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Abstract 

High Level Synthesis (HLS) is a technology used to design and develop hardware 

(HW) using high-level languages such as C/C++. An HLS model of an automotive 

RADAR signal processing algorithm has been developed for the purpose of comparison 

between the HLS model and the existing HDL model. Register Transfer Level (RTL) 

programming is a technology used to design and develop hardware at the register transfer 

level (or low level) using Hardware description languages such as Verilog and VHDL. 

FPGA development usually requires the knowledge of RTL technologies. HLS gives 

software (SW) developers the ability to design and implement their designs on an FPGA 

without requiring the knowledge of RTL technologies and HDL.  

 Even though HLS is currently gaining popularity, the applications used to evaluate 

HLS tend to remain small. We synthesize an automotive RADAR signal processing system 

using HLS-based design methodology, which has mid to high complexity, and compare 

our synthesis results to that of the RTL-based design. We used many techniques used to 

make the high-level program model ready for synthesis while optimizing for both speed 

and resource usage using Xilinx Vivado HLS Computer-Aided Design (CAD) tool. We 

achieved a speed up of 2X compared to the RTL-based design while reducing the design 

time from approximately 16 weeks to 6 weeks. The FPGA resource utilization increased 

but it was still under 5% of the total resources available on the FPGA.  
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Chapter 1. Introduction 

1.1. Motivation 

High Level Synthesis is gaining popularity as a primary design methodology when it 

comes to hardware design due to a number of advantages such as higher productivity, faster 

time to market, etc.  Even though HLS provides many advantages over the current RTL-

based design methodologies, a lot of work remains to be done in effectively utilizing HLS 

Computer-aided Design (CAD) tools for hardware design targeting complex real world 

applications.  

There have been a few case studies in the past which focus on the High-Level Synthesis 

of various hardware designs [1, 8] but they generally focus on the design itself and not the 

comparative evaluation of HLS results with the older RTL-based design methodologies. A 

case study which focuses on the comparison and evaluation of HLS and HDL synthesis 

results is presented in [2]. The H.264 video decoding algorithm was synthesized using 

Vivado HLS CAD tool [3].  Some previous case studies which focus on the HLS 

technology itself have shown promise that HLS is ready for mainstream implementation 

[10]. A detailed overview of currently available HLS CAD tools from the industry and 

academia is presented in [11, 13] 

The main motivation for this thesis is to compare HLS and HDL-based design 

methodologies for designing a mid to high complexity design which is the automotive 

RADAR signal processing algorithm to detect a target’s range and velocity with respect to 

the unit the system resides in [4, 5]. 
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1.2. Objective 

The main goal of this thesis is to evaluate and compare HLS and HDL-based design 

methodologies by simulating and synthesizing an automotive RADAR signal processing 

algorithm for Xilinx Virtex 7 FPGA. The metrics used for the evaluation and comparison 

are time-to-market, speed (timing analysis), and area (resource utilization). The CAD tool 

used for this purpose is the Xilinx Vivado HLS. The HDL model used in our comparison 

is described in [4, 5]. For fair comparative analysis, the existing HDL model was updated 

to target the Xilinx Virtex 7 FPGA using Xilinx Vivado since the original design was for 

the Xilinx Virtex 5. 

A few other questions which will be answered in this thesis are: 

• Is HLS ready for complex real world applications such as the automotive 

RADAR signal processing algorithm? 

• What are the advantages of HLS over HDL-based synthesis? 

1.3. Thesis Outline 

This remainder of this thesis is organized as follows:  

In Chapter 2, the background of FPGAs, hardware design methodologies (HDL and 

HLS), tools for hardware design, a brief comparison of the technologies, and related 

research are briefly discussed. Chapter 3 describes the automotive RADAR signal 

processing algorithm to be synthesized using HLS. This includes a brief introduction to 

target detection, the actual algorithm model, and the HDL modeling of this algorithm. 
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In Chapter 4, implementations of the algorithm at different levels of abstraction, 

namely, MATLAB, C++, and Verilog are discussed. Chapter 5 discusses the results 

obtained from various implementations which are then used for the evaluation and 

comparison of the HLS and the HDL-based design methodologies. We finally conclude in 

Chapter 6 with a summary and suggestions for future work.  
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Chapter 2. Background  

This chapter provides background information on FPGAs and HLS. Previous related 

works are also discussed. 

2.1. FPGAs 

Field Programmable Gate Arrays (FPGAs) are Integrated Circuits (ICs) which consists 

of large amounts of programmable logic resources, programmable routing and embedded 

resources such as memories and DSP blocks. FPGAs enable rapid and custom hardware 

design for many real-world applications. They are also used for prototyping various 

hardware designs before they are sent for IC fabrication. FPGAs enables us to reprogram 

the hardware architecture to mimic a custom IC which allows us to do thorough testing 

before the design is sent for fabrication. Although one-time programmable (OTP) FPGAs 

are available which perform specific tasks, reprogrammable FPGAs are more popular 

because they can handle design changes as the design evolves.  

Application specific integrated circuits are custom hardware ICs which are 

manufactured for specific applications. Although ASICs are faster and consume less 

power, the recent advances in FPGAs push the limits of speed, complexity, and physical 

size in comparison to older FPGAs.  

The FPGA used for this research is the Xilinx Virtex 7, which is one of the four Xilinx 

7 series FPGA families. These FPGAs are optimized for highest system performance and 

capacity with a 2X improvement in system performance, these are the highest capability 
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devices enabled by stack silicon interconnect (SSI) technology [12]. An overview 

comparison between the four different families of Xilinx 7-series FPGAs is shown in Table 

1. 

 

Table 1 Xilinx 7-series FPGA family comparison [12] 

2.2. Hardware Design Methodologies 

Hardware design can be done either for a specific task (Single purpose) or to execute 

different multiple tasks (General purpose).  General purpose hardware (or IC) is designed 

to be able to execute multiple different tasks, the best example would be a CPU in a 

personal computer. Single purpose hardware are ICs which are designed only to perform 

one task and do it well, a common example for this would an IC for encryption and 

decryption. For our research, we will focus on single purpose HW.  

There are a few ways to design hardware, it all depends on what the intention of the 

design is. For this thesis, we are more concerned about FPGA prototyping which means 

that we would program an FPGA to perform certain tasks. Traditionally, a Hardware 

description language (HDL) is used to program the FPGA at the RTL level, two most 

popular examples of HDLs are Verilog and VHDL. A relatively new technology to 
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program FPGAs which allows us to do so using High Level Languages (HLLs). This allows 

rapid hardware design targeting ASICs and FPGAs. 

2.2.1. Hardware Design using HDLs 

As mentioned earlier one of the traditional and most popularly used technology to 

program FPGAs is using HDLs. They allow the designers to program at the RTL level. 

VHDL and Verilog, being the two most popular HDLs, had a huge impact on hardware 

development when they were created.  

The main feature of HDLs is the ability to model concurrent operations which is 

important to reduce the run time of a specific task. It can provide faster speed but is hard 

to code and can have stalling issues due to dependencies.  

An example of concurrent operations is discussed here: 

 

Figure 1 Concurrent Operations Example pseudo-code 

For the example in Figure 1, let’s assume that each addition takes 1 clock cycle and 

assigning operations have no delays. If this code is to be run sequentially, Line 1, Line 2, 

and Line 3 will take 1 clock cycle each since they have one addition (+) each which means 

the whole process will take 3 clock cycles. Now, to run this code in parallel, we come 

across with an issue of dependency on Line 3. What this means is to run Line 3, we need 

the values of variables “A” and “D”. Therefore, there is a limit on how the concurrent 
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statements run. In this case, Line 1 and Line 2 can be run in parallel since both the lines 

have no dependencies. To sum it all up, executing Line 1 and Line 2 will take only 1 clock 

cycle, and executing Line 3 will take another 1 clock cycle, so it will take 2 clock cycles 

instead of 3 when compared to the sequential (or non-concurrent) execution. Even though 

there isn’t much difference in the time consumed, this gap increases as the designs get 

bigger and more complex. Concurrent programming is one of the most important 

techniques a hardware designer requires but can get very complicated while using HDLs.  

Another significant feature RTL based designs provide us is access to arbitrary 

precision data types, what this implies is every input, output, internal registers, etc. can 

have the desired number of bits. In HLLs, however, we usually only have access to data 

types bound by 8-bit boundaries. The arbitrary precision data types we have access to has 

an effect on the size, speed, precision, flexibility and power consumption of the final 

design.   

There are quite a few tools available for FPGA programming using HDLs, the one we 

will be focusing on is Xilinx Vivado. 

Currently, Xilinx Vivado is part of the Vivado Design Suite, created by Xilinx. Since 

the FPGA we are using in our thesis is made by Xilinx. This would be the best tool for us 

to use. All the Xilinx Vivado Design Suite tools are written with a native tool command 

language (Tcl) which offers us access to all the tools via command line which is available 

in the GUI. Xilinx Vivado Design suite currently supports the Xilinx® UltraScale™ and 7 

series devices, Zynq® UltraScale+™ MPSoC device, and Zynq®-7000 All Programmable 

(AP) SoC. [16] 
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As discussed earlier, the FPGA in question for our thesis is from the Xilinx 7 series 

called the Virtex 7. Xilinx Vivado is a very broad tool which allows us to synthesize, 

implement, simulate and analyze our design. It supports both VHDL and Verilog but we 

will be focusing on Verilog since the existing HDL model of the automotive RADAR 

signal processing algorithm is written in Verilog.  

2.2.2. Hardware Design using HLS 

Even though the technologies mentioned in the previous section are very advanced, 

recent increases in logic capacity of FPGAs and other similar hardware are making these 

technologies somewhat tedious and time consuming. This would mean a very long time-

to-market along with large code size which further implies that the code is more complex 

and not particularly readable. Eventually, it comes down to the cost of the product in 

development. Higher time-to-market would mean the development cost will be higher. To 

overcome the ever-increasing cost and delays in product release, we look for alternatives 

to these technologies. 

An alternative which we will be considering is High Level Synthesis (HLS). HLS 

allows designers to program hardware using HLLs (C/C++/SystemC) which are usually 

used for software development.  HLS tools, in essence, synthesize the HLL code into 

optimized RTL level models but there are substantial differences between the models 

created by the code written in HLL and HDL. As seen from a broader perspective, there 

are two main types of HLS technologies, one allows us to design the entire hardware in 

HLLs, while the other is used to accelerate certain parts of a software using hardware also 

known as heterogeneous computing. For example, the automotive RADAR signal 

processing algorithm is an independent hardware which detects target range and velocity. 
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A basic example of heterogeneous computing would be: a GPU is used to accelerate 3-D 

rendering of graphics for a program running on the CPU. There are various tools available 

for both types of applications. A few popular ones are shown in Table 2. 

