution phase hydrogenolysis reactions via 1H NMR 

spectroscopy with yields estimated at 20-50% based on the trimethylsilyl peaks.  In contrast, this 

impurity was not formed in the solvent-free gas/solid synthesis of 3-Y.  However, another 

unanticipated polymetallic product, [Cp'2Tb(μ–H)]2(μ–H)[Mg(THF)2](μ–H), 6-Tb, Figure 8, was 

obtained from the reaction between solid 2-Tb and dihydrogen gas.  The sample containing 2-Tb 

evidently had residual magnesium present from step 2 in Scheme 1. 

  
Figure 8.  ORTEP depiction of [Cp′2Y(THF)]2(μ–O), 5-Y, and [Cp'2Tb(μ–H)]2(μ–

H)[Mg(THF)2](μ–H), 6-Tb, with thermal ellipsoids drawn at the 50% probability level.  

Hydrogen atoms, except for the bridging hydride ligands, have been omitted for clarity. 

Signer isopiestic molecular weight studies of 3-Y in THF gave a molecular weight of ca. 

920 g/mol compared to 1093 g/mol for 3-Y and 873 g/mol for 4-Y.16  This suggests that the 

trimer converts to the bimetallic 4-Y in THF.  The reverse transformation was demonstrated for 

4-Dy and 4-Tb:  desolvation occurs at 10−5 torr at 70 °C over 4-5 days.  The mass loss of about  
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Scheme 3.  Conversion between 4-Ln and 3-Ln. 
 
14% was consistent with the percent mass of THF present in 4-Ln.  Recrystallization of the 

desolvated complexes from hexane and toluene produced crystals of 3-Dy and 3-Tb identified by 

X-ray crystallography, Scheme 3, Figure 6.  Structural details are given in the Supplementary 

Content (S13). 

 Reduction of Bridging Hydride Complexes.  The reduction of 4-Y with one equivalent 

of KC8 in the presence of one equivalent of 2.2.2-cryptand (crypt) or 18-crown-6 (crown) in THF 

produced an intensely colored solution typical of Y2+ complexes.3,4,5  The UV-vis spectrum of 

the dark green solution had a  
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Figure 9.  UV-vis spectra of 4-Ln reduction products:  7-Y (λ = 794 nm; e = 1000 M−1cm−1), 7-

Tb (λ = 837 nm; e = 840 M−1cm−1), and 7-Dy (λ = 715 nm; e = 640 M−1cm−1). 

 
broad absorbance at 794 nm with an extinction coefficient of approximately 1000 M

−1 
cm

−1
 

based on the moles of yttrium present in the sample, Figure 9.  In comparison, 

[K(crown)][Cp'3Y] and [K(crypt)][Cp'3Y] have absorptions at 530 nm (e = 2500 M
−1

cm
−1

) and 

520 nm (e = 4500 M
−1

cm
−1

).
3,4,5,6  

 The EPR spectra of the dark green product, 7-Y, at 77 K and 298 K are shown in Figure 

10.  Solution simulations were performed using Winsim
17

 whereas frozen spectra were simulated 

using PIP4WIN.
18

  This product displays a broad spectrum around g = 1.983 in good agreement 

with the weighted average of the principal anisotropic g-tensor components (1.987), Table 1.  A 

low intensity low field feature attributed to a minor impurity was also observed in both fluid and 

frozen solution spectra, but does not significantly hamper interpretation of the major 

spectroscopic features.  The assorted shoulders and inflection points in the first derivative 

spectrum are better resolved in the second derivative spectrum shown in Figure 11 with it 

simulation.  This permitted determination of the coupling pattern as a doublet (8.7 G) of 1:2:1 
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triplets (6.4 G) of 1:2:1 triplets (2.9 G) through simulation, Table 1.  The precise origin of this 

coupling is uncertain in light of the unknown structure of this product (see below).  The frozen 

solution spectrum exhibited axial symmetry with a small hyperfine coupling to the parallel 

component. 

  

Figure 10.  EPR spectrum of 7-Y at 77 K (left); 298 K (right).  Peak marked * is an unidentified 

impurity. Simulations based on data presented in Table 1. 

 

Figure 11.  Second derivative EPR spectrum of 7-Y.  Peak marked * is an unidentified impurity. 

Simulation based on data presented in Table 1. 

