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Abstract 
 

Expectation Maximization (EM) is a soft clustering algorithm which partitions data 

iteratively into M clusters. It is one of the most popular data mining algorithms that uses 

Gaussian Mixture Models (GMM) for probability density modeling and is widely used in 

applications such as signal processing and Machine Learning (ML). EM requires high 

computation time and large amount of memory when dealing with large data sets. 

Conventionally, the HDL-based design methodology is used to program FPGAs for 

accelerating computationally intensive algorithms. In many real world applications, 

FPGA provide great speedup along with lower power consumption compared to multi-

core CPUs and GPUs. Intel FPGA SDK for OpenCL enables developers with no 

hardware knowledge to program the FPGAs with short development time. This thesis 

presents an optimized implementation of EM algorithm on Stratix V and Arria 10 FPGAs 

using Intel FPGA SDK for OpenCL. Comparison of performance and power 

consumption between CPU, GPU and FPGA is presented for various dimension and 

cluster sizes. Compared to an Intel(R) Xeon(R) CPU E5-2637 our fully optimized 

OpenCL model for EM targeting Arria 10 FPGA achieved up to 1000X speedup in terms 

of throughput (T
speedup) and 5395X speedup in terms of throughput per unit of power 

consumed (T/P
speedup). Compared to previous research on EM-GMM implementation on 

GPUs, Arria 10 FPGA obtained up to 64.74X Tspeedup and 486.78X T/P
speedup.  
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Chapter 1  Introduction 

1.1.  Motivation  

Currently, Machine Learning algorithms are highly used to solve complex 

computationally intensive problems. Maximum Likelihood Estimation (MLE) carries a 

lot of standing in parametric estimation. MLE is used to calculate and fit a statistical 

model from sample dataset. EM computes Maximum Likelihood (ML) iteratively where 

the dataset is incomplete or some data is missing. EM contains two steps: the E-step or 

Expectation step which computers log-likelihood from the dataset and assigns each 

sample to clusters consequently and M-step or Maximization step maximizes the log-

likelihood provided by E-step. Both steps of EM are repeated until log-likelihood reaches 

convergence [1]. EM is a computationally complex problem and consumes more memory 

and hardware resources compared to other clustering algorithms. As a result, hardware 

accelerators such as Graphic Processing Units (GPU) [2][4] and Field Programmable 

Gate Arrays (FPGA) [3][5][6] have been utilized to increase the throughput of the EM. 

Traditionally, GPUs are used to accelerate ML algorithms because of high 

throughput and better memory bandwidth. However, GPU has a huge drawback. GPU 

power consumption is very high. On the other hand, FPGA-based accelerators provide 

high throughput with low power consumption.  

There are three [3][5][6] FPGA-based EM implementations currently available in the 

literature.  Two of these [5][6] designs were implemented at the Register Transfer Level 

(RTL) level. This is a time-consuming design methodology. Intel FPGA SDK for 
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OpenCL [23] is a High-level synthesis (HLS) tool that provides the opportunity to 

program FPGA in a high-level language, specifically Open Computing Language 

(OpenCL)  to accelerate the design process. HLS helps developers to program FPGA 

with little FPGA knowledge and to achieve peak performance by utilizing optimized 

OpenCL specification. The Altera Offline Compiler (AOC) automatically converts 

OpenCL code to optimized Verilog model and compiles into FPGA hardware binaries. 

Since developers need less hardware knowledge, time to market and cost for HLS is 

much lower than RTL-based design methodology. 

        

1.2. Objectives 

The main objectives of this thesis are to answer following questions: 

 Can FPGA gain better throughput compared to other HPC platforms using Intel 

FPGA SDK for OpenCL? 

 How much speedup will we gain in Arria 10 FPGA compared to Stratix V FPGA? 

 What dimension and cluster sizes can we fit in Stratix V and Arria 10 FPGAs? 

 

1.3. Thesis Outline   

The thesis is organized as follows: 

Chapter 2 discusses background information about FPGA, HLS, OpenCL and 

Intel FPGA SDK for OpenCL.  

In Chapter 3, we first provide a brief discussion about Expectation Maximization 

and previous EM implementation done by different FPGA and GPU based HPC systems.  
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 Chapter 4 provides explanation on how we designed the kernels for Expectation 

Maximization algorithm to get a better speedup.  

In Chapter 5 we present HLS synthesis results for EM and their analysis. We 

present a comparison of EM implementation results using  state of the art CPUs, GPUs 

and FPGAs.   

We conclude in Chapter 6 will a summary this research and suggestions for future 

work.    
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Chapter 2  High Level Synthesis for FPGAs 

Computation demand in HPC has increased rapidly in recent years and this trend will 

continue for the foreseeable future. Traditionally multi-core CPUs were for HPC. 

Because of ease of programming, data and instruction parallelism and high throughput 

general purpose GPU is widely used for HPC. But that comes at the cost of high power 

consumption. To obtain high throughput with less power consumption architecture, 

things like memory organization and interconnect topology needs to comply with 

algorithmic requirements [7]. In [8], is has been assessed that for any HPC platform half 

of its lifetime cost is power consumption. Since FPGAs has reprogrammable, 

reconfigurable resource with high throughput and less power consumption, FPGA is 

more suitable for HPC. In the following section, we will discuss FPGA Architecture, 

HLS, OpenCL and Intel FPGA SDK for OpenCL. 

 

2.1.  FPGA Architecture 

Field Programmable Gate Array (FPGA) is a reprogrammable and reconfigurable 

large Integrated Circuit (IC) that consists of a large number of of Look-Up Tables (LUT) 

and flip flops. These can be used to create custom hardware functionality and execute any 

algorithm as a digital circuit. Development in FPGA is less costly and time-consuming, 

though Application Specific Integrated Circuit (ASIC) has more throughput and less 

power consumption compared to FPGA [9]. Modern FPGAs consists of both fine-grained 

and coarse-grained programmable blocks. Nearly 70% of the FPGA market is controlled 
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synthesized in an optimized manner to hardware. With HLS, even software a developer 

can target any supported FPGA and synthesize optimized hardware. Currently, there are 

several HLS CAD tools available in both academia and industry. Table 2 shows some of 

these HLS CAD tools. For our research, we used Intel FPAG SDK for OpenCL. 

Table 1 Overview of Currently Available HLS CAD Tools [12]. 

Owner Compiler License Input Output 
Intel Intel FPGA 

SDK for 
OpenCL 

Commercial C with 
OpenCL 

Verilog 

Xilinx Vivado HLS Commercial C/C++ 
System C 

VHDL/Verilog 
System C 

Cadence CtoS Commercial SystemC 
TLM/C++ 

Verilog 
System C 

Mentor 
Graphics 

DK Design 
Suite 

Commercial Handel-C VHDL/Verilog 

Maxeler MaxCompiler Commercial MaxJ RTL 
Synopsys Synphony C Commercial C/C++ VHDL/Verilog 

System C 
LegUp U.Toronto Academic C Verilog 

 

2.3. Overview of OpenCL 

Open Computing Language (OpenCL) is the first industry standard framework for 

heterogeneous computing with the compatibility of HLS. Normally, CPUs, GPUs, DSPs 

are included in the heterogeneous platform. Because of HLS, FPGAs are added 

heterogeneous platform list. OpenCL consists of C99 based programming standard and 

also Application Program Interface (API). Using OpenCL, a developer can program 

multiple devices where using Compute Unified Device Architecture (CUDA), a 

developer can only program Nvidia GPUs.  OpenCL is open source programming 

language. It is maintained and updated by Khronos Group and various companies like 
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2.3.2. Execution Model  

An OpenCL program needs host code and kernel code to run and execute. The 

developer writes Host code in C/C++ with API to manage memory objects, program 

objects and command queues for the kernel. Kernel code consists of the main 

computationally intensive part of the algorithm which is executed on the device or 

devices.    

 Context: 

The contest consists of all crucial information regarding the targeted one or more 

devices and it is created for one or more devices. 

 Program Objects: 

During runtime, the program provides a dynamic library for multiple kernels and 

also includes kernel/kernels binary implementation.  

 Memory Object: 

Memory objects are used to transfer back and forth between the host and one or 

more devices. A memory object is used as kernel data input and output. We will 

discuss more memory object on next sections. 

 Command Queue: 

Using command queue host manages the execution of commands. Command queue 

contains three commands: For Memory command to transfer data within memory, 

Kernel command to launch one or kernels and Synchronization command creates a 

point to manually synchronize the host code.    
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 Local Memory: 

All work items within a workgroup can access local memory. For this, each work-

item can collect the data as fast as possible and do the calculation.  

 Private memory:  

Private memory is accessible for a single work-item. 

 

2.3.4. Programming Model 

OpenCL consists of two types of data parallelism: task parallelism and data parallelism. 

In task parallelism, multiple large kernels that contain single work-item execute 

concurrently at the same time. In data parallelism, kernels contain multiple work-items 

and each work-item within a workgroup calculates the same operation with different data 

concurrently based on their Global-ID. Data parallelism falls under the category of Single 

Program Multiple Data (SPMD) and Single Instruction Multiple Data (SIMD) stream. 

Because of architecture, data parallelism is suitable for GPUs. However, in FPGAs both 

parallelisms are suitable and it also supports Single Instruction Single Data (SISD), 

Multiple Instruction Single Data (MISD), and Multiple Instruction Multiple Data 

(MIMD).         
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system which might be Double Data Rate (DDR) Synchronous Dynamic Random Access 

Memory (SDRAM) DDR3 SDRAM, DDR4 SDRAM, DDR5 SDRAM and/or Quad Data 

Rate (QDR) Static Random Access Memory (SRAM) [16] with large capacity and long 

latency. Constant memory is a special type of global memory which is loaded in cache 

during runtime. Local memory is stored in on-chip FPGA memory and this one has low 

capacity, high bandwidth, and less latency compared to global memory. Finally, 

compared to DDR memory private memory is assigned to FPGA on-chip registers which 

have the lowest latency, highest bandwidth and lowest capacity. The memory model used 

in Intel FPGA SDK for OpenCL is summarized in Figure 5.   

Intel FPGA SDK for OpenCL supports OpenCL 1.0, parts of OpenCL 1.2 and 

OpenCL 2.0. For Example, OpenCL started using Channels/pipes from OpenCL 2.0 

which gave FPGA better data transfer speed compared to GPUs. Channel/pipe is a First-

In-First-Out (FIFO) buffer with a channel ID and depth that enables to transfer data back 

and forth between work-items in the same kernel and/or different kernels which require 

no additional synchronization and host interaction [17]. Furthermore, channels can be 

used to synchronize work items and/or kernels because of work-item and/or kernel stalls 

if they try to read an empty buffer and/or write to a channel that is full [18].  