Company Tool 

Xilinx Xilinx Vivado HLS 

Intel Intel FPGA SDK for OpenCL 

Mentor Graphics DK Design Suite 

Synopsys  Synphony C 

Calypto Design Systems (Mentor Graphics) Catapult C 

Cadence C to Silicon 
Table 2 Popular HLS tools 

The HLS tool we will be using is Xilinx Vivado HLS which is a part of the Vivado 

Design Suite by Xilinx. This tool essentially synthesizes the code written in C, C++ or 

SystemC and produces an optimized RTL level model. One important feature of this CAD 

tool is the ability to use different C/C++ compilers like GCC to compile the HLL code and 

then convert it into the RTL model, this includes the verification for the design using test 

benches created in C/C++ or SystemC. The testbench created in HLLs are highly 

productive in the sense they require very little time when compared to test benches created 

in Verilog, VHDL or SystemVerilog. Since we are using the Xilinx Virtex 7 FPGA board 

for our thesis. This tool provides us with all the necessary sub-tools required to successfully 

program the automotive RADAR signal processing algorithm for the Xilinx Virtex 7.  

Some other features of this tool include the ability to create Intellectual Property (IP) 

cores which means we can import sub-designs from other models into our current design 

easily. Xilinx provides us with some IP cores like Fast Fourier Transform (FFT), Finite 

Impulse Response (FIR) filters etc. These become very important since programming these 

models take time and are usually standard therefore they do not need to be programmed 



10 

 

manually. With these IP cores, Xilinx also provides us with a variety of options in these 

cores, since not all designs are going to use the same type of cores. A simple example is 

the FFT size, it can be adjusted by setting up the FFT size parameter to suit the design. 

The way Xilinx Vivado HLS works is that it synthesizes the HLL code into an 

optimized RTL level model. An overview of Vivado HLS design flow is shown in Figure 

2.  

 

Figure 2 Overview of Xilinx Vivado HLS Design Flow 

 

2.2.2.1. High Level Synthesis Design Methodology 

The first step in HLS design methodology is to overcome the limitations HLLs have 

when it comes to hardware design. Some limitations HLLs have over HDLs are mentioned 

below: 
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• In standard HLLs like C/C++, the data types are usually bound by 8-bit 

boundaries (8, 16, 32, and 64 bits). Whereas HDLs supports data types with 

arbitrary bit-lengths [17, 18, 19]. 

• One of the main features of HDLs is concurrent (or parallel) programming. 

Since HLLs like C/C++ revolve around the concept of sequential programming, 

special tools are required to program concurrent functions (or modules). 

• Standard HLLs do not have the ability for memory management for the entire 

hardware.  

Most HLS CAD tools, including Xilinx Vivado HLS, have pre-built libraries and 

inbuilt features to overcome most of the limitations HLLs have when it comes to 

programming for hardware design. Some of the features which are part of the Xilinx 

Vivado HLS are [13, 16]: 

• Vivado HLS automatically generates the Input/output (I/O) interfaces for the design 

with memories or other communication interfaces. 

• It also allocates the necessary registers, memory access, scheduling of operations 

and binding these operations to the respective functional units. 

• Vivado HLS uses pragmas to promote further optimizations using various 

techniques like flow optimization, loop pipelining, array partition etc., the pragma 

class supported by the tool can be seen in Table 3 [2]. 

• Vivado HLS provides us with pre-built libraries which include arbitrary precision 

(for integers) and arbitrary fixed point precision (for fractional numbers) data types 

for C/C++. This allows variables of arbitrary widths ranging from 1-bit to 1024-

bits to be programmed and used in the design [17, 18, 19].   
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Pragma Class Operation 

Interface Define function interface 

Function Call Function Inlining/off 

Flow Optimization 

Separate instantiation of functions 

Loop Optimization Loop pipelining 

Loop unrolling 

Loop merge operations 

Memory Control Array partition, etc. 
Table 3 Pragma Class supported by Vivado HLS [2] 

 

The features mentioned above and the automatically applied optimizations by Vivado 

HLS are the key design optimization techniques for HLS. Many hardware designers are 

moving towards HLS with C/C++ as a primary design language since C-level design and 

verification is relatively easy to use, the time-to-market is significantly lower and the final 

design is more optimized. The automotive RADAR signal processing algorithm is 

synthesized to work as a stand-alone hardware due to the nature of the design. Although 

this design is somewhat complex, we will be using top-down approach since all the 

functions/modules in our design will be tailored to output the desired results efficiently. 

We present details of our HLS based methodology to synthesize the automotive RADAR 

signal processing system in Chapter 4.  

2.3. Related Research 

There have been a few evaluations of HLS or HLS based CAD tools [2, 10, 11, 13, 16]. 

Most of them evaluate the tool itself using either a particular benchmark [11], or they 

conduct surveys and collect information on how HLS has been implemented. However, 

these evaluation benchmarks tend to stay small in terms of size and complexity. Since we 
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are focusing on complex applications, we will briefly summarize HLS based design of an 

H.264 Decoder [2]. 

2.3.1. High Level Synthesis of an H.264 Decoder  

Many major platforms like YouTube use H.264 as a video coding standard, due to 

this the H.264 is present in most of the common embedded SoCs such as Apple’s 

mobile processors, and the popular Qualcomm Snapdragon processors. H.264 being a 

very complex application, demands HLS-based design so that the designers can achieve 

accurate results without the tedious and time consuming nature of HDL-based designs.  

An H.264 decoder has been synthesized using HLS techniques in [2]. The desired 

design was required to achieve a throughput of 542 frames per second (fps) at 176x144 

resolution and 34 fps at 640x480 (480p) resolution. The results obtained [2] using HLS 

satisfy the targeted throughput, which shows that HLS-based design methodologies are 

effective even with complex applications like video decoding. Due to the rapid 

advancements in HLS-based CAD tools, HLS-based design methodology is 

increasingly becoming popular and may become a standard for hardware design in 

future.   

A top-down approach for the open-source C-reference model for the H.264 decoder 

was used. Code restructuring and performance optimizations were performed on the C-

reference model in [2], ensuring efficiency while obtaining the desired results. Since 

the desired throughput was successfully achieved in [2], we used similar optimization 

techniques to get the desired result for the automotive RADAR Signal Processing 

System.  
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Chapter 3. Automotive RADAR Signal Processing 

3.1. Target Detection using RADAR systems 

Detecting targets for various scenarios in vehicles plays an important role in collision 

avoidance for automobiles. Although Collison avoidance in vehicles is one of the many 

applications for target detection, it is an important one since on-road safety has always been 

a high priority. All the global auto industries are extensively pursuing RADAR based target 

detection for various purposes like collision warning, automatic braking, blind spot 

monitoring, parking aid, adaptive cruise control, lane change assistance, and rear crash 

Collison warning and avoidance, etc. Target detection using various methods like RADAR 

are extensively being researched while designing autonomous vehicles.  

Earlier, a high-power Pulsed Doppler RADAR technique was relied upon for target 

detection, although this technique was criticized due to the failure of the Mercedes-Benz 

pulsed RADAR assisted Distronic cruise control system [5]. Therefore, new techniques 

like the Frequency Modulated-Continuous Wave (FM-CW) RADAR was introduced. 

Automotive RADAR systems have proved very reliable in recent years in reducing the 

number of fatal accidents. Initially, these systems were expensive to implement and were 

only available in high-end luxury cars. Due to the advances in hardware technologies, the 

costs of implementing these systems in the automotive industry have been reduced 

significantly. This enables lower-end vehicles to be equipped with the collision avoidance 

systems as well.  
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3.2. An Automotive RADAR Signal Processing system 

The automotive RADAR signal processing system we will be focusing on is presented 

in [5]. The system is based on the Long Range Automotive system developed at the 

University of Windsor. It measures the target range and velocity based on the Linear FM-

CW (LFM-CW) approach using a Microelectromechanical system (MEMS) Rotman Lens, 

MEMS Radio Frequency (RF) switches and phased array antennae for transmission and 

reception of the signal which the algorithm will process to get the desired output. Table 4 

provides the initial system specifications of the automotive RADAR signal processing 

system [5].  

 

Parameter Value 

RADAR Type LFM-CW 

Operating Frequency 77 GHz 

Voltage Controlled Oscillator (VCO) TLC77xs* 

Target Model(s) considered Swerling I, III, and V type targets 

Beamformer Rotman Lens 

Number of Beams 3 

Processing duration per beam 2 ms 

Beam Width ±4.5° 

Antenna Type Phased Array Antenna 

RADAR Processing unit (RPU) 

platform 

FPGA 

* 76.5 GHz Monolithic Microwave Integrated Circuit (MMIC) VCO by TLC Precision Wafer Technology 

Table 4 Initial System Specifications [5] 
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Figure 3 Conceptual Diagram of the RADAR system [5] 

 

A conceptual diagram of the entire RADAR system, showing the major components 

can be seen in Figure 3. In this design, we will be focusing on the RADAR processing unit 

which is the FPGA. As we can see, the RPU or the FPGA has 3 main outputs and 1 main 

input.  

The three main digital outputs are:  

1. Output to the 77 GHz VCO. 

2. Output to the Single Pole 3 Throw (SP3T) switch. 

3. Output representing the target velocity and range. 

The only main input is the time-domain sample received from the Analog-to-Digital 

Converter (ADC). 
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The RADAR Signal Processing algorithm [5] which is to be synthesized can be divided 

into two parts: 

1) RADAR Transmitter control and SP3T switch control. 

2) RADAR Receiver Flow Control and Signal Processing.  

3.2.1. RADAR Transmitter and SP3T switch Control 

This section of the algorithm provides the necessary outputs to the VCO and the SP3T 

switch. The VCO controls the signal to be transmitted by the RADAR system, and the 

SP3T switch is responsible for switching between the MEMS Rotman lens beam ports 

(Beam port 1, Beam port 2, Beam port 3). 

This part of the algorithm is responsible for the following: 

• Generation of the RADAR frequency chirp by tuning the VCO with a voltage 

sweep through a Digital-to-Analog Converter (DAC). 

• The synchronization of the chirp generation with the signal processing done after 

receiving the appropriate signal.  

• Keeping track of when every down sweep ends so the appropriate output can be 

sent to the SP3T switch control to switch to the next beam port changing the beam 

direction. 

• Modifying the output to the SP3T to switch between the MEMS Rotman lens beam 

ports. 

o Beam port 1 to Beam port 2 

o Beam port 2 to Beam port 3 

o Beam port 3 back to Beam port 1 
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The flowchart for this part of the algorithm can be seen in Figure 4 [5]. Some key 

information regarding this part of the algorithm is listed as follows [5]: 

• The sensor begins with beam port 1 of the Rotman Lens, and after system reset. 

• The system starts with the up sweep or a positive frequency chirp. 

• Based on the market availability of fast DACs, a 10-bit DAC with a 900 

nanoseconds refresh period should be suitable for the target sweep duration of 1 

millisecond. 

• The DAC is configured to output voltage range from 4.5 V to 6.1 V based on the 

10-bit modulating output to the DAC from the FPGA which ranges from 0 to 1023. 

• A clock signal is also sent to the DAC for the DAC clock. 

• A sampling clock for the ADC will be sent to the ADC. 

• The output to the 3-pin MEMS RF switch control will be a 3-bit output from the 

FPGA: 

o (100)2 (Decimal equivalent of 4): For beam port 1  

o (010)2 (Decimal equivalent of 2): For beam port 2  

o (001)2 (Decimal equivalent of 1): For beam port 3  
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Figure 4 Flowchart for the RADAR transmitter and SP3T switch control [5] 

 

3.2.2. RADAR Receiver Flow Control and Signal Processing 

This is the main part of the automotive RADAR signal processing algorithm, which 

outputs the target information. The input to this are the time-domain samples received from 

the ADC. The responsibilities of this part of the algorithm are as follows: 
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• Applying the Hamming window to the received time-domain samples from the 

ADC. 