The solution spectrum is in marked contrast to other Y
2+

 complexes, such as (Cp'3Y)
1−

 (g = 

1.991, AY = 36.6 G) which display simple doublets in solution due to coupling to 
89

Y (100% 

abundant I = ½). The presence of additional hyperfine coupling and significantly reduced 
89

Y 

hyperfine suggest more delocalization of the unpaired electron density onto the ligands in this 

product than in (Cp'3Y)
1−

. 
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Compound g|| g^ A|| (G) A^ (G) giso A (G) 

7-Y 

 9-Y 

1.968 

2.068 

1.997 

2.052 

21.0 

34.5 

3.0* 

35.5 

1.983 

--- 

8.7 (d), 6.4 (t), 2.9 (t) 

--- 

* unresolved.  Value quoted is an upper limit based on linewidth 

Table 1.  EPR parameters for 7-Y, and 9-Y.   

 Attempts to crystallize the dark green product led only to the Ln
3+

 complex, 

[K(crown)]{[Cp'2Y(μ–H)]3(μ–H)}, 8-Y, which was identified by X-ray crystallography, Figure 

12.  The X-ray data were not of high quality, but were sufficient to show that the anion in 8-Y is 

analogous to those in the previously identified trimetallic tetrahydrides, 

[Li(THF)4]{[(C5H4C4H9)2Er(μ–H)]3(μ–H)}
19

 and [Na(THF)]{[(C5H5)2Lu(μ–H)]3(μ–H)}.
20

  

Hence, although there is EPR evidence for a metal-based radical present in the yttrium system 

and UV-Vis data are similar to other Y
2+

 complexes, crystallographic evidence was not obtained 

to confirm a metal-metal bond.   
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Figure 12.  ORTEP depiction of [K(crown)]{[Cp'2Y(μ–H)]3(μ–H)}, 8-Y, with thermal ellipsoids 

drawn at the 50% probability level.  Hydrogen atoms, except for the bridging hydride ligands, 

have been omitted for clarity.  

 Reductions of 4-Dy and 4-Tb in Et2O or THF with one equivalent of KC8 in the presence 

of crypt or crown, also produced solutions that had the intense dark colors of previously 

identified Dy2+ and Tb2+ complexes, Figure 9.3,4  Unfortunately, the solutions immediately began 

to lose their color before UV−vis spectra could be obtained.  As in the yttrium case, 

crystallization attempts gave the Ln3+ polyhydrides [K(crypt)]{[Cp'2Dy(μ–H)]3(μ–H)}, 8-Dy, and 

[K(crown)]{[Cp'2Tb(μ–H)]3(μ–H)}, 8-Tb, which were identified by X-ray crystallography.  As 

with 8-Y, the crystal data were not of high quality.  The 8-Ln complexes could arise from ligand 

re-distribution upon decomposition of the Ln2+ solutions.21,22  As has been seen in other studies 

of Ln2+ complexes, the specific ligand system is crucial to isolating single crystals of reduced 

species for crystallographic confirmation. 

Reduction of a Bridging Chloride Complex.  The reaction of [Cp'2Y(μ–Cl)]2, 1-Y, with 

1 equivalent of KC8 in the presence of 2.2.2-cryptand at −35 °C in THF also yielded a dark 

purple/black solution, 9-Y.  The EPR spectrum of this product at 77 K and its simulation, Figure 

13, show an axial signal with splitting characteristic of Y2+ (Table 1).4,5,6  Although no room 

temperature spectrum was observed due to rapid sample decomposition at room temperature,5 

the isotropic spectral parameters (g = 2.057, AY = 35.2 G) estimated from the anisotropic 

parameters are similar to that of (Cp'3Y)1− (g = 1.99 with AY = 36.6 G).5,6 No 

crystallographically-characterizable products were isolated from this mixture in contrast to 

(Cp'3Y)1− which readily crystallizes.6  Hence, this chloride system appears to be too unstable to 

provide crystallographic evidence of metal-metal bonded species. 
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Figure 13.  Frozen solution EPR spectra 9-Y. 