2.4.2. Design Flow 

Initially, Intel FPGS SDK for OpenCL creates an emulated label by compiling 

kernel program (.cl) in its Altera Offline Compiler (AOC). During the emulation stage, 

AOC checks for errors (syntax, functional, logical, etc.) and also checks for stalls. 

Furthermore, in this stage AOC provides optimization report regarding memory 

transaction, pipeline execution to get better throughput and reduce wait time for each 
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stage in a pipeline. Because of this information, a developer can design an optimized 

hardware in a short period of time. Next step is to fully compile and synthesize the kernel 

program with AOC to directly generate Verilog RTL design from OpenCL code.  

Kernel.cl

Compile with AOC 
Emulator

Syntax, Functionality and 
stall correction? 

Full AOC 
Compilation with 

profile

Compile and link the 
host with GCC

Host.cpp

Performance and resource 
constrain meet?

Optimize the kernel

Execute The 
application

No

No

Yes

Yes

 

Figure 6 Intel FPGA SDK for OpenCL Design Flow [19]. 
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AOC automatically generates pipelines (if instruction is provided) and memory 

interaction between kernels and different memory regions. Depending on FPGAs and 

applications a full compilation takes 4-8 hours. In this stage, AOC will provide a report 

that will enable the developer to check if his/her design will fit in the FPGA or not. 

He/she might need to change his/her design if the design fails to meet the resource 

requirement. Finally, GNU Compiler Collection (GCC) is used to compile the host 

program along with FPGA executable and then run on that same system. Figure 6 shows 

the design flow of Intel FPGS SDK for OpenCL. 

 

2.4.3. Optimization Strategies in Intel FPGS SDK for OpenCL  

One of the core rules in HPC is to increase speed in computation part and reduce 

communication time or number of global memory access and host memory access 

because of communication bottleneck between global memory and FPGA and host 

memory and global memory, respectively.  In this section, we will discuss strategies to 

increase computation speed and reduce communication time.    

2.4.3.1. Parallelism Strategies 

Intel FPGA SDK for OpenCL supports Task Parallelism, Data Parallelism, and 

Pipeline/Loop Parallelism.  

 Data Parallelism: 

In data parallelism, the kernel uses SPMD/SIMD  model to access ND (N: 

number of dimensions) grid work-items. Like GPU, a work-group is a combination 
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of work-items and each work-item executes the same operation with different data. 

Workgroup size is equal to a number of work-items in a workgroup. A number of 

work items in a work-group needs to be managed to ensure optimal hardware 

resource usage and maintain parallelism within workgroups. In data parallelism, 

loops with no dependencies will get the highest throughput. 

 Loop/Pipeline Parallelism: 

Pipeline/Loop parallelism is known as Task in Intel FPGA SDK for OpenCL and 

the kernel is a single thread work-item. In GPUs, single thread work-item is used in 

data dependent sections and is inefficient. While processing single thread work-item, 

other processing units remain idle which is a waste of resources. Conversely, FPGA 

makes pipeline architecture by breaking down loop into multiple stages to resolves 

loop carried dependencies. Compiler pipelines each stage of a loop and launches 

next iterations as soon as loop carried dependencies have been resolved. The 

developer has no control over pipeline structure and scheduling. The only thing a 

developer can do is to reduce, remove or simplify loop carried dependencies.  

Figure 7 shows a visual comparison between data parallelism and pipeline 

parallelism. In this example, there is a kernel of 6 work-items with six stages (A-E). 

Data parallelism takes ten clock cycles to finish (output data is ready on 10th clock 

cycle) and at a time executes three work-items. In pipeline parallelism, all six stages 

are launched in stages in a pipeline manner within a kernel. Though it took the same 

amount of time to finish the work, the data output of the first loop is ready for 6th 

clock cycle wherein data parallelism same data output was ready in 10th clock cycle. 

Pipeline parallelism has higher throughput than data parallelism.       
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2.4.3.2. Throughput-based Optimizations  

There are three methods to get the highest throughput from Intel FPAG SDK for 

OpenCL.  

 Vectoring work-items: 

By vectoring work-items, reading/writing data and doing arithmetic/logic operations 

can be done in SIMD fashion. The compiler will create kernel data path based on a 

number of vectors and this will reduce the number of memory accesses. Vectoring 

work-items increase efficiency in memory read/write. 

 Loop Unrolling: 

In every application, there are lots of loops. Unrolling loops fully or partially will 

increase throughput linearly. However, based on unrolling factor, hardware resource 

usage will increase.  

 Multiple Compute Units (CU): 

In Intel FPGA SDK for OpenCL, multiple copies of same kernel hardware can be 

created in addition to kernel vectoring and loop-unrolling. There will be a 

communication bottleneck because multiple CUs will share same global memory. 

So, speedup might not be linear. Multiple CUs will consume more resource and it 

will decrease operational frequency.   

 

2.4.3.3. Optimizing Data Access/Transfer  

One of the main barriers of HPC is memory bandwidth and proficient memory 

access to reduce communication bottleneck. We are provided with some techniques to 

optimize data access and/or reduce communication bottleneck [20]. 
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 Aligning Memory: 

On the Host side, memory alignment has to be 64-bytes aligned. This drastically 

increases data transfer efficiency. On Linux, posix_memalign function and on 

Windows, malloc function is used on host code to align memory. 

 Caching Local Memory: 

We discussed earlier that Local memory or FPGA On-Chip Memory has high 

bandwidth and low latency compared to global memory. Because global memory has 

low bandwidth, we repeatedly grab data block by block from global memory and 

store on local memory before computation so that work-items can access data in short 

time. All work-items in a workgroup can access local memory and use local memory 

for increased throughput. 

 Memory Coalescing:  

In all HPC platforms including FPGA, memory coalescing improves memory 

efficiency by reducing a number of memory accesses and/or reading data serially. 

This is crucial when reading/writing data from global memory.   

 Channels:     

In GPUs, to transfer data between kernels, the data first needs to be stored in global 

memory and then another kernel will read the data to process it. Because global 

memory has high latency and low bandwidth getting speedup is hard. Because FPGA 

architecture is customizable, Intel came up with a FIFO based bus called channel. 

Using channels, consumer kernel can launch as soon as data is available in producer 

kernel. Since FIFO based bus stores data in On-chip memory temporarily, bandwidth 
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is high and so throughput is high. However, one of the drawbacks of channels is we 

cannot vectorize work-items and create multiple CUs.     

More tips and tricks to better optimize kernels in Intel FPGA SDK for OpenCL are 

presented in [20].   

 

2.5.  Summary  
This chapter first explained FPGA architecture, HLS and gave an overview of OpenCL. 

Then we described Intel FPGA SDK for OpenCL and the OpenCL coding strategies to 

optimize OpenCL based FPGA designs. 
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Chapter 3  Expectation Maximization 

3.1.  Background 
This thesis focuses on implementing and accelerating Expectation Maximization (EM) 

for Gaussian Mixture Models (GMMs). In the following section, we  describe GMMs and 

EM for GMMs. 

 Gaussian Mixture Models: 

GMM is a probabilistic model that contains multiple Gaussian distributions in a linear 

combination. A GMM with D dimensions, M Clusters (Gaussian components) and N 

number of points that can be represented by: 

 �(��|Ѳ) = 	 � �(��|μ�, Ѳ�)	��	

�

���

 (1) 

Where, 

 �� = (��� , ��� , … … , ���) is number of points with D dimensions. In vector 

representation, sample data set is a (N, D) matrix. 

 �(��|μ�, Ѳ�) is Gaussian probability density function of M number of clusters/ 

Gaussian components. It is calculated using mean μ� = 	 (μ�, μ�, … … , μ�), sample 

dataset, inverse covariance  Ѳ�
��  and log determinant  |Ѳ|�

�/�
 of covariance Ѳ�. 

Probability density function can be represented by, 

 �(��|μ�, Ѳ�) = 	
exp	{−

1
2
(�� − 	μ�)

�Ѳ�
��(�� − 	μ�)}

(2�)�/�|Ѳ|�
�/�
	

 (2) 

 �� =	 (��, ��, … … , ��)	is mixture coefficient/weight of M number of clusters . 
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In short, mean, sample dataset, weight and covariance matrix is required to calculate 

GMM.  

 Expectation Maximization (EM) for GMMs: 

EM for GMM (EM-GMM) is a probabilistic method to calculate likelihood with 

incomplete dataset [21] of GMM. EM-GMM calculates likelihood iteratively. First 

we generate random dataset and initialize all of the parameters. Then we update the 

parameters by alternating between two following steps until point of convergence is 

reached. 

 Expectation (E) Step: 

Membership or log likelihood value ��� is calculated for each data instance �� 

with respect to each cluster m. membership value ���	can be calculated by 

following equation: 

 ��� = 	
�(��|μ�, Ѳ�)	��	

∑ �(��|μ�, Ѳ�)	��	
�
���

 (3) 

 Maximization (M) Step: 

Estimate new values of mean	μ�, weight �� and covariance Ѳ� using the 

membership value obtained from the E-Step and replace new value with old ones. 

For each cluster m, update parameters: 

 �� =	����

�

���

 (4) 

 �� =	
��
�

 (5) 

   μ� = 	
1

��
������

�

���

 (6) 
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 Ѳ� =	
1

��
����(�� − 	μ�)(�� − 	μ�)

�

�

���

 (7) 

 

Algorithm 1 represents the pseudo code for EM-GMM which shows number of memory 

access and computational complexity.  In Algorithm 1, line 4 to line 10 represents E-Step 

and line 12 to line 19 represents M-step.  As described in Algorithm 1, both E-Step and 

M-Step execute iteratively until convergence of log likelihood. Computational 

complexity for each iteration of EM algorithm is O (���� ) [22].      

Algorithm 1 EM-GMM 

INPUT: sample dataset ���   

OUTPUT: mean	μ��  , weight ���  and covariance Ѳ���  

1. For all n ∈	1 to N do 

2. initialize parameters (μ�,��, Ѳ�) 

3. while not convergence do 

4.       for all m ∈	1 to M , n ∈	1 to N do 

5.             ���� = 0 

6.             for all d� ∈	1 to D,  d� ∈	1 to D do 

7.                  h�� = 		 h�� + 	��	

���	{�
�

�
(�����	����)(�����	����)

�Ѳ�����
�� }

(��)�/�|Ѳ|�
�/�

	
	 

8.             ���� = ���� + h��  

9.       for all n	∈	1 to N,  m	∈	1 to M do 

10.             ��� =
���

����
 

11.     �� = 0,��	 = 0, μ� = 0, Ѳ� = 0 

12.       for all n	∈	1 to N, m	∈	1 to M do 

13.           �� =	�� + 	���	 

14.       for all m	∈	1 to M do 

15.           �� =	
��

�
 

16.       for all n	∈	1 to N, m	∈	1 to M, d	∈	1 to D do 

17.           μ�� = 	μ�� + 	
�

��
∑ ������
�
���  

18.       for all m	∈	1 to M, n	∈	1 to N, d� ∈	1 to D,  d� ∈	1 to D do 

19.           Ѳ�����	 = 	
�

��
∑ ���(���� − 	μ���)(���� − 	μ���)

��
���  
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3.2.  Previous Work on Accelerating EM-GMM 
This section provides detailed description of previous EM-GMM implementation 

research.  