• Perform Fast Fourier Transformation (FFT) on the windowed time-domain 

samples to convert into frequency-domain samples. 

• Calculating the peak intensity for every frequency bin of the frequency-domain 

samples. 

• Neglecting noise, clutter, and individual target detection by running a Constant 

false alarm rate (CFAR) algorithm for both up and down sweeps. 

• Calculate the final target information by peak pairing, after the CA-CFAR 

algorithm is done. 

The flowchart for the RADAR receiver flow control and Signal Processing can be seen 

in Figure 5 [5]. Some key information about this part of the algorithm is listed as follows 

[5]:  

• The bandwidth of the system was chosen to be 800 MHz for a respectable range 

resolution. 

• The sampling frequency of 2 MHz was calculated to be used over 1.024 ms for 

2048 samples. 

• The FFT size, which is the number of samples will be 2048, therefore, 2048 

samples will be collected in 1.024 ms. 

• Cell-Averaging CFAR (CA-CFAR) was chosen for the CFAR algorithm. 
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• Since the output from the FFT is symmetrical, only half of the FFT output is 

considered therefore the CA-CFAR algorithm processes 1024 frequency-

domain peaks.  

• The probability of false alarm was selected as 10-6, the averaging depth of 4 

cells on either side of the CUT and 2 guard bands on either side of the CUT 

were chosen, which generates a scaling constant of approximately 1.3714. 

• Spectral proximity and Power level were the two criteria used for peak pairing. 

 

Figure 5 Flowchart of Radar Receiver flow control and Signal Processing [5] 
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The final design specifications for the complete algorithm can be seen in Table 5. These 

specifications will be used for the three implementations of the automotive RADAR signal 

processing system in Chapter 4. 

Parameter Value 

LFM-CW sweep bandwidth 800 MHz 

FFT size 2048 

FFT type Radix-4 DIT 

Up/Down sweep duration 1 ms 

ADC resolution / Sampling rate 11 bits / 2.2 MSPS 

DAC resolution / refresh period 10 bits / 2.2 MSPS 

Target range 0.40m – 200m 

Target relative velocity ±300 km/h 

CFAR Algorithm CA-CFAR 

CFAR Parameters One-sided cell-averaging depth = 4 

One-sided guard band count = 2 
Table 5 Final Parameters for the Algorithm [5] 
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Chapter 4. Implementations of the RADAR Signal Processing 

System 

This chapter describes the implementations of the automotive RADAR signal 

processing algorithm at different levels of abstraction.  

1. MATLAB Implementation: This section discusses the MATLAB 

implementation of the algorithm, focusing only on the 2nd part of the algorithm 

which is the RADAR receiver flow control and signal processing.  

2. Existing Verilog Implementation: This section briefly explains the current 

HDL implementation of the algorithm [5, 6] targeted for the Xilinx Virtex 5, 

and the changes we made to this implementation to target the Xilinx Virtex 7.  

3. HLS Implementation and Optimizations: Here we describe the design 

methodology we used to implement the automotive RADAR signal processing 

algorithm using HLS. This section also covers the various HLS code 

optimization techniques we used to make our design more efficient. 

4.1. MATLAB Implementation 

A MATLAB implementation of the algorithm was used for testing the correctness of 

the algorithm using MATLAB version R2016b [20]. The MATLAB design from [5], 

creates a MATLAB model to do two things: 

1. Check the error percentages for the calculated range and velocity. 
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2. To create sample 10-bit input data which is to be sent to the HDL/HLS based 

implementations for simulation. 

In [5], three tests have been conducted on MATLAB, the first one is the test to see if 

the hamming window function is necessary, and 2 highway test scenarios to check the 

accuracy of the signal processing algorithm. A brief explanation of these tests is discussed 

in this section. The MATLAB implementation does not test the first part of the algorithm 

which is the RADAR transmitter control and SP3T switch control.  

Before we discuss the test scenarios, some parameters used for the MATLAB 

implementation are as follows: 

1. Frequency sweep bandwidth (B) = 800 MHz 

2. Sampling Frequency = 2 MHz 

3. Sampling duration (T) = 1.024 ms 

4. Number of time-domain samples = 2048 

5. FFT size = 2048 

6. FFT frequency resolution = 2 MHz / 2048 = 976.5625 Hz/bin 

7. Rate of change of frequency over a single sweep (k) = Bandwidth/Sampling 

duration (B/T). 

A flowchart of the sequential MATLAB implementation used for the simulation of the 

test scenarios is shown in Figure 6. 
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Figure 6 Flowchart of the MATLAB implementation [5] 
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Scenario to tests the need for Windowing [5]:  

This test verifies the requirement of the windowing stage of the RADAR signal 

processing algorithm. 

The test scenario used for this is 1 target at 142 meters with the velocity of 165 km/h, 

while the host velocity is 70 km/h. Due to the receding target, the relative velocity will be 

(70 - 165) = -95 km/h (negative Doppler shift) [5]. Assuming c = 2.973 x 108
 m/s2. 

Results without windowing: 

Calculated Up-sweep frequency (fup): 734375.00 Hz 

Calculated Down-sweep frequency (fdown): 761718.75 Hz 

Calculated target range: 

𝑟 =
𝑓𝑢𝑝 + 𝑓𝑑𝑜𝑤𝑛

2
×
𝑐

2𝑘
 

Therefore, the range r = 142.33 m 

Calculated relative target velocity: 

𝑣𝑟 =
𝑓𝑢𝑝 + 𝑓𝑑𝑜𝑤𝑛

4
×
𝑐

𝑓0
 

Therefore, the velocity vr = -26.497 m/s = -95.39 km/h. 

Results with windowing:  

Calculated Up-sweep frequency (fup): 733398.44 Hz 
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Calculated Down-sweep frequency (fdown): 760742.11 Hz 

Calculated target range: 

𝑟 =
𝑓𝑢𝑝 + 𝑓𝑑𝑜𝑤𝑛

2
×
𝑐

2𝑘
 

Therefore, the range r = 142.15 m 

Calculated relative target velocity: 

𝑣𝑟 =
𝑓𝑢𝑝 − 𝑓𝑑𝑜𝑤𝑛

4
×
𝑐

𝑓0
 

Therefore, the velocity vr = -26.497 m/s = -95.39 km/h. 

Based on these results, there was no change in the velocity measurement of the 

algorithm. However, the measured range distance had a difference of 18 cm, between with 

and without windowing. Calculating error percentages for both: 

Without windowing: (142.33 – 142)/142 x 100 = 0.23%. 

With windowing: (142.15 - 142)/142 x 100 = 0.11%. 

Therefore, applying the hamming window to the time-domain samples is a significant 

improvement in terms of range measurement. These results also agree with the results of 

the similar test in [5].  

Scenarios for the verification of the algorithm [5]: 

Test 1 (3-Lane Highway with narrow beam): The scenario for this is illustrated in Figure 

7. 
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Figure 7 Illustration of test scenario 1 (3-Lane Highway with narrow beam) [5]. 

The host velocity considered is 70 km/h, 6 targets will be tested, and a 3-beam Rotman 

lens RADAR sensor is being used. A Signal to Noise Ratio (SNR) of 4.73 dB was used. 

The specifications for this test scenario are mentioned in Table 6. 

Beam 

Port 
Target 

Range 

(m) 

Velocity 

(km/h) 

Theoretical 

Up Sweep IF (Hz) 

Theoretical 

Down Sweep IF 

(Hz) 

1 
1 12 65 63784 62358 

3 54 24 290397 277280 

2 
4 111 90 580509 586212 

6 90 150 461541 484354 

3 

2 35 250 158148 209477 

5 75 99 405783 414053 

6 90 150 461541 484354 

Table 6 Specifications for Test 1 (3-Lane Highway with narrow beam) 

The results for this scenario with the error percentages of the algorithm are shown in Table 

7.  
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Beam 

Port 
Target 

Real 

Range 

(m) 

Real 

Velocity 

(km/h) 

Calculated 

Range 

(m) 

Range 

Error 

(m) 

Calculated 

Velocity 

(km/h) 

Velocity 

Error 

(km/h) 

1 
1 12 65 12.36 0.36 66.59 1.59 

3 54 24 54.35 0.35 25.71 1.71 

2 
4 111 90 111.30 0.30 90.44 0.44 

6 90 150 90.21 0.21 148.36 1.64 

3 

2 35 250 35.30 0.30 247.15 2.85 

5 75 99 78.32 0.32 100.66 1.66 

6 90 150 90.30 0.30 151.76 1.76 

Table 7 Results for Test 1 (3-Lane Highway with narrow beam) 

The maximum errors for this scenario are: 

Range: For target 1 detected at beam port 1 = 0.36 m or (0.36/12) x 100 = 3%. 

Velocity: For target 2 detected at beam port 3 = 2.85 km/h or (2.85/250) x 100 = 1.14%. 

Test 2 (3-Lane Highway with a single wide beam): The scenario for this is illustrated in 

Figure 8. 

 

Figure 8 Illustration of test scenario 2 (3-Lane Highway with single wide beam) [5]. 
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The host velocity considered is 70 km/h, 7 targets will be tested with a single wide 

beam. A Signal to Noise Ratio (SNR) of 4.73 dB was used. The specifications for this test 

scenario are mentioned in Table 8. 

Target 
Range 

(m) 

Velocity 

(km/h) 

Theoretical 

Up Sweep IF (Hz) 

Theoretical 

Down Sweep IF 

(Hz) 

1 9 123 44004 50563 

2 24 55 132585 119753 

3 29 89 153990 150853 

4 55 100 289060 289060 

5 78 70 414239 405684 

6 106 80 559964 554261 

7 148 22 789013 76671 
Table 8 Specifications for Test 2 (3-Lane Highway with a single wide beam) 

The results for this scenario with the error percentages of the algorithm are shown in Table 

9.  

Target 

Real 

Range 

(m) 

Real 

Velocity 

(km/h) 

Calculated 

Range 

(m) 

Range 

Error 

(m) 

Calculated 

Velocity 

(km/h) 

Velocity 

Error 

(km/h) 

1 9 123 9.38 0.38 123.85 0.85 

2 24 55 24.34 0.34 52.31 2.69 

3 29 89 29.27 0.27 89.78 0.78 

4 55 100 55.37 0.37 100.00 0.00 

5 78 70 78.32 0.32 69.34 0.66 

6 106 80 106.28 0.28 79.56 0.44 

7 148 22 148.37 0.37 21.64 0.36 
Table 9 Results for Test 2 (3-Lane Highway with a single wide beam) 

The maximum errors for this scenario are: 

Range: For target 1 = 0.38 m or (0.38/12) x 100 = 3.167%. 

Velocity: For target 2 = 2.69 km/h or (2.69/250) x 100 = 1.076%. 
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4.2. HDL-Based Implementation 

The HDL-Based model’s overview can be seen in Figure 9, the HDL for this design is 

Verilog. The design is synthesized and simulated using Xilinx Vivado. The original design 

from [5] was originally designed for the Xilinx Virtex-5 FPGA but has been updated for 

the Xilinx Virtex-7.  