 
 
3.  CONCLUSION 

 The reduction of [Cp'2Ln(μ–H)(THF)]2, 4-Ln, with potassium graphite gives EPR-active, 

intensely-colored solutions consistent with the formation of Ln2+ ions, but no crystallographic 

evidence of Ln2+ products was obtained from the dark solutions.  Only the Ln3+ trimetallic 

tetrahydrides [K(chelate)]{[Cp'2Ln(μ–H)]3(μ–H)} (chelate = 18-crown-6 or 2.2.2-cryptand; Ln = 

Y, Dy, Tb) were identifiable from the product mixture.  Previous reductive studies of (C5H5)3Ln, 

(C5H4Me)3Ln, Cp"3Ln, Cp"2LnCp, and (indenyl)3Ln showed the importance of the ligand system 

for isolating crystals of complexes of Ln2+.  None of these other tris(cyclopentadienyl) ligand 

systems gave Ln2+ products that were as stable as the Cp'3Ln reduction products.  Evidently, 

bridging hydride or chloride ligands in conjunction with two Cp' ligands are not optimal for 

isolating crystallographically-characterizable new Ln2+ complexes, but this combination does 

lead to solutions which clearly reflect the spectroscopic properties of Ln2+ ions in systems that 

have the orbital characteristics for metal-metal bonding. 

 

4. EXPERIMENTAL DETAILS 

All manipulations and syntheses described below were conducted with the rigorous exclusion of 

air and water using standard Schlenk line and glovebox techniques under an argon or dinitrogen 

atmosphere.  Solvents were sparged with UHP argon and dried by passage through columns 
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containing Q-5 and molecular sieves prior to use.  Deuterated NMR solvents were dried over 

NaK alloy, degassed by three freeze-pump-thaw cycles, and vacuum transferred before use.  1H 

NMR spectra and 13C{1H} NMR spectra were recorded on Bruker GN500 MHz spectrometer 

operating at 125 MHz for 13C at 298 K unless otherwise stated and referenced internally to 

residual protio-solvent resonances.  Elemental analyses were conducted on a Perkin-Elmer 2400 

Series II CHNS elemental analyzer.  UV-vis spectra were collected at 298 K using a Varian Cary 

50 Scan UV-vis spectrophotometer.  EPR spectra were collected using X-band frequency (9.3-

9.8 GHz) on a Bruker EMX spectrometer equipped with an ER041XG microwave bridge, and 

the magnetic field was calibrated with DPPH (g = 2.0036).  Potassium bis(trimethylsilyl)amide 

(Sigma-Aldrich) was purified by dissolving in toluene, centrifuging to remove insoluble 

material, and removing solvent from the supernatant.  Allylmagnesium chloride (2.0 M solution 

in THF, Sigma-Aldrich), 1,4-dioxane (Sigma-Aldrich), and trimethylsilyl chloride (Alfa Aesar) 

were used as received.  2.2.2-cryptand (Sigma-Aldrich) and 18-crown-6 (Sigma-Aldrich) were 

placed under vacuum (10−3 Torr) before use.  H2 gas was used as received from Praxair.  

Anhydrous LnCl3 (Ln = Y, Tb, Dy),23 KC8,
24 and KC5H4(SiMe3) (KCp')25 were prepared 

according to the literature.  [Cp'2Y(μ–Cl)]2 was prepared by a modification of the literature 

procedure.11  

[Cp'2Dy(μ–Cl)]2, 1-Dy.  In an argon-filled glovebox, a solution of KCp' (374 mg, 2.23 

mmol) in diethyl ether (20 mL) was slowly added to a stirred solution of DyCl3 (300 mg, 1.12 

mmol) in diethyl ether (40 mL).  The resulting cloudy colorless mixture was stirred in a warm 

water bath overnight.  Diethyl ether was removed under vacuum and hexane (60 mL) was added 

to the colorless solids.  The resultant colorless mixture was stirred in a warm water bath 

overnight.  The solvent was removed under vacuum and the colorless solids were brought into a 
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glovebox free of coordinating solvents.  The colorless solids were extracted with hexane (60 

mL), and the slurry was centrifuged to remove colorless solids, presumably potassium chloride.  