3.2.1. Acceleration on GPUs 

Pongbar from Rochester Institute of Technology presented a CUDA implementation of 

EM-GMM algorithm [22]. This research closely matches with our research because they 

worked with non-diagonal covariance matrix, which are suitable for massive dataset and 

they compared their work against multiple GPUs and reference implementations. In [22], 

they achieved maximum of 73.5X speedup on Nvidia GTX260 and 120x speedup on 

Nvidia C1060x2 against Intel Xeon 2.5 GHz Quad Core E5420 CPU.  

In [2], they implemented EM-GMM on Geforce 8800 ULTRA and Quadro FX 5800 

using CUDA with diagonal-only covariance matrix. They got maximum of 164x speedup 

against Dual Core 3.0 GHz Pentium IV CPU on Quadro FX 5800. 

Altinigneli [4] used an asynchronous approach for executing EM-GMM in contrast to the 

traditional synchronous approach. They enabled the parallel threads to asynchronously 

exchange local information/data. Using asynchronous EM-GMM approach, they 

accelerated convergence and reduced overhead caused by sequential algorithm and 

limited memory bandwidth. They achieved 720X speedup on NVidia GTX480 against 

Intel i7-920 2.66 GHz CPU. 

 

3.2.2.     Acceleration on FPGAs 

A fully pipelined EM-GMM is implemented in [3] using Maxeler MAX3 acceleration 

card with a Xilinx Virtex-6 FPGA. For their implementation, they used diagonal-only 
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covariance matrix and fixed point arithmetic dataset. They achieved 517X speedup 

against Intel Core i3 CPU. 

In [5][6], EM is implemented on 4 Xilinx Virtex-6 LX760 FPGAs for 3D computed 

tomography (CT) Reconstruction. [5], accomplished 85X speedup compared to single 

thread Intel Xeon 5138 CPU and [6] accomplished 26.9X speedup compared to 16-thread 

multi-core Intel Xeon E5-2420 CPU.   

 

Ref. 
No. 

Device N* C* D* CM* Speedup 

[22] GPU: Nvidia GTX260  
CPU: Intel Xeon 2.5 GHz Quad 
Core E5420 

10�-
10� 
(float) 

100 24 N-D* 58x-84x and 
73.5x (avg.). 
vs. CPU 

[22] GPU: Nvidia C1060x2 
CPU: Intel Xeon 2.5 GHz Quad 
Core E5420 

10�-
10� 
(float) 

100 24 N-D* 93x-145x 
and 120x 
(avg.) vs. 
CPU 

[2] GPU: Geforce 8800 ULTRA 
CPU: DualCore 3.0 GHz Pentium 
IV 

48.6K-
153.6K 
(float) 

8-32 8-
32 

D-O* 20x-119.3x 
vs. CPU 

[2] GPU: Quadro FX 5800  
CPU: Dual Core 3.0 GHz Pentium 
IV 

48.6K-
153.6K 
(float) 

8-32 8-
32 

D-O* 20x-164.0x 
vs. CPU 

[4] GPU: NVidia GTX480 
CPU: Intel i7-920 2.66 GHz 

2�� 
(float) 

10 8 D-O* 720x vs. 
CPU 

[3] FPGA: Maxeler MAX3 
acceleration card with a Xilinx 
Virtex-6 FPGA  
CPU: Intel Core i3 CPU  

10� 
(fixed) 

2,4,6 3,6 D-O* 517x vs. 
CPU 

[5] FPGA: 4 Xilinx Virtex-6 LX760  
CPU: Intel Xeon 5138 

- - 3  85X vs. CPU 
(single 
thread) 

[6] FPGA: 4 Xilinx Virtex-6 LX760  
CPU: Intel Xeon E5-2420 

- - 3  26.3x vs 
CPU (Multi 
Thread) 

Table 2 Previous Work on Accelerating EM-GMM. 

N* = Number of Points, C* = Number of Clusters, D* = Number of Dimensions, 
CM* = Covariance Matrix, D-O* = Diagonal Only, N-D* = Non-Diagonal 
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Table 2 provides illustrates  a comparison  of previous work on accelerating EM-GMM 

on GPUs and FPGAs against CPUs (section 3.2.1 and 3.2.2). For each implementation it 

shows how much speedup they gained against CPU using different number of points, 

cluster size and dimension size. It also shows which implementation uses diagonal-only 

or full/non-diagonal covariance matrix. The reason for choosing diagonal-only over 

full/non-diagonal covariance matrix is that it reduces computation [2-6]. Note that 

full/non-diagonal covariance matrix requires a lot of computation [22].      

 

3.3.  Summary  

In this chapter we first explained how the EM-GMM algorithm works. Then we 

discussed related research on EM implementation using FPGAs and GPUs.  
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Chapter 4  Optimized EM-GMM OpenCL FPGA 

Implementation 

4.1.  EM-GMM OpenCL Model for FPGA  

Data dependencies in original EM-GMM algorithm (Algorithm 1) make it impossible to 

create a fully optimized FPGA design with high throughput. For our research, we 

implemented a fully-pipelined EM-GMM OpenCL FPGA architecture using same 

operations flow as [22]. Operational flow of a fully-pipelined EM-GMM OpenCL model 

for FPGA is shown in Figure 8.  

The EM-GMM computation on Inter FPGA SDK for OpenCL can be broken down into 

five kernels. Full description of kernel 1, 2, 3, 4, 5 is shown in algorithm 2, 3, 4, 5, 6, 

respectively. Dataflow between host and kernels (through global memory) and between 

kernels (through channel extension) are shows in Figure 8. During execution sample 

datasets (xnd and xdn) and membership data is cached to FPGA On-chip memory as they 

are used repeatedly. From our comprehensive analysis we found that we get better 

throughput if we implement all five kernels in fully pipelined single thread work item 

manner rather than NDRange Kernel. AOC can only pipeline kernels with single thread 

work item. Multi-thread work item pipelining is not supported on AOC. Intel FPGA SDK 

for OpenCL FIFO based Channel Extension is used to directly transfer data within 

kernels. The Channel extension helped to synchronize the kernels without host 

involvement. Latency for each iteration reduced because channel extension helps to 

execute kernels concurrently. Channel helped to gain speed up depending on different 
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dimension and cluster sizes. The depth of the channel affects FPGA on-chip memory 

usage.  

Start

Convergence 
Met?

No

Create Random Dataset 

Initialize (CPU): N_SUM, Mean, 
Weight, Covariance, 
Inverse Covariance

Calculate Initial 
E-Step (CPU)

(Host) Initialization Phase

Stop

Kernel 1: N_SUM, Mean, 
Weight

Kernel 2: Covariance 

Channel: Mean, N_SUM

Kernel 3: Inverse Covariance 
and Constant

Kernel 4 (E-Step 1): 
Numerator

Kernel 5 (E-Step 2): Divide 
Numerator with 

Denominator

Channel: Inverse Covariance and Constant 

Channel: Start_flag E-Step 2

M-Step   

Pre-Calculation 
E-Step 

E-Step 

Channel: Covariance

Global Memory

Sample 
Dataset

Membership
Value

E-Step 1
Output

Through PCIe

Channel: Weight Channel: Mean

FPGA Accelerator

Host 
Memory

Yes

 

Figure 8 EM-GMM operational flow OpenCL FPGA. 
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4.1.1. Initialization 

For our implementation we first generated random float dataset	���  and transpose of 

that same dataset	��� . Kernel 1 requires ���  and kernels 2 and 4 require ���  for 

coalesced memory access from global memory. Global memory is a very large memory, 

so we do not need to worry about memory usage. Then we calculated initial value of 

mean	μ�� , weight	��, sum of all membership values in a cluster	�_����, 

covariance	Ѳ��� , inverse covariance Ѳ���
��  and constant ������ on the host side. 

Afterwards, we also calculated a full E-Step calculation on the host end to generate initial 

membership value	���. Then we send the random float dataset ���  , transpose of that 

same dataset	���  and initial membership value	��� to FPGA global memory for 

calculation.  

Inside FPGA, calculation starts with M-Step and ends with E-Step for each iteration. 

During acceleration, choosing M-Step first before E-step helps to reduce communication 

overhead and number of memory access between kernel and global memory. We cannot 

use Channel extension from E-Step to M-Step because of complicated memory access 

pattern between these steps and membership value is too big to store in FPGA memory. 

However, memory access pattern from M-Step to E-Step is not complicated. Connecting 

M-Step to E-Step with Channel extension reduced global memory access and because of 

less memory load and store units, hardware resource utilization also decreased.  

4.1.2. M-Step 

First kernel (Algorithm 2) reads random float sample dataset and membership value 

form global memory to calculate sum of all membership value for a given cluster, mean 
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and weight and sends sum of all membership value for a given cluster, mean data to 

kernel 2 and weight data to kernel 4 through channel.  

Algorithm 2 (Kernel 1) Calculates:  �_����,	 μ�� , �� 

G* I*: sample dataset ���  , membership value  ���. 

C* I*: none. 

G* O*: none.  

C* O*: mean	μ��  , weight �� and	�_����. 

 

1. for all m	∈	1 to M do 
2.     for all n	∈	1 to N do 
3.         �_���� =	�_���� + 	��� 
4.         write_channel: �_���� 
5.     for all n	∈	1 to N, d	∈	1 to D do 

6.           μ�� = 	μ�� + 	
�

�_����
∑ ������
�
���  

7.           write_channel: μ��  

8.     �� =	
�_����

�
 

9.     write_channel: �� 

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT 

Algorithm 3 (Kernel 2) Calculates:  covariance Ѳ���  

G* I*: sample dataset ���  , membership value  ���. 

C* I*: mean	μ��  and �_����.. 

G* O*: none.  

C* O*: covariance	Ѳ��� , mean	μ�� . 

 

1. for all m	∈	1 to M do 
2.     for all d	∈	1 to D do     
3.         read_channel: μ��  
4.     read_channel: �_���� 
5.     for all n	∈	1 to N do 

6.         for all d� ∈	1 to D,  d� ∈	1 to D do 

7.             Ѳ�����	 = Ѳ�����	 + 		
�

�_����
∑ ���(���� − 	μ���)(���� − 	μ���)

��
���   

8.     write_channel: covariance Ѳ���   

9.     for all d	∈	1 to D do     
10.         write_channel: μ��  

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT 
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Second kernel (Algorithm 3) reads random float sample dataset and membership 

value form global memory and sum of all membership value for a given cluster, mean 

from channel (kernel 1) to calculate covariance of dimension (d1and d2) for each cluster. 