 

Figure 9 HDL-based design overview [5] 

4.2.1 TLC – Top Level Control 

The Top-Level Control (TLC), is responsible for providing the basic control for the 

design. This includes the VCO tuning based on the modulating clock, the sampling clock 

to the ADC and the sampler, and the SP3T switch control. The TLC is the main control 

block for the design and an overview can be seen in Figure 10. 
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Figure 10 TLC overview 

The 22-bit target information output consists of: 

• Most significant 10 Bits: 10-bit target velocity, where 9 bits are used for the integer 

part and 1 bit for the fraction, therefore, the velocity is [9-bits].[1-bit]. 

• The next 10 bits: 10-Bit target range, where 8 bits are used for the integer part and 

2 bits for the fraction part, therefore, the range is [8 bits].[2-bits]. 

• The last 2 bits: The last 2 bits of the final information includes the beam port 

number from which the target was detected. 

o 01: For beam port 1 (100). 

o 10: For beam port 2 (010). 

o 11: For beam port 3 (001). 

The 10-bit modulating output to DAC controls the VCO voltage based on the DAC 

clock.  

The 3-pin MEMS RF switch control controls the beam port from which the next 

up/down sweep data will be received from the ADC. 

The DAC clock provides the operating clock to the DAC for VCO tuning. 
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The sampling clock to ADC is a 2 MHz clock which is the operating clock frequency 

of the ADC.  

4.2.2 Sampler 

The sampler or the ADC-control is responsible for receiving the data from the ADC, 

while also providing the necessary logic for the 2 MHz sampling clock to the ADC. The 

sampler is also responsible for applying the hamming window function to the time-domain 

inputs received from the ADC. The data is then stored in a dual-port RAM which allows 

us to access the stored windowed data from the next module. 

4.2.3 FFT 

The FFT module is responsible for performing the Fast Fourier transform on the 

windowed time-domain data from the Sampler. Due to the symmetrical nature of the 

Frequency domain data from the FFT, the first 1024 values are ignored by the system since 

it also contains more noise. The last 1024 frequency-domain output from the FFT core is 

then stored in another dual-port RAM. The specifications of the FFT core can be seen in 

Table 10. 

Parameter Value 

FFT size 2048 

Architecture type Burst I/O 

Radix Radix-4 

Input word length 12 bits 

Output word length 12 bits (scaled) 

Scaling type Rounding 

I/O data type 2’s complement 

Internal phase factor length 16 bits 
Table 10 FFT Specifications [5]. 
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4.2.4 Peak Intensity Calculator (PSD) 

 The peak intensities for all the 1024 frequency domain data from the FFT are 

calculated here. Before sending the peak intensities forward to the CFAR processor, they 

are passed through a square-law detector unit which ensures positive peak intensities for 

the entire data. 

4.2.5 Constant False Alarm Rate Processor (CFAR) 

 The CA-CFAR algorithm is implemented in this block. The CFAR processor 

receives the data from the PSD in batches of 4 and then stored in a Block-Ram. Once 32 

frequency-domain values are received by this block. The CA-CFAR algorithm removes 

the unwanted clutter and noise due to the various reasons like system noise and weather 

conditions. 

4.2.6 Peak Pairing Module 

 This module is responsible for pairing the peak intensities to detect valid targets 

from the CFAR processed frequency domain data. The criteria used for peak paring are 

Spectral proximity and power level comparison. The output from this module contains the 

target information (velocity, range, and beam port) and is sent to the TLC for the final 

adjustments and then sent as an output to the final design.  

4.2.7 Usage/Timing analysis for the design 

The resource utilization of the original RTL-based design for the Xilinx Virtex-5 board 

is shown in Table 11 and the timing analysis for the same can be seen in Table 12. 
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Resource Used Available % Usage 

Slice Registers 1357 32640 4 % 

Slice LUTs 7445 32640 22 % 

DSP48E slices 17 288 5 % 

Fully used LUT-FF pairs 705 8097 8 % 

BUFG/BUFGCTRLs 1 32 3 % 

FPGA fabric area ratio 21 100 21 % 

Table 11 Resource utilization on the Virtex-5 board. [5] 

Operation Effective Clock cycles per 

beam 

Latency per Beam with 

operating Clock at 100 

MHz (in ms) 

Up sweep sampling 204756 2.047560 ms 

Window and feed time-

domain samples to FFT 

core 

2072 0.020720 ms 

FFT calculation 3960 0.039600 ms 

Peak Intensity 

Calculations 

10743 0.10743 ms 

CFAR processing and 

Peak Pairing 

4388 0.060460 ms 

Total Signal Processing 

Latency 

21163 0.211630 ms 

Overall Latency 225928 2.259280 ms 
Table 12 Timing/Latency analysis for the HDL-based design 

 

4.3. High Level Synthesis of the RADAR system 

The basic structure for the HLS-based design was kept the same to ensure a fair 

comparison between the HLS and HDL-based design. The basic structure for the design is 

shown in Figure 9. This section discusses the design methodology used for HLS. The 

design was synthesized and simulated using Xilinx Vivado HLS and the FPGA we selected 

was the Xilinx Virtex-7.  
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The list of the inputs and outputs for our design is similar to the ports for the RTL-

based design and are shown in Table 13. 

I/O Port Name Width (in bits) Description 

Inputs 

Reset 1 System Reset 

Unit_vel 8 Host Velocity in km/h 

Data_in 11 Input Data from the ADC 

Outputs 

Sclk 1 Clock for ADC 

Beamport 3 
The beam port signal to switch the 

S3PT switch 

Modulate 10 Modulation output for VCO tuning 

Final_target_info 22 

Target information which includes 

target velocity, target range and the 

beam port in which the target was 

detected. 

Final_info_valid 1 
Flag to indicate valid 

final_target_info 
Table 13 Inputs and Outputs of the main design. 

4.3.1. HLS programming techniques 

Some features which are important for hardware design are not present in standard 

HLLs. Since we are using C++, Xilinx Vivado HLS provides us with some useful 

techniques to overcome this limitation. Some of the features [8] we used to program the 

design are: 

1. Arbitrary Precision 

• Data types in standard HLLs like C++ only allow the programmer to use data 

with 8-bit boundaries, for example, integers can be represented as either 32 bits 

or 64-bits for newer systems.  

• Due to the importance given to bit length in hardware design to preserve 

memory resource usage and to reduce time delays for operations, arbitrary 
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precision allows us to use variables with arbitrary precision. Xilinx Vivado HLS 

currently supports bit-widths from 0 to 1024. 

• There are two basic data types for arbitrary precision 

i. For Integers: ap_int or ap_uint are two data types which are available to 

us. The data width (in bits) is mentioned when these data types are 

initialized, for example: ap_int<5> would be a 5 bit signed integer. 

ii. For Non-integer numbers: ap_fixed and ap_ufixed are two data types 

which are available to us for fraction numbers. The data width (in bits) 

for the entire number and the data width of the integer part are 

mentioned during initialization of the variable. For example: 

ap_fixed<20, 12> would be a 20-bit value with 12 bits for the integer 

part and 8 bits for the fraction part.  

• These data types allow us to work with variables which are not bounded by the 

8-bit boundary. These data types also include member function which returns 

the value in different data types for type casting or performing operations. A 

few of these member functions are:  

i. to_[u]int(): This function returns the [un]signed integer represented by 

the arbitrary precision type.  

ii. to_[u]double(): This function returns the [un]signed floating point 

value. 

iii. range(A, B): This function returns the value represented by the bits A to 

B.  The return type for this function is the same data type as the original 

variable but is resized to (B-A) bits.  
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2. Multiple outputs from a function 

• In standard C++, functions are only allowed to return one type of data, this data 

could be an integer, floating point number, or an array etc. In hardware design, 

however, there are usually more than 1 outputs, therefore, there are techniques 

which are used to support multiple output behavior. 

•  In Xilinx Vivado HLS, the compiler detects when the values to a function are 

passed by value or by reference.  

i. The data passed by value to a function are automatically assigned as 

Input ports.  

ii. The data passed by reference can be assigned as inputs, outputs, or bi-

directional input/output ports based on how they are being accessed 

inside the function. If there are writes to this particular reference and no 

reads, they are assigned as output ports. If there are reads and no writes, 

they are assigned as input ports, and if they are being read from and 

written to, they are assigned as I/O ports. 

• Therefore, we use pass by value for the inputs and pass by reference for outputs 

and I/O ports.  

3. Registers 

• In C++, there are no available data types which mimic a register in a hardware. 

These registers are important since they retain information which were acquired 

during the last function run.  

• Xilinx Vivado HLS uses static variables for register initialization so the 

important data which was stored during the last function call can be accessed. 
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• To use this, “static” keyword is used before the variable initialization. For 

example, “static int a = 0;”. The variable “a” in this example will only initialize 

once. Once this variable is written to, the value stored in “a” will be maintained 

for the next function run.  

4. Memory Interface 

• In C++, the memory interface equivalent are arrays. Arrays are blocks of data 

which can store multiple values of the same data type. 

• Random Access memory (RAM) equivalent, these would be regular arrays and 

Vivado HLS automatically recognizes if there are both reads and writes to the 

array. If there are only read operations for an array they would be treated as 

Read-only memory (ROM). 

• Read-Only Memory (ROM): Even though Vivado HLS automatically 

recognizes if an array is RAM or ROM based on the type of access it has, some 

arrays can be forced to be treated as ROMs by adding the keyword “const” 

before the array initialization.  For example: “const int[5];” would be an array 

which stored 5 integer values and will be treated as ROM which implies that 

this array will only be written to once. The reason to use this memory interface 

is that it takes less time to access data from a ROM than the time taken to access 

data from a RAM.  

All these additional features help us design efficient and proper hardware using HLLs 

since they were not originally designed to develop hardware. 
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4.3.2. Top-Level Function/Module 

The top module for our design is a function called “RPU()”, the inputs and outputs for 

this function are shown in Table 13. We used arbitrary precision data types for all the 

inputs, outputs, and the internal registers. For 1 bit internal flags, data type “bool” was 

used which are 1-bit data types by default and can have “true” or “false” as their values. 

The reason for this is that “bool” types in C++ are very well managed when it comes 

to condition management like if-else statements etc. This function, similar to the RTL-

based design, is responsible for VCO tuning, beam port switching, final target 

information management. The clock for the ADC is also managed by this function. 

 This function also calls the necessary functions for further calculations. The 

function calls from this function are: 

• Adc_control(): This function is called to store the input data from the ADC. 

• Fft_control(): This function is called after data for each sweep is collected and 

the FFT computation can be started.  

• Fft_absolute(): This function is called after the FFT computation has been 

completed to store and forward the frequency domain data for further 

calculations. 

• Cfar(): This function is called for the CA-CFAR computations [5]. 

• Peak_pairing(): This function is called to detect valid targets and calculations 

for the range and velocity of the target [1, 5].  

After these functions, the final target information is filled and the final information 

valid flag is set to 1 stating that valid output is available. 
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The input and output of this function are the main I/O for our design which are shown 

in Table 13. 