The desired product was extracted from the colorless solids by centrifugation with additional 

hexane (40 mL).  The supernatants were collected, combined, and the volatiles were removed 

under vacuum, yielding 1-Dy as a colorless solid (0.360 g, 0.381 mmol, 68%).  Colorless single 

crystals of 1-Dy suitable for X-ray diffraction were grown from a concentrated solution of 

hexane at −35 °C overnight.  IR:  3988w, 3971w, 3957w, 3941w, 3931w, 3793w, 3717w, 

3653w, 3642w, 3551w, 3403w, 3174w, 3099w, 3083w, 3069w, 2953s, 2893m, 2796w, 2714w, 

2669w, 2616w, 2552w, 2498w, 2474w, 2420w, 2384w, 2349w, 2266w, 2235w, 2148w, 2081w, 

2001w, 1937w, 1873w, 1773w, 1736w, 1676w, 1665w, 1634w, 1578w, 1443s, 1405s, 1361s, 

1322w, 1311m, 1245s, 1194w, 1174s, 1066m, 1042s, 906s, 850s, 837s, 786s, 779s, 757s, 747s, 

690s, 631s. Anal.  Calcd for C32H52Si4Dy2:  C, 40.67; H, 5.55.  Found:  C, 41.04; H, 5.69. 

[Cp'2Tb(μ–Cl)]2, 1-Tb.  As described for 1-Dy, TbCl3 (300 mg, 1.20 mmol) and KCp' 

(400 mg, 2.40 mmol) were combined to produce 1-Tb as light yellow solids (0.423 g, 0.457 

mmol, 76%).  Colorless single crystals of 1-Tb suitable for X-ray diffraction were grown from a 

concentrated solution of hexane and toluene at −35 °C overnight.  IR:  3972w, 3939w, 3794w, 

3728w, 3655w,  3503w, 3177w, 3096w, 3085w, 3066w, 2950w, 2890m, 2793w 2712w, 2665w,  

2616w, 2554w, 2474w, 2421w, 2348w, 2232w, 2151m, 2022w, 1937w, 1871w, 1769w, 1734w, 

1673w, 1634w, 1579w, 1442s, 1403m, 1362s, 1322w, 1309w, 1245s, 1196w, 1173s, 1067w, 

1067w, 1041s, 904s, 840s, 787s, 752s, 692s, 630s. Anal.  Calcd for C32H52Si4Tb2:  C, 40.98; H, 

5.59.  Found:  C, 41.35; H, 5.54.  

Cp'2Y(η
3
–C3H5)(THF), 2-Y.  In a nitrogen-filled glovebox, 1-Y (0.319 g, 0.400 mmol) 

was dissolved in toluene (20 mL) to yield a clear colorless solution.  Allylmagnesium chloride 
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(2.0 M solution in THF, 0.400 mL, 0.800 mmol) was added dropwise, via a syringe, to the stirred 

solution.  The resulting bright yellow solution was stirred overnight.  Volatiles were removed 

under vacuum, and then hexane (15 mL) and 1,4-dioxane (0.2 mL) were added.  The resulting 

yellow mixture was stirred for 3 h and centrifuged to remove colorless solids.  The yellow 

supernatant was filtered and isolated.  Additional product was extracted from the colorless solids 

by centrifugation with more hexane (20 mL).  The yellow supernatants were combined and the 

solvent was removed under vacuum to yield 2-Y as a crude yellow powder (0.337 g, 0.708 

mmol).  The crude yellow powder was crystallized from a concentrated hexane solution at −35 

°C (0.225 g, 0.473 mmol, 60%) and identified as 2-Y.  Yellow crystals of 2-Y suitable for X-ray 

diffraction were grown from a concentrated solution of hexane at −35 °C overnight.  
1H NMR 

(C6D6):  δ 6.89 (p, JHH = 12.5 Hz, 1H, (CH2)2CH), 6.48 (t, JHH = 2.5 Hz, 4H, C5H4SiMe3), 6.14 (t, 

JHH = 2.5 Hz, 4H, C5H4SiMe3), 3.51 (t, JHH = 6.5 Hz, 4H, THF), 3.04 (d, JHH = 10 Hz, 4H, 

(CH2)2CH), 1.30 (t, JHH = 2.5 Hz, 4H, THF), 0.17 (s, 18H, C5H4SiMe3).  
13C{1H} NMR (C6D6):  

δ 150.95 (CH2)2CH, 127.9 (C5H4SiMe3), 118.78 (C5H4SiMe3), 112.37 (C5H4SiMe3), 70.24 

(THF), 63.74 [(CH2)2CH], 23.09 (THF), 0.04 (C5H4SiMe3).  IR:  3736w, 3683m, 3649w, 3070m, 

2954s, 2899m, 2854w, 2802w, 2697w, 2554w, 2477w, 2411w, 2370w, 2250w, 2093w, 2005w, 

1937w, 1873w, 1717w, 1685w, 1638w, 1545m, 1506w, 1456m, 1440s, 1403m, 1387w, 1362w, 

1317m, 1251s, 1202m, 1176w, 1081s, 1045w, 1018w, 971w, 924s, 855s, 838s, 826s, 818s, 780s, 

751s, 741s, 726m, 690s, 674s, 666s, 637s, 626s. 