We are calculating full or non-diagonal covariance matrix. By doing so, we have to do a 

more computation O (NMD2) compared to non-diagonal covariance matrix O(NMD)  [2-

6] which will consume more FPGA hardware resource usage. However, this will not 

compromise the shape of Gaussians [22] which leads to better accuracy in results. Kernel 

2 sends covariance to kernel 3 and same mean value (for a given cluster) to kernel 4 

through channel.  

Both Kernel 2 and 4 requires mean value to calculate covariance and E-Step 

numerator, respectively. So, we need to write mean value to two channels. Logic Element 

(LE) utilization is same if we write mean value in two channels either on kernel 1 or one 

channel on kernel 1 and another channel on kernel 2. However, if we write mean value in 

two channels on kernel 1, FPGA on-chip memory usage increases. To reduce FPGA on-

chip memory usage, we send mean values to kernel 2 using one channel. Kernel 2 reads 

mean value from channel for a given cluster, calculates covariance and sends the mean 

value to kernel 4 through another channel for that cluster. Data is read from one channel 

and that same data is written to another channel after computation. By doing so, FPGA 

on-chip memory usage reduces because channel is FIFO based system.  

 

4.1.3. Pre-Calculation E-Step  

Kernel 3 (Algorithm 4) reads covariance data from kernel 2 using channel and 

calculates inverse covariance using LU decomposition and log determinant to get 
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constant (see Algorithm 4 for more detail) value. After calculation, Kernel 3 sends 

inverse covariance and constant value to kernel 4 using channel.  

Algorithm 4 (Kernel 3) Calculates:  inverse covariance Ѳ���
��  and constant ������ 

G* I*: none. 

C* I*: covariance	Ѳ��� . 

G* O*: none.  

C* O*: inverse covariance Ѳ���
��  and constant ������. 

 

1. for all m	∈	1 to M 
2.     for all d� ∈	1 to D,  d� ∈	1 to D do 

3.         read_channel: Ѳ�����. 

4.     calculate Ѳ���
��  using LU Decomposition. 

5.     |Ѳ|� = calculate log determinant. 

6.     ������	 = 		log	(
�

(��)�/�|Ѳ|�
�/�

	
)	  

7.     for all d� ∈	1 to D,  d� ∈	1 to D do     

8.         write_channel:  Ѳ�����
�� . 

9.     write_channel: ������	 

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT 

4.1.4. E-Step  

Detail of E-Step calculation is provided in section 3.1. It takes 2 kernels to execute 

E-Step. Kernel 4 (Algorithm 5) reads sample dataset from global memory and means, 

weight, constant and inverse covariance from channel to compute the log likelihood of 

sample dataset for each cluster. Since the membership value is too big to store in FPGA 

on-chip memory and memory access and computation pattern between kernel 4 (E-Step 

1) and kernel 5 (E-Step 2) is complicated we have to store output of log likelihood to 

global memory. We cannot use channel extension to transfer data from kernel 4 (E-Step 

1) to kernel 5 (E-Step 2). However, we used channel to create a starting point of kernel 5 

(E-Step 2) by using a start flag. Kernel 4 computes the log likelihood of sample dataset 
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for each cluster using equation (9) given below. We are not using equation (8) because of 

numerical instability caused by exponent function. Exponent function causes overflow in 

a 32-bit floating point number with small input. For example e90 will easily overflow 32-

bit floating point.  

A =	��; � = 	
1

(2�)�/�|Ѳ|�
�/�
	
	 ; 

� = 	 (���� − 	μ���)(���� − 	μ���)
�Ѳ�����

��  

 � × �	 × � (8) 

         log	(�) + log	(�) 	−
1

2
(�) (9) 

 

Algorithm 5 (Kernel 4) Calculates:  E-Step 1 Numerator calculation  

G* I*: none. 

C* I*: inverse covariance Ѳ���
��  and constant ������, mean	μ��  , weight ��. 

G* O*: none.  

C* O*: E-Step 1 Numerator calculation ����������
 

 

1. for all m	∈	1 to M do 

2.     for all d� ∈	1 to D,  d� ∈	1 to D do     

3.         read_channel:  Ѳ�����
�� . 

4.     for all d	∈	1 to D do     
5.         read_channel: μ��  

6.     read_channel: ������	 

7.     read_channel: ��    

8.     for all n ∈	1 to N do 

9.         for all d� ∈	1 to D,  d� ∈	1 to D do 

10.             h� = 		 h� + 	(���� − 	μ���)(���� − 	μ���)
�Ѳ�����

�� 	 

11.     ����������
= 	−

�

�
h� + 	 log	(��	) + 	������	 

12.     if (m = M && n = N) do 

13.         write_channel: start_flag_E-Step_2   
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G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT 

Kernel 5 first waits of start flag from E-Step 1. When start flag is enabled (read from 

channel), Kernel 5 starts implementation. For member in each cluster, kernel 5 

(Algorithm 4) reads weighted likelihood (output of Kernel 4) from global memory and 

converts into fuzzy probability by using equation (11) given below. Since kernel 4 

calculates log-likelihood, denominator has to use a large sum of exponents. Equation 11 

also helps to avoid overflows. After calculation Kernel 5 writes membership value into 

global memory.      

 ���	�exp	(��
�

) 	≡ max(�) + ���	�exp	(��
�

− max	(��))	 (10) 

 

Algorithm 6 (Kernel  5) Calculate:  E-Step 2 Numerator/ Denominator 

G* I*: E-Step 1 Numerator ����������
 

C* I*: none. 

G* O*: Membership value ���.  

C* O*: none 

 

1. read_channel: start_flag_E-Step_2   

2. if (start_flag_E-Step_2) do 

3.     for all n ∈	1 to N do 

4.          ���� = 0     

5.         for all m	∈	1 to M do     

6.              ���� = ����	(����������
)    

7.         for all m	∈	1 to M do     

8.             �������� = exp	(����������
, ����)	 

9.         �������� = 	���� + log	(��������) 

10.         for all m	∈	1 to M do 

11.             ��� = exp	(����������
− ��������	)     

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT 
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4.2. Optimization for different Problem Sizes  

Based on previous CPU and GPU based implementations, highest dimension 

achieved is 32 with 32 clusters [2] and highest cluster achieved is 100 with 24 

dimensions [22]. For FPGA based implementation [3] highest dimension achieved is 6 

and highest cluster achieved is 6.  The maximum dimension we could fit on Stratix V A7 

FPGA is 4 with 2 clusters and on Arria 10 FPGA, 8 with 2 clusters. The maximum 

clusters we could fit on Stratix V A7 FPGA are 8 with 2 dimensions and on Arria 10 

FPGA, 32 with 2 dimensions. Even with reduced unrolling factor for Stratix V FPGA and 

Arria 10 FPGA, we cannot fit the design on FPGA after crossing highest number of 

dimension and/or cluster given above. After crossing the highest number of dimension 

and/or cluster, AOC fails to fit the design on FPGA because either LE utilization or 

Memory block utilization or both overflow. Table 3 shows highest number of clusters we 

could fit in each dimension for Stratix V A7 FPGA and Arria 10 FPGA.  

Dimension Cluster Stratix V FPGA Arria 10 FPGA 
2 2     
2 4     
2 8     
2 16 X   
2 32 X   
3 2     
3 4 X   
3 8 X   
3 16 X   
4 2     
4 4 X   
8 2 X   

Table 3 Dimension and Cluster achived on Stratix V A7 FPGA and Arria 10 FPGA. 
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4.3.  Summary  
In this chapter, we first described the operational flow for EM-GMM implementation 

using Intel FPGA SDK for OpenCL. We explained computation of each kernel and how 

each kernel is connected to others through channel extension. We concluded this chapter 

by describing how many dimensions and/or clusters we can fit for Stratix V FPGA and 

Arria 10 FPGA.       
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Chapter 5 Experimental Results  

This chapter describes evaluation of proposed design on   Intel FPGA SDK for 

OpenCL. We start by explaining experimental setup and dataset used in this experiment. 

Then we   analyze and compare EM execution time, throughput, throughput/power 

consumption, accuracy and comparison between results obtained for FPGAs, CPUs and 

GPUs.    

5.1.  Experimental Setup 

For our experiments we are using Intel FPGA SDK for OpenCL 16.0 [23] as HLS 

CAD tool. The FPGA board used in this research is Nallatech 385 (Stratix V GX A7) [24] 

and Nallatech 385A (Arria 10 GX 10AX115) [25]. Nallatech 385 board is connected with 

Intel(R) Xeon(R) CPU E5-2637 V3 @ 3.50GHz (4 cores) CPU and Nallatech 385A 

board is connected with two Intel Xeon Processor E5-2620 V4 @ 2.10GHz (8 cores) 

CPU. Table 4 shows the list of CPUs and FPGAs used in this research and also shows the 

device code we will be using throughout this chapter. Table 5 represents and compares 

Nallatech 385 (Stratix V GX A7) and Nallatech 385A (Arria 10 GX 10AX115) board and 

FPGA specification.  

Device Code Device Description 

FA Nallatech 385A with Arria 10 GX 10AX115 [25]   
FS Nallatech 385 with Stratix V GX A7 [24] 
C1 Intel(R) Xeon(R) CPU E5-2637 V3 @ 3.50GHz (4 cores) [26], 32GB 

DDR3 RAM 
C2 2 x Intel Xeon Processor E5-2620 V4 @ 2.10GHz (8 cores) [27] 128GB 

DDR3 RAM 
Table 4 Device list and Description. 
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Board Name and  

FPGA 

Nallatech 385 

Stratix V  

GX A7 [24] 

Nallatech 385A 

Arria 10  

GX 10AX115 [25] 

DDR3 RAM 8GB  8GB 

Logical Elements 622K 1150K 

Registers 939K 1708K 

FPGA memory Block 50Mbits 53Mbits 

DSP Block 256 1000 

PCIe Bandwidth 25.6 GB/s 8TB/s 

Power ≤ 25W ≤ 25W 

Table 5  FPGA Device Specification. 

 

5.2.  Dataset 
For our research we conducted multiple tests with different cluster and dimension 

sizes. For this research, we generated random floating point data from -1000 to +1000. 

Each dataset consists of 220 data instances with different dimensions. In Stratix V we 

could fit a design containing 220 instances with 2 (2, 4, 8 clusters), 3 (2 clusters) and 4 (2 

clusters) dimensions.  However, on Arria 10 we could fit a design containing 220 

instances with 2 (2, 4, 8, 16, 32 clusters), 3 (2, 4, 8, 16 clusters), 4 (2, 4 clusters) and 8 (2 

clusters) dimensions. We could not fit more dimensions and clusters due to lack of FPGA 

hardware resources.  
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5.3.  Power Measurement 
We used Watts up? PRO to power meter to calculate power consumption [28]. The 

device provides accurate power consumption of the whole system. Table 7 shows power 

consumption during idle, program execution and accelerator power consumption for two 

CPUs and FPGAs. Before installing FPGA board on the systems, idle CPU only power 

consumption for C1 and C2 was 105.1 W and 112.2 W, respectively. During execution of 

EM on CPU, average power consumption increased to of C1 and C2 140.3 W and 148.7 

W respectively.  