4.3.3. Adc_control() function 

This function is responsible to store the input data from the ADC. The Hamming 

window is applied to the input data and sent to the fft_control() function to be stored. The 

Hamming window coefficients are stored in a constant array (ROM) of size 1024 and stores 

10-bit window coefficients. These values are acquired using MATLAB. This function 

multiplies the input data by the window coefficient and then rounded to 12 bit signed values 

and sent to the fft_control() for further computations. The inputs and outputs for this 

function can be seen in Table 14. 

I/O Port 
Width (in 

bits) 
Description 

Inputs 
Reset 1 System Reset 

Data_in 11 Input Data from the ADC 

Outputs 

Xn_index 11 
Index to maintain the number of data 

acquired from ADC. 

Xn_value 12 Windowed time-domain data 

Fft_start 1 Flag to start FFT computation 

Fft_record 1 
Flag to indicate fft_control needs to store the 

windowed data 
Table 14 I/O for adc_control() function 

4.3.4. Fft_control() function 

This function is responsible for storing the windowed time-domain data from the 

adc_control(). Once 2048 values have been stored in a First-In-First-Out(FIFO) memory 

interface, the FFT computation is started and the output is stored in another FIFO. The 

output data which is the frequency-domain values are complex variables. Since we only 

need the magnitude (or absolute value) of this data, the absolute value is computed as the 
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square root of the sum of squares of the real and the imaginary part.  These absolute values 

are then sent to fft_absolute() function for further computations. The inputs and outputs for 

this function can be seen in Table 15. 

I/O Port Width (in bits) Description 

Inputs 

Reset 1 System Reset 

Fft_record 1 
Flag to indicate that this function should 

store the windowed data from adc_control() 

Fft_start 1 
Flag to indicate FFT computations can be 

started 

Xn_index 11 
The index where the data will be stored in 

the FIFO 

Xn_value 12 
The value which will be stored at xn_index 

in the FIFO 

Outputs 

Xk_abs 13 
The absolute value of the frequency domain 

data. 

Xk_index 11 
The index indicating the number of data 

currently been sent in xk_abs 

Fft_done 1 
Flag to indicate FFT computations are 

finished 

Table 15 I/O for fft_control() function 

4.3.5. Fft_absolute() function 

This function is responsible for storing 4 absolute values of the frequency-domain data 

and are sent to the cfar() function for CA-CFAR computation. Since CFAR works with 

bins of 32 values at a time, we send 4 values at a time so this function runs 8 times before 

CFAR computation begins. The inputs and outputs for this function can be seen in Table 

16. 
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I/O Port Width (in bits) Description 

Inputs 

Reset 1 System Reset 

Fft_done 1 
Flag to indicate FFT computations are 

finished 

Xk_index 11 
The index indicating the number of 

data currently been sent in xk_abs 

Xk_abs 13 
The absolute value of the frequency 

domain data. 

Outputs 

outA, outB, 

outC, outD 
13 

4 absolute values to be sent to the cfar() 

function 

Abs_done 1 
Flag to indicate that 4 values are being 

sent. 
Table 16 I/O for fft_absolute() function 

4.3.6. Cfar() function 

This function is responsible for CA-CFAR computations which store the left and right 

averages of a particular frequency bin of 32 frequency-domain data to remove noise and to 

detect a new target. Once these computations are done, a new target flag is set to true if a 

target has been detected. The absolute value of the particular target and the information 

regarding where it was detected is then sent to peak pairing for the range and velocity 

calculations. The inputs and outputs for this function can be seen in Table 17. 

 

 

 

 

 

 



44 

 

I/O Port Width (in bits) Description 

Inputs 

Reset 1 System Reset 

inA, inB, 

inC, inD 
13 

4 absolute values to be sent to the cfar() 

function 

Start 1 
Flag to indicate that 4 values are being sent. 

(abs_done output from fft_absolute()) 

Outputs 

Target_abs 13 

The absolute value of the frequency 

domain data of the corresponding detected 

target 

Target_pos 10 
The position of the target in the frequency 

bin where it was detected. 

New_target 1 

Flag to indicate a new target has been 

detected and the values in target_abs and 

target_pos are valid. 

complete 1 

Flag to indicate that the CFAR 

computations have been completed for the 

particular frequency bin. 

Table 17 I/O for cfar() function 

4.3.7. Peak_pairing() function 

This function is responsible to validate the detected targets from the previous functions 

and calculate the range and velocity of the target in respect to the host vehicle. This function 

waits for the previous computation of each bin and calculates the ranges and velocity of 

the detected targets in each bin. Peak pairing allows us to validate the targets and avoid the 

spectral copies of a valid target to prevent multiple outputs for the same target. This 

function uses spectral proximity and power level comparison as criteria for the necessary 

computations. The calculated range and velocity are adjusted and sent to the top level 

function (RPU()) for the final output. The inputs and outputs for this function can be seen 

in Table 18. 

 

 



45 

 

I/O Port Width (in bits) Description 

Inputs 

Reset 1 System Reset 

Target_abs 13 

The absolute value of the frequency 

domain data of the corresponding detected 

target 

Target_pos 10 
The position of the target in the frequency 

bin where it was detected. 

New_target 1 

Flag to indicate a new target has been 

detected and the values in target_abs and 

target_pos are valid. 

complete 1 

Flag to indicate that the CFAR 

computations have been completed for the 

particular frequency bin. 

Updown 1 
Flag to indicate if up-sweep or down-

sweep. 

Unit_vel 8 Host Velocity in km/h 

Outputs 
Target_info 20 Calculated range and velocity of the target 

Info_valid 1 Flag to indicate if the target_info is valid. 
Table 18 I/O for peak_pairing() function 

4.3.8. Optimizations and Final Design 

In the HLS code, these functions are called sequentially but they are controlled using 

Boolean flags which help us control when a particular function is to be started. Along with 

that, while the completion of the previous task is in progress, the initialization process such 

as recording data etc. are done to maximize throughput for each function call.  Although 

Xilinx Vivado HLS analyzes and optimizes our design automatically, we also have the 

option to optimize it manually giving us flexibility [6, 7, 14, 15]. A few automatic and 

manual optimizations which were implemented are: 

• Memory optimizations: 

o Memory usage, in general, includes internal registers, RAMs, and 

ROMs. 
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o For Internal registers: The concept of arbitrary precision as mentioned 

in Section 4.3.1 is used to reduce the resource usage for the registers. 

Instead of storing the values in 8-bit boundaries (8, 16, 32, etc), we store 

the data in the necessary bit-width using arbitrary precision. For 

example: variable xn_index has a max value of 2047 and is always 

greater than 0, instead of storing this value in an int type which is 32-

bits, we use ap_uint<11> which is unsigned 11-bits, therefore we save 

21-bits to store this value. 

o For Arrays (RAM/ROM): We mentioned the concept of memory 

management in HLS in Section 4.3.1, using this technique we use 

keywords like “const” or pragmas for FIFO to optimize memory. For 

example: “window” array is read only since we only need to read the 

window coefficients for multiplication, therefore, instead of using this 

array as a RAM, we use the “const” keyword to initialize the array 

which implies that this array will be implemented as a ROM in our 

design.  

• Timing-Based optimizations 

o Both software and hardware developers focus on speeding up the 

design, although implementing these optimizations are very different 

when it comes to software and hardware.  

o The first step to optimize the timing of a certain design is top optimize 

the algorithm itself, we used Boolean flags to control when the actual 

calculations of a particular function needs to be started, although during 
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the time when the flag for previously called function is false and hence 

is in progress, the next functions which are called start initialization 

necessary data to prepare for when the previous function is completed. 

This saves time since the initializations are already done before the 

actual computation starts.  

o Xilinx Vivado HLS automatically recognizes when pipelining is 

necessary by analyzing the operations in a particular function. For 

example: when the FFT-core starts the FFT computations, the rest of the 

design continues to work since there are no more dependencies for the 

FFT- core. 

o Some other internal optimizations include designing the system in such 

a way that every snippet of code is written to maximize the operations 

so the entire design would require fewer clock cycles overall. For 

example: As soon as the FFT-computation is finished, the frequency 

domain data’s absolute value is calculated and sent to the next function, 

instead of waiting for the next run.  

• Automatic optimizations: 

o Vivado HLS analyzes the entire design and implements the 

operations with no dependencies in parallel, although this increases 

resource utilization of the final design, it decreases the latency 

significantly and hence the trade-off between resource utilization and 

time delay is reasonable. Although this behavior can be disabled by 



48 

 

using pragmas, we keep this enabled since the newer FPGAs have very 

high capacity. 

o Vivado HLS also recognizes the array usage and change the access 

type of each array based on how, when and where the array is accessed. 

For example: The output of the FFT-core is set as a ROM automatically 

since once the output is stored, we are only reading from this array. 

Vivado HLS also recognizes that we are accessing the values from this 

array one by one starting from index 0, it implements this ROM as a 

FIFO which implies that as soon as the value is ready, it can be read 

from which provides us with significant decrease in design latency.  

These optimizations techniques combined with the already optimized algorithm from 

[5] gives us a very efficient design. The final comparison and results are discussed in 

the next chapter.  
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Chapter 5. Synthesis Results 

This chapter discusses the results of our synthesized designed which includes resource and 

timing analysis of our design and the comparison between the RTL-based design and the 

HLS-based design.  

5.1. Approximate Time-To-Market 

Time-To-Market for a product is the time taken from the starting of the project to the 

end of development. Even with the availability of newer, more advanced tools, Research 

and Development(R&D) cost and time are usually very high. Based on the design we are 

considering, designing hardware using HLS requires a lot less time to program when 

compared to RTL-based designs. The main reason for this is the use of HLLs, high level 

of abstraction enables us to design hardware faster and more efficiently, decreasing the 

R&D time and cost. Based on our experience, an approximate comparison on the number 

of weeks it will take for an average hardware developer to develop our selected algorithm 

using the RTL-based methodology and HLS-based methodology is shown in Figure 11.  
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Figure 11 Approximate time taken to write HDL and HLS code. 

As we can see from the graph, the time taken to program using HLLs is significantly less, 

this is due to the high level of abstraction HLLs provides and are comparatively faster to 

code in than HDLs. 

5.2. Resource Utilization 

The resource utilization for HLS-based designs is usually significantly higher than the 

corresponding RTL-based design due to the high focus on reducing time latency for the 

overall design. Due to the advancements in current hardware, this becomes less of an issue 

since the newer hardware like FPGAs have very high capacity when it comes to LUTs, 

registers, RAM/ROM, and other resources. A general resource utilization breakdown for 

our design is shown in Table 19. 
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Module/Resource BRAM DSP FF LUT 

RPU (Top-Level) 37 39 15551 16749 

FFT_ABSOLUTE 0 0 39 25 

FFT_CONTROL 35 34 14490 14976 

RPU_CFAR 1 1 307 663 

PEAK_PAIRING 0 2 395 608 
Table 19 Resource utilization breakdown 

 

This section compares the resource utilization of our design for the Xilinx Virtex-7 

FPGA between the HLS-based and HDL-based design.  

• RAM: the comparison of overall RAM usage of the design is shown in Table 

20 and Figure 12. Even though the usage suggests that the HLS-based uses 

about 4.75 times more RAM, it is still significantly less than the available RAM 

available in the Virtex-7[12] making the RAM utilization of only 1.3%.  

RAM usage in (Kb) 

Available RTL-based design usage HLS-based design usage 

52920 144 684 
Table 20 RAM utilization comparison. 

 

Figure 12 RAM utilization comparison graph 
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• Slice LUTs / Slice Registers: The comparison of the number of Slice LUTs 

and registers used in our design for the Xilinx Virtex-7 FPGA is shown in Table 

21 and Figure 13. Although the HLS-based design utilization for both Slice 

LUTs and registers are significantly higher than the RTL-based design, the 

utilization percentage based on the available resources are around 4% for the 

Slice LUTs and around 2% for Slice registers. 

Slice LUTs and Slice Registers usage 

Resource Available RTL-based design usage HLS-based design usage 

Slice LUTs 433200 8662 16749 

Slice Registers 866400 3381 15551 
Table 21 Slice LUTs / Registers utilization comparison. 

 

Figure 13 Slice LUTs / Registers utilization comparison graph 

• BRAM_18K / DSP48E1 resources: The comparison of the number of 

embedded BRAM and the DSP blocks used in our design for the Xilinx Virtex-

7 FPGA is shown in Table 22 and Figure 14. Although the HLS-based design 

utilizations are significantly higher than the RTL-based design, the utilization 
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percentage based on the available resources are around 1.3% for the BRAM and 

around 1.1% for the DSP blocks. 

BRAM and DSP block utilization 

Resource Available RTL-based design usage HLS-based design usage 

BRAM_18K 2940 8 38 

DSP48E1 3600 29 39 
Table 22 BRAM and DSP blocks utilization comparison. 

 

Figure 14 BRAM and DSP blocks utilization comparison graph 

 

Based on the utilization numbers, we conclude that although the HLS-based design 

utilizes a lot more resources than the RTL-based design, the newer FPGAs have 

significantly large amount of available resources and hence the overall usage of these 

resources are still very low. In applications where time to market is crucial, HLS is the 

preferred design methodology even though it uses up more resources compared to HDL 

based design methodology. 
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5.3. Performance 

Performance is usually measured as the time taken for a design to provide a valid 

output. The time difference between when the 1st input was taken into the design and when 

the valid output was outputted from the design is called latency (time difference between 

stimulus and response). We use the computed latency for both the RTL-based design and 

the HLS-based design to provide a comparative analysis, which can be seen in Table 23 

and Figure 15. 

Latency in RTL-based design HLS-based design 

Clock Cycles 22018 10863 

Time in milliseconds 2.2018 ms 1.0863 ms 

Table 23 Latency comparison 

 

Figure 15 Latency comparison graph 

Based on these results, we can see that the HLS-based model is around twice as fast as 

the RTL-based design. Achieving around 2X speed-up on the HLS-based design implies 

that even though the comparative resource utilization is a lot higher for the HLS-based 

design, the performance of the design has a significant improvement. If we take into 
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consideration how many resources are available to us, this area vs speed-up trade-off is 

very good as our overall resource utilization is still under 5% of the total available 

resources. 
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Chapter 6. Conclusions and Future Work 

This section concludes our work by providing some information including 

summary and future work. 

6.1. Summary 

High Level Synthesis of an automotive RADAR signal processing system was 

performed which included the RADAR signal processing algorithm to detect targets in 

automobiles including the target distance from the host and the velocity of the target. 

Using an existing HDL-model of this system and modifying it for a fair comparison 

between the two models, we successfully synthesized the design for the Xilinx Virtex-

7 FPGA using the Xilinx Vivado Design Suite.  For our HLS, we achieved an overall 

speed up of about 2X when compared to the HDL-based design which is a significant 

improvement while keeping the overall resource utilization at under 5% with respect 

to the available resources. The C++ code for our design is available in the appendix 

section of this thesis. 

6.2. Future Work 

For future research, there are a few places where the design can be made more efficient. 

A few of them are: 

• Optimizing the algorithm itself: The algorithm used for this thesis is somewhat 

optimized but can be further improved. 
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• Using newer and more advanced hardware: For future improvements, the 

current ADC, DAC, and the VCO can be updated to newer ones to remove the 

data transfer speed bottleneck issue. 

• Pipelined Design: Although Xilinx Vivado HLS automatically analyzes the 

design to implement pipelined designs. The HLS code written in C++ can be 

further modified to maximize this feature which will include research on how 

the pipelining is done in Vivado HLS. This topic by itself is a significantly large 

project. 

Future research can also include HLS of even more complex applications.  
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Appendix – Source Code 

Main header file (main_head.h) 

#ifndef _MAIN_HEAD_H_ 
#define _MAIN_HEAD_H_ 
 
#include <iostream> 
#include <math.h> 
#include "ap_fixed.h" 
 
typedef ap_ufixed<1, 1> int1; 
typedef ap_ufixed<2, 2> int2; 
typedef ap_ufixed<3, 3> int3; 
typedef ap_ufixed<4, 4> int4; 
typedef ap_ufixed<5, 5> int5; 
typedef ap_ufixed<6, 6> int6; 
typedef ap_ufixed<7, 7> int7; 
typedef ap_ufixed<8, 8> int8; 
typedef ap_ufixed<9, 9> int9; 
typedef ap_ufixed<10, 10> int10; 
typedef ap_ufixed<11, 11> int11; 
typedef ap_ufixed<12, 12> int12; 
typedef ap_ufixed<13, 13> int13; 
typedef ap_ufixed<14, 14> int14; 
typedef ap_ufixed<15, 15> int15; 
typedef ap_ufixed<18, 18> int18; 
typedef ap_ufixed<19, 19> int19; 
typedef ap_ufixed<20, 20> int20; 
typedef ap_ufixed<22, 22> int22; 
typedef ap_ufixed<24, 24> int24; 
typedef ap_ufixed<25, 25> int25; 
 
//Signed Fixed Point Variables with 0 fraction bits 
typedef ap_fixed<11, 11> sint11; 
typedef ap_fixed<12, 12> sint12; 
typedef ap_fixed<13, 13> sint13; 
typedef ap_fixed<22, 22> sint22; 
 
//Fixed Point with > 0 fraction bits (unsigned) 
typedef ap_ufixed<12, 1> fixed_12_1; 
typedef ap_ufixed<7, 2> fixed_7_2; 
typedef ap_ufixed<22, 11> fixed_22_11; 
typedef ap_ufixed<18, 13> fixed_18_13; 
 
void RPU(int1 reset, int1 enable, int8 unit_vel, sint11 data_in, 
   int1* sclk, 
   int22* final_target_info, 
   int1* final_info_valid, 
   int3* beamport, 
   int10* modulate); 
 
void adc_control(int1 reset, sint11 data_in, int11* xn_index, 
     sint12* xn_value, bool* fft_start, bool* hold, 
int1* sclk, bool* fft_record); 
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void fft_control(int1 reset, bool fft_record, bool fft_start, int11 xn_index, 
sint12 xn_value, 
     int13* xk_abs, int11* xk_index, bool* fft_done); 
 
void fft_absolute(int1 reset, bool fft_done, int11 xk_index, int13 xk_abs, 
     int13* outA, int13* outB, int13* outC, int13* 
outD, bool* abs_done); 
 
void cfar(int1 reset, bool start, int13 inA, int13 inB, int13 inC, int13 inD, 
    int13* target_abs, int10* target_pos, 
    bool* new_target, bool* complete); 
 
void peak_pairing(int1 reset, bool new_target, int13 target_abs, int10 
target_pos, 
      bool complete, bool updown, int8 unit_vel, 
      int20* target_info, bool* info_valid); 
 
 
#endif 
 
 

 

 

  



62 

 

Top level function (top.cpp) 

#include "main_head.h" 
 
void RPU(int1 reset, int1 enable, int8 unit_vel, sint11 data_in, 
   int1* sclk, int22* final_target_info, 
   int1* final_info_valid, int3* beamport, 
   int10* modulate) 
{ 
 //Internal Variables 
 static int5 sclk_count = 0; //Count for the ADC clock for the clock 
divider 
 
  //Internal Flags (Flags) 
  static bool dirchange = false;   //Indicate if the 
direction will change 
  static bool updown = true;       //Indicates up-sweep 
(true) or down-sweep (false), start with up sweep 
  static bool fft_start = false;   //Indicates if fft should 
start 
  static bool hold = false;       //Hold sclk output to adc 
(Wait to finish before accepting new data) 
  static bool fft_done = false;    //Indicates if fft is 
done with computations 
  static bool info_valid = false;  //Indicates if the info 
is valid after peak pairing 
  static bool vel_adjusted = false; //Indicates if the velocity has 
been adjusted due to beam angle 
  static bool moddone = false;  //Indicates if tuning 
voltage has been updated 
 
 
  //Clock for VCO Tuning (A) 
  static int1 modclock = 0; // 1-bit clock initially set to 0 
  static int6 modcounter = 0; // 6 bit counter for the clock divider 
(0 to 49) 
 
  //ADC control and data capture (B) 
  static int11 xn_index = 0; 
  static sint12 xn_value = 0; 
 
  static int11 xk_index = 0; 
  static int13 xk_abs = 0; 
  static bool abs_done = false; 
 
    //CFAR 
  static int13 absA = 0; 
  static int13 absB = 0; 
  static int13 absC = 0; 
  static int13 absD = 0; 
 
  static int13 target_abs = 0; 
  static int10 target_pos = 0; 
  static bool new_target = false; 
  static bool cfar_complete = false; 
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   //For final_info 
  static int20 target_info  = 0; 
  static int19 velmulres = 0; 
  static int9 velmulfac = 257; 
 
  //UP/DOWN done 
  static bool in_done = false; 
  static bool fft_record = false; 
 
 
 if(reset == 1 || enable == 0) //Synchnorous Reset 
 { 
  //Main Outputs 
  *sclk = 0; 
  *final_target_info = 0; 
  *final_info_valid = 0; 
  *beamport = 1;  
  *modulate = 0; 
 
 
  in_done = false; 
  fft_record = false; 
 
  velmulres = 0; 
  target_info = 0; 
  info_valid = false; 
  target_abs = 0; 
  target_abs = 0; 
  new_target = false; 
  cfar_complete = false; 
 
  absA = 0; 
  absB = 0; 
  absC = 0; 
  absD = 0; 
  abs_done = false; 
 
  xk_abs = 0; 
  fft_done = false; 
  xk_index = 0; 
  xn_value = 0; 
  xn_index = 0; 
 
  fft_start = false; 
  fft_record = false; 
 
  in_done = false; 
 
  sclk_count = 0; 
 
  modcounter = 0; 
  dirchange = false; 
  modclock = 0; 
  moddone = false; 
 
  vel_adjusted = false; 
  updown = true; //Start with up sweep 
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 } 
 else   //Reset is 0 
 { 
 
 
  if(*final_info_valid == 1) 
  { 
   *final_info_valid = 0; 
   vel_adjusted = false; 
  } 
 
  if (modcounter == 49) 
  { 
   modclock = ~modclock;  
   modcounter = 0;    
   moddone = false; 
  } 
  else 
  { 
   modcounter++; 
  } 
 
  if(fft_start && !dirchange) 
  { 
   dirchange = true;  
 
   if(updown) 
    updown = false;  
   else 
   { 
    updown = true;  
    *modulate = 0;  
 