Cp'2Dy(η
3
–C3H5)(THF), 2-Dy.  As described for 2-Y, 1-Dy (0.235 g, 0.249 mmol) and 

allylmagnesium chloride (2.0 M solution in THF, 0.269 mL, 0.538 mmol) were combined to 

produce 2-Dy as a yellow powder (0.272 g, 0.495 mmol).  The crude yellow powder was 

crystallized from a concentrated hexane solution at −35 °C (0.211 g, 0.384 mmol, 77%) and 
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identified as 2-Dy.  Yellow crystals of 2-Dy suitable for X-ray diffraction were grown from a 

concentrated solution of hexane and toluene at −35 °C overnight.  IR:  3931w, 3920w, 3801w, 

3683m, 3627m, 3608m, 3083m, 2952s, 2895s, 2851m, 2710w, 2670w, 2618w, 2551w, 2496w, 

2472w, 2425w, 2353w, 2271w, 2237w, 2083w, 2001w, 1934w, 1872w, 1731w, 1640w, 1560w, 

1548w, 1442s, 1403s, 1362s, 1311m, 1253s, 1243s, 1178s, 1133w, 1110w, 1098s, 1041s, 978w, 

952w, 907s, 890w, 871s, 860s, 849s, 840s, 828s, 816s, 796s, 784s, 771s, 762s, 750s, 739s, 724s, 

716m, 702m, 692s, 681m, 657m, 636s, 623s. 

Cp'2Tb(η
3
–C3H5)THF, 2-Tb.  As described for 1-Y, 1-Tb (0.384 g, 0.415 mmol) and 

allylmagnesium chloride (2.0 M solution in THF, 0.443 mL, 0.886 mmol) were combined to 

produce 2-Tb as an orange/yellow oily solid (0.391 g, 0.716 mmol).  The crude orange/yellow 

oil was crystallized from a concentrated hexane solution at −35 °C (0.261 g, 0.478 mmol, 58%) 

and identified as 2-Tb.  Yellow crystals of 2-Tb suitable for X-ray diffraction were grown from 

a concentrated solution of hexane at −35 °C overnight. IR:  3925w, 3790w, 3679w, 3598w, 

3079w, 2951s, 2893m, 2714w, 2667w, 2612w, 2551w, 2477w, 2421w, 2348w, 2083w, 1930w, 

1873w, 1731w, 1641w, 1550w, 1442m, 1406w, 1359w, 1339w, 1309w, 1290w, 1247s, 1176s,  

1129w, 1063w, 1039s, 1007w, 954w, 904m, 836s, 765s, 750s, 684m, 638m, 626m. 

[Cp'2Y(μ–H)]3, 3-Y.  In a nitrogen-filled glove box, a Fischer-Porter high pressure 

apparatus was charged with solid yellow 2-Y (0.086 g, 0.18 mmol), sealed, and attached to a 

high-pressure gas line.  The pressure in the vessel was reduced to 0.5 atm and slowly charged 

with H2 (60 psi) before being resealed and left overnight.  The sample changed from yellow to 

colorless after 2 h.  After 24 hours, residual hydrogen was removed under vacuum.  The sample 

was transferred to an argon-filled glovebox and collected as a colorless solid (0.074 g, 0.0565 

mmol, 95%) identified as 5-Y. Colorless crystals of 5-Y suitable for X-ray diffraction were 
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grown from a concentrated solution of hexane at −35 °C overnight.  
1H NMR (C6D6):  δ 7.02 (t, 

JHH = 2.5 Hz, 12H, C5H4SiMe3), 6.45 (t, JHH = 2.5 Hz, 12H, C5H4SiMe3), 2.85 (t, JYH = 32.5 Hz, 

31H, Y–H), 0.23 (s, 54H, C5H4SiMe3).  13C{1H} NMR (C6D6): δ 128.4 (C5H4SiMe3), 118.71 

(C5H4SiMe3), 113.17 (C5H4SiMe3), −0.66 (C5H4SiMe3).  IR:  3938w, 3790w, 3691w, 3598w, 

3083m, 2952s, 2893s, 2849m, 2714w, 2667w, 2614w, 2554w, 2481w, 2383w, 2346w, 2239w, 

2087w, 2003w, 1937w, 1874w, 1721w, 1631w, 1442s, 1404s, 1362s, 1309w, 1248s, 1178s, 

1102w, 1040s, 979w, 908s, 837s, 769s, 750s, 688s, 640s, 626s. 