When both of the boards are installed in the system, idle power consumption of 

Nallatech 385A with Arria 10 FPGA (With C2 CPU) and Nallatech 385 with Stratix V 

FPGA (With C1 CPU) was 133.3 W and 127.6 W, respectively. During execution of EM 

on of Nallatech 385A with Arria 10 FPGA (With C2 CPU) and Nallatech 385 with Stratix 

V FPGA (With C1 CPU) average power consumption of Heterogeneous system increased 

to 137.2 W and 130.2 W, respectively. So, average power consumption of Nallatech 385A 

with Arria 10 FPGA (no CPU) and Nallatech 385 with Stratix V FPGA (no CPU) for 

running EM is (137.2-112.3) = 24.9 W and (130.2-105.1) = 25.1 W, respectively. 

System CPU 
(C1) 
Only 

CPU1 with 
Stratix V Board 

CPU 
(C2) 
Only 

CPU2 with 
Arria 10 
Board 

Idle power (Watts) 105.1 127.6 112.3 133.3 
Execution power (Watts) 140.3 130.2 148.7 137.2 
Accelerator Power (Watts)  25.1  24.9 

Table 6 Power Consumption of CPUs and FPGAs. 
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5.4.  Performance analysis  
For all EM implementations, number of iterations varies depending on different 

sample dataset to meet the convergence point. For different EM implementation, different 

researchers use different sample dataset. So, to compare their results, researchers 

compared execution time, throughput and number of data instances calculated [3] in each 

iteration [2-4] [22]. For our research we will do the same. However, based on our dataset, 

we found that it takes us on average of 100 iterations to reach convergence point. The 

performance is measured by execution time in milliseconds (ms), throughput in  

Giga-Floating Point Operations per Second (GFLOPs), power in Watts (W) and 

throughput per power in GFLOPs/W. To test dataset with different dimensions and 

cluster sizes on both Arria 10 and Stratix V, we launched host program with dataset using 

different dimensions and cluster sizes.  Automatic testing scripts were used for this 

purpose.  

 

5.4.1. Performance Results 

Figure 9, Figure 11 and Figure 13 show execution time, throughput and 

throughput/power consumption of computing EM on Arria 10 FPGA and Stratix V FPGA 

with different dimension and cluster sizes respectively. We only included the 

computation time. Data transfer time between host and device is ignored because it is 

negligible at 0.5 ms. Figure 10, Figure 12 and Figure 14 show execution time, throughput 

and throughput/power consumption of computing EM on Intel(R) Xeon(R) CPU E5-2637 

CPU and Intel Xeon Processor E5-2620 CPU with different dimension and cluster sizes, 

respectively.  
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In Figure 9-14,  different colored lines  correspond to different FPGAs (Figure 9, 

Figure 11 and Figure 13) and CPUs (Figure 10, Figure 12 and Figure 14) with different 

kernels using different dimensions and horizontal axis corresponds to cluster sizes. For 

Figure 9 and Figure 10, vertical axis represents execution time spent during calculation. 

For Figure 11 and Figure 12, vertical axis represents throughput. Lastly, in Figure 13 and 

Figure 14 vertical axis represents throughput/power consumption.     

  From Figure 9, we can clearly see that for same calculation FS (Stratix V FPGA) 

consumes more time to compute than FA (Arria 10 FPGA). However, for CPU 

implementation, Figure 10 shows for same calculation C1 (Intel(R) Xeon(R) CPU E5-

2637 CPU) consumes less time to compute than C2 (Intel Xeon Processor E5-2620 

CPU). 

Figure 11 and Figure 12 show that for EM calculation FA and C1 has higher 

throughput compared to FS and C2 for same calculation. Figure 13 shows FA has higher 

throughput/power consumption compared to FS for same calculation. Note that FA and 

FS power consumption is almost same.  Figure 14 shows that C1 has higher 

throughput/power consumption compared to C2 for same calculation though C2 has 

higher power consumption than C1. 
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Figure 9 FPGA Execution Time for EM. 

 

 

Figure 10 CPU Execution Time. 
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Figure 11 FPGA Throughput for EM. 

 

 

Figure 12 CPU Throughput for EM. 
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Figure 13 FPGA Throughput/Power. 

 

 

Figure 14 CPU Throughput/Power. 
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5.4.2. Speedup  

In this section we present speedup obtained by each device compared to others. In 

the first section, we show speedup gained in terms of throughput and in the second 

section we show speedup gained in terms of throughput/power consumption.  

5.4.2.1. Throughput   

In Figure 15-18, different colored lines corresponds to different kernels using 

different dimensions and horizontal axis corresponds different cluster sizes and vertical 

axis corresponds to speedup gained during calculation in terms of throughput. 

Figure 15 shows speedup gained by CPU1 against CPU2.  Figure 16 and Figure 17 

show speedup gained by Stratix V FPGA and Arria 10 FPGA against CPUs, respectively. 

Figure 18 shows speedup gained by Arria 10 FPGA against Stratix V FPGA.  

 

Figure 15 CPU1 Speedup (T) over CPU2. 
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Figure 16 Stratix V FPGA Speedup (T) over CPUs. 

 

 

Figure 17 Arria 10 FPGA Speedup (T) over CPUs. 

0

5

10

15

20

25

30

35

40

2 4 8

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup (T): Stratix V FPGA over CPUs

C1_D2

C1_D3

C1_D4

C2_D2

C2_D3

C2_D4

-100

100

300

500

700

900

1100

1300

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup(T): Arria 10 FPGA over CPUs

C1_D2

C1_D3

C1_D4

C1_D8

C2_D2

C2_D3

C2_D4

C2_D8



47 
 

 

Figure 18 Arria 10 FPGA Speedup (T) overs Stratix V FPGA 
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Figure 19 shows speedup gained by CPU1 against CPU2.  Figure 20 and Figure 21 
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Figure 22 shows speedup gained by Arria 10 FPGA against Stratix V FPGA.  
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Figure 19 CPU 1 Speedup (T/P) over CPU 2 

 

 

Figure 20 Stratix V FPGA Speedup (T/P) over CPUs. 
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Figure 21 Arria 10 FPGA Speedup (T/P) over CPUs. 

 

 

Figure 22 Arria 10 FPGA Speedup (T/P) over Stratix V FPGA. 
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5.4.3. FPGA Resource Utilization  

This section shows FPGA resource utilization (Logic Element, Register, Memory 

Block, DSP and Adaptive Look-Up Tables -ALUT) and operational frequency of each 

FPGA for each kernel with different dimensions and clusters. For each implementation 

on FPGA, we got resource usage and operational frequency from synthesis report. To fit 

the design on FPGA for each implementation with higher dimensions and/or clusters, we 

had to decrease loop unroll factor or remove loop unroll for some and/or all loop inside 

each kernel. For implementations with higher dimensions and/or clusters we also had to 

reduce the memory block size to cache data into FPGA on-chip memory from global 

memory (DDR3 memory).  For this reason, for some implementations, FPGA resource 

usage and operational frequency drops down.  

Figure 23, Figure 24, Figure 25, Figure 26 and Figure 27 show FPGA Logic 

Element, ALUT, Register, Memory Block, DSP block utilization, respectively. Figure 28 

shows FPGA operational frequency.  

In Figure 23-27, different colored lines correspond to different kernels using 

different dimensions and horizontal axis represents different cluster sizes. From Figure 23 

to Figure 27, vertical axis represents resource usage of each implementation for each 

FPGA, as percentage. In Figure 28, vertical axis represents operational frequency of each 

implementation for each FPGA in Megahertz (MHz).  From Figure 23 to Figure 27 we 

can see that for each implementation Stratix V FPGA consumes more percentage 

resources than Arria 10 FPGA, because of smaller logic capacity of Stratix V.   
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Figure 23 FPGA Logic Element Utilization. 

 

 

Figure 24 FPGA ALUT Utilization. 
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Figure 25 FPGA Register Utilization. 

 

 

Figure 26 FPGA Memory Block Utilization. 
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Figure 27 FPGA DSP Block Utilization. 

 

 

Figure 28 FPGA Operational Frequency. 
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5.4.4.  Performance Comparison Between CPU and FPGA in Relation to FPGA Resource 

Utilization 

Table 7 shows performance comparison between FPGAs and CPUs in relation to 

FPGA resource usage for highest number of cluster achieved in each dimension by 

FPGAs. Yellow cells shows highest number of clusters we could fit in each dimension. 

Pink and green cells represent throughput and throughput/power consumption of each 

device, respectively. Blue and purple cells show speedup in terms of throughput and 

speedup in terms of throughput/power consumption gained by FPGAs over CPUs, 

respectively. Light orange cells shows FPGA resource utilization for highest number of 

cluster we could fit in each dimension. Lastly, dark orange cells shows FPGA operational 

frequency for highest number of cluster we could fit in each dimension. This table clearly 

shows that Arria 10 FPGA achieved much better speedup than Stratix V FPGA, when 

compared to CPU performance. Both FPGAs consumed most of their hardware resources 

for highest number of clusters achieved by each dimension.         

Table 9 shows performance comparison between FPGAs and FPGA resource usage 

for highest number of clusters achieved in each dimension by Stratix V FPGA. Leftmost 

column shows the parameters we are using to compare two FPGAs. Green and red cells 

represent performance, resource utilization and operational frequency of Arria 10 FPGA 

and Stratix V FPGA, respectively. Orange cells represent speedup gained by Arria 10 

FPGA over Stratix V FPGA for highest number of cluster achieved in each dimension by 

Stratix V FPGA.    Table 8 is similar to Table 7 except that it shows T/Pspeedup instead of 

Tspeedup.  
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FPGAs Arria 10 Stratix V 

Dimensions 2 3 4 8 2 3 4 

Maxm
* 32 16 4 2 8 2 2 

CPU1 T* 0.04 0.06 0.09 0.16 0.04 0.07 0.06 

CPU2 T* 0.03 0.05 0.08 0.15 0.04 0.06 0.06 

FPGA T* 39.33 10.63 10.59 28.48 1.28 0.94 1.34 

SUF/C1 T* 1000.68x 176.64x 115.19x 181.48x 29.34x 13.57x 20.88x 

SUF/C2 T* 1266.37x 205.00x 138.28x 194.57x 35.01x 10.46x 23.67x 

CPU1 T/P* 2.91E-4 4.36E-4 6.54E-4 1.16E-3 2.91E-4 5.09E-4 4.36E-4 

CPU2 T/P* 2.02E-4 3.36E-4 5.38E-4 1.01E-3 2.69E-4 4.03E-4 4.17E-4 

FPGA T/P* [AO*] 1.57 0.42 0.42 1.13 0.05 0.04 0.05 

SUF/C1 T/P* [AO*] 5395.19x 963.30x 642.20x 974.14x 171.82x 78.57x 114.68 

SUF/C2 T/P* [AO*] 7772.28x 1250x 780.67x 1118.81x 185.87x 99.26x 119.90x 

Logic U* 90% 90% 94% 93% 91% 93% 97% 

ALUTs U* 36% 36% 37% 33% 52% 47% 51% 

Register U* 50% 54% 52% 59% 43% 48% 50% 

MB* U* 90% 82% 72% 78% 82% 59% 60% 

DSP U* 47% 34% 26% 53% 77% 85% 68% 

Frequency M* 191.53 215.65 198.96 170.41 222.51 290.73 217.77 

Table 7 Performance comparison of FPGAs over CPUs and FPGA Resource Usage for highest cluster achieved 
by each dimension. 

T* = Throughput (GLOPs), T/P*= Throughput/Power Consumption (GFLOPs/W), AO* = Accelerator only,  

U* = Utilization, M*= (Mhz), MB* = Memory Block, Maxm
*
= Maximum size of cluster. 
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Dimension 2 4 8 

Maxm FS* 8 2 2 

FPGAs FA* FS* FA* FS* FA* FS* 

Throughput (GFLOPs) 14.09 1.28 6.84 0.94 11.82 1.344 

T*  Speed UpFA/FS [Arria 10] 11.02x 7.32x 8.81x 

[AO*] T/P* (GFLOPs/W) 0.56 0.05 0.27 0.04 0.47 0.05 

T/P* Speed UpFA/FS [Arria 10] 10.92x 7.21x 8.72x 

Logic U* 80% 91% 76% 93% 83% 97% 

ALUTs U* 32% 52% 30% 47% 32% 51% 

Register U* 48% 43% 47% 48% 51% 50% 

Memory Block U* 92% 82% 52% 59% 54% 60% 

DSP U* 25% 77% 20% 85% 24% 68% 

Frequency (Mhz) 226.70 222.51 212.22 290.73 219.34 217.77 

Table 8 Performance comparison of FPGAs and FPGA Resource Usage for highest cluster achieved by each 
dimension. 

FA* = FPGA Arria 10, FS* = FPGA Stratix V, T = Throughput, T/P*= Throughput/Power Consumption,  
AO* = Accelerator only, T* = Throughput (GLOPs), U* = Utilization 
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5.4.5.  Comparison with Previous EM Research 

We compare our performance with previous EM implementations by using the time 

it takes to compute all data instances in a single iteration (in seconds). This method was 

also used by [3] to compare their performance with previous research. Table 9 shows 

instructions per second (IPS) processed by previous research (green cells), Arria 10 

FPGA (light blue cells), Stratix V FPGA (light red cells) and speedup gained by Arria 10 

FPGA (dark blue cells) and Stratix V FPGA (dark red cells) compared with previous 

research. 

Previous Research Our Research (Fl*) 

Hardware 

(Accelerator) 
DF* IPS* 

FA* 

IPS* 

FS* 

IPS* 
SUFA SUFS 

Xilinx Virtex-6 [3] Fi* 
1.493E+8 1.141E+9 1.559E+8 7.64x 1.04x 

1.492E+8 3.808E+8 - 2.55x - 

Geforce 8800 ULTRA 

[2] 

Fl* 

2.008E+7 1.141E+9 1.559E+8 56.82x 7.76x 

2.903E+7 1.478E+9 1.676E+8 50.91x 5.77x 

 

Quadro FX 5800 [2] 

2.887E+7 1.141E+9 1.559E+8 39.62x 5.41x 

2.283E+7 1.478E+9 1.676E+8 64.74x 7.34x 

2.783E+7 1.780E+9 - 63.96x - 

NVidia GTX480 [4] 2.796E+8 1.780E+9 - 6.67x - 

I*NVidia GTX480 [4] 1.367E+8 1.780E+9 - 13.03x - 

Table 9 IPS*and speedup gained by our implementation over other implementations. 

IPS*= Instances Per Second, P*= Power Consumption, I* = Implementation of [22] code on NVidia GTX480 [4], Fl* = 
Floating Point, Fi* = Fixed Point, DF* = Dataset Format, FA* = Arria 10 FPGA, FS* = Stratix V FPGA, SU = Speed 

up   
 

Since we are also considering power consumption as an evaluation metric for 

each device in Table 11 we show IPS/power consumption of each device used in previous 
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research and our research. And also speedup gained by our implementation over other 

implementations in terms of IPS/power consumption. Table 10 is same as Table 9 with 

the difference of IPS/power consumption and orange cells which represents power 

consumption of each accelerator used in previous research. We found power consumption 

of all GPU based accelerators. We did not find any power consumption report for 

Maxeler Max3 with Xilinx Virtex-6 FPGA [3]. From our implementation and 

implementation done in different FPGA based accelerators for different implementations 

[19][32] we found that average power consumption of  FPGA based accelerators is 25 W. 

So, it is safe to assume power consumption of Maxeler Max3 with Xilinx Virtex-6 FPGA 

[3] is 25 W.   

PR*= Previous Research Our Research (Fl*) 

Hardware 

(Accelerator) 

P* 

(W) 
DF* IPS*/P* 

FA* 

IPS*/P* 

FS* 

IPS*/P* 
SUFA SUFS 

Xilinx Virtex-6 [3] 25 Fi* 
5.975E+6 4.58E+7 6.21e+6 7.66x 1.04x 

4.768E+6 1.52E+7 - 3.18x - 

Geforce 8800 ULTRA 

[2] 

172.2 

[29] 

Fl* 

 

1.17E+05 4.55E+07 6.26E+06 388.89x 53.50x 

1.69E+05 5.89E+07 6.73E+06 348.52x 39.82x 

 

Quadro FX 5800 [2] 

189 

[30] 

1.53E+05 4.55E+07 6.26E+06 297.39x 40.92x 

1.21E+05 5.89E+07 6.73E+06 486.78x 55.62x 

1.47E+05 7.09E+07 - 482.31x - 

NVidia GTX480 [4] 
223 [31] 

1.25E+06 7.09E+07 - 283.6x - 

I*NVidia GTX480 [4] 6.10E+05 7.09E+07 - 116.23x - 

Table 10 IPS*/power consumption and speedup gained by our implementation over other implementations. 

IPS*= Instances Per Second, P*= Power Consumption, I* = Implementation of [22] code on NVidia GTX480 [4], Fl* = 
Floating Point, Fi* = Fixed Point, DF* = Dataset Format, FA* = Arria 10 FPGA, FS* = Stratix V FPGA, SU = Speed 

up 
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5.5.  Verification of Results 

A sequential version of EM-GMM algorithm was implemented in CPU to ensure the 

accuracy of EM-GMM algorithm running on FPGA based accelerators. This 

implementation was done after FPGA implementation to generate reference results. After 

FPGA implementation, output membership data of FPGA is copied from global memory 

to host memory to compare against CPU reference results. We used Mean square error 

(MSE) [33] to estimate the difference between FPGA output and CPU reference output 

just like [22]. We found that both Stratix V FPGA and Arria 10 FPGA implementation 

had the same MSE rate for implementations with same dimension and cluster. For both 

Stratix V FPGA and Arria 10 FPGA lowest error rate was 4.78E-7 and highest error rate 

was 9.46E-5. This shows that the error range is quite acceptable. 

 

5.6.  Summary  
In this chapter we first explained out experimental setup and the dataset used in our 

research. Then we presented our experimental results and their analysis. First, we showed 

that both the FPGAs used in our research consume almost the same amount of power. 

Though both FPGAs achieved significant speedups compared to CPUs, Arria 10 FPGA 

obtained much better speedup compared to Stratix V FPGA. When comparing the 

performance of FPGAs and GPUs for implementing EM, both FPGAs obtained 

significant speedup. Lastly, experimental results show that FPGA implementation of EM 

has better accuracy when compared with CPU implementation.       
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Chapter 6 Conclusion 

Our research focused on optimized FPGA based implementation of EM-GMM using 

Intel FPGA SDK for OpenCL. We had to restructure the operational flow of EM to 

properly take advantage of channel extension inside Intel FPGA SDK for OpenCL. By 

using the channel extension to transfer data between kernels we reduced communication 

bottleneck caused by global memory. We also restructured covariance matrix calculation 

algorithm which is one of the biggest computational part of EM-GMM algorithm. All of 

these necessary changes helped up to gain better throughput and throughput/power 

consumption compared to different CPUs and different accelerators (GPUs and FPGAs). 

Due to limited LEs and FPGA on-chip memory we could only fit lower dimensions 

and/or clusters. To fit EM with higher dimensions and/or clusters, we need accelerators 

with multiple FPGAs and/or FPGAs with larger number of LEs embedded on-chip 

memories.      

Compared to an Intel(R) Xeon(R) CPU E5-2637 our fully optimized OpenCL model for 

EM targeting Arria 10 FPGA achieved up to 1000X speedup in terms of throughput 

(T
speedup) and 5395X speedup in terms of throughput per unit of power consumed 

(T/P
speedup). Compared to previous research on EM-GMM implementation on GPUs, 

Arria 10 FPGA obtained up to 64.74X Tspeedup and 486.78X T/P
speedup.  
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6.1.  Future Work 
In this research, we used single chip FPGA based accelerators. Stratix V FPGA had 

limited resources compared to Arria 10 FPGA. It would be interesting to see how many 

dimensions and/or clusters we can fit on Stratix 10 FPGA based accelerator [34] since 

Stratix 10 FPGA has more hardware resources than Arria 10 FPGA. Nallatech released 

an FPGA based accelerator with dual Arria 10 FPGA chips [35]. Firstly, it would be 

interesting to see how to program dual Arria 10 FPGA chip using OpenCL model and 

then how many dimensions and/or clusters we can fit for our particular design. Since, EM 

has two steps and if we could put each step on each Arria 10 FPGA, how many 

dimensions and/or clusters we could fit. It would be also interesting to see how dual Arria 

10 FPGA affects execution time, throughput, power consumption, throughput/power 

consumption and accuracy of the design compared to single Arria 10. Lastly, exploring 

multi-FPGA systems as targets for Intel SDK for OpenCL would be a very interesting 

research project.    
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Appendix A: EM-GMM Opencl Kernel Code 
 
//inclusing header 
#include "../host/inc/gmm_em.h"   
 