    //Switching the beam ports 
    switch((*beamport).to_int()) 
    { 
    case 1: *beamport = 4; 
      break; 
    case 2: *beamport = 1; 
      break; 
    case 4: *beamport = 2; 
      break; 
    } 
    in_done = true; 
   } 
  } 
  else if(modclock == 1 && !moddone) 
  { 
   if(updown) //Up sweep 
   { 
    if(*modulate < 1023) 
     *modulate += 1; //Increase tuning voltage 
   } 
   else //down sweep 
   { 
    if(*modulate > 0) 
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     *modulate -= 1; 
   } 
 
   moddone = true;  //Tuning voltage has been 
updated 
  } 
 
  
  adc_control(reset, data_in, &xn_index, &xn_value, 
    &fft_start, &hold, sclk, &fft_record); 
 
  fft_control(reset,fft_record, fft_start, xn_index, xn_value, 
    &xk_abs, &xk_index, &fft_done); 
 
  fft_absolute(reset, fft_done, xk_index, xk_abs, 
    &absA, &absB, &absC, &absD, &abs_done); 
 
  cfar(reset, abs_done, absA, absB, absC, absD, 
   &target_abs, &target_pos, &new_target, &cfar_complete); 
 
  peak_pairing(reset, new_target, target_abs, target_abs, 
cfar_complete, 
      updown, unit_vel, &target_info, &info_valid); 
 
  //Clock to ADC 
  if(sclk_count == 24) 
  { 
   if(*sclk == 1) 
    *sclk = 0; 
   else 
    *sclk = 1; 
 
   sclk_count = 0; 
  } 
  else 
  { 
   *sclk = 0; 
   sclk_count += 1; 
  } 
 
  if(info_valid) 
  { 
   switch((*beamport).to_int()) 
   { 
   case 1: (*final_target_info).range(21,2) = target_info; 
     (*final_target_info).range(1, 0) = 2;
 //beamport 
     *final_info_valid = 1; 
     break; 
   case 2: velmulres = target_info.range(19, 10) * velmulfac; 
     (*final_target_info).range(11,2) = 
target_info(9, 0); 
     (*final_target_info).range(1, 0) = 1; 
     vel_adjusted = true;   
     break; 
   case 4: velmulres = target_info.range(19, 10) * velmulfac; 
     (*final_target_info).range(11,2) = 
target_info(9, 0); 
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     (*final_target_info).range(1, 0) = 3; 
     vel_adjusted = true;   
     break; 
   } 
  } 
  if(vel_adjusted && velmulres.range(17, 9) <= 300) 
  { 
   (*final_target_info).range(21, 12) = velmulres.range(17, 
8); 
   *final_info_valid = 1; 
  } 
 } 
} 
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ADC control (adc_control.cpp) 

#include "main_head.h" 
#include "setWindow.h" 
 
 
void adc_control(int1 reset, sint11 data_in, int11* xn_index, 
     sint12* xn_value, bool* fft_start, bool* hold, 
int1* sclk, bool* fft_record) 
{ 
 //Internal Variables 
 static bool sample_read = false; //Flag to indicate if a sample has been 
read 
 
 static sint22 mult_res = 0;  //22 bit data to store the multiplied 
value (hamming window) 
 
 
 if(reset == 1) 
 { 
  sample_read = false; 
 
  *xn_value = 0; 
  mult_res = 0; 
  *fft_start = false; 
 
  *hold = false; 
  *xn_index = 0; 
  *fft_record = false; 
 } 
 else 
 { 
 
  if(*fft_start) 
  { 
   *fft_start = false; 
   *hold = false;  
  } 
  //Capturing data from the adc 
  if(*sclk == 1) 
  { if(*xn_index < 1023) 
   { 
    *fft_record = true; 
    mult_res = data_in * window[(*xn_index).to_uint()]; 
    *xn_value = mult_res.range(21, 10); 
 
   } 
   else 
   { 
    mult_res = data_in * window[(2047 - 
(*xn_index).to_uint())]; 
    *xn_value = mult_res.range(21, 10); 
   } 
 
   if(*xn_index == 2047) //If 2048 samples are collected 
   { 
    *xn_index = 0; 
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    *hold = true; 
    *fft_start = true; 
    *fft_record = false; 
 
   } 
   else 
   { 
    *xn_index += 1; 
   } 
  } 
 } 
} 
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FFT Control (fft_control.cpp) 

#include "main_head.h" 
#include "fft_head.h" 
 
void fft_control(int1 reset, bool fft_record, bool fft_start, int11 xn_index, 
sint12 xn_value, int13* xk_abs, int11* xk_index, bool* fft_done) 
{ 
 //Internal Variables 
 static cmpxDataIn x_in[FFT_LENGTH]; 
#pragma HLS STREAM variable=x_in depth=2048 
 static cmpxDataOut x_out[FFT_LENGTH]; 
#pragma HLS STREAM variable=x_out depth=2048 
 
 const bool fft_direction = true; 
 const double sc = ldexp(1.0, 10); 
 static bool send_data = false; 
 
 
 if(reset == 1) 
 { 
  *fft_done = false; 
  *xk_index = 0; 
  *xk_abs = 0; 
 
  send_data = false; 
 
 } 
 else 
 { 
  if(send_data) 
   *xk_index += 1; 
  else if(*xk_index == 2047) 
   *xk_index = 0; 
 
  if(*fft_done) 
   *fft_done = false; 
 
  if(!fft_start && fft_record) 
  { 
   x_in[xn_index.to_uint() - 1] = std::complex<double> 
(xn_value, 0); 
  } 
  else 
  { 
   //Insert the last value then start FFT 
   x_in[2047] = std::complex<double> (xn_value, 0); 
   bool ovflo; 
 
   fft_top(fft_direction, x_in, x_out, &ovflo); 
   *fft_done = true; 
   send_data = true; 
   *xk_index = 0; //Send data starting with xk_index = 0; 
  } 
 
  if(send_data) 
  { 



70 

 

   //Once FFT is done, send the absolute value of the output 
forward one by one 
    if(*xk_index > 1023)  //Ignoring the first 1024 
values 
    { 
     double tempR, tempI, tempAbs; 
     tempR = 
x_out[(*xk_index).to_uint()].real().to_double(); 
     tempI = 
x_out[(*xk_index).to_uint()].imag().to_double(); 
     tempAbs = sc*sqrt(tempR*tempR + tempI*tempI); 
     *xk_abs = round(tempAbs); 
    } 
 
    if(*xk_index == 2047) 
    { 
     send_data = false; 
    } 
  } 
 } 
} 
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FFT Absolute (fft_absolute.cpp) 

#include "main_head.h" 
 
 
void fft_absolute(int1 reset, bool fft_done, int11 xk_index, int13 xk_abs, 
     int13* outA, int13* outB, int13* outC, int13* 
outD, bool* abs_done) 
{ 
 //Internal Variables 
 static bool storing = false; 
 
 static int13 data_buffer[4]; 
 static int2 count = 0; 
 static bool enable = false; 
 
 
 if(reset == 1) 
 { 
  count = 0; 
  enable = false; 
 
  *outA = 0; 
  *outB = 0; 
  *outC = 0; 
  *outD = 0; 
  *abs_done = false; 
 } 
 else 
 { 
  if(*abs_done == true) 
   *abs_done = false; 
 
  if(fft_done) 
  { 
   enable = true; 
  } 
 
  if(enable && xk_index > 1023) 
  { 
   if(storing) 
   { 
 
    data_buffer[count.to_uint()] = xk_abs; 
 
    if(count == 3) 
    { 
     count = 0; //Reset 
     storing = false; 
    } 
    else 
     count++; 
 
   } 
 
   if(!storing) 
   { 
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    *outA = data_buffer[0]; 
    *outB = data_buffer[1]; 
    *outC = data_buffer[2]; 
    *outD = data_buffer[3]; 
 
    *abs_done = true; 
    storing = true; 
   } 
  } 
  if(xk_index == 2047) 
  { 
   enable = false; 
  } 
 } 
} 
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CFAR (cfar.cpp) 

#include "main_head.h" 
 
 
void cfar(int1 reset, bool start, int13 inA, int13 inB, int13 inC, int13 inD, 
    int13* target_abs, int10* target_pos, 
    bool* new_target, bool* complete) 
{ 
 //Internal Variables 
 static int13 buffer[32]; 
 
 static int10 indexa = 0; 
 static int5 indexb = 0; 
 static int5 indexc = 0; 
 
 static int15 avgL = 0; 
 static int15 avgR = 0; 
 static int15 avg = 0; 
 static bool cfar_done = false; 
 static bool start_cfar = false; 
 static int2 cfar_step = 0; 
 
 static int18 T = 0; 
 static int5 K = 0; 
 static int13 CUT = 0; 
 
 
 if(reset == 1) 
 { 
  *target_pos = 0; 
  *target_abs = 0; 
  *new_target = false; 
  *complete = false; 
 
  indexa = 0; 
  indexb = 0; 
  indexc = 0; 
 
  avgL = 0; 
  avgR = 0; 
  avg = 0; 
  cfar_done = false; 
  start_cfar = false; 
  cfar_step = 0; 
 
  T = 0; 
  K = 0; 
  CUT = 0; 
 } 
 else 
 { 
  if(*complete) 
  { 
   indexa = 0; 
   indexb = 0; 
   start_cfar = false; 
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  } 
  else if(start_cfar) 
  { 
   if (cfar_done) 
   { 
    start_cfar = false; 
    indexb = 0; 
    indexc = 0; 
   } 
   else 
   { 
    start_cfar = true; 
    indexb = 31; 
   } 
  } 
 
  if(start && !start_cfar) 
  { 
   buffer[indexb.to_uint()] = inA; 
   buffer[indexb.to_uint() + 1] = inB; 
   buffer[indexb.to_uint() + 2] = inC; 
   buffer[indexb.to_uint() + 3] = inD; 
 
   if(indexa == 1020) 
    indexa = 1023; 
   else 
    indexa += 4; 
 
   if(indexb == 28) 
   { 
    indexb = 0; 
    indexc = 0; 
    start_cfar = true; 
   } 
   else 
    indexb += 4; 
  } 
 
  if(*complete) 
   *complete = false; 
  else if(cfar_done || *new_target) 
  { 
   indexc = 0; 
   cfar_done = false; 
   *target_abs = 0; 
   *target_pos = 0; 
  } 
  if(start_cfar) 
  { 
   switch(cfar_step.to_uint()) 
   { 
   case 0: 
     *new_target = false; 
     if( indexa >= 0 && indexa <= 511) 
      K = 20;  
     else if( indexa >= 512 && indexa <= 851) 
      K = 17;  
     else if( indexa >= 852) 
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      K = 16;  
 
     if(indexc < 6) 
     { 
      avgR = buffer[indexc.to_uint()+3] + 
          buffer[indexc.to_uint()+4] + 
          buffer[indexc.to_uint()+5] + 
          buffer[indexc.to_uint()+6]; 
 
      avgL = buffer[indexc.to_uint()+3] + 
          buffer[indexc.to_uint()+4] + 
          buffer[indexc.to_uint()+5] + 
          buffer[indexc.to_uint()+6]; 
     } 
     else if(indexc < 25) 
     { 
      avgR = buffer[indexc.to_uint()+3] + 
          buffer[indexc.to_uint()+4] + 
          buffer[indexc.to_uint()+5] + 
          buffer[indexc.to_uint()+6]; 
 
      avgL = buffer[indexc.to_uint()-3] + 
          buffer[indexc.to_uint()-4] + 
          buffer[indexc.to_uint()-5] + 
          buffer[indexc.to_uint()-6]; 
     } 
     else 
     { 
      avgR = buffer[indexc.to_uint()-3] + 
          buffer[indexc.to_uint()-4] + 
          buffer[indexc.to_uint()-5] + 
          buffer[indexc.to_uint()-6]; 
 
      avgL = buffer[indexc.to_uint()-3] + 
          buffer[indexc.to_uint()-4] + 
          buffer[indexc.to_uint()-5] + 
          buffer[indexc.to_uint()-6]; 
     } 
     cfar_step = 1; 
     break; 
   case 1: 
     avg = avgR.range(14,3) + avgL.range(14, 3) + 
1; 
     cfar_step = 2; 
     break; 
   case 2: 
     T = avg*K; 
     CUT = buffer[indexc.to_uint()]; 
     cfar_step = 3; 
     break; 
   case 3: 
     if( CUT.to_int() > (T.range(14, 2).to_int()) 
&& CUT > 7) 
     { 
      *new_target = true; 
      *target_abs = CUT; 
      *target_pos = indexa + indexc - 30; 
      K = 0; 
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     } 
     if(indexc == 31) 
      cfar_done = true; 
 
     if(indexc == 31 && indexa == 1023) 
      *complete = true; 
 
 
     indexc += 1; 
     cfar_step = 0; 
     break; 
   }//End of switch 
  } //end of star_cfar 
 } 
} 
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Peak Pairing (peak_pairing.cpp) 

#include "main_head.h" 
 
void peak_pairing(int1 reset, bool new_target, int13 target_abs, int10 
target_pos, 
      bool complete, bool updown, int8 unit_vel, 
      int20* target_info, bool* info_valid) 
{ 
 //Internal Variables 
 static int13 abs_bufup[8], abs_bufdown[8]; 
 static int10 pos_bufup[8], pos_bufdown[8], posa, posb; 
 static bool upfill = false, downfill = false, start_pairing = false; 
 static bool pairing_done = false, stb = false, faster = false, updone = 
false; 
 static int3 paircount = 0, indexup = 0, indexdown = 0, tmpindex = 0, 
count = 0; 
 static fixed_7_2 vel_fac = 3.40625; 
 static fixed_18_13 velocity = 0; 
 static fixed_12_1 range_fac = 0.0927734375; 
 static fixed_22_11 range = 0; 
 static int2 st_pp = 0; 
 static int14 absa = 0, absb = 0, absc = 0; 
 static int11 sum_pos = 0, diff_pos = 0; 
 static bool start_v = false; 
 
 
 if(reset == 1) 
 { 
        count = 0; 
        paircount = 0; 
        abs_bufup[0] = 0; 
        pos_bufup[0] = 0; 
        abs_bufdown[0] = 0; 
        pos_bufdown[0] = 0; 
        upfill = false; 
        downfill = false; 
        start_pairing = false; 
        updone = false; 
 
        start_v = false; 
 
        *target_info = 0; 
  *info_valid = false; 
  pairing_done = false; 
  indexup = 0; 
  indexdown = 0; 
  tmpindex = 0; 
  vel_fac = 3.40625; 
  range_fac = 0.0927734375; 
  st_pp = 0; 
  stb = false; 
  posa = 0; 
  posb = 0; 
  absa = 0; 
  absb = 0; 
  absc = 0; 
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  sum_pos = 0; 
  diff_pos = 0; 
  faster = false; 
  velocity = 0; 
  range = 0; 
 } 
 else 
 { 
  if(complete) 
  { 
   downfill = false; 
  } 
 
  if(new_target) 
  { 
   start_v = true; 
  } 
  if(pairing_done) 
  { 
   start_pairing = false; 
   paircount = 0; 
   updone = false; 
   upfill = false; 
  } 
  if(updone && !downfill) 
  { 
   count = 0; 
   if(updown == false && updone == 1) 
    start_pairing = true; 
 
  } 
 
  if(!upfill && start_v && !updone) 
  { 
   if(count == 0 && target_pos > 4) 
   { 
 
    abs_bufup[count.to_uint()] = target_abs; 
    pos_bufup[count.to_uint()] = target_pos; 
    count += 1; 
   } 
   else if(count >= 1)  
   { 
    if(target_pos == (pos_bufup[count.to_uint() - 1] + 
1)) 
    { 
     if(target_abs > abs_bufup[count.to_uint() - 
1]) 
     { 
      abs_bufup[count.to_uint() - 1] = 
target_abs; 
      pos_bufup[count.to_uint() - 1] = 
target_pos; 
     } 
    } 
    else 
    { 
     abs_bufup[count.to_uint()] = target_abs;  
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     pos_bufup[count.to_uint()] = target_pos; 
     count += 1;     
      
 
     if(count == 7)    
      
     { 
      upfill = true; 
      start_v = false; 
      paircount = count; 
      updone = true; 
     } 
    } 
   } 
  } 
  else if(start_v && !downfill && upfill) 
  { 
   if(count == 0 && target_pos > 4) 
   { 
    abs_bufdown[count.to_uint()] = target_abs; 
    pos_bufdown[count.to_uint()] = target_pos; 
    count += 1; 
 
   } 
   else if (count >= 1) 
   { 
     
    if(target_pos == pos_bufdown[count.to_uint() - 1] + 
1) 
    { 
     if(target_abs > abs_bufdown[count.to_uint() - 
1]) 
     { 
      abs_bufdown[count.to_uint() - 1] = 
target_abs; 
      pos_bufdown[count.to_uint() - 1] = 
target_pos; 
     } 
    } 
    else 
    { 
     abs_bufdown[count.to_uint()] = target_abs; 
     pos_bufdown[count.to_uint()] = target_pos; 
     count += 1;      
     if(count == 7)    
  
     { 
      downfill = true; 
      start_v = false; 
     } 
    } 
   } 
  } 
 
  if(pairing_done)   
  { 
   *target_info = 0; 
   *info_valid = false; 
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   pairing_done = false; 
   indexup = 0; 
   indexdown = 0; 
   tmpindex = 0; 
   st_pp = 0; 
   stb = false; 
   posa = 0; 
   posb = 0; 
   absa = 0; 
   absb = 0; 
   absc = 0; 
   sum_pos = 0; 
   diff_pos = 0; 
   faster = false; 
   velocity = 0; 
   range = 0; 
 
 
  } 
  else if(start_pairing && indexdown <= (paircount-1)) 
  { 
   *target_info = 0; 
   *info_valid = 0; 
 
   switch(st_pp.to_int()) 
   { 
   case 0: 
     if(pos_bufup[indexup.to_uint()] > 
pos_bufdown[indexdown.to_uint()]) 
      posa = pos_bufup[indexup.to_uint()] - 
pos_bufup[indexdown.to_uint()]; 
     else 
      posa = pos_bufup[indexdown.to_uint()] - 
pos_bufup[indexup.to_uint()]; 
 
     if(abs_bufup[indexup.to_uint()] > 
abs_bufdown[indexdown.to_uint()]) 
      absa = abs_bufup[indexup.to_uint()] - 
abs_bufup[indexdown.to_uint()]; 
     else 
      absa = abs_bufup[indexdown.to_uint()] - 
abs_bufup[indexup.to_uint()]; 
 
 
     if(abs_bufup[indexup.to_uint()] > 
abs_bufdown[tmpindex.to_uint()]) 
      absa = abs_bufup[indexup.to_uint()] - 
abs_bufup[tmpindex.to_uint()]; 
     else 
      absa = abs_bufup[tmpindex.to_uint()] - 
abs_bufup[indexup.to_uint()]; 
 
 
     if(indexup < paircount - 1) 
     { 
      if(abs_bufup[indexup.to_uint() + 1] > 
abs_bufdown[tmpindex.to_uint()]) 
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       absc = 
abs_bufup[indexup.to_uint() + 1] - abs_bufdown[tmpindex.to_uint()]; 
      else 
       absc = 
abs_bufdown[tmpindex.to_uint()] - abs_bufup[indexup.to_uint() - 1]; 
     } 
     else 
      absc = 8191; 
 
     if(indexup < paircount - 1) 
     { 
      if(pos_bufup[indexup.to_uint() + 1] > 
pos_bufdown[indexdown.to_uint()]) 
       posb = 
pos_bufup[indexup.to_uint() + 1] - pos_bufdown[indexdown.to_uint()]; 
      else 
       posb = 
pos_bufdown[indexdown.to_uint()] - pos_bufup[indexup.to_uint() + 1]; 
     } 
     else 
      posb = 1023; 
     st_pp = 1; 
     break; 
   case 1: 
     if(posa < 84 && posa <= posb) 
     { 
      if(absa <= absb && absa <= absc) 
      { 
       tmpindex = indexdown; 
      } 
     } 
     if(indexdown == paircount - 1) 
     { 
      st_pp = 2; 
     } 
     else 
     { 
      indexdown += 1; 
      st_pp = 0; 
     } 
     break; 
   case 2: 
     indexdown = 0; 
     sum_pos = pos_bufup[indexup.to_uint()] + 
pos_bufdown[tmpindex.to_uint()]; 
 
     if(pos_bufdown[tmpindex.to_uint()] > 0) 
     { 
      if(pos_bufup[indexup.to_uint()] > 
pos_bufdown[tmpindex.to_uint()]) 
      { 
       diff_pos = 
pos_bufup[indexup.to_uint()] - pos_bufdown[tmpindex.to_uint()]; 
       faster = false; 
      } 
      else 
      { 
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       diff_pos = 
pos_bufdown[tmpindex.to_uint()] - pos_bufup[indexup.to_uint()]; 
       faster = true; 
      } 
      st_pp = 3; 
 
 
     } 
     else 
     { 
      if(indexup < paircount - 1) 
      { 
       indexup += 1; 
       st_pp = 0; 
      } 
      else 
       pairing_done = true; 
     } 
     break; 
   case 3: 
     if(!stb) 
     { 
      if(faster == 0) 
       velocity = vel_fac * diff_pos; 
      else 
       velocity = vel_fac * diff_pos; 
 
      range = range_fac * diff_pos; 
      stb = true; 
     } 
     else 
     { 
      if(!faster) 
       (*target_info).range(19, 11) = 
unit_vel - velocity.range(13, 5); 
      else 
       (*target_info).range(19, 11) = 
unit_vel + velocity.range(13, 5); 
 
      (*target_info)[10] = velocity[4]; 
      (*target_info).range(9, 0) = 
range.range(18, 9); 
      *info_valid = 1; 
 
      tmpindex = 0; 
      posa = 0; 
      posb = 0; 
      absa = 0; 
      absb = 0; 
      stb = false; 
      st_pp = 0; 
      indexup += 1; 
 
      if(indexup == paircount) 
       pairing_done = true; 
     } 
     break; 
   } //Switch 
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  } //If start_pairing 
 
 } //If not reset 
} //End of function 

 

Window Coefficients (set_window.h) 

static const ap_ufixed<10,10> window[] = {82, 
   82, 
   . 
   . //All window coefficients here 
   . 
   1023}; 
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