[Cp'2Dy(μ–H)(THF)]2, 4-Dy.  As described for 3-Y, 2-Dy (0.106 g, 0.193 mmol) was 

reacted in a Fischer-Porter apparatus charged with H2 gas (60 psi) for 24 hours to produce a 

white solid (0.098 g, 0.096 mmol, 99 %) identified as 4-Dy.  Colorless crystals of 4-Dy suitable 

for X-ray diffraction were grown from a concentrated solution of hexane and toluene at −35 °C 

overnight.  IR:  3927w, 3685w, 3647w, 3600w, 3409w, 3086w, 2954s, 2895m, 2714w, 2672w, 

2618w, 2481w, 2348w, 2085w, 2001w, 1932w, 1871w, 1718w, 1631w, 1444s, 1403s, 1361s, 

1311m, 1247s, 1178s, 1043s, 9745w, 906s, 840s, 773s, 754s, 686m, 640m, 628m. 

[Cp'2Tb(μ–H)(THF)]2, 4-Tb.  As described for 3-Y, 2-Tb (0.240 g, 0.439 mmol) was 

reacted in a Fischer-Porter apparatus charged with H2 gas (60 psi) for 24 hours to produce a 

white solid (0.214 g, 0.211 mmol, 96.2 %) identified as 4-Tb.  Colorless crystals of 4-Tb 

suitable for X-ray diffraction were grown from a concentrated solution of hexane at −35 °C 

overnight.  IR:  3675w, 3657w, 3606m, 3081w, 3063w, 2952s, 2893m, 2710w, 2391w, 2267w, 

2087w, 1932w, 1869w, 1634w, 1440m, 1403w, 1362m, 1247s, 1174s, 1129w, 1041s, 904s, 

829s, 775s, 750s, 686m, 636s. 

[Cp'2Y(THF)]2(μ–O), 5-Y.  2-Y (0.168 g, 0.353 mmol) was dissolved in hexane (8 mL) 

in a 100 mL Teflon sealable Schlenk type flask.  The bright yellow solution was degasses 
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through three freeze, pump, thaw cycles. The flask was stirred in an ice bath and charged with 1 

atm of H2 gas, was allowed to stir for 25 minutes, after which the solution was clear and 

colorless. The flask was degassed and charged with H2 gas a total of three times.  The solvent 

was removed under vacuum.  The product was isolated as a colorless solid (0.140 g, 0.158 

mmol).  The product was crystalized in minimal hexane and toluene.  Colorless single crystals of 

4 suitable for X-ray diffraction were grown from a concentrated solution of hexane at −35 °C 

overnight.  1H NMR (C6D6):  δ 6.72 (t, JHH = 2.5 Hz, 8H, C5H4SiMe3), 6.31 (t, JHH = 2.5 Hz, 8H, 

C5H4SiMe3), 0.28 (s, 36H, C5H4SiMe3). 

[Cp'2Dy(μ–H)]3, 3-Dy.  In an argon-filled glovebox white, 4-Dy (185 mg, 0.181 mmol) 

was placed in a sublimation tube, sealed, and placed on a high vacuum line.  The sample was 

placed under vacuum (10−5 Torr), while heating at 70 °C for 4 days.  The product was isolated as 

an off-white, light yellow solid (0.160 g, 0.183 mmol), identified as 3-Dy.  Colorless single 

crystals suitable for X-ray diffraction were grown from a concentrated solution of hexane and 

toluene at −35 °C. IR:  3938w, 3683m, 3606m, 3542w, 3407w, 3083m, 2952s, 2895s, 2714w, 

2667w, 2616w, 2556w, 2494w, 2474w, 2421w, 2385w, 2351w, 2235w, 2087w, 1997w, 1932w, 

1874w, 1714w, 1603m, 1444s, 1401s, 1361s, 1311s, 1252s, 1176s, 1041s, 904s, 852s, 821s, 

789s, 759s, 687s, 638s, 628s. Anal.  Calcd for C48H81Si6Dy3: C, 43.87; H, 6.21.  Found: C, 

43.65; H, 6.16. 

[Cp'2Tb(μ–H)]3, 3-Tb.  In an argon-filled glovebox, 4-Tb (317 mg, 0.313 mmol) was 

placed in a sublimation tube, sealed, and placed on a high vacuum line.  The sample was placed 

under vacuum (10−5 Torr), while heating at 55 °C for 5 days.  The product was isolated as an off-

white solid (266 g, 0.306 mmol), identified as 3-Tb.  Colorless single crystals suitable for X-ray 

diffraction were grown from a concentrated solution of hexane and toluene at −35 °C.  IR:  
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3940w, 3653m, 3086s, 2944s, 2897s, 2856m, 2710w, 2667w, 2618w, 2556w, 2479w, 2348w, 

2230w, 2086w, 1939w, 1874w, 1725w, 1632w, 1444s, 1406s, 1362s, 1311s, 1245s, 1178s, 

1048s, 902s, 870s, 842s, 814s, 789s, 765s, 748s, 720s, 698s, 638s, 628s.  Anal.  Calcd for 

C48H81Si6Tb3:  C, 44.23; H, 6.26.  Found:  C, 44.04; H, 6.22. 

[K(18-crown-6)]{[Cp'2Y(μ
2
–H)]3(μ

3
–H)}, 8-Y, from 3-Y.  In an argon-filled glovebox, 

3-Y (90.5 mg, 0.103 mmol), and 2.2.2 cryptand (39 mg, 0.10 mmol) were combined, and 

dissolved in THF (1.5 mL).  This solution was slowly added to a stirring slurry of KC8 (14 mg, 

0.10 mmol) in THF (0.5 mL).  After the solution was added, it quickly became a dark green.  The 

solution was allowed to stir for 4 minutes and was filtered to remove a black precipitate, 

presumably graphite.  The dark green filtrate was layered with pentane and placed in a freezer at 

−35 °C overnight to produce a dark green oily solid.  The product was isolated as a tacky green 

solid (110 mg).  Dark green single crystals identified as 5-Y, could be grown from a concentrated 

solution of Et2O layered with pentane at −35 °C, or from a vapor diffusion of pentane into a 

concentrated solution of Et2O at −15 
°C.  IR:  3703w, 3081w, 2953m, 2888m, 2811m, 1558w, 

1478w, 1457w, 1444w, 1407w, 1356m, 1298w, 1258m, 1240m, 1182m, 1135m, 1105s, 1082m, 

1061w, 1038m, 1019w, 1011w, 993w, 950m, 932m, 906m, 884w, 868w, 830s, 786w, 755s, 

748s, 740m, 731m, 715w, 706w, 695w, 686w, 675w, 665w, 650w, 639w, 632w, 624w, 616w.  

UV-vis (THF) λmax = 794 nm; e = 1000 M−1cm−1. 

[K(2.2.2-cryptand)]{[Cp'2Dy(μ–H)]3(μ
3
–H)}, 8-Dy, from 4-Dy.  In an argon-filled 

glovebox, 4-Dy (77 mg, 0.075 mmol), and 2.2.2 cryptand (28 mg, 0.075 mmol) were combined, 

and dissolved in THF (3 mL).  This solution was slowly added to a stirring slurry of KC8 (10 mg, 

0.075 mmol) in THF (0.5 mL).  After the solution was added, it quickly became a dark blue.  The 

solution was allowed to stir for 3 minutes and filtered to remove a black precipitate, presumably 
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graphite.  The dark blue filtrate was layered with pentane and placed in a freezer at −35 °C 

overnight to produce a dark blue oily solid.  Dark black single crystals identified as 5-Dy, could 

be grown from a concentrated solution of ether layered with pentane, or from a vapor diffusion 

of pentane into a concentrated solution of ether at −15 °C. IR:  3706w, 3096w, 3081w, 3066w, 

2952, 2886s, 2819.42m, 2762w, 2728w, 2620w, 2498w, 2359w, 2091w, 1930w, 1869w, 1604w, 

1477m, 1459m, 1444m, 1403w, 1361s, 1297m, 1242s, 1180s, 1134s, 1106s, 1077s, 1059m, 

1039s, 987w, 952s, 932m, 907s, 830s, 770s, 751s, 686m, 643m, 626s.  UV-vis (THF) λmax = 

715 nm; e = 640 M−1cm−1. 

[K(18-crown-6)]{[Cp'2Tb(μ–H)]3(μ
3
–H)}, 8-Tb, from 4-Tb.  In an argon-filled 

glovebox, 4-Tb (101 mg, 0.0977 mmol) and 2.2.2 cryptand (26 mg, 0.10 mmol) were combined, 

and dissolved in ether (2 mL).  The solution was slowly added to a stirring slurry of KC8 (14 mg, 

0.10 mmol) in ether (0.5 mL).  After the solution was added, it quickly became dark blue.  The 

solution was allowed to stir for 4 minutes and filtered to remove a black precipitate, presumably 

graphite.  The dark blue filtrate was layered with pentane and placed in a freezer at −35 °C 

overnight to produce a dark green oily solid.  Dark blue single crystals identified as 5-Tb, were 

grown from a concentrated solution of ether layered with pentane at −15 °C. IR:  3705m, 3083m, 

2954s, 2897s, 2826m, 2793w, 1662w, 1495w, 1471m, 1443m, 1405w, 1353m, 1311w, 1284w, 

1245s, 1182m, 1112s, 1069w, 1037s, 986w, 963m, 945w, 932w, 907s, 889w, 867m, 838s, 826s, 

774s, 764s, 750s, 738m, 725m, 694m, 640m, 626m.  UV-vis (THF) λmax = 837 nm; e = 840 

M−1cm−1.  

X-ray Crystallographic Data.  Crystallographic information for complexes 1-Dy, 1-Tb, 

2-Y, 2-Dy, 2-Tb, 3-Y, 3-Dy, 3-Tb, 4-Dy, 4-Tb, 5-Y, 6-Tb, 8-Y, 8-Dy, and 8-Tb is summarized 

in the Supporting Content. 
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Computational Details.  DFT calculations were performed using the TPSS26 meta-

generalized gradient approximation (meta-GGA) functional with Grimme’s D3 dispersion 

correction.27,28 Initial geometry optimizations were carried out using basis sets of valence 

double-zeta quality with polarization functions on nonhydrogen atoms, def2-SV(P).29  Numerical 

vibrational normal mode analyses were performed to confirm that the optimized structures are 

minima on the ground-state potential energy surface.  Starting from each optimized structure, a 

second geometry optimization was performed using basis sets of valence triple-zeta quality plus 

polarization, def2-TZVP.30  Both geometry optimizations were performed in C1 symmetry till the 

Cartesian coordinate gradient was converged to  10-4 a.u.  The 28 core electrons of yttrium 

were modeled by Stuttgart-Cologne scalar-relativistic effective core potential (ECP).31  Fine 

density grids of at least m4 quality32 were employed for numerical integration.  Solvent effects 

were included by the continuum solvation model (COSMO)33 using the dielectric constant of 

THF (ε = 7.52).
34  Boys orbital localization10 was performed for the highest 11 occupied orbitals 

(1 Y–Y bond, 8 (Cp')1− π2, and 2 H 1s) of {[Cp'2Y(μ–H)]2}
2−.  All calculations were performed 

using TURBOMOLE 7.0.35   

EPR Spectroscopy.  EPR spectra were collected using X-band frequency (9.3-9.8 GHz) 

on a Bruker EMX spectrometer equipped with an ER041XG microwave bridge and the magnetic 

field was calibrated with DPPH (g = 2.0036).  Solution EPR spectra were simulated using 

WINSIM17 whereas frozen spectra were simulated using PIP4WIN.18 
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Appendix A. Supplementary data  

Computational details, selected bond distances, and crystallographic data (CIF) for 11-

Dy, 1-Tb, 2-Y, 2-Dy, 2-Tb, 3-Y, 3-Dy, 3-Tb, 4-Dy, 4-Tb, 5-Y, 6-Tb, 7-Y, 7-Dy, and 7-Tb are 

available free of charge via the Internet.  Crystallographic data for complexes 1-Dy (CCDC no. 

1529527), 1-Tb (1529518), 2-Y (1529515), 2-Dy (1529519), 2-Tb (1529520), 3-Y (1529517), 

3-Dy (1529529), 3-Tb (1529528), 4-Dy (1529521), 4-Tb (1529523), 5-Y (1529516), 6-Tb 

(1529522), 8-Y (1529524), 8-Dy (1529525), 8-Tb (1529526) can be obtained free of charge 

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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