//enabling channel 
#pragma OPENCL EXTENSION cl_altera_channels: enable 
 
//----------------------- 
// Channel declarations 
//----------------------- 
 
 
////kernel 1: K_M / mstep 
channel data_type CH_MEAN [NUM_DIMENSIONS]    
 __attribute__((depth(NUM_CLUSTERS))); 
channel data_type CH_MEAN1 [NUM_DIMENSIONS]    
 __attribute__((depth(NUM_CLUSTERS))); 
channel data_type CH_NSUM         
 __attribute__((depth(NUM_CLUSTERS))); 
channel data_type CH_PROB        
 __attribute__((depth(NUM_CLUSTERS))); 
channel data_type CH_CONSTANT       
 __attribute__((depth(NUM_CLUSTERS))); 
channel data_type CH_RINV [NUM_DIMENSIONS*NUM_DIMENSIONS] 
 __attribute__((depth(NUM_CLUSTERS))); 
channel data_type CH_RINV1 [NUM_DIMENSIONS*NUM_DIMENSIONS]
 __attribute__((depth(NUM_CLUSTERS))); 
 
////K_E1 / estep_1 
channel int E2_START; 
channel int T_START 
 
//output channels. 
#define K_E1_IN_CH_MEAN CH_MEAN1  
#define K_E1_IN_CH_PROB CH_PROB 
#define K_E1_IN_CH_CONSTANT CH_CONSTANT 
#define K_E1_IN_CH_RINV CH_RINV1 
 
 
//*****************************************************************************
******* 
//START >> Kernel 1: mstep_1 (calculate: N_sum,mean, prob) 
//*****************************************************************************
******* 
__kernel 
__attribute__((task)) 
void mstep_1(  __global data_type * restrict K_sample_DN, 
     __global data_type * restrict K_membership) 
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{ 
 //local storage : N_SUM 
 cl_data_type N_SUM = 0.0; 
  
 //local storage : prob 
 cl_data_type prob = 0.0; 
  
 //local storage : mean 
 data_type local_member [K_M_MEM_BS]; 
 data_type local_data [K_M_BS]; 
 //data_type temp_mean_sum; 
 data_type  local_mean [NUM_DIMENSIONS]; 
  
 //printf("\nSTART: MSTEP\n"); 
 for (int m = 0; m < NUM_CLUSTERS; m++) 
 { 
  //------------------- 
  //initializing value 
  //------------------- 
  N_SUM = 0.0; 
  prob = 0.0; 
   
  //------------------------- 
  //Calculation: N_SUM, MEAN 
  //------------------------- 
  for (int nb = 0; nb < K_M_NB; nb++)  //nb = number of blocks 
  { 
   //------------------------------------------------------------- 
   //transfer data from Global memory to local memory: membership 
   //------------------------------------------------------------- 
   #pragma unroll K_M_MEM_BS 
   for (int bs = 0; bs < K_M_MEM_BS; bs++) // 
   {local_member [bs] = K_membership[m * NUM_OF_POINTS + nb * 
K_M_BS + bs];}  //read membership[M,N] 
    
   //------------------- 
   //Calculation: N_SUM 
   //------------------- 
   #pragma unroll K_M_LU_NSUM 
   for (int bs = 0; bs < K_M_MEM_BS; bs++) 
   {N_SUM += local_member[bs];} 
    
   //------------------------------------------------------------ 
   //temporarily summing membership and sample_DN data for mean 
   //----------------------------------------------------------- 
   for (int d = 0; d < NUM_DIMENSIONS; d++) 
   { 
    //------------------------------------------------------------ 
    //transfer data from Global memory to local memory: 
sample_DN 
    //------------------------------------------------------------ 
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    #pragma unroll K_M_BS // K_M_BS (check gmm_em.h) 
    for (int k = 0; k < K_M_BS; k++) //bs = block size 
    {local_data [k] = K_sample_DN [d * NUM_OF_POINTS + nb * 
K_M_BS + k];} 
     
    //------------------------------------------------------------ 
    //temporarily summing membership and sample_DN data for 
mean 
    //----------------------------------------------------------- 
    #pragma unroll K_M_LU_MEAN // K_M_BS (check 
gmm_em.h) 
    for (int j = 0; j < K_M_BS; j++) 
     {local_mean[d] += local_data [j] * local_member[j];} 
     
   } 
    
    
  } //end nb loop 
   
   
   
  //-------------------------- 
  // Mean/average calculation 
  //-------------------------- 
  #pragma unroll K_M_LU_MEAN1 
  for (int dm = 0; dm < NUM_DIMENSIONS; dm++) 
   { 
    local_mean[dm] = local_mean[dm] / N_SUM; 
     
     
    write_channel_altera(CH_MEAN[dm], local_mean [dm]); 
     
   } 
   
  //---------------------- 
  //write to channel: NSUM 
  //---------------------- 
  write_channel_altera(CH_NSUM, N_SUM); 
   
  //--------------------------------------- 
  //Calculation and write to channel: prob 
  //--------------------------------------- 
  prob = N_SUM / NUM_OF_POINTS; 
  write_channel_altera(CH_PROB, prob); 
   
 } //mloop 
  
} //end of kernel 
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//*****************************************************************************
******* 
//END >> Kernel 1: mstep_1 (calculate: N_sum,mean, prob) 
//*****************************************************************************
******* 
 
//*****************************************************************************
******* 
//START >> Kernel 2: mstep_cov (calculate: covariance) 
//*****************************************************************************
******* 
 
__kernel 
__attribute__((task)) 
void mstep_cov(  __global data_type * restrict K_sample_ND, 
     __global data_type * restrict K_membership) 
{ 
  
 cl_data_type N_SUM = 0.0; 
 data_type local_member [K_M_MEM_BS]; 
 data_type local_data [K_M_BS]; 
 data_type  local_mean [NUM_DIMENSIONS]; 
  
 //local storage : Covariance 
 data_type local_R [NUM_DIMENSIONS * NUM_DIMENSIONS]; 
 data_type local_sample [NUM_DIMENSIONS]; 
  
 //printf("\nSTART: MSTEP\n"); 
 for (int m = 0; m < NUM_CLUSTERS; m++) 
 { 
  //------------------------ 
  //read from channel: mean 
  //------------------------ 
  #pragma unroll K_LU_CH_MEAN 
  for (int i = 0; i <NUM_DIMENSIONS; i++) 
  { 
   local_mean [i] = read_channel_altera(CH_MEAN[i]); 
  } 
   
  N_SUM = read_channel_altera(CH_NSUM); 
   
  #pragma unroll K_M_LU_I 
  for (int z = 0; z < INIT_FACTOR; z++) 
  { 
   local_R [z] = 0.0; 
   local_R [INIT_FACTOR + z] = 0.0; 
  } 
   
   
  //------------------------ 
  //Calculation: Covariance  
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  //------------------------ 
  for (int nb = 0; nb < K_M_MEM_NB; nb++) //nb = number of blocks 
  { 
   //------------------------------------------------------------- 
   //transfer data from Global memory to local memory: membership 
   //------------------------------------------------------------- 
   #pragma unroll K_M_MEM_BS 
   for (int bs = 0; bs < K_M_MEM_BS; bs++) //bs = block size 
   {local_member [bs] = K_membership[m * NUM_OF_POINTS + nb * 
K_M_BS + bs];}  //read membership[M,N] 
    
   for (int bs = 0; bs < K_M_MEM_BS; bs++) //bs = block size 
   {  
    //------------------------------------------------------------ 
    //transfer data from Global memory to local memory: 
sample_DN 
    //------------------------------------------------------------ 
    #pragma unroll K_M_LU_COV_L1 
    for (int ns = 0; ns < NUM_DIMENSIONS; ns++) 
    {  
     local_sample[ns] = K_sample_ND[(K_M_MEM_BS * 
NUM_DIMENSIONS * nb) + (bs * NUM_DIMENSIONS) + ns]; 
    } 
     
    //----------------------------------------------------------------------------
---------------------------- 
    //Calculation: Covariance > summing membership , mean and 
sample_ND data for covariance / sum of n points 
    //----------------------------------------------------------------------------
---------------------------- 
    #pragma unroll K_M_LU_COV_L2  
    for (int i = 0; i < NUM_DIMENSIONS; i++) 
    { 
     #pragma unroll K_M_LU_COV_L3 
     for (int j = 0; j < NUM_DIMENSIONS; j++) 
     { 
      local_R [i * NUM_DIMENSIONS + j] += 
(cl_data_type)((local_sample[i]-local_mean[i]) * (local_sample[j]-local_mean[j]) * 
local_member[bs] / (cl_data_type) N_SUM); 
      
     } //j loop=d 
    } //i loop = d 
   } //bs loop 
  } //nb loop 
   
  //----------------------- 
  //write to channel: RINV 
  //----------------------- 
  #pragma unroll K_M_RINV 
  for (int j = 0; j < K_M_RINV; j++) 
  { 
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   write_channel_altera(CH_RINV[j], local_R[j]); 
   write_channel_altera(CH_RINV[K_M_RINV + j], local_R[K_M_RINV 
+ j]); 
  } 
   
   
  //----------------------- 
  //write to channel: mean  
  //----------------------- 
  #pragma unroll K_LU_CH_MEAN 
  for (int i = 0; i <NUM_DIMENSIONS; i++) 
  { 
   write_channel_altera(CH_MEAN1[i], local_mean [i]); 
  } 
   
   
 } //m loop 
} //end kernel 
 
//*****************************************************************************
******* 
//END >> Kernel 2: mstep_cov (calculate: covariance) 
//*****************************************************************************
******* 
 
 
//*****************************************************************************
******* 
//START >> Kernel 3: mstep_inv (calculate: inverse covariance) 
//*****************************************************************************
******* 
 
__kernel 
__attribute__((task)) 
void mstep_inv() 
 
{ 
 //local storage : Covariance 
 data_type local_R [NUM_DIMENSIONS * NUM_DIMENSIONS]; 
  
 //local storage : Inverse Covariance 
 data_type temp_sum_determinant = 0.0; 
 data_type x = 0.0; 
 data_type y = 0.0; 
 data_type sum_U = 0.0; 
 data_type sum_L = 0.0; 
 data_type sum_final = 0.0; 
  
 //local storage : constant 
 data_type const_local; 
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 //printf("\nSTART: MSTEP\n"); 
 for (int m = 0; m < NUM_CLUSTERS; m++) 
 { 
  //--------------------- 
  //read from channel: R 
  //--------------------- 
  #pragma unroll K_M_RINV 
  for (int j = 0; j < K_M_RINV; j++) 
  { 
   local_R[j] = read_channel_altera(CH_RINV[j]); 
   local_R[K_M_RINV + j] = read_channel_altera(CH_RINV[K_M_RINV 
+ j]); 
  } 
   
   
  //-------------------------------- 
  //Calculation: Inverse Covariance  
  //-------------------------------- 
  /////////////////// 
  // normalize row 0 
  /////////////////// 
  //#pragma unroll K_M_LU_ICOV_L1 
  #pragma unroll 
  for (int i=1; i < NUM_DIMENSIONS; i++)  
   {local_R[i] /= local_R[0];}  
   
  /////////////////// 
  //LU decomposition 
  ////////////////// 
  //#pragma unroll K_M_LU_ICOV_L3 
  for (int i=1; i < NUM_DIMENSIONS; i++) 
  {  
   //#pragma unroll K_M_LU_ICOV_L2 
   #pragma unroll 
   for (int j=i; j < NUM_DIMENSIONS; j++) 
   { // do a column of L 
    sum_L = 0.0; 
     
    //#pragma unroll K_M_LU_ICOV_L4 
    #pragma unroll  
    for (int k = 0; k < i; k++) 
    {sum_L += local_R[j*NUM_DIMENSIONS+k] * 
local_R[k*NUM_DIMENSIONS+i];} 
     
    local_R[j*NUM_DIMENSIONS+i] = 
local_R[j*NUM_DIMENSIONS+i] - sum_L; 
     
   } //j loop 
   
   if (i == NUM_DIMENSIONS-1) continue; 
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   //#pragma unroll K_M_LU_ICOV_L2 
   #pragma unroll 
   for (int j=i+1; j < NUM_DIMENSIONS; j++)   
   {// do a row of U 
    sum_U = 0.0; 
     
    //#pragma unroll K_M_LU_ICOV_L4 
    #pragma unroll  
    for (int k = 0; k < i; k++) 
    {sum_U += 
local_R[i*NUM_DIMENSIONS+k]*local_R[k*NUM_DIMENSIONS+j];} 
    
    local_R[i*NUM_DIMENSIONS+j] = 
(local_R[i*NUM_DIMENSIONS+j]-sum_U) / local_R[i*NUM_DIMENSIONS+i]; 
   }// j loop 
  } //iloop 
   
   
  temp_sum_determinant = 0.0; 
   
  ///////////////////////// 
  //calculate determinate 
  //////////////////////// 
  
  #pragma unroll K_M_LU_ICOV_L2 
  for(int i=0; i<NUM_DIMENSIONS; i++) 
  { temp_sum_determinant += logf(fabs(local_R[i*NUM_DIMENSIONS+i])); } 
   
  //------------------------------------------ 
  //Calculation and write to channel: constant  
  //------------------------------------------ 
  const_local = (cl_data_type)(-(NUM_DIMENSIONS * 0.5 * log(2.0 * PI)) - (0.5 
* temp_sum_determinant)); 
  write_channel_altera(CH_CONSTANT, const_local); 
   
  //////////// 
  //invert L 
  /////////// 
  //#pragma unroll K_M_LU_ICOV_L3 
  #pragma unroll 
  for ( int i = 0; i < NUM_DIMENSIONS; i++ )  // invert L 
  { 
   //no pragma unroll: compiler error 
   for ( int j = i; j < NUM_DIMENSIONS; j++ ) 
   { 
    x = 1.0; 
   
    if ( i != j ) 
    { 
     x = 0.0; 
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     //no pragma unroll: compiler error 
     for ( int k = i; k < j; k++ )  
     {x -= 
local_R[j*NUM_DIMENSIONS+k]*local_R[k*NUM_DIMENSIONS+i];} 
    } 
    local_R[j*NUM_DIMENSIONS+i] = x / 
local_R[j*NUM_DIMENSIONS+j]; 
   } //j loop 
  } 
   
   
    
  ///////////// 
  // invert U 
  //////////// 
  //#pragma unroll K_M_LU_ICOV_L3 
  #pragma unroll 
  for ( int i = 0; i < NUM_DIMENSIONS; i++ ) 
  { 
   //no pragma unroll: compiler error 
   for ( int j = i; j < NUM_DIMENSIONS; j++ ) 
   { 
    if ( i == j ) continue; 
    
    y = 0.0; 
    
    //no pragma unroll: compiler error 
    for ( int k = i; k < j; k++ ) 
    {y += local_R[k*NUM_DIMENSIONS+j]*( (i==k) ? 1.0 : 
local_R[i*NUM_DIMENSIONS+k]);} 
     
    local_R[i*NUM_DIMENSIONS+j] = -y; 
   } //j loop 
  } 
   
  //----------------- 
  // final inversion 
  //----------------- 
  //#pragma unroll K_M_LU_ICOV_L3 
  #pragma unroll 
  for ( int i = 0; i < NUM_DIMENSIONS; i++ ) 
  { 
   //#pragma unroll K_M_LU_ICOV_L2 
   #pragma unroll 
   for ( int j = 0; j < NUM_DIMENSIONS; j++ ) 
   { 
    sum_final = 0.0; 
     
    //no pragma unroll: compiler error 
    for ( int k = ((i>j)?i:j); k < NUM_DIMENSIONS; k++ )   
    {sum_final += 
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((j==k)?1.0:local_R[j*NUM_DIMENSIONS+k])*local_R[k*NUM_DIMENSIONS+i];} 
   
    local_R[j*NUM_DIMENSIONS+i] = sum_final; 
   } 
  } 
   
  //----------------- 
  //write to channel 
  //----------------- 
  #pragma unroll K_M_RINV 
  for (int j = 0; j < K_M_RINV; j++) 
  { 
   write_channel_altera(CH_RINV1[j], local_R[j]); 
   write_channel_altera(CH_RINV1[K_M_RINV + j], 
local_R[K_M_RINV + j]); 
  } 
   
   
   
   
 } // mloop 
} // end kernel 
 
 
//*****************************************************************************
******* 
//END >> Kernel 3: mstep_inv (calculate: inverse covariance) 
//*****************************************************************************
******* 
 
 
//****************************************************************** 
//START >> Kernel 4: estep_1 (calculating numerator of Expectation) 
//****************************************************************** 
 
#define PROB (1.0/(data_type)NUM_CLUSTERS) 
 
 
 
 
__kernel 
__attribute__((task)) 
void estep_1( __global data_type* restrict k_sample_ND, 
    __global data_type* restrict k_e1_membr)  
{ 
 //local storage 
 cl_data_type sample_local [NUM_DIMENSIONS]; 
 cl_data_type Rinv_local [NUM_DIMENSIONS * NUM_DIMENSIONS]; 
 data_type mean_local [NUM_DIMENSIONS]; 
 cl_data_type prob_local = 0.0; 
 cl_data_type constant_local = 0.0; 
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 int e2_start = 0; 
  
 cl_data_type temp_membership = 0.0; 
 cl_data_type membership = 0.0; 
 int index = 0; //indexing channel 
  
 
 //block/global index 
 //uint gid_m = get_global_id(0); 
  
 //local index 
 //uint lid_d = get_local_id(0); 
  
 //printf("\n\nestep_1\n\n"); 
 for (int m =; m < NUM_CLUSTERS ; m++) 
 { 
  //------------------------------------------------- 
  //transfer data from channel to local memory  
  //------------------------------------------------- 
   
  //transfer data from channel: mean 
  #pragma unroll K_LU_CH_MEAN 
  for (int i = 0; i <NUM_DIMENSIONS; i++) 
   {mean_local[i] = read_channel_altera(K_E1_IN_CH_MEAN[i]);} 
   
   
   
  //transfer data from channel: Rinv 
  #pragma unroll K_M_RINV 
  for (int j = 0; j <K_M_RINV; j++) 
   { 
    Rinv_local[j] = read_channel_altera(K_E1_IN_CH_RINV[j]); 
    Rinv_local[K_M_RINV + j] = 
read_channel_altera(K_E1_IN_CH_RINV[K_M_RINV + j]); 
   } 
    
   
   
  //transfer data from channel: prob 
  prob_local = read_channel_altera(CH_PROB); 
   
   
  //transfer data from channel: constants 
  constant_local = read_channel_altera(CH_CONSTANT); 
   
  //----------------------- 
  //calculation: Numerator  
  //----------------------- 
   
  //for (int n = gid_n; n <= gid_n; n++) 
  for (int n = 0; n < NUM_OF_POINTS; n++) 
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  { 
   //-------------------------------------------- 
   //transfer data from global memory: sample_ND 
   //-------------------------------------------- 
   #pragma unroll K_E1_LU_S_ND 
   for (int s = 0; s <NUM_DIMENSIONS; s++) 
    { 
    sample_local [s] = k_sample_ND [n * NUM_DIMENSIONS + 
s]; 
    }  
    
    
   //------------ 
   //calculation 
   //------------ 
   membership = 0.0; 
    
   //membership [n] = 0.0; 
   #pragma unroll K_E1_LU_L1 
   for (int i = 0; i < NUM_DIMENSIONS; i++) 
   { 
    temp_membership = 0.0; 
    
    #pragma unroll K_E1_LU_L2 
    for (int j = 0; j < NUM_DIMENSIONS; j++) 
     {temp_membership += (sample_local[i] - mean_local[i]) 
* (sample_local[j] - mean_local[j]) * Rinv_local[i * NUM_DIMENSIONS + j];} //j loop=d 
   }  
    
    
    
   membership  = (cl_data_type)(-0.5 * temp_membership + constant_local 
+ log(prob_local)); 
    
    
   //------------------------------------------------------------- 
   //transfer data from local memory to Global memory: membership  
   //------------------------------------------------------------- 
   k_e1_membr [m * NUM_OF_POINTS + n] = membership; 
    
   //----------------- 
   //start kernel K_2 
   //----------------- 
   if (m == (NUM_CLUSTERS-1) && n == ((NUM_OF_POINTS-1)/8)) 
   { 
    e2_start = 1; 
    write_channel_altera(E2_START, e2_start); 
   } 
   //printf("E1: e2start=%d\n",e2_start); 
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  }//n loop 
   
 } // m loop 
  
  
  
}//end kernel 
 
//****************************************************************** 
//END >> Kernel 4: estep_1 (calculating numerator of Expectation) 
//****************************************************************** 
 
 
//****************************************************************** 
//START >> Kernel 5: estep_2 (Final calculation Expectation) 
//****************************************************************** 
 
 
__kernel 
__attribute__((task)) 
void estep_2(  __global data_type * restrict k_e2_membr, 
     __global data_type* restrict k_e1_membr) 
{ 
 //local storage 
 //__local cl_data_type membership_local1 [NUM_CLUSTERS]; 
 cl_data_type membership_local [NUM_CLUSTERS]; 
 cl_data_type maximum = 0.0; 
 cl_data_type denominator_sum = 0.0; 
 int t_start = 0; 
 int e2_start = 0; 
  
 e2_start = read_channel_altera(E2_START); 
  
  
 //printf("\nSTART: ESTEP2\n"); 
 for (int n = 0; n < NUM_OF_POINTS; n++) 
 { 
  //------------------------------------------------- 
  //transfer data from global memory to local memory  
  //------------------------------------------------- 
   
  if(e2_start == 1) 
  { 
   #pragma unroll K_E2_LU_L1 
   for (int j = 0; j <NUM_CLUSTERS; j++) 
   { 
    membership_local[j] = k_e1_membr[j * NUM_OF_POINTS + 
n]; 
     
   } 
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  } 
   
   
   
  //mem_fence(CLK_CHANNