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ABSTRACT 

 

A MEMS-based microwave Pixel has been developed for use with an Ultra-

wideband (UWB) radar probe for high-resolution 3-D non-contact, non-ionizing 

tomographic diagnostic imaging of the thorax. In the proposed system, an UWB 

radar transmits a 400 ps duration pulse in the frequency range of 3.1 GHz to 5.1 

GHz. The transmitted pulse penetrates through the tissues and is partially reflected 

at each tissue interface characterized by a complex permittivity change. A suitable 

microwave lens focuses the reflected wavefront on a 2-D array of MEMS-based 

microwave Pixels to illuminate each Pixel to a tiny 2-D section of the reflected 

wavefront. Each Pixel with a footprint area of 595 x 595 µm2 is designed to have 

144 parallel connected microfabricated inductors, each with an inductance of 

12.439 nH, and a single 150 µm×150 µm microfabricated deformable diaphragm 

based variable capacitor to generate a voltage which is the dielectric signature of 

the respective tissue section. A 2-D array of such Pixels can be used to generate 

a voltage map that corresponds to the dielectric property distribution of the target 

area. The high dielectric contrast between the healthy and diseased tissues, 

enable a high precision diagnostics of medical conditions in a non-invasive non-

contact manner. This thesis presents the analytical design, 3-D finite element 

simulation results, and a fabrication process to realize the proposed microwave 

imaging Pixel. The proposed Pixel with total inductance of 86.329 pH and 

capacitance tuning range of 1.68:1, achieved a sensitivity of 4.5 aF/0.8 µA.m-1 to 

generate tomographic coronal imaging slices of human thorax deep upto 4.2 cm 

enabling a theoritical lateral resolution of 0.59 mm. 
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CHAPTER 1  

INTRODUCTION 

 

This chapter presents the objectives of this thesis, explaining the 

importance of the present work and its outcome. A summary of present imaging 

techniques and the need for new transformative medical imaging systems is clearly 

explained. The operating principle of a proposed novel microwave imaging Pixel, 

a MEMS transducer, designed to integrate with an UWB radar system for medical 

tomographic imaging is presented. Next to this, the principal results of this 

research work are listed and finally, the thesis organization is presented. 

1.1 Goals 

According to the cause of death database of Statistics Canada [1], cancer 

being the lead cause with a percentage of 29.8, heart diseases and heart stroke 

accounts 19.8% and 5.3%. The bar chart depicting these numbers is shown in 

Figure 1.1. The survival rate in the case of top four diseases can be increased by 

an effective diagnostic imaging system, which is quick with real time results, is less 

expensive and is operable at doctor’s room. Moreover, an imaging system which 

is completely safe with no ionization is essential for frequent screening programs 

aiming for early detection of any abnormalities. 

This goal can be realized by combining radar techniques with microwave 

technology resulting in a promising new imaging technique called microwave radar 

tomography [2]. Tomography is defined as any method which sectionalize the 
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target volume at different depths to get a better insight of the target. The motivation 

behind this research comes from the fact that microwaves can travel through the 

human tissues as a function of tissue electrical properties like permittivity and 

conductivity. Any change in these properties alters the absorption, transmission, 

reflection, and refraction of the microwave signal when passed through that tissue. 

The specific goal of this thesis is to design and simulate a microwave imaging 

transducer, named as a microwave imaging Pixel, that captures the spatial 

distribution of the reflected microwave energy and affects a capacitance change 

corresponding to the strength of the signal incident on the Pixel. 

 

Figure 1.1.  Statistics of leading causes of death in Canada [1]. 

 

The basic operating principle of the developed MEMS microwave imaging 

Pixel can be explained using a conceptual geometry as shown in Figure 1.2. The 

Pixel is comprised of a microfabricated spiral inductor (acting as a small loop 

antenna) and a microfabricated vibrating diaphragm variable capacitor shown in 
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Figure 1.2. The sensor is operated when the microwave radiation, reflected from 

the human tissues, is picked up by the microfabricated spiral inductor. This 

generates a voltage across the inductor corresponding to the magnetic energy 

level of the reflected portion of the wavefront. This voltage is applied across the 

electrodes of a MEMS capacitive sensor formed by a deformable diaphragm and 

a fixed backplate. Being charged with a constant DC bias voltage, the capacitance 

of the device is changed proportional to the RMS (root mean square) voltage of 

the radiated signal captured by the Pixel [3]. This capacitance change is converted 

to a voltage signal using an appropriate transimpedance amplifier as shown in 

Figure 1.2. 

 

Figure 1.2.  MEMS Microwave Pixel. 

The objectives of this thesis are to develop a mathematical model for 

determining the attenuation and duration of the microwave signal passing through 

the human tissues while considering various propagation losses in the tissues. To 

record the spatial distribution of the reflected microwave energy, a MEMS based 

microwave Pixel, that collects weak microwave signals and generates a 
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capacitance in response to the signal strength of the reflected signal is designed. 

The microwave Pixel operation is simulated using MATLAB®, OrCAD® PSpice®, 

and InstelliSuite®.  

In summary, this thesis investigates the design and development of novel 

microwave Pixel for human thorax imaging, specifically, the goals of this thesis are 

as follows: 

1) To design a MEMS based microwave Pixel that can be used as an integral 

part of an ultra-wideband radar to generate a tomographic image of the 

human thorax. The developed Pixel device should be compact in size (far 

less than the wavelength of operation), sensitive enough to collect the weak 

reflections from the deeper human tissues and should be frequency 

independent over the UWB frequency range of 3.1 GHz – 5.1 GHz. 

2) To study the effect of microwave radiation on various human tissues and to 

understand their frequency dependent electrical characteristics like 

complex permittivity and conductivity using the models developed in [24], 

[25], [26]. 

3) To develop an accurate analytical model to calculate the attenuation of an 

UWB signal as it propagates through the human body where the human 

body is modeled as a layered structure in which each layer is characterized 

by its complex dielectric properties with specific transmission and reflection 

coefficients. 

4) To carry out FDTD simulation of the proposed human thorax model, to study 

the time behavior of the pulse propagated through the tissues and to 
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determine the propagation time and estimated echo time. 

5) To study the operation of the Pixel circuit, which comprises of a loop 

inductor connected in parallel to a MEMS vibrating diaphragm variable 

capacitor, to obtain a flat frequency response over a 2 GHz bandwidth and 

to carry out the lumped element circuit model simulation of the Pixel circuit 

using OrCAD® PSpice® to determine the design parameters of the Pixel loop 

inductor. 

6) To carry out finite element modeling of Pixel capacitor to optimize the device 

geometry while achieving the desired sensitivity and frequency independent 

operation. 

7) To develop a fabrication process to fabricate the proposed microwave Pixel. 

1.2 Background 

1.2.1. Existing technologies 

A brief review of existing technologies and technology trends is required to 

clearly understand the necessity of a new transformative drive in diagnostic data 

acquisition technologies. The basic principle of bio-medical diagnostic imaging 

system is to expose the target biological tissue with a permissible amount of 

energy such as electromagnetic (EM), magnetic, ultrasound, nuclear, etc. and then 

collect the signal interaction response data of the tissue using appropriate 

sensors/transducers/detectors placed around/on/near the target. The collected 

data is processed using suitable algorithms to produce an image of the target 

organ/tissue. Present techniques for diagnostic imaging such as X-ray, ultrasound, 

Computed Tomography (CT), Positron Emission Tomography (PET), PET-CT, 
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Single Photon Emission CT (SPECT), radioactive isotopes, and Magnetic 

Resonance Imaging (MRI) produce a visual display or representation of anatomical 

and functional information of the organs inside the human body [4]. Figure 1.3 

provides an illustration of typical medical diagnostic imaging techniques.  

 

Figure 1.3.  Basic Principle of medical diagnostic imaging. 

Each of these techniques has its relative advantages and disadvantages. 

For example, ultrasound imaging is non-invasive and non-ionizing, but has 

difficulty in penetrating through the bones and the accuracy highly depends on the 

operator. Also, it has the risk of false positive results leading to unnecessary 

biopsies. On the other hand, X-ray provides higher resolution images but it 

exposes the body to harmful radiation. In terms of cost, MRI, PET, and SPECT are 

expensive. Although CT presents excellent spatial resolution, CT is less 

informative in soft-tissue functional imaging than PET [5]. However, PET cannot 

compete with CT in terms of spatial resolution. Commercial high speed 640 slice 
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CT scanners with an ability to capture a complete high-resolution image of the 

heart muscle in less than one-third of a second are available [6]. Available high-

resolution CT scanners allow the clinicians to acquire and reconstruct images with 

0.625 mm to 1.25 mm thin slices [7]. The new 11.75 T INUMAC MRI is able to 

image an area of about 0.1 mm, or 1000 neurons, and help us to see changes 

occurring as fast as one-tenth of a second [8]. This is far superior to the standard 

MRI resolution of 1 mm per second [8]. There are also some emerging high-

resolution imaging techniques that work on the level of molecules and genes and 

can reveal pathological processes at work long before they become apparent on 

the larger scale such as information of tumors [9].  

1.2.2. Need for new-transformative in medical imaging systems 

Despite the stunning progress in diagnostic technologies in last two 

decades which resulted in significantly improved accuracies and image qualities, 

one thing that has not changed is patient experience, which has never been 

friendly. Invasiveness, risk of infection, risk of ionizing radiation exposure, lengthy 

procedure, long waiting time, lengthy waits for the result (except in the case of 

ultrasound), uncomfortable, embarrassing, etc. are few common complaints from 

the patients about their experiences. A review of the existing medical diagnostics 

systems concludes that, “There is, at present, no technique for the imaging of 

internal structures of the human body which is universally applicable to all tissues, 

has high-resolution, is inexpensive, uses non-ionizing radiation, creates images in 

real-time, and can be carried out in the office of a physician or dentist” [2]. 

Consequently, it is of paramount importance to develop low cost portable high-
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resolution, real-time, non-invasive, non-ionizing, and non-contact diagnostic 

imaging solutions to facilitate their use in primary care offices for faster diagnosis 

and treatment. Though the digital technology enables the processing of the 

diagnostic data using advanced image processing algorithms to obtain sharper 

high contrast images, the outcome or the efficiency of the entire imaging system 

in fact is limited by the capabilities of the transducer (imaging) hardware. 

In this context, this thesis presents the design of a MEMS microwave Pixel 

that can be used in an ultra-wideband (UWB) radar to enable 3-D high-resolution 

biomedical diagnostic imaging at a lower cost. The scientific basis behind the 

proposed approach is to exploit the interaction and backscattering properties of 

microwave energies with biological tissues using emerging MEMS based devices 

to generate superior performance high-resolution 3-D diagnostic images. Due to 

miniature size and batch fabrication capability of the MEMS technology, the 

proposed technique has a high potential to develop a hand-held imaging system 

in near future. Having a non-radiation imaging alternative is particularly attractive 

in children and pregnant women. 

1.3. Principal Results 

The principal results of this research work are summarized as follows: 

1) A MEMS based microwave Pixel of footprint size 595 µm × 595 µm, 

operating in the UWB frequency range of 3.1 GHz - 5.1 GHz is designed for 

use in an UWB radar to image a human thorax deep upto to 4.2 cm, from a 

standoff distance of 4.8 cm from the human target. The designed Pixel is 



 

9 
 

capable enough to detect the magnetic component of the tissue reflected 

electromagnetic signal with a strength as low as 0.8 µAm-1 to affect a Pixel 

capacitance change of 4.5 aF. 

2) The proposed radar system transmits a 400 ps gaussian pulse having a 

pulse repetition period (PRP) of 1.8 ns and a spectral distribution of 3.1 - 

5.1 GHz, onto the human thorax. The field of view (FOV) is the section of 

the human thorax that is necessary to be imaged. FOV of the present 

application is 32.8 cm × 32.8 cm as shown in Figure 1.4. A matrix array of 

approximately 360000 Pixel elements would be required to provide a 

sufficient cross-sectional view of human thorax, with each Pixel size of 595 

µm and a Pixel array of size 14 inch × 14 inch and a theoretical lateral 

resolution of 0.59 mm. 

 

Figure 1.4.  Estimated Pixel array size of 14 × 14 inch to image FOV of 32.8 × 32.8 cm. 



 

10 
 

3) A study on frequency dispersion of human tissues, using the models 

developed in [24], [25], [26], showed the contrast between the successive 

tissues of the human thorax as in Table 1.1. This contrast supports the idea 

of UWB radar based human thorax tomographic imaging. 

 

TABLE 1.1  ELECTRICAL PROPERTY CONTRAST FOR SUCCESSIVE TISSUES IN HUMAN THORAX MODEL AT 

4.1 GHz. 

Successive 
tissues 

Relative dielectric 
contrast 

Conductivity 
contrast 

Skin, Fat 7.1:1 13.4:1 

Fat, Muscle 1:10 1:17.2 

Muscle, Cartilage 1.4:1 0.97:1 

Cartilage, Lung 1.8:1 2.4:1 

Lung, heart 1:2.7 1:2.8 

 

4) An analytical model proposed in [34] for biomedical implant has been 

implemented in this work using MATLAB® and the one-way attenuation of 

the UWB signal to go 4.2 cm deep into the human thorax is calculated to be 

33.46 dB and it shows an excellent agreement with the FDTD model of the 

thorax presented in [35]. 

5) The circuit level simulation of the Pixel inductor circuit has been done using 

OrCAD® PSpice®, and the Pixel capacitor is simulated using Finite element 

method (FEM) using IntelliSuite®. The optimized Pixel design for human 

thorax application is comprised of 595 µm × 595 µm inductance area and 

150 µm × 150 µm variable capacitance area with the total inductance of 
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86.382 pH and tuning capacitance range of 1.68:1. The inductance area is 

composed of cross-parallel connected 12×12 array of square geometry sub-

Pixel inductors with side length of 45 µm and 12.439 nH inductance. 

6) The fabrication steps of the proposed microwave Pixel are developed. 

1.4. Organization of Thesis 

The thesis is organized as follows. Chapter 2 concisely summarizes the 

available literature of UWB radar for medical applications. The safety concern of 

microwave imaging is discussed and the effect of microwave radiation on various 

human tissues and their frequency dependent electrical properties like complex 

permittivity and conductivity are explained in detail. Lastly, the operation of an 

UWB radar system with the proposed microwave Pixel has been illustrated. 

Chapter 3 presents the detailed operation of the proposed microwave Pixel. 

The theoretical background of loop inductor and its equivalent circuit has been 

presented. Following that, the design of the Pixel capacitor and its mathematical 

formulation are presented in detail. 

Chapter 4 starts with a description of the human thorax anatomy and 

introduces the target application of this thesis, i.e., a coronal scanning of the 

human thorax to detect chest wall abnormalities and Pneumothorax condition. An 

analytical model implemented in MATLAB®, to determine the attenuation of UWB 

signal through human multilayered thorax model has been described. In the 

following section, an FDTD simulation of the planar thorax model using Remcom® 

XFdtd® software is discussed. Lastly, the analytical model results have been 
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compared with the FDTD simulation results to validate the design. 

Chapter 5 presents the feasibility analysis of the proposed microwave Pixel 

for human thorax imaging application. A mathematical model to determine the 

power level of the reflected signals from each tissue interface is presented. The 

circuit level simulation of Pixel inductor in OrCAD® PSpice® and the Finite Element 

Method (FEM) simulation of Pixel capacitor are presented. Lastly, the performance 

specifications of the proposed Pixel are presented. 

Chapter 6 presents a tentative fabrication process to fabricate the proposed 

microwave Pixel. A step by step description of the major process steps are 

presented with cross-sectional views.  

Chapter 7 presents the concluding remarks and suggests some future 

directions.  
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CHAPTER 2  

UWB RADAR FOR MICROWAVE IMAGING 

 

This chapter covers a review of the existing literature on UWB radar for 

medical applications. The safety concern of using microwaves for human tissue 

imaging and the frequency dependency of tissue electrical properties are 

discussed in detail. The rest of the chapter presents the operating principle of the 

proposed microwave Pixel array based UWB radar for medical diagnostic imaging. 

2.1. UWB Radar for Medical Application 

An UWB device is defined as any device where the fractional bandwidth is 

greater than 20% [10] or has a UWB bandwidth equal to or greater than 500 MHz, 

regardless of the fractional bandwidth. The fractional bandwidth is defined as 

   2 H L H Lf f f f  , where Hf  is the upper frequency of the -10 dB emission 

point and Lf  is the lower frequency of the -10 dB emission point. [10] 

An UWB radar transmits a sequence of impulse-like signals over a large 

bandwidth that satisfies the UWB criteria. The typical pulsewidth is in the range of 

100s of picoseconds to several nanoseconds and the rise time is as fast as 50 

picoseconds [11]. Extremely short duration pulse generates a very wide 

bandwidth. Since the energy of the pulse is distributed across many frequencies, 

the power spectral density is much lower in magnitude than a narrowband system. 

Since, the pulse length of UWB signal is comparable to the target size, the reflected 

pulses changes with the structural and electrical nature of the target. These 
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changes in the pulse shape give useful information about the shape and material 

properties of the target. The Federal Communications Commission (FCC) 

frequency band assigned to UWB medical systems extends from 3.1 GHz to 10.6 

GHz, i.e. a bandwidth of 7.5 GHz centered at 6.85 GHz [10].   

As the generated series of short duration UWB microwave pulses propagate 

through a human body, in addition to suffering from propagation losses due to 

wave attenuation, absorption, and scattering, they also interact with the biological 

tissue molecules [12]. The frequency dependent dispersive characteristics of the 

biological tissues alter the bulk dielectric properties of the tissues [12] and in turn, 

change the reflection coefficient. Hence, unlike the narrowband signals, the 

different frequency components of the UWB signal undergo a different level of 

attenuation and dispersion within the tissue medium. Consequently, this alters the 

waveform and power spectral density of the transmitted pulse as it gets reflected 

from a tissue boundary, such as fat, muscle, blood, cartilage, bone, etc. Thus, the 

received signal inherits a unique signature of the interacting tissue. Deciphering 

this information using appropriate signal processing provides the exact 

characteristics of the tissues. A range gate can be used to sample received signals 

at specific time intervals [13]. The receiver window size corresponds to the time 

window for sampling. Choosing a small window allows greater axial resolution; 

however, faster sampling circuits are necessary. Such two-dimensional images 

can be cascaded to form a 3-D radar based high-resolution images similar to 

computed tomography. 

UWB impulse can pass through biological materials including skin, muscle, 
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fat, bone, and clothes. This enables non-contact and non-invasive penetration of 

UWB signals to image deep internal body organs without any ionizing radiation or 

contrast agent. UWB radar techniques can be used to detect and identify small, 

low contrast objects from their shape, composition and return spectrum 

characteristics [13]. The UWB can operate in radar mode, in tomography mode, or 

a novel unique combination of both to generate dynamic very high-resolution 3D 

functional images [14]. Remote sensing of the body and inner organ motion by 

UWB radar is a promising alternative to electrocardiogram (ECG) based gating of 

several diagnostic imaging and image guided therapy modalities, e.g. cardiac MRI 

and high energy particle therapy [14]. In [14] it has been mentioned that “By 

monitoring the cardiac mechanics rather than the electric functionality, the UWB 

method is more favorable to prevent distortions in high-resolution medical imaging 

by motion artifacts”. Another advantage in using UWB technology is that the UWB 

transceiver is simple and occupies a very small chip area as it does not require 

complicated frequency recovery system as in the narrow bandwidth transceiver 

[15]. In [16], it has been mentioned that microwave tomography (MWT) might 

present a safe, portable, and cost-effective supplement to current imaging 

modalities for acute and chronic assessment of cerebral vascular diseases 

including stroke that can be made widely available at the “bedside” in the 

emergency department or to the first response paramedic services. In [17] it has 

been mentioned that UWB radars and ultrasound are in fact very similar and many 

of the signal processing techniques used in ultrasonic systems can be applied to 

UWB systems. In [13], it has been mentioned that UWB radar based scanners 
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could provide small medical clinics with imaging and diagnostic capabilities 

currently available in hospitals.  

Despite being an emerging technology, some UWB radar based health 

systems are already developed by few research institutes. A handheld UWB 

sensor has demonstrated the feasibility of detecting the presence of traumatic 

internal injuries including intracranial hematoma and pneumothorax [13]. 

Experimental evidence presented in [2] shows that microwave returns from within 

several superimposed yet distinct layers of different dielectric materials when 

transformed to the time domain indicate the exact depth at which the layer changes 

and propagation characteristics distinct to each layer traversed. The significance 

of this experiment is that it proves the basic theory of radar tomography that it is 

possible to record different densities or dielectrics, of materials at predetermined 

depths of study. As a result, one can ‘see into’ the depths of the stacked materials 

and the information can be displayed in a graphical format. It has also been 

demonstrated that as tissue malignancies, blood supply, hypoxia, acute ischemia, 

and chronic infarction change tissue dielectric properties, microwave imaging 

offers the potential for the diagnosis of functional and pathological tissue 

conditions, including perfusion and perfusion-related injuries [16]. In [18] the 

authors used a signal processing technique to extract the ECG signal from the 

blood pressure data. As an UWB radar is able to detect the blood pressure in a 

non-contact mode with a very high accuracy [19], a suitable signal processing 

technique can be developed to extract the ECG signal from a non-contact blood 

pressure measurement using the UWB radar and display it on a monitor. 
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In [20], some experimental results were published from a few Russia and 

Taiwan based hospitals using UWB systems. The experimental data shows that a 

5.75-7.35 GHz UWB radar with a transmit pulse power of 9 mW and pulse 

repetition frequency of 2 MHz was able to detect the thorax movement of as 

minimum as 100 micrometers from a distance of 0.6-3.5m. The authors in [20] 

studied several hundred-comparative radar and ECG measurements of HR (heart 

rate) and VHR (variable heart rate) to find out that the average deviation of the 

radar data from ECG data was only 1.52% while the averaged correlation 

coefficient was 0.915.  

The author in [2] suggested using a matrix filter to realize a 2D energy map 

of the returned radar signal. He estimated that a resolution of 0.25 mm can be 

achieved and a cross-sectional area of 15 cm x 15 cm was needed for visualization 

of the heart in function. For the matrix filter to map the backscattered energy, he 

proposed to use narrow tubes of microwave absorbing materials in a fashion 

similar to a modulated scatter method as was used in [21]. In [13], a bed panel 

UWB radar from Sensiotec has been reported for measuring heart and respiration 

rates. The bed panel UWB radar has a 4 GHz center frequency with a ~2 ns pulse 

length and ~50 nanowatts radiated power. Another device from Sensiotec called 

Pneumoscan™ uses UWB radar to detect bleeding within the chest cavity [13].  

2.2  Microwave Imaging for Human Tissues  

2.2.1. Safety concern 

The present research is focused on the microwave frequencies of the 

electromagnetic(EM) spectrum. The heating effect due to Propagation of 
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microwave frequencies through human tissues is determined by their 

electrochemical behavior of the cells, its cellular structure and on inter-cellular fluid 

[12]. At lower frequencies, the cell membrane exhibits capacitance and a potential 

difference across it, so the current flow around the cell but at high frequencies, 

current may penetrate the cell [12]. So, application of electric field to the tissue 

causes a displacement of charge, which leads to relaxation phenomenon and 

results in the heat generation. More importantly these kinematics gives rise to the 

frequency dependence of its bulk dielectric properties. The main dosimetry 

quantity used to measure the level of interaction with the tissue is Specific 

Absorption Rate (SAR). SAR can be defined as the rate of absorbed non-ionizing 

radiation per unit mass of the tissue. Based on different studies, International 

Commission on Non-Ionizing Radiation Protection (ICNIRP) established exposure 

limits of time-varying electric, magnetic and EM fields to protect from adverse 

health effects [22] as shown in Table 1. 

According to [23], the other effects of EM radiation on any material it is 

exposed to is ionization and molecule cracking but this occurs at several KV/mm, 

which is far away from the limiting levels of microwave imaging. The next effect on 

human tissues due to EM radiation is photon energy. But this energy is harmful 

only at high frequencies, this can be proved by a simple calculation. Considering 

the particle nature of EM wave, the energy of the photon (E) can be calculated as, 

E h         (2.1) 

where ℎ is Planck constant which is equal to 4.13 × 10−15 𝑒𝑉 𝑠  and 𝑓  is the 
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frequency of the EM field. Thus, the photon energy of harmless, human eye 

sensitive visible light of 500 THz frequency is nearly about 2.065 eV While, the 

photon energy of 4 GHz microwave frequency is about 16.52 µeV which is 106 

orders less.  

TABLE 2.1  GENERAL PUBLIC EXPOSURE LEVEL TO EM FIELDS. 

Frequency 

range 

E-field 
strength 

H-field 
strength 

B-field 

strength 

 

Equivalent 
plane wave 

Power density, 
Seq (W.m-2) 

Whole-body 
average SAR 

(W. Kg-1) 

10-400 MHz 28 0.073 0.092 2 0.08 

400-2000 MHz 1.375 f1/2 0.0037 f1/2 0.0046 f1/2 f/200 0.08 

2 – 300 GHz 61 0.16 0.20 10 0.08 

 

This shows that microwave medical imaging is absolutely safe and the 

intuition of general public to use microwave frequencies for medical imaging as a 

health hazard can be ruled out, as long as ICNIRP exposure limits are followed 

[22]. 

2.2.2. Tissue properties 

Human tissues are classified as soft tissues and hard tissues based on their 

molecular composition. Soft tissues are made of high water content and traces of 

inorganic material whereas hard tissues contain less water content and high 

inorganic content. Depending on the amount of the fluid content in the tissue, the 

frequency behavior of the tissue varies. Using UWB signal has an advantage of 

getting enough information to distinguish different tissues, because some tissues 

may have same characteristics at certain frequencies, but operating in the wide 
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range of frequency makes it more distinguishable. The knowledge of the dielectric 

properties of various biological tissues at microwave frequencies is of much 

significance in deriving useful information in this kind of imaging. From the 

knowledge of dielectric constant, tissue properties can be characterized in the 

microwave frequency range. As it is known, the dielectric constant is the parameter 

which characterizes the ability of the tissue to store electrical charges compared 

to free space, and the conductivity is a measure of the ability to transport charges 

with the field. These two parameters solely characterize the electrical 

characteristics of the matter. 

Hence the motivation for using microwaves to image a human biological 

body is the fact that microwave signals are sensitive to the dielectric changes in 

their propagation channel. The human body is made of inhomogeneous lossy 

dielectric layers and can be modeled as a multilayered dielectric structure, each 

layer is associated with its own dielectric property electrical conductivity and mass 

density as a function of frequency. From [24] Gabriel et al. experimentally 

measured the electrical properties of different human tissues over a wide 

frequency range. The parameterization developed by them are used in this thesis, 

to estimate the dielectric properties of the tissues over the desired UWB range.  

According to Debye’s equation and four Cole-Cole models [25] [26], the 

complex permittivity of a tissue _r i  at different frequencies is calculated following 

(2.2) as, 
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where,   is the complex permittivity in the terahertz frequency range, m  is the 

distribution parameter, static  is the static ionic conductivity,   is the relaxation time 

and 
m  is the magnitude of dispersion. The permittivity and conductivity curves 

of 22 different human tissues are shown in Figures 2.1(a-d) and 2.2(a-d) for UWB 

frequency range of 3.1 GHz to 10.6 GHz. For a better understanding of the 

significance of these curves, the tissues are grouped and shown in four different 

Figures based on their position in the body. 

The first group consists of few tissues of a human digestive system like 

liver, gallbladder, stomach, spleen, small intestine, and colon. Their permittivity 

and conductivity curves are shown in Figure 2.1a and 2.2b. It is observed that the 

relative permittivity of the tissues is decreasing with increase in frequency while, 

the conductivity is increasing with frequency. At high frequencies, distinguishing 

the colon and small intestine seems difficult as their permittivity is approaching 

very close to each other. Relative permittivity mapping at lower frequency and 

conductivity mapping at higher frequency seems to be beneficial. 

The second group consists of few tissues of human brain like grey matter, 

white matter, cerebellum, dura, and nerve. Their permittivity and conductivity 

curves are shown in Figure 2.1c and 2.1d. The permittivity of these tissues can be 

well differentiated. The conductivity of grey matter and cerebellum are very close 

around 5 - 7 GHz frequency band but can be distinguished at other frequencies. 
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This shows the importance of UWB range of operation, for medical diagnostic 

imaging.  

 

Figure 2.1.  a) & b) Permittivity vs Frequency and Conductivity vs Frequency curves for few 
tissues of human digestive system, c) & d) Permittivity vs Frequency and Conductivity vs 

Frequency curves for few tissues of human brain. 

 

Figure 2.2a and 2.2b includes the permittivity and conductivity of third group 

consists of bladder, cervix, uterus, and ovaries that involve in diagnosing cervical 

cancer in women. it is shown that all the permittivities are well differentiated when 

compared to the conductivity curves. It is observed that around 9 GHz the 

conductivities of ovary and cervix are almost same and cannot be distinguished.  
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The fourth group consists of few tissues of human thorax like heart, aorta, 

Lungs both inhaled and exhaled, muscle, cartilage, blood, fat etc. Their permittivity 

and conductivity curves are shown in Figures 2.2c and 2.2d. From Figure 2.2c it is 

observed that all the permittivities of muscle, fat and inflated lungs are decreasing 

less fast with frequency when compared to other tissues. With the increase in 

frequency, the permittivity curves of heart and muscle are approaching close to 

each other making them indistinguishable. But inferring to Figure 2.2d the  

 

 

Figure 2.2.  a) & b) Permittivity vs Frequency and Conductivity vs Frequency curves for few 
tissues around cervix in women reproductive system, c) & d) Permittivity vs Frequency and 

Conductivity vs Frequency curves for few tissues of human thorax. 
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conductivity map of heart and muscle should have a considerable difference. So, 

the best way to image the human thorax using UWB microwaves is by extracting 

information both from conductivity and permittivity maps of the tissues (in simple 

complex permittivity map) for accurately distinguishing them. 

From Figures 2.1 and 2.2, hard tissues such as bone, fat, lung(deflated) 

have lower permittivity values due to their low water content when compared to 

soft tissues such as muscle, blood, brain, and other internal organs. By comparing 

the generated maps with these curves, the tissue can be identified and also the 

diseased tissue can be differentiated from the healthy tissue. Though a lot of 

research needs to be done, to study the usefulness of these maps generated for 

detecting any malignancy or deficiency, this mode of imaging sounds beneficial 

both conceptually and technically. 

2.2.3. Contrast between healthy tissues and cancerous tumors 

The main motivation of using UWB microwave imaging for cancer detection 

is the high contrast in the complex permittivity and conductivity of malignant tumor 

 

Figure 2.3.  Frequency dependence of relative permittivity and conductivity for skin, tumor and 
healthy breast tissue [27]. 
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and healthy tissue. For the case of breast cancer, according to [27] the dielectric 

contrast is about 5:1 and conductivity contrast is 10:1 for malignant and normal 

breast tissue as shown in Figure 2.3. According to [28], UWB imaging for breast 

cancer detection has the advantage of differentiating malignant tissue and benign 

tissue. This is because, the contrast between the benign and normal breast tissue 

is not same as the contrast between the malignant and normal breast tissue. 

 

2.3. UWB Radar system with Proposed Microwave Pixel Array 

A conceptual block diagram of the proposed MEMS microwave Pixel based 

UWB radar is shown in Figure 2.4. The radar operates in the frequency range of 

3.1 GHz to 5.1 GHz. The operation of transmit module of UWB radar system starts 

with a trigger signal generated by timing and control unit to initiate the first pulse 

from a pulse generator. This instantaneously enables a delay generator that 

commences waiting for a certain time until a second trigger is activated [29]. 

Concurrently, the sensor electronics are activated to collect and then store the 

Pixel array processed output for the further stage of processing before the 

generation of the second pulse. 

The receiving section of the radar system comprises an optional microwave 

focussing lens to converge the received signal energy on to the proposed MEMS 

based microwave Pixel array. Each Pixel in the array is illuminated by a section of 

the received signal wavefront and generates a corresponding voltage. Sensor 

electronics involves the readout circuitry which sequentially fed the voltage across 

the individual Pixels generated at different frames to the Analog to digital converter 
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(ADC). The sampled output from ADC is processed by suitable algorithms in a 

digital signal processor to generate a voltage map corresponding to the dielectric 

properties of the respective tissue layer.  

 

Figure 2.4.  Block diagram of UWB radar system. 

The resolution of the conventional imaging system is dependent on the 

signal’s wavelength. To overcome the limitation of the wavelength on Pixel size, 

the proposed Pixel array is designed to operate at subwavelength. An optional 

microwave focusing lens can also be used to illuminate a smaller geometry Pixel 

to increase the resolution further. The concept is illustrated in Figure 2.5.  

As an UWB signal changes its shape unlike narrowband sinusoidal signals 

during its propagation through the human tissues, this way of capturing is more 

suitable as the radiation at different time intervals are captured continuously to 

scan the specific area of the target at specific depth. This enables the generation 
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of voltage map at each time interval ( 𝑡1, 𝑡2, 𝑡3, … 𝑡7) as shown conceptually in 

Figure 2.5. A 3D voltage map of the whole target thus can be obtained by 

cascading the 2D maps generated at different time intervals as shown in Figure 

2.6. 

 

Figure 2.5.  Sub-wavelength capturing of incident signal at different time intervals. 

 

 

Figure 2.6.  Conceptual 3D tomographic image generation using the MEMS based Pixel array. 
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CHAPTER 3  

MEMS MICROWAVE PIXEL DESIGN 

 

This chapter focuses on the basic operating principle of the proposed novel 

microwave Pixel. A theoretical analysis of the loop inductor/loop antenna, its 

equivalent circuit and design parameters are discussed in detailed. And then the 

discussion extends to the design of the MEMS vibrating diaphragm variable 

capacitor and its mathematical formulation. 

3.1. Microwave Pixel Operation 

A conceptual geometry of the developed MEMS microwave imaging Pixel 

is shown in Figure 3.1. The front end of the designed Pixel is a microfabricated 

spiral inductor (acting as a small loop antenna) which is connected across a 

microfabricated vibrating diaphragm variable capacitor. When the Pixel is placed 

in a radiation field in which it is designed to operate, the inductor acts as a loop 

antenna to generate a voltage following Faraday’s law of electromagnetic 

induction. This voltage appears across the electrodes of the microfabricated 

vibrating diaphragm capacitor to generate an electrostatic attraction force between 

the capacitor electrodes. This deforms the diaphragm further from its initial offset 

deformation due to a DC bias to affect a change in capacitance between the 

capacitor electrode. The higher the magnetic field linkage with the Pixel inductor, 

the higher the capacitance change in the variable Pixel capacitor. This capacitance 

change is converted to a voltage signal using an appropriate transimpedance 

amplifier.  
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The combination of the Pixel inductor (loop antenna) and the Pixel capacitor 

basically is an LC parallel circuit resonating at a desired frequency. Following [30], 

it is possible to design a wideband loop antenna operating in the UWB frequency 

range corresponding to the target diagnostic imaging application. A combination 

of such a wideband loop antenna and the variable capacitor thus would be able to 

generate a frequency independent voltage signal over the desired UWB frequency 

range. The Pixel capacitor is not limited to be one, it can be replaced by an array 

of capacitors connected in parallel/series, similarly, the loop inductor can be a 

single loop inductor or group of loop inductors connected in series/parallel based 

on the application. Thus, it is possible to design a wideband Pixel operating at 

UWB frequency range to generate a desired voltage output. 

 

Figure 3.1.  MEMS Microwave Pixel. 

 

3.2 Pixel Inductor /Antenna Design 

The main goal of microwave imaging Pixel inductor/antenna is to convert 

EM radiation into a voltage. In this proposed work, a small magnetic square loop 

inductor is used due to its smaller size of about less than one tenth of the 
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wavelength of operation. A loop inductor is sensitive to the magnetic component 

of the electromagnetic radiation. According to Faraday’s law of electromagnetic 

induction, the open circuit voltage induced across the loop which is placed in the 

magnetic field is equal to the time rate of change of magnetic flux through it. 

( )
( )oc

d t
V t

dt


         (3.1) 

where ocV  is the induced open circuit voltage of the loop inductor in Volts and   is 

the magnetic flux linking with the loop in Weber. As the Pixel is exposed to the 

microwave radiation reflected from a tissue layer at a certain depth inside the 

human body, following equation 3.1, a voltage is generated across the inductor in 

response to the varying magnetic component of the incident electromagnetic field. 

The induced RMS voltage as a function of the magnetic field can be expressed as 

[30]: 

- 02 cosoc rms r rmsV NAfH        (3.2) 

where rmsH  is the RMS value of the magnetic field intensity (Am-1), 0  is the 

vacuum permeability (Hm-1), r  is the relative permeability of the medium, N  is 

the number of coil turns, A  is the area of each turn (m2), f  is the frequency of the 

magnetic field (Hz), and   is the angle between the magnetic flux lines and the 

plane normal to the loop surface. 

3.2.1. Equivalent circuit parameters of the loop inductor 

To determine the actual voltage generated across the inductor ACV  (i.e., the 
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voltage applied between the capacitor electrodes) the inherent resistive, inductive 

and capacitive elements of the antenna are to be considered. The equivalent circuit 

of the antenna including those inherent parameters can be modeled as shown in 

Figure 3.2a. where ACR  represents AC resistance in the circuit, RadR  is the 

radiation resistance corresponding to the losses in the antenna during the  

 

Figure 3.2.  a) Equivalent circuit of loop inductor, b) Loop inductor with labeled physical 
parameters. 
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transformation of EM energy and DCR  represents the loss due to the resistance of 

the conductor. loopL is the inductance of the square loop, wireL  is the inherent 

inductance of the conductor and loopC  is the parasitic capacitance of the square 

loop. These parameters are modeled using the following relations [30] in terms of 

inductor physical parameters shown in Figure 3.2b, where w  is the length of the 

square loop, l  is the length of the winding and d  is the width of the conductor. 
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where,   is the resistivity of the conductor and c  is the velocity of EM wave in free 

space. The inherent inductance, capacitance and resistance of the loop inductor 

as a function of physical shape and size are shown in Figures 3.3, 3.4 and 3.5. 

 

Figure 3.3.  a) Equivalent inductance of the loop inductor as a function of number of turns, b) 
Equivalent resistance of the loop inductor as a function of number of turns. 

 

 

 

Figure 3.4.  a) Equivalent inductance of the loop inductor as a function of loop length, b) 
Equivalent resistance of the loop inductor as a function of loop length. 
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Figure 3.5.  a) Equivalent inductance of the loop inductor as a function of conductor width, b) 
Equivalent capacitance of the loop inductor as a function of conductor width, c) Equivalent 

resistance of the loop inductor as a function of conductor width. 

 

3.3. Pixel Capacitor Design 

The proposed MEMS based Pixel capacitive sensor is realized using a thin 

square diaphragm which is separated by an air gap from a glass substrate 

patterned with a metal layer. This sensor operates as a parallel plate capacitor with 

one of the capacitor plates as a movable diaphragm making it a variable capacitor. 

The capacitance variation can be attained and controlled, by controlling a voltage 

across the plates or by controlling the charge on the capacitor plates. Thus, this 
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sensor measures the applied voltage/ or current by measuring the deflection of 

diaphragm using a capacitance readout device. The advantage of MEMS 

capacitors at microwave frequencies is the mechanical inertia of the structure 

preventing the modulation of the capacitance with the signal frequency [31].  

To minimize the ohmic losses and parasitic capacitances, a thin layer of 

gold has been deposited and patterned on a glass substrate. Glass features 

excellent dielectric properties and low loss over the wide operating frequency 

range and temperature range. Also, glass substrates support micromachining of 

structures with well-defined features and it’s low dielectric constant ease the 

fabrication of circuits at radio frequency (RF) and microwave frequencies [32]. Due 

to excellent electrical and mechanical properties of BCB, a low K polymer from 

Dow Chemical Company, has been selected as the dielectric layer on top of the 

gold layer (fixed electrode) to avoid a short circuit in the event of a pull-in [33]. BCB 

is also used as the dielectric spacer to define the membrane-electrode gap which 

can be realized by depositing a silicon dioxide as a sacrificial layer. A schematic 

of MEMS variable capacitor and its simplified equivalent circuit is as shown in 

Figure 3.6. The internal equivalent circuit of the Pixel capacitor is the combination 

of the variable capacitor MEMSC  between the movable diaphragm and the bottom 

electrode and the equivalent series resistance of the capacitive sensor seriesR which 

includes the inherent resistance of the electrodes. To minimize seriesR , gold has 

been selected as the diaphragm material. 

Basically, the designed sensor is a voltage controlled electrostatic actuator.  
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Thus, to enhance the coupling between the weak AC input voltage variations 

induced by the loop inductor, and the mechanical movement of the diaphragm, the 

Pixel capacitor is charged with an offset DC bias voltage DCV  as shown in Figure 

3.6c. The sensitivity cS  of the Pixel capacitive sensor can be defined as the ratio 

of the output capacitance change to the change in input voltage of the capacitor. 

 

Figure 3.6.  a) Top view of MEMS Pixel capacitor, b) Cross sectional view of the capacitor, c) 
Electrical equivalent circuit of the Pixel capacitor. 

 

The design of the proposed Pixel capacitor should address two important 

goals. Firstly, to obtain adequate sensitivity to sense a very low voltage induced 

by the inductor and secondly, to obtain a flat and wide frequency response of the 

Pixel. These conditions are explained in detail in Chapter 5. 
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3.3.1. Mathematical formulation of the Pixel capacitor operation 

The operation of this parallel plate actuator is based on the electrostatic 

attraction force between the bottom electrode and the suspended diaphragm. The 

capacitor is charged with a constant DC bias voltage, for better coupling between 

the voltage generated by the loop inductor and the diaphragm deflection. The 

combination of applied DC and AC voltage results in the electrostatic force acting 

on the diaphragm and can be written as (3.9) 
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      (3.9)  

where, ,  DC ACV V  are the applied DC and AC voltages, 0 and ri are the permittivity 

of vacuum and the insulating layer, eA  is the area of the electrode, cd  and id  are 

the thickness of the diaphragm and the insulation layer, g  is the thickness of the 

air gap as shown in Figure 3.6b and x  is the deflection of the diaphragm. 

Considering an AC voltage induced by the inductor as (3.10), 

2 cosAC rmsV V t        (3.10) 

Where, rmsV is the RMS voltage of the AC component and   is the angular 

frequency in rad/sec. The electrostatic force can be expressed as (3.11), 
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The first term is the electrostatic force generated due to the DC bias voltage, the 

second term due to the RMS voltage of AC component, third and fourth terms are 

the force exerted by the voltage oscillating at the frequency equal to and twice the 

frequency of incident signal. As the operating frequency is well above the 

mechanical resonant frequency, the mechanical inertia of the diaphragm highly 

degrades any high-frequency vibration, hence, the signal does not modulate the 

diaphragm capacitance at microwave frequencies but the RMS value of the signal 

influences the capacitance [3]. So, the third and fourth terms can be neglected.  

Then the electrostatic force can be simplified as (3.12), 
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      (3.12) 

From equation (3.12), it is obvious that, to obtain measurable deflection due to 

applied AC voltage apart from the deflection due to constant DC voltage, values of 

rmsV  and DCV  must be comparable. The capacitance generated [34] between the 

electrodes can be calculated using (3.13) 

 
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      (3.13) 

From (3.9) and (3.13), it is observed that the capacitance between the plates can 

be measured from the diaphragm deformation caused by the inductor induced 

voltage. According to [34], for small diaphragm parallel plate capacitors, the 
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contribution of fringing field capacitance is as high as 9% of the capacitance. The 

total capacitance taking fringing field into account can be expressed as [34], 

(1 )MEMS ffC C C         (3.14) 

 Where, C  is the capacitance generated from (3.13) and ffC  is the fringing field 

factor [34] and can be expressed as (3.15), 
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where, a  is the half side length of the square diaphragm. The capacitance 

contributed by the fringing field can be assumed to be constant as the diaphragm 

edges are rigidly fixed. Thus, the total capacitance generated by the Pixel capacitor 

due to the voltage induced across the inductor because of an incident signal after 

reflection from a tissue interface can be calculated using (3.14). 
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CHAPTER 4  

HUMAN THORAX IMAGING 

In this chapter, a multi-section transmission line model is used to analytically 

calculate the attenuation of an UWB radar signal as it propagates through the 

different tissue layers in a human thorax. The analytical model is validated with the 

FDTD simulation results published in [37]. The model has been used to investigate 

the feasibility of using the proposed MEMS microwave Pixel based UWB radar for 

a coronal scanning of human thorax to detect chest wall abnormalities and 

Pneumothorax condition. 

4.1. Human Thorax Anatomy 

In this section, the feasibility of using the proposed MEMS microwave Pixel 

for coronal scanning of human thorax to detect chest wall (which includes skin, fat, 

muscles, and the thoracic skeleton) abnormalities and for detecting 

Pneumothorax, a critical condition that occurs when air enters pleural cavity (the 

space between the chest wall and the lung) has been investigated. Thorax 

scanning for diagnosing various stages of Pneumothorax requires the UWB signal 

to penetrate deep into the human body until it reaches the cartilage/lung interface. 

Presence of air in pleural cavity changes the amount of signal reflected and the 

mapping of reflected signals can determine the stage of the disease. A horizontal 

section of the human thorax anatomy highlighting different tissue layers is shown 

in Figure 4.1.  
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Figure 4.1.  Horizontal section of human thorax. 

 

The author in [35] discussed a more accurate thorax model determining the 

propagation path for UWB signal to reach the heart wall via skin-fat-muscle-

cartilage-lung as shown in Figure 4.2. The thicknesses (depth) of these tissue 

layers as shown in Figure 4.2 correspond to that of an average adult [35]; however, 

in reality, they may vary from person to person. 

 

Figure 4.2.  Human thorax model indicating the depth of the tissues [35]. 

4.2. Analytical Model to Determine the Propagation Loss 

As discussed in chapter 2, the frequency dependent complex permittivities 

of various human tissues are the key parameters to determine the level of 

interaction and attenuation of a propagating UWB signal as it travels through the 
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thorax [12]. The frequency dependent complex permittivities of various tissues in 

the human thorax model in the frequency range of 3.1 GHz to 10.6 GHz are listed 

in Table 4.1.  

TABLE 4.1  COMPLEX PERMITTIVITY OF FEW OF THE HUMAN THORAX TISSUES IN UWB FREQUENCY 

RANGE. 

Frequency 

(GHz) 
Skin Fat Muscle Cartilage Lung Heart 

3.1  
37.36-
j10.41 

5.21-
j0.78 

51.94-
j12.88 

37.40-
j13.28 

20.07-
j5.81 

53.552-
j16.36 

4.1 
36.51-
j10.55 

5.12-
j0.83 

50.69-
j13.64 

35.36-
j14.05 

19.48-
j5.95 

51.79-
j16.79 

5 
35.77-
j11.00 

5.03-
j0.87 

49.54-
j14.54 

33.63-
j14.69 

18.97-
j6.19 

50.27-
j17.48 

6 
34.95-
j11.66 

4.94-
j0.92 

48.22-
j15.58 

31.79-
j15.26 

18.39-
j6.49 

48.62-
j18.34 

7 
34.08-
j12.37 

4.85-
j0.96 

46.87-
j16.59 

30.07-
j15.68 

17.82-
j6.81 

46.99-
j19.18 

8 
33.18-
j13.09 

4.76-
j0.99 

45.49-
j17.52 

28.47-
j15.97 

17.26-
j7.09 

45.37-
j19.97 

9 
32.25-
j13.77 

4.68-
j1.03 

44.13-
j18.36 

26.99-
j16.14 

16.69-
j7.34 

43.79-
j20.67 

10 
31.29-
j14.49 

4.60-
j1.05 

42.76-
j19.10 

25.63-
j16.22 

16.15-
j7.56 

42.24-
j21.27 

 

From Table 4.1, it is evident that the complex permittivities of different 

thorax tissues vary significantly at different UWB frequencies. This variation can 

be exploited effectively to realize an UWB radar based thorax imaging system. In 

the proposed scheme, the signals reflected back from the different tissue layers in 
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the thorax as shown in Figure 4.2 will illuminate a 2D array of MEMS microwave 

Pixels incorporated in the UWB radar to generate a corresponding 2D voltage map 

which is characteristic of the complex permittivities of the respective tissue layer. 

To determine the strength of the reflected UWB signal, that is going to illuminate 

the MEMS microwave Pixel array, it is necessary to consider the transmission loss, 

absorption loss, and reflection loss associated with the propagating UWB signal. 

A mathematical model developed in [36] for UWB signal attenuation in tissues for 

biomedical implant communication has been extended to the present application 

of thorax imaging. In this method, classical transmission line theory has been used 

to model the human thorax as shown in Figure 4.2. Each tissue layer is modeled 

as a transmission line and the results are combined to generate a cascaded 

transmission line model of the multilayered thorax. [36]. 

 

Figure 4.3.  Gaussian pulse representation in (a) time domain and,(b) frequency domain. 

The proposed UWB system operates in the frequency range of 3.1 GHz to 

5.1 GHz, with center frequency at 4.1 GHz. Typically, the signals used for UWB 

applications are a step-like pulse, impulse, rectangular pulse, monocycle and 

polycycle pulse. Here, a Gaussian pulse of 400 ps pulsewidth (half maximum point) 
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with a center frequency of 4.1 GHz and pulse repetition period (PRP) of 1.8 ns is 

employed. The time domain and frequency domain representation of generated 

Gaussian pulse is shown in Figure 4.3. 

A transmission line model as shown in Figure 4.4 has been used to 

determine the propagation loss as the transmitted signal travels through the thorax 

to reach the lung/heart interface. As the signal travels from a source to a load via 

transmission lines with varying impedances as shown in Figure 4.4b, it suffers 

reflection at each discontinuity (impedance variation). To avoid the complexity of 

calculating multiple wave reflections at each discontinuity, it is more 

straightforward to calculate voltage and current at each discontinuity in terms of 

voltage and current at the next discontinuity [36] using  

  1 1

1 1

i i i

i

i i i

V V VA B
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I I C D I
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 

      
       

      
     (4.1) 

Where, iV  and iI  represents the voltage and current at thi  discontinuity in the 

direction of the source to load. iT  represents the transmission matrix (also referred 

as ABCD matrix) of the thi  section of the transmission line.  

The same solution approach is applied to microwave signal propagation 

through human tissues considering electric field component E  and magnetic field 

component H  as analogues to voltage V  and current I  [36]. This analogy can be 

used to model Individual homogeneous tissue layers as transmission lines in the 

form of ABCD  matrices using (4.2). The cascaded ABCD  matrix of individual 

layers represents the entire non-homogeneous layered sandwich structure as in 
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(4.3). 
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        1 2 3 4 5 6totalT T T T T T T      (4.3) 

 

 

Figure 4.4.  a) Human Thorax model, b) A wave propagation path with different dielectric 
materials analogues to transmission line model with varying impedance [34]. 

 

The transmission matrix of thi  layer (4.2) depends on its propagation constant, 

thickness and characteristic impedance according to (4.4) where i  is the complex 

propagation constant of the thi  layer, id  is the thickness of the thi  layer, and i  is 

the complex impedance of the thi  medium.   
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   (4.4) 

This mathematical model is implemented in MATLAB® to predict the attenuation of 

an incident UWB radar signal as it makes its way to reaching the lung/heart 

interface via different dielectric layers of the Thorax model. It has been  

 

Figure 4.5.  Mathematical model predicted one -way attenuation of UWB signal propagating into 
human thorax model at 4.1 GHz. 

 

Figure 4.6.  Analytical attenuation results for human thorax model at different interfaces with 
frequency. 
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calculated that for an UWB signal with the center frequency at 4.1GHz faces an 

attenuation of 66.93 dB in its round trip from the skin to the lung/heart interface as 

shown in Figure 4.5. Figure 4.6 shows that higher frequency components of UWB 

signal undergoes significant attenuation by human tissues and the attenuation by 

deeper tissues are more dependent on frequency. 

 

4.3. FDTD Simulation of Thorax Model 

The same sandwich geometric configuration of human thorax model 

discussed in the previous section is simulated using Remcom® Xfdtd®, an 

electromagnetic simulator. The designed model is excited with a Gaussian pulse  

 

Figure 4.7.  Simulation setup of human thorax model in Remcom® XFdtd®. 

of 0.4ns pulsewidth, with pulse repetition period of 1.6 ns. and an electric field of 1 

Vm-1. Remcom® Xfdtd® software allows to observe the time evaluation patterns of 

both Electric and magnetic fields at any user defined point in simulation space. The 

stacked multilayered model simulated is shown in Figure 4.7b and the material 
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editor corresponding to fat layer is shown in Figure 4.7a. 

As the electromagnetic wave generated by the planewave source placed in 

front of the human thorax passes through the different tissue interfaces it gets 

reflected at dielectric boundaries at the interfaces of adjacent layers. The energy 

density associated with electric and magnetic fields is defined by a vector called 

Poynting vector ( S ). It represents the rate of energy transfer per unit area (Wm-2). 

Also, the direction of the Poynting vector defines the direction of propagation of 

wave energy. By observing the Poynting vector distribution and direction at each 

interface, the strength and the direction of signal propagation can be determined. 

In the simulation, the signal is propagating in the positive X axis direction, electric 

field in direction of negative Y axis and the magnetic field in positive Z direction. 

The Poynting vector component is represented as, 

x y zS E H          (4.5) 

TABLE 4.2  PROPAGATION AND ECHO TIME OF UWB SIGNAL THROUGH THORAX MODEL. 

Tissue Interface 

Propagation time Time for the echo 
to reach the 

sensor placed 
outside the skin 

(µs) 

Analytical (ps) Xfdtd® (ps) 

Skin/Fat 107.7134 102.551 0.000205102 

Fat/Muscle 180.5134 177.565 0.00035513 

Muscle/Cartilage 506.5634 487.118 0.000974236 

Cartilage/Lung  745.0934 701.716 0.001403432 

 

The time taken by the UWB radar signal to reach each interface is calculated as 
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shown in Table 4.2, It is observed that the variation from the analytical model 

increases as the signal penetrates deeper into the body. The reflected signal at 

each interface is expected to return at twice the one-way propagation time as 

shown in Table 4.2. The magnetic field distribution at a perpendicular plane placed 

at 2mm outside the air/skin interface at the expected echo time according to the 

Table 4.2 are plotted as shown in Figure 4.8. 

 

 

Figure 4.8.  Magnetic field distribution. a) at t=0.205 ns, b) at t=0.35 ns, c) at t=0.97 ns, d) t=1.4 
ns. 
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From Figure 4.8, it is observed that the signals reflected from the deeper tissues 

are quite harder to detect due to high signal attenuation.  

4.3.1. Analytical model validation 

Results obtained from the above mathematical models are validated with 

Finite Difference Time Domain (FDTD) simulation results presented in [37]. The 

total one-way attenuation of an UWB signal as it propagates through the thorax 

deep to the lung/heart interface was obtained around 31dB using FDTD simulation 

as presented in [37]. The attenuation calculated from the present analytical model 

is about 33.46 dB as shown in Figure 4.9. Both the results are in excellent 

agreement with a maximum deviation of 7.9%. This validates the accuracy of the 

developed analytical method. 

 

Figure 4.9.  Analytical and simulated results for attenuation of UWB signal propagating into the 
human thorax model. 
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CHAPTER 5  

MEMS PIXEL DESIGN FOR HUMAN THORAX IMAGING 

 

This chapter presents the design of the developed microwave Pixel for 

human thorax imaging application. A mathematical model to determine the power 

level of the reflected signals from each tissue interface is presented. The circuit 

level simulation of Pixel inductor in OrCAD® PSpice® and the FEM simulation of 

Pixel capacitor are presented. Finally, the design and performance specifications 

of the developed microwave Pixel are presented. 

5.1. Determination of Power Levels that to be Detected by the Proposed 
Pixel 

 
It has been assumed that an UWB radar as shown in Figure 2.4 is placed 

sufficiently far away from the thorax to enable a far field approximation. The radar 

is radiating an output power tP  (Watts) through a transmitting antenna with a gain 

1G . The transmitted power density at a distance 1R  (the standoff distance from the 

thorax), can be expressed as (5.1), 

12

14

tP
P G

R
         (5.1) 

The human heart can be modeled as a spherical isotropic radiator which reflects 

a spherical wave with same incident wave polarization [38]. The typical adult heart 

has a size of 12 cm in length, 8-9 cm in breadth and 6 cm in thickness. Thus, 

assuming the heart as a sphere of 12 cm diameter as shown in Figure 5.1, the 
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signal reflected off the heart depends on the radar cross-section (RCS)   which 

depends on the area of the target, its reflectivity and gain of the target [38]. 

. .t tA G           (5.2) 

In (5.2) tA   is the projected area of the target,   is the reflectivity of the target, tG  

is the antenna-like gain of the target. A heart with 12 cm diameter is comparable 

to the wavelength of the incident signal at 4.1 GHz. Hence, following [39], a sphere 

of 12 cm falls in the region of Mie or Resonance region of sphere RCS. From the 

graph in Figure 5.2, (𝜎/𝜋𝑟2) is approximately equal to 0.9 when (2𝜋𝑟 𝜆)⁄  equals 

5.16. Therefore, the projected area of heart from radar perspective is about 0.9 

times the area of the human heart which equals to 0.01 m2. The reflectivity ( )  of 

lung/heart interface is obtained from (5.3) where HeartZ  and
LungZ  are the 

propagation impedances of the heart and the lung where the propagation 

impedance is calculated following (5.4). The complex permittivity   of the heart 

and the lung at 4.1 GHz are determined in Table 4.1. 

Heart

Lung

z
Y

z
  ;

1

1

Y

Y


 


       (5.3) 

0

0r

Z


 
         (5.4) 

Assuming gain as 1, the reflectivity at heart/lung interface is calculated to be 0.23. 

The RCS of the heart can be calculated following (5.2) as 0.0023. The received 
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power available at the microwave Pixel array placed at a distance of 2R  from the 

human target can be calculated following 

2 2

1 2

1

4 4

t t
r

PG
P

R R L



 

   
    
   

      (5.5) 

 

Figure 5.1.  Thorax model assuming heart as a sphere of diameter 12 cm. 

 

 

Figure 5.2.  Normalized backscattered RCS for a perfectly conducting sphere [37]. 
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where, L  represents the propagation loss which includes reflection, absorption 

losses of the signal when propagated through Skin, fat, muscle, cartilage and lung. 

TABLE 5.1  CASE 1: POWER TRANSMITTED Pt = 5 mW. 

Depth 
Power 

Received 
(µW/m2) 

Magnetic field  

Strength of 
received signal 

(µA/m) 

Skin/Fat 19.58  227.91 

Fat/Muscle 8.01 145.75 

Muscle/Cartilage 0.016 6.6 

Cartilage/Lung 0.00026 0.836 

Lung/heart 0.000097 0.507 

 

TABLE 5.2  CASE 2: POWER TRANSMITTED Pt = 50 mW. 

Depth 
Power 

Received 
(µW/m2) 

Magnetic field  

Strength of 
received signal 

(µA/m) 

Skin/Fat 195.833 720.73 

Fat/Muscle 80.086 460.9 

Muscle/Cartilage 0.164 20.85 

Cartilage/Lung 0.0026 2.646 

Lung/heart 0.00097 1.602 

 

The total two-way propagation loss is calculated to be twice the 33.46875 dB from 

the analytical model as shown in Figure 4.5, which is equal to 66.9375 [dB]. The 

thorax is placed at a distance of 10 cm from the transmitting antenna and 4.8 cm 
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from the Pixel array. The estimation of power available for Pixel array at three 

different transmitted power levels is calculated using (5.5), as shown in Tables 5.1, 

5.2 and, 5.3. When Pt = 500 mW, the incident power density on skin which is 10 

cm from antenna is calculated to be 3.979 W/m2 which is well below the radiation 

safety limit of 10 W/m2 [22]. 

TABLE 5.3  CASE 3: POWER TRANSMITTED Pt = 500 mW. 

Depth 
Power 

Received 
(W/m2) 

Magnetic field  

Strength of 
received signal 

(mA/m) 

Skin/Fat 0.00196 2.279 

Fat/Muscle 0.0008 1.457 

Muscle/Cartilage 1.64×10-6 0.0669 

Cartilage/Lung 2.64×10-8 0.0084 

Lung/heart 9.68×10-9 0.0051 
 

 

5.2 MEMS Microwave Pixel Design Specifications 

According to the present application of thorax imaging using UWB radar 

operating in the frequency range of 3.1 GHz to 5.1 GHz, the Pixel inductor must 

be capable of detecting the magnetic field of intensity ranging from 10-2 Am-1 to 10-

7 Am-1 as per Tables 5.1, 5.2 and 5.3 for the considered transmit power levels. Any 

change in voltage induced across the loop inductor, generates a corresponding 

capacitance change ( )C  across the MEMS capacitor, which is placed in parallel 

to the loop inductor. A major limitation on the Pixel design, for imaging deeper 
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tissues of human thorax, is imposed by the sensitivity of the readout circuitry which 

senses this capacitance change. 

5.2.1. Circuit Operation 

To understand the behavior of the loop inductor connected in parallel to the 

designed capacitive sensor, a combined electrical equivalent circuit as shown in 

Figure 5.3 is simulated in OrCAD® PSpice®. The Pixel circuit parameters are swept 

and iteratively calculated using equations (3.3) – (3.8), to determine the optimal 

set of parameters that would generate a detectable and a flat response of the 

voltage across the capacitor over the desired bandwidth. 

The self-inductance and self-capacitance of the loop inductor determine its 

self-resonant frequency and it is supposed to be lower than the operating 

frequency, for the ensured inductive behaviour of the loop inductor. The frequency 

response of the loop inductor as a function of N  keeping other parameters as 

constant is as shown in Figure 5.4. The self-resonant frequencies (marked as 

1 2 3 10, , .......f f f f  in Figure 5.4) of loop inductor with different N  values are listed in 

Table 5.4. From Figure 5.4, it is observed that the voltage induced across the loop 

inductor is directly proportional to the number of turns and it is observed that the 

frequency response curve shows sharper resonant peaks with an increase in  

number of turns, .N  It is observed that the loop inductor with less number of loops 

shows high resonant frequency, this can be justified by the fact that the inductance 

of the loop decreases with a decrease in N  value. From Table 5.4, a decrease of 

99.7% of bandwidth is observed, when N  is increased from 1 to 2. This shows 

that for the wideband operation of loop inductor the number of turns should be as 
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low as possible.  

 

Figure 5.3.  Electrical equivalent circuit of the proposed microwave Pixel. 

 

Figure 5.4.  Frequency response of the loop inductors with different N values. 

The spiral inductor in parallel to the MEMS capacitor forms an LC parallel 

circuit with a small resistance in series to the inductor and to the MEMS capacitor 

and resonates at a frequency following (5.6).  

0

1

2 ( )( )loop wire loop MEMS

f
L L C C


 

    (5.6) 
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TABLE 5.4.  RESONANT FREQUENCY AT DIFFERENT N VALUES. 

Number of turns, N 
Resonant frequency 

(GHz) 
Bandwidth, BW  

(MHz) 

1 1 67.22f   4990 

2 2 21.43f   15 

3 3 12.50f   1 

4 4 8.6f   0.8 

5 5 6.4f   0.5 

6 6 5.08f   0.4 

7 7 4.15f   0.3 

8 8 3.48f   0.2 

9 9 2.99f   0.15 

10 10 2.6f   0.1 

 

To flatten the frequency response (without resonance) of the LC parallel 

circuit over the desired range, a damping effect is induced by placing a resistor 

across the terminals of the loop inductor as shown in Figure 5.5. The desired flat 

frequency response of the LC circuit formed by the loop inductor with damping 

resistance and MEMS Pixel capacitor, can be obtained when the following two 

conditions are satisfied: 

1) The inductive reactance of the loop along with the loop resistance should 

be quite higher than the damping resistance connected across the loop 

inductor as (5.7). Where, 
loop wireL L LX X X  , loop AC DC RadR R R R    and dR  

is the damping resistance connected across the loop. 

L loop dX R R          (5.7) 
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2) The capacitive reactance of the MEMS capacitor along with seriesR  and the 

capacitive reactance of loopC  should be far greater than the damping 

resistance as (5.8). 

;
MEMS loopC series d C dX R R X R         (5.8) 

 

Figure 5.5.  Equivalent circuit of wideband loop inductor. 

Following (5.7) and (5.8), the damping resistance should be as small as possible 

to achieve flat frequency response over the desired frequency band, which means 

that the designed LC circuit needs to be operated in short circuit mode [40]. This 

wideband characteristic of the resultant LCR parallel circuit sacrifices the output 

voltage levels induced across the inductor. This trade-off trend is shown in the 

Figure 5.6., a voltage drop of more than 99% is observed when a resistance is 

connected across the inductor. Figure 5.6 shows that the designed circuit behaves 

like a bandpass filter with its lower cut-off frequency as expressed in (5.9) is 

determined by the total loop inductance ( )loop wireL L  and total resistance

( )DC AC d radR R R R    [30]. 
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( )

2 ( )

DC AC d rad
l

loop wire

R R R R
f

L L

  



      (5.9) 

 

Figure 5.6.  Frequency response of the loop inductor with and without damping resistance. 

When a voltage is induced across the loop inductor in response to the 

radiation picked up and generates a loop current loopI  that can be expressed as 

(5.10), and reduced to equation (5.11) following (5.7) & (5.8). 

1 1 1
( ) ( )

loop MEMS

ocrms
loop

L loop

C d C series

V
I

X R
X R X R



   


   (5.10) 

ocrms
loop

L loop

V
I

X R



       (5.11) 

From (5.11), we can conclude that at low frequencies where loopR  dominates LX , 

the loop inductor acts a resistor whereas, at high frequencies, the resistive part of 

the loop inductor is almost negligible compared to the inductive reactance. Thus, 
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following (5.11), at high frequencies both ocrmsV and LX  are proportional to the 

frequency, this makes loop current independent of frequency [30], thus we can 

observe flat frequency response when the loop is operated in short circuit 

condition, where 
loopCX , 

MEMSCX are negligible due to the shorted damping 

resistance, dR  as per equation (5.10). The voltage generated across dR  can be 

expressed as (5.12), 

d loopR d loop C ACV R I V V          (5.12) 

5.2.2. Design specifications of Pixel inductor 

Following (5.12), the voltage applied across the MEMS capacitor is equal 

to the voltage generated across dR .Thus to generate enough capacitance change 

across the Pixel capacitor, the parameter that plays a vital role is the inductor loop 

current. From (5.11), since we are operating at high frequency, the magnitude of 

this loop current depends on ocrmsV  and LX  which are functions of the physical size 

as (5.13).  

loop

NA
I

L
         (5.13) 

From, Figure 5.6 and Figure 5.7, it is observed that in case of wideband 

operation of the loop inductor, the magnitude of the voltage generated across the 

damping resistance decreases with the increase in number of turns. The output 

voltage for a single turn square loop is 4.5 times than that of the voltage generated 

by a two-turn square loop. This is because, from (3.2), (3.6), and (5.13) doubling 
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N  increases ocrmsV  by 2 times and inductance by 4 times and the loopI  decreases 

by 2 times, which results in the reduction of voltage across the damping resistance. 

Thus, a single turn square loop has been selected for the proposed design.  

 

Figure 5.7.  Voltage generated across the loop inductor, shunted with a resistance, as a function 
of N. 

 

From (5.13), since N   is chosen to be 1, the loop current depends on A L  

ratio. Though the loop current increases with increase in area, large loop size 

sacrifices the resolution of the image generated. So, the choice of increasing the 

loop size can be omitted and the only way to obtain the desired output voltage level 

is by reducing the loop inductance. Loop inductance can be reduced by increasing 

the width of the conductor but from Figure 3.5a, it is observed that the increment 

in this case, is not significantly high. So, the alternate way to reduce the loop 

inductance is by using crossed parallel loops [40]. 

Crossed parallel loops as shown in Figure 5.8, are the loops connected in 
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parallel in such a way that the induced currents are added with minimal mutual 

coupling. From Figure 5.8, it is observed that the current direction of adjacent arms 

of the successive inductors is made to oppose each other to reduce the mutual 

inductance between them. With this configuration of loops, the effective inductance 

is lowered and the short circuit current is increased within the same area of 

operation [40]. 

 

Figure 5.8.  Parallel crossed loops with their current direction. 

 

Using this technique of crossed parallel loops, for the same total area, a 

single loop is replaced by an array of small loops which are named as sub-Pixel 

loops. Circuit simulations are carried out in PSpice®, by varying the number of sub-

Pixel loops ( )sn , the length of the conductor ( )w  and, the width of the conductor 

( )d . Different combinations of loops, for the same total area, are simulated as 

listed in Table 5.5. As it is evident from Table 5.5, with an increase in number of 
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sub-Pixel loops maintaining the same total area, there is a considerable increase 

in loop current. 

 

Figure 5.9.  12×12 Sub-Pixel matrix showing their connections (dimensions are not to scale). 

Considering case 1, a loop area of 0.01 
2μm  , the reduction of loop inductance of 

about 8 times and 66 times is observed for 4 loops of each 0.0025
2μm  and 16 

loops of each 0.625 
2nm , while an increase in loop current is about 2 times and 4 

times. From case 1, case 3 and case 4, halving the side length of the square loop, 

the inductance is reduced by 8 times and the loop current is increased by 2 times. 

With the increase in the ratio of loop length of the large loop to the sub-loop, their 
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ratio of loop currents is increased.  

TABLE 5.5  COMPARISON OF LOOP INDUCTANCE, LOOP RESISTANCE AND LOOP CURRENT OF VARIOUS 

COMBINATIONS FOR THE SAME TOTAL AREA AT 4.1 GHz FREQUENCY. 

 
Loop Inductor 

Inductance 

(nH)  

Resistance 

(Ω)  

Current 

(µA)  

Case 1 • Single turn loop  

100μm×100μm   

• 4 sub loops  

50μm×50μm  

• 16 sub loops 

25μm×25μm   

28.010 15.066 4.322 

3.463 1.871 8.765 

0.424 0.234 17.947 

Case 2  • Single turn loop  

300μm×300μm   

• 9 sub loops  

100μm×100μm  

• 100 sub loops 

30μm×30μm   

84.787 53.6796 12.797 

3.112 1.674 38.90 

0.082 0.045 133.580 

Case 3 • Single turn loop  

500μm×500μm   

• 4 sub loops 

250μm×250μm  

• 25 sub loops   

100μm×100μm  

142 142.75 21.226 

17.65 10.410 42.732 

1.12 0.603 108.055 

Case 4 • Single turn loop  

600μm×600μm   

• 4 sub loops 

300μm×300μm  

• 144 sub loops   

50μm×50μm  

170 230.673 25.419 

21.197 13.420 51.188 

0.096 0.052 315.533 

Note: All the other parameters are kept constant and the current shown is through damping 

resistance of 5 Ohms.  

Keeping these conclusions in mind, the optimal set of the parameters of the 

Pixel inductor is determined as shown in Table 5.6. Gold has been selected as the 
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material for the loop inductor due to its high conductivity and ease of 

microfabrication. The Pixel inductor has a total footprint area of 595 µm x 595 µm 

with total inductance of 86.382 pH. Each Pixel inductor has an array of 12×12 sub-

Pixels (small loops) each with the size of 45 µm with a gap of 5 µm between 

adjacent sub-Pixel loops in an array. Each sub-Pixel loop has an inductance of 

12.439 nH. To increase the induced voltage across the Pixel inductor, a magnetic 

core made of Fe-Co-B with high permeability of 1000 is chosen [41]. The 

connections among sub- Pixel loops are as shown in Figure 5.9. 

TABLE 5.6  DESIGN PARAMETERS OF PIXEL INDUCTOR. 

 Parameter Value 

Pixel 

Parameters 

Pixel inductor area 595 µm × 595 µm 

Pixel Inductance 86.382 pH 

Sub-Pixel 

parameters 

 

Gap between the sub Pixel loops, gs 5 µm 

Length of the square loop, w 45 µm 

Number of turns, N 1 

Width of the conductor, d 1 µm 

Number of sub Pixel, ns 144 

Thickness of the conductor, td 1 µm 

Relative permeability of medium,𝜇𝑟 1000 

Sub Pixel inductance, L 12.439 nH 

Conductor (gold) resistivity, 𝜌 2.44×10-8 Ωm 
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5.2.3. Design specifications of the Pixel capacitor 

The capacitance of the MEMS variable capacitor (Pixel capacitor) is 

changed according to the voltage generated across the resistor connected in 

parallel the loop inductor. As discussed in Chapter 3, the two-important design  

 

Figure 5.10.  Diaphragm deflection with voltage, a) at different diaphragm thickness, b) at 
different airgap. 

 

TABLE 5.7  PULL-IN VOLTAGE AT DIFFERENT DIAPHRAGM THICKNESS. 

Thickness of the diaphragm (nm) Pull-in Voltage (V) 

150 0.108 

200 0.146 

250 0.214 

300 0.290 

350 0.365 

400 0.440 

 

goals of Pixel capacitor are to obtain adequate sensitivity to sense a very low 

voltage induced by the inductor when it is operated to collect echo signals from the 
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deeper tissues of the human body and to obtain a flat frequency response of the 

Pixel over a UWB frequency range of 3.1 GHz to 5.1 GHz. The sensitivity of the 

Pixel capacitor can be defined as the change in capacitance ( )C  with respect to 

the change in voltage applied ( )V . 

TABLE 5.8  PULL-IN VOLTAGE WITH RESPECT TO AIRGAP. 

Airgap (µm) Pull-in Voltage (V) 

0.1 0.063 

0.2 0.146 

0.3 0.275 

0.4 0.42 

0.5 0.56 

0.6 0.78 

0.7 0.9 

 

To address the first goal, a very thin pure metal based diaphragm is used 

to achieve high sensitivity. A parametric FEM analysis has been carried out by 

varying the diaphragm thickness from 200 nm to 400 nm for the same applied 

voltage as shown in Figure 5.10a to determine the optimum thickness of the 

diaphragm that can generate the highest capacitance change. From Figure 5.10a, 

it is observed that as the thickness of the diaphragm decreases, its deflection to 

low voltage increases as its pull-in point reduces with the thickness which in shown 

in Table 5.7. The effect of airgap on diaphragm deflection as shown in Figure 5.10b 

and Table 5.8, shows the effect of the airgap on the pull-in point. From these 

observations, we can say that a higher sensitivity can be achieved by reducing the 
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thickness of the diaphragm and the height of the supporting dielectric posts. 

 

Figure 5.11.   a) Pull-in voltage curve of the Pixel capacitor, b) Deflection of the diaphragm at pull-
in voltage. 

 

TABLE 5.9  STATE-OF-THE-ART CAPACITANCE SENSING READOUT CIRCUITS. 

Reference 
Capacitance 

resolution (aF) 

[42] 0.04  

[43] 5.40  

[44] 95.0  

[45] 0.50  

[46] 1.0 

 

To satisfy the second design goal, the Pixel variable capacitor is designed 

in a such way that the capacitance variation generated by the predicted range of 

magnetic field i.e., 
-2 -110 Am  to 

-7 -110 Am , doesn’t alter the flat frequency response 

of the Pixel. Since, the voltage generated across the damping resistor is applied 
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across the Pixel capacitor, following (5.8), the damping resistor value is limited by 

the value of MEMS variable capacitance range. Hence the value of dR  is chosen 

according to the minimum measurable capacitance. Considering few of the 

available readout circuits in the literature as listed in Table 5.9, the minimum 

capacitance change measurable is chosen to be 1 aF in this work. 

 

TABLE 5.10  PIXEL CAPACITOR DESIGN PARAMETERS. 

Parameter Value Unit 

Diaphragm side length  (2𝑎) 150  µm 

Diaphragm thickness (Gold)  (𝑑𝑐) 200  nm 

Dielectric spacer thickness , BCB: (𝑔) 200  nm 

Insulation layer thickness, BCB (𝑑𝑖) 50  nm 

DC bias voltage (𝑉𝐷𝐶) 0.1  V 

Sensitivity  (𝑆𝑐) 4.5  aF. µV-1 

Pull-in voltage  (𝑉𝑝𝑢𝑙𝑙−𝑖𝑛) 0.146  V 

Resonant Frequency  (𝑓𝑟𝑒𝑠) 45.75  kHz 

Tuning range  (𝐶𝑚𝑎𝑥 𝐶𝑚𝑖𝑛)⁄  1.68:1 - 

 

TABLE 5.11  MATERIAL PROPERTIES. 

Property BCB Gold Unit 

Young’s modulus, 𝐸 2.9 79 GPa 

Poisson ratio, 𝜈 0.34 0.44 - 

Density, 𝜌𝑚  1050 19,300 Kg.m-3 

Relative permittivity, 𝜀𝑟 2.65  6.9 - 
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To attain flat frequency response of the Pixel in the operating UWB range, 

the Pixel capacitance range is decided to be in the range of (1-2) pF. Following 

(5.8), the resistance 
dR  has been selected to be 3Ω. Now, the voltage generated 

across the resistor totally depends on the induced current. As discussed in the 

previous section, the Pixel inductor is designed in such a way that it generates the 

possible high loop current within the given area by reducing the number of turns 

and using crossed parallel loops. Taking these conclusions and fabrication issues 

into account, an optimal set of parameters are developed as shown in Table 5.10 

and the material properties of the device are shown in Table 5.11. 

 

Figure 5.12.  a) Diaphragm deflection when 1mV AC voltage at 45.75 KHz (mode1) is applied, b) 
Diaphragm deflection when 1mV AC voltage at 101.08 KHz (mode 2) is applied, c) IntelliSuite® 

capture showing Pixel capacitor’s three modes of frequency. 
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The pull-in voltage curve of Pixel capacitor is shown in Figure 5.11a. From Figure 

5.11, the pull in observed at 0.146 V and the DC bias is chosen to be 0.1 V. Since 

the AC operating voltages here are quite low, for better coupling of induced AC 

voltage to the diaphragm deflection, a lower DC bias voltage is beneficial so that it 

can be more comparable with the applied AC voltage according to (3.12).  

 

Figure 5.13.  The deflection of the diaphragm when applied AC voltage (1 mV amplitude) is at, a) 
3.1 GHz, b) 4.1 GHz, c) 5.1 GHz. 

 

The mechanical resonance of the designed Pixel diaphragm is at 45.75 kHz 

as shown in Figure 5.12, which is far away from the operating frequency range 

with center frequency at 4.1 GHz, hence, the signal in (3.1 GHz - 4.1 GHz) range 

doesn’t modulate the capacitance, only the RMS value of the signal had its 
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influence as shown in Figure 5.12 and Figure 5.13. Figure 5.13 shows that the 

Pixel capacitor is independent of the frequency but depends only on the RMS value 

of the AC voltage applied because the amount of deflection is constant and the 

oscillation of the diaphragm with respect to frequency is not observed at high 

frequency (Figure 5.13) unlike at the frequency near mechanical resonance 

(Figure 5.12). 

 

Figure 5.14.  Diaphragm deflection with inductor induced AC voltage. 
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A device level Finite Element Method (FEM) simulation of proposed 

microwave Pixel capacitor is carried out in IntelliSuite® software. The deformation 

of the Pixel capacitor diaphragm for applied voltage was simulated using FEM 

simulator and is as shown in figure 5.14. From Figure 5.14, a linear operation of  

 

Figure 5.15.  Capacitance generated with loop inductor induced voltage. 

the device has been observed and a deflection variation of 0.8 pm is observed for 

1 µV change in the loop inductor induced voltage, achieving a mechanical 

deflection sensitivity of 0.8 pm.µV-1. The corresponding capacitance generated 
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across the Pixel capacitor is as shown in Figure 5.11. From Figure 5.11, a 

capacitance change of 4.5 aF is observed for one microvolt change in applied AC 

voltage. 

The estimated magnetic field intensity levels of tissue interface reflections 

as shown in Table 5.1,5.2,5.3 are used to determine the voltage induced across 

the Pixel inductor, are shown in Figure 5.16. The corresponding capacitance 

generated across the Pixel capacitor is as shown in Table 5.12. 

 

 

Figure 5.16.  The voltage induced across the Pixel capacitor corresponding to the reflections from 
skin/fat, fat/muscle, muscle/cartilage, cartilage/lung and lung/heart when the transmit power is, a) 

5 mW, b) 50 mW, c) 500 mW. 
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TABLE 5.12  PIXEL VOLTAGE AND CAPACITANCE CORRESPONDING TO THE TISSUE INTERFACE 

REFLECTIONS AT 5 mW,50 mW AND 500 mW. 

Origin of 

reflection 

Voltage generated across Pixel 

inductor and capacitor (µV) 

Pixel capacitance generated 

(pF) 

5 mW 50 mW 500 mW 5 mW 50 mW 500 mW 

Skin/Fat 325  1030  3245  1.066038 1.069062 1.080212 

Fat/Muscle 207  656  2075  1.065539 1.067449 1.073654 

Muscle/Cartilage 9.397  29.46  95.26  1.064703 1.064786 1.065065 

Cartilage/Lung 1.190  3.738  11.96  1.064669 1.064683 1.064716 

Lung/Heart 0.722  2.26  7.262  1.064669 1.064673 1.064696 
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CHAPTER 6  

FABRICATION OF PROPOSED MICROWAVE PIXEL 

 

This chapter presents a step by step description of the process sequence 

to be followed to fabricate the proposed microwave Pixel array on glass wafer. The 

details of each fabrication step are provided with operating conditions, used 

materials, process type and a conceptual cross-sectional view has been provided 

6.1. Fabrication steps 

STEP 1: Wafer Cleaning 

The fabrication process starts with the cleaning of a glass wafer 

FOTURAN® II from Schott North America. FOTURAN® II has been selected as the 

starting substrate due to its excellent stability of the dielectric constant at the 

operating UWB frequency range. Before the glass wafer is subjected to any 

microfabrication process, a cleaning process is necessary to clean oils and organic 

residues that may build up on the wafer surface. Cleaning of glass wafers involves 

a solvent clean, followed by a de-ionized water (DI) rinse, followed by a mild acid 

clean, DI rinse and blow dry [47]. The solvents used for the solvent cleaning are 

acetone and methanol, while hydrochloric acid (HCL) is used for mild acid clean 

stage [47]. The cleaned glass wafer cross section is shown in Figure 6.1. 

 

 

Figure 6.1.  Glass wafer after cleaning. 
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STEP 2: Deposition of metal  

The second step includes deposition of the Gold (Au) layer, which is the 

bottom electrode of the Pixel capacitor, as shown in Figure 6.2. Since, gold doesn’t 

adhere well to glass, a 3.5 nm seed layer of titanium is deposited using DC 

magnetron at 250 W and 5 mtorr with an approximate deposition rate of 0.1 nm/sec 

[48]. Following this step, a 100 nm thick AU layer was deposited by DC magnetron 

sputtering, with DC target at 150W, pressure at 5 mtorr. The deposition time is of 

200 secs according to the accepted deposition rate of 0.5 nm/sec [48]. 

 

 

Figure 6.2.  Metal deposition. 

STEP 3: Photolithography to realize the bottom electrode of the capacitor 

After deposition of the electrode layer, a Shipley 1805 photoresist has been 

spin deposited using a thin HMDS layer as the primer. After soft baking of the 

photoresist layer, the wafer was exposed to 450 nm wavelength UV light to carry 

out the photolithography (using contact mask aligner) and then the gold layer is 

patterned using ion beam etching, as shown in Figure 6.3, with a typical etch rate 

for gold is 0.12 µm/min at beam energy of 500 eV. Next to this, the photoresist was 

etched. 
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Figure 6.3.  a) Spin on photoresist & exposure to UV with contact mask aligner, b) Photoresist 
develop, c) Ion beam etch of gold and titanium layers, d) Strip photoresist. 

 

STEP 4: Deposition of BCB as an insulation layer and dielectric post 

BCB is chosen as an insulating material and as a dielectric post. A thin BCB 

layer (Cyclotene™ 3022-35) of 3500 Å was spin deposited on the gold with 3.5 nm 

sputtered chromium as a seed layer to realize insulation layer on top of the bottom 

electrode to avoid breakdown and dielectric posts to realize the air gap between 

the capacitor electrodes as shown in Figure 6.4a.  

 

Figure 6.4.  Cross-sectional view, a) Spin deposited BCB, b) after Planarization. 
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This step is followed by a Chemical mechanical planarization (CMP) of BCB for 

planarizing the surface as shown in Figure 6.4b 

STEP 5: Photolithography to realize dielectric posts 

To pattern BCB, a photoresist is spun and soft baked. A contact mask 

aligner is used to transfer the desired pattern onto the photoresist and 450 nm 

wavelength UV light is exposed and then the exposed Photoresist is washed away 

leaving a patterned photoresist as shown in Figure 6.5. This is followed by a 

Reactive Ion Etch (RIE) of BCB and then photoresist is stripped. 

 

Figure 6.5.  a) Photoresist exposure to UV, b) Photoresist develop, c) RIE etch of BCB, d) 
Removal of photoresist. 

 

STEP 6: Deposition and pattern of sacrificial layer 

A 200 nm thick SiO2, has been deposited as a sacrificial layer by plasma-
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enhanced chemical vapor deposition (PECVD) using Tetraethoxysilane (TEOS) 

and O2 at 270°C and then photolithography using proximity mask aligner is done 

followed by patterning the oxide layer using RIE process with etch rate of 123 

nm/min at 100 W [49]. The cross-sectional views of these steps are shown in 

Figure 6.6. 

 

Figure 6.6.  a) Deposition of SiO2, b) Photoresist and UV exposure, c) Pattern photoresist, d) RIE 
etch of sacrificial layer. 

 
STEP 7: Depositing and patterning gold layer for diaphragm 

This step includes deposition of gold (Au) layer, which is the top electrode 

of the Pixel capacitor. Since gold cannot be deposited on SiO2 and BCB, a 20 nm 

layer of Chromium is deposited as an adhesion layer. After that, 400 nm thick gold 

layer is deposited using electron-beam evaporation technique (Figure 6.6). The 

Chromium seed layer was deposited at 20% power to obtain a deposition rate of 
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3.0 Å/sec and Gold conductive layer was deposited at 30% power which gives a 

rate of 9.2 Å /sec. In order to avoid oxidation of Chromium, two deposition 

processes were done in one duty cycle. Then patterning the device with 

photoresist, gold and chromium layers are etched. Gold layer was etched using 

Transene™ TFA solution (8% I, 21% KI, 71% H2O, etch rate 28 Å /sec). Then 

Chromium layer is etched using, Transene™1020 (10-20% Ceric ammonium 

Nitrate, 5-6% HNO3, etch rate 40 Å /sec) as shown in Figure 6.7. Finally, the etch 

holes are created for sacrificial etch of SiO2. 

 

Figure 6.7.  a) Deposition of 20 nm chromium, b) E-beam evaporation of gold, c) Photoresist spin 
and UV exposure, d) Photoresist develop, e) Etching of gold and chromium, f) Removal of 

photoresist. 
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STEP 8: Removal of sacrificial layer  

In order to release the diaphragm, Transene™ Improved buffered oxide 

etch (BOE) solution (4-8% HF + NH4F, etch rate of nearly 700Å/min) has been 

used to sacrificially etch the oxide layer for 171 seconds, which is followed by 

critical point drying (CPD) in a typical CPD dryer (Figure 6.8). Critical point drying 

is carried out to avoid stiction of the devices. 

 

Figure 6.8.  Release of diaphragm. 

 

 
STEP 9: Silicon wafer with BCB spin coating at the bottom  

Here starts the first process step to realize the Pixel inductor (a 12×12 array 

of sub-Pixel inductors). This begins with RCA (Radio Corporation of America) 

cleaning of silicon wafer for any organic coatings in a strong oxidant piranha 

solution i.e., a 7:3 mixture of concentrated sulphuric acid (H2SO4) and hydrogen 

peroxide (H2O2). Then organic residues are removed in a 5:1:1 mixture of water 

(H2O), hydrogen peroxide (H2O2), and ammonium hydroxide (NH4OH). As this step 

can grow a thin oxide on silicon, it is necessary to insert a dilute HF etch to remove 

this oxide when cleaning a bare silicon wafer and then ionic clean using a solution 

of 6:1:1 H2O: H2O2: HCl. Then BCB layer of 2 µm is spin deposited at the bottom 
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of the wafer and then etched BCB using Reactive Ion Etch (RIE) technique as 

shown in Figure 6.9. 

 

Figure 6.9.  Silicon wafer spin deposited with BCB at the bottom, b) RIE etch of BCB layer. 

 
STEP 10: Deposition and patterning of Sacrificial layer 

 

Figure 6.10.  a) Deposition of SiO2, b) Spin photoresist and UV exposure, c) Pattern photoresist, 
d) Removal of photoresist. 

 

SiO2 sacrificial layer has been deposited using plasma-enhanced chemical 

vapor deposition (PECVD) and then photolithography is done followed by 
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patterning the oxide layer using RIE process with etch rate of 123 nm/min at 100 

W [49]. The silicon layer is then DRIE (Deep reactive ion etch) etched as shown in 

Figure 6.10. 

STEP 11: Deposition and patterning of conducting layer 

 

Figure 6.11.  a) Deposition of chromium as seed layer, b) E-beam evaporation of gold, c) Spin 
photoresist and UV exposure, d) Pattern photoresist, e) patterning of gold, f) Strip photoresist. 

 
This step includes deposition of gold (Au) layer to realize inductors. Since 
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gold cannot be deposited on SiO2, a 5 nm layer of Chromium is deposited as an 

adhesion layer. After that, 1 µm thick gold layer is deposited using electron-beam 

evaporation technique as shown in Figure 6.11. The Chromium seed layer was 

deposited at 20% power to obtain a deposition rate of 3.0 Å/sec and Gold 

conductive layer was deposited at 30% power which gives a rate of 9.2 Å /sec. 

This step is followed by patterning the device with photoresist and then etching of 

gold layer using Transene™ TFA solution (8% I, 21% KI, 71% H2O, etch rate 28 Å 

/sec).  

STEP 12: Removal of sacrificial layer  

In this step, sacrificial layer SiO2 is etched away to release the inductors. 

Transene™ Improved buffered oxide etch (BOE) solution (4-8% HF + NH4F, etch 

rate of nearly 700Å/min) has been used to sacrificially etch the oxide layer, which 

is followed by critical point drying (CPD) in a typical CPD dryer (Figure 6.8). 

 

Figure 6.12.  Release of 12×12 Pixel inductor array. 

STEP 13: Deposition of magnetic material 

This step involves realization of magnetic core for Pixel inductors. Due to 

high frequency characteristics and high permeability of 1000, Fe-Co-B is chosen 



 

87 
 

to be a magnetic material [41]. Fe-Co-B film of 3 µm thick is deposited by RF 

magnetron sputtering in Ar plasma at pressure of 8 mTorr and power of 450 W. 

 

Figure 6.13.  Deposition of Fe-Co-B film. 

STEP 14: Etching of magnetic material 

In this step, to realize each inductor wounded around the magnetic core, a 

dry etching of Fe-Co-B was carried out in inductively coupled plasmas of Cl2/Ar 

mixture with an excitation frequency of 13.56 MHz and RF power up to 

700 W.  After the etching, the samples were rinsed with de-ionized (DI) water to 

remove the chlorine residues [50]. The cross-sectional view of the device after 

magnetic core etch is as shown in Figure 6.14.   

STEP 15: Adhesive bonding of BCB -BCB to realize complete Pixel 

The bonding surfaces of BCB Cyclotene™ of Pixel capacitor and Pixel 

inductor, as shown in Figure 6.15, were cleaned and agitated by putting them 

under 40 sccm flow of O2 plasma and 10 sccm flow of CF4 at chamber pressure of 

100 mTorr and 90 W RF power for 30 secs [51]. Following this, both the wafers 

are placed in vaccum chamber with pressure of about 70 mtorr, to apply pre-

bonding pressure on the wafers to be bonded and then final annealing is done at 
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temperature of 210°C [51]. 

 

6.14.  a) Spin photoresist and UV exposure with contact mask aligner, b) Develop photoresist, c) 
Etch magnetic core, d) Strip photoresist. 

 

 

Figure 6.15.  BCB- BCB adhesive bonding. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

 

7.1. Discussions and Conclusions 

A Novel MEMS based microwave Pixel for use with an UWB radar for 

diagnostic medical imaging has been presented. The developed Pixel has been 

designed with 12×12 array of loop inductors connected in parallel to act as a single 

cross-parallel loop and a MEMS variable diaphragm capacitor. A 2-D array of such 

Pixels can generate a 2D voltage map corresponding to the dielectric properties 

distribution in a respective tissue layer inside the human thorax deep upto 4.2 cm. 

As the diseased and healthy tissues differ in their dielectric properties and 

conductivity, the generated dielectric constant based voltage map will be able to 

clearly identify any medical condition such as pneumothorax or breast cancer. The 

simulation of loop inductor array and MEMS variable capacitor are carried out 

separately, as the circuit level operation of loop inductor connected in parallel to 

MEMS variable capacitor is done using MATLAB®, OrCAD® PSpice® and then the 

output voltage generated through this simulation is fed to the MEMS Pixel 

capacitor simulated in IntelliSuite®. Thus, the overall simulation of the Pixel shows 

the capacitance generated across the Pixel capacitor due to the magnetic field 

picked up by the loop inductor.   
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The designed Pixel is capable of detecting the magnetic field intensity equal 

to or greater than 0.8 µAm-1 , generating a voltage equal to or greater than 1 µV, 

which generates a Pixel capacitance of 1.064668 pF. A Pixel capacitance change 

of nearly 4.5 aF is observed for every 1 µV change in Pixel inductor induced 

voltage, thus the sensitivity of proposed Pixel is 4.5 aF/0.8 µAm-1. According to the 

mathematical model, the estimated magnetic intensity of each tissue interface 

reflection at transmit power of 5 mW, 50 mW and 500 mw are in the Pixel 

detectable range except for the lung/heart reflection in 5 mW case. But the 

diagnostic imaging to detect the phenumothorax condition can be done for all the 

three estimated power levels as shown in Table 7.1. 

TABLE 7.1  PIXEL DETECTABILITY ANALYSIS FOR TRANSMIT POWER OF 5mW, 50mW, 500mW. 

Depth 

Pt=5 mW Pt= 50 mW Pt= 500 mW 

Pixel detection Pixel detection Pixel detection 

Skin/Fat YES YES YES 

Fat/Muscle YES YES YES 

Muscle/Cartilage YES YES YES 

Cartilage/Lung 
(pneumothorax) 

YES YES YES 

Lung/Heart NO YES YES 

 

The proposed Pixel with a consideration of 1 aF as a minimum measurable 

capacitance change, can detect the reflections deep upto Lung/heart interface 

which is about 4.2 cm away from the skin surface for a typical adult (male) 
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according to [35]. The proposed design may be used for cardiac imaging in the 

case of newborn babies, since 4.2 cm deep into thorax of a baby can pass through 

the heart. The miniature size of the system due to MEMS technology, enable this 

device to use for capsule endoscopy to image internal body organs. 

7.2. Future work 

In the present thesis work, a MEMS based microwave Pixel is designed for 

diagnostic medical imaging. The research work can be extended further by: 

1. 3D Simulation of complete Pixel array to study the effect of Pixel spacing 

and its effect on the image resolution. 

2. Investigating the noise analysis of the Pixel system, to increase signal-to-

noise (SNR) ratio in order to distinguish the reflected signal from the noise 

floor. 

3. Analysis on mutual coupling of adjacent sub-Pixel loops and techniques to 

reduce this mutual effect. 

4. Fabrication and experimental characterization of the proposed Pixel array 

for diagnostic imaging. 

5. Study on a MEMS based microwave focusing lens to order to enable sub-

wavelength resolution of the system ruling out the diffraction limit of the 

conventional systems. 

6. Near field operation of the Pixel array. 

 

Detection of Diaphragm Deflection using laser doppler techniques: 
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Successful realization of this Pixel array for imaging much more deeper tissues 

leads to a promising solution for the existing short coming of the available imaging 

techniques. However, this demands an extremely sensitive circuitry capable of 

detecting a minute change in capacitance less than Zeptofarad, to generate a 

detectable voltage output map. The possible solution to overcome this, could be a 

technique that can detect the diaphragm deflection down to sub picometer using 

laser doppler techniques. In this technique as shown in Figure 7.1, the diaphragm 

to be observed is illuminated with a laser light and the reflections from the 

diaphragm are processed to measure the deflection of the membrane based on 

the phase shift of the reflections. This technique may provide higher sensitivity to 

capture weak microwave signals when compared to capacitive sensing methods.  

 

Figure 7.1.  Laser light reflection from a) a non-deflected diaphragm b) a deflected diaphragm. 
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Laser assisted Microwave Radar Tomography: The developed microwave Pixel 

array has the potential for use in a manner similar to the photoacoustic 

tomography. A laser beam can be used to heat up the tissue and an UWB radar 

with the 2D pixel array can be used to generate a 3-D map of the heat deformed 

tissue layer. This may help to identify the developmental stages of a particular 

disease or the healing process.  
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APPENDICES  

Appendix A MATLAB® code for UWB signal attenuation in human tissues 

 

clc; 
clear all; 
format long g; 
%Complex permittivity of air% 
relskin=zeros(size(3.1*10^9:0.1*10^9:4.1*10^9)); 
relfat=zeros(size(3.1*10^9:0.1*10^9:4.1*10^9)); 
relmuscle=zeros(size(3.1*10^9:0.1*10^9:4.1*10^9)); 
relcartilage=zeros(size(3.1*10^9:0.1*10^9:4.1*10^9)); 
rellung=zeros(size(3.1*10^9:0.1*10^9:4.1*10^9)); 
relheart=zeros(size(3.1*10^9:0.1*10^9:4.1*10^9)); 
i=1 
%complex permittivity of skin% 
% parameters from [http://niremf.ifac.cnr.it/docs/DIELECTRIC/AppendixC.html] 
for f=4.1e9 
  
w=2*pi*f; 
e=4; 
del(1)=32; 
tau(1)=7.234*10^-12; 
alf(1)=0; 
del(2)=1100; 
tau(2)=32.481*10^-9; 
alf(2)=0.2; 
sig=0; 
del(3)=0; 
tau(3)=159.155*10^-6; 
alf(3)=0.2; 
del(4)=0; 
tau(4)=15.915*10^-3; 
alf(4)=0.2; 
y=0; 
for n=1:4; 
a=1i*w*tau(n); 
x(n)=(del(n)/(1+a^(1-alf(n)))); 
y=y+x(n); 
end; 
eps=8.854*10^-12; 
relskin(i)=e+y+(sig/(1i*w*eps)) 
%relative permittivity of fat% 
e=2.5; 
del(1)=3; 
tau(1)=7.958*10^-12; 
alf(1)=0.20; 
del(2)=15; 
tau(2)=15.915*10^-9; 
alf(2)=0.1; 
sig=0.01; 
del(3)=3.3*10^4; 
tau(3)=159.155*10^-6; 
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alf(3)=0.050; 
del(4)=1*10^7; 
tau(4)=7.958*10^-3; 
alf(4)=0.010; 
y=0; 
for n=1:4; 
a=1i*w*tau(n); 
x(n)=(del(n)/(1+a^(1-alf(n)))); 
y=y+x(n); 
end; 
eps=8.854*10^-12; 
relfat(i)=e+y+(sig/(1i*w*eps)); 
%relative permittivity of muscle% 
e=4; 
del(1)=50; 
tau(1)=7.234*10^-12; 
alf(1)=0.1; 
del(2)=7000; 
tau(2)=353.678*10^-9; 
alf(2)=0.1; 
sig=0.2; 
del(3)=1.2*10^6; 
tau(3)=318.310*10^-6; 
alf(3)=0.1; 
del(4)=2.5*10^7; 
tau(4)=2.274*10^-3; 
alf(4)=0; 
y=0; 
for n=1:4; 
a=1i*w*tau(n); 
x(n)=(del(n)/(1+a^(1-alf(n)))); 
y=y+x(n); 
end; 
eps=8.854*10^-12; 
relmuscle(i)=e+y+(sig/(1i*w*eps)); 
%relative permittivity of cartilage% 
e=4; 
del(1)=38; 
tau(1)=13.263*10^-12; 
alf(1)=0.150; 
del(2)=2500; 
tau(2)=144.686*10^-9; 
alf(2)=0.150; 
sig=0.150; 
del(3)=1*10^5; 
tau(3)=318.310*10^-6; 
alf(3)=0.1; 
del(4)=4*10^7; 
tau(4)=15.915*10^-3; 
alf(4)=0; 
y=0; 
for n=1:4; 
a=1i*w*tau(n); 
x(n)=(del(n)/(1+a^(1-alf(n)))); 
y=y+x(n); 
end; 
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eps=8.854*10^-12; 
relcartilage(i)=e+y+(sig/(1i*w*eps)); 
%relative permittivity of lung% 
e=2.5; 
del(1)=18; 
tau(1)=7.958*10^-12; 
alf(1)=0.1; 
del(2)=500; 
tau(2)=63.662*10^-9; 
alf(2)=0.1; 
sig=0.03; 
del(3)=2.5*10^5; 
tau(3)=159.155*10^-6; 
alf(3)=0.2; 
del(4)=4*10^7; 
tau(4)=7.958*10^-3; 
alf(4)=0; 
y=0; 
for n=1:4; 
a=1i*w*tau(n); 
x(n)=(del(n)/(1+a^(1-alf(n)))); 
y=y+x(n); 
end; 
eps=8.854*10^-12; 
rellung(i)=e+y+(sig/(1i*w*eps)); 
%relative permittivity of heart% 
e=4; 
del(1)=50; 
tau(1)=7.958*10^-12; 
alf(1)=0.1; 
del(2)=1200; 
tau(2)=159.155*10^-9; 
alf(2)=0.05; 
sig=0.05; 
del(3)=4.5*10^5; 
tau(3)=72.343*10^-6; 
alf(3)=0.220; 
del(4)=2.5*10^7; 
tau(4)=4.547*10^-3; 
alf(4)=0; 
y=0; 
for n=1:4; 
a=1i*w*tau(n); 
x(n)=(del(n)/(1+a^(1-alf(n)))); 
y=y+x(n); 
end; 
eps=8.854*10^-12; 
relheart(i)=e+y+(sig/(1i*w*eps)); 
  
i=i+1 
end 
c=299795637.7; 
d=[1.5*10^-3;9.6*10^-3;13.5*10^-3;11.6*10^-3;5.78*10^-3;8*10^-3] % Thickness of tissue layer 
for i=1 
    etaskin(i)=(120*pi)./sqrt(relskin(i)) ;% Complex impedance of Skin 
    etafat(i)=(120*pi)./sqrt(relfat(i)) ;% Complex impedance of Fat 
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    etamuscle(i)=(120*pi)./sqrt(relmuscle(i)) ;% Complex impedance of Muscle 
    etacartilage(i)=(120*pi)./sqrt(relcartilage(i)) ;% Complex impedance of Cartilage 
    etalung(i)=(120*pi)./sqrt(rellung(i)) ;% Complex impedance of Lung 
    etaheart(i)=(120*pi)./sqrt(relheart(i)) ;% Complex impedance of Heart 
    skins(i)=1i*w*(sqrt(relskin(i))./c);  % complex propagation constant of Skin 
    fats(i)=1i*w*(sqrt(relfat(i))./c);% complex propagation constant of Fat 
    muscles(i)=1i*w*(sqrt(relmuscle(i))./c);% complex propagation constant of Muscle 
    cartilages(i)=1i*w*(sqrt(relcartilage(i))./c);% complex propagation constant of Cartilage 
    lungs(i)=1i*w*(sqrt(rellung(i))./c);% complex propagation constant of Lung 
    hearts(i)=1i*w*(sqrt(relheart(i))./c);% complex propagation constant of Heart 
end 
for i=1 
    % ABCB parameters of transmission matrix 
    Askin(i)=cosh(skins(i).*d(1)); 
    Bskin(i)=etaskin(i)*sinh(skins(i).*d(1)); 
    Cskin(i)=(sinh(skins(i).*d(1))/etaskin(i)); 
    Dskin(i)=cosh(skins(i).*d(1)); 
     
    Afat(i)=cosh(fats(i).*d(2)); 
    Bfat(i)=etafat(i)*sinh(fats(i).*d(2)); 
    Cfat(i)=(sinh(fats(i).*d(2))/etafat(i)); 
    Dfat(i)=cosh(fats(i).*d(2)); 
     
    Amuscle(i)=cosh(muscles(i).*d(3)); 
    Bmuscle(i)=etamuscle(i)*sinh(muscles(i).*d(3)); 
    Cmuscle(i)=(sinh(muscles(i).*d(3))/etamuscle(i)); 
    Dmuscle(i)=cosh(muscles(i).*d(3)); 
     
    Acartilage(i)=cosh(cartilages(i).*d(4)); 
    Bcartilage(i)=etacartilage(i)*sinh(cartilages(i).*d(4)); 
    Ccartilage(i)=(sinh(cartilages(i).*d(4))/etacartilage(i)); 
    Dcartilage(i)=cosh(cartilages(i).*d(4)); 
     
     Alung(i)=cosh(lungs(i).*d(5)); 
    Blung(i)=etalung(i)*sinh(lungs(i).*d(5)); 
    Clung(i)=(sinh(lungs(i).*d(5))/etalung(i)); 
    Dlung(i)=cosh(lungs(i).*d(5)); 
     
     Aheart(i)=cosh(hearts(i).*d(6)); 
    Bheart(i)=etaheart(i)*sinh(hearts(i).*d(6)); 
    Cheart(i)=(sinh(hearts(i).*d(6))/etaheart(i)); 
    Dheart(i)=cosh(hearts(i).*d(6)); 
end 
  
for i=1 
    % Transmission matrix of each tissue layer 
    
T1=[Askin(i),Bskin(i);Cskin(i),Dskin(i)]; 
        T2=[Afat(i),Bfat(i);Cfat(i),Dfat(i)]; 
        T3=[Amuscle(i),Bmuscle(i);Cmuscle(i),Dmuscle(i)]; 
        T4=[Acartilage(i),Bcartilage(i);Ccartilage(i),Dcartilage(i)]; 
        T5=[Alung(i),Blung(i);Clung(i),Dlung(i)]; 
        T6=[Aheart(i),Bheart(i);Cheart(i),Dheart(i)]; 
        TB=T2*T3*T4;%LUNG IS LAST% 
TC=T3*T4*T5;%HEART% 
TD=T4*T5; 
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TE=T5; 
TF=T6; 
% refelction coefficient upto the depth 
ETALB=((etalung(i).*TB(1,1))+TB(1,2))/((etalung(i)*TB(2,1))+TB(2,2)); 
ETALC=((etaheart(i).*TC(1,1))+TC(1,2))/((etaheart(i)*TC(2,1))+TC(2,2)); 
ETALD=((etaheart(i).*TD(1,1))+TD(1,2))/((etaheart(i)*TD(2,1))+TD(2,2)); 
ETALE=((etaheart(i).*TE(1,1))+TE(1,2))/((etaheart(i)*TE(2,1))+TE(2,2)); 
ETALF=etaheart(i); 
%total power attenuation% 
NUM=(2*sqrt(real(120*pi))*sqrt(real(ETALF))); 
Ttotal=T1*T2*T3*T4*T5; 
DEN=((ETALF*Ttotal(1,1))+Ttotal(1,2)+(120*pi*ETALF*Ttotal(2,1))+(120*pi*Ttotal(2,2))); 
totalpowerattenuation=(abs(NUM/DEN))^2; 
TOTALdb=10*log10(totalpowerattenuation) 
  
%power attenuation upto cartlage_lung interface% 
NUM=(2*sqrt(real(120*pi))*sqrt(real(ETALE))); 
Ttotal=T1*T2*T3*T4; 
DEN=((ETALE*Ttotal(1,1))+Ttotal(1,2)+(120*pi*ETALE*Ttotal(2,1))+(120*pi*Ttotal(2,2))); 
totalpowerattenuation1=(abs(NUM/DEN))^2; 
cartilagelungdb=10*log10(totalpowerattenuation1) 
  
%power attenuation upto muscle_cartlage interface% 
NUM=(2*sqrt(real(120*pi))*sqrt(real(ETALD))); 
Ttotal=T1*T2*T3; 
DEN=((ETALD*Ttotal(1,1))+Ttotal(1,2)+(120*pi*ETALD*Ttotal(2,1))+(120*pi*Ttotal(2,2))); 
totalpowerattenuation2=(abs(NUM/DEN))^2; 
musclecartilagedb=10*log10(totalpowerattenuation2) 
  
%power attenuation upto fat_muscle interface% 
NUM=(2*sqrt(real(120*pi))*sqrt(real(ETALC))); 
Ttotal=T1*T2; 
DEN=((ETALC*Ttotal(1,1))+Ttotal(1,2)+(120*pi*ETALC*Ttotal(2,1))+(120*pi*Ttotal(2,2))); 
totalpowerattenuation3=(abs(NUM/DEN))^2; 
fatmuscledb=10*log10(totalpowerattenuation3) 
  
%power attenuation upto skin_fat interface% 
NUM=(2*sqrt(real(120*pi))*sqrt(real(ETALB))); 
Ttotal=T1; 
DEN=((ETALB*Ttotal(1,1))+Ttotal(1,2)+(120*pi*ETALB*Ttotal(2,1))+(120*pi*Ttotal(2,2))); 
totalpowerattenuation4=(abs(NUM/DEN))^2; 
skinfatdb=10*log10(totalpowerattenuation4) 
end 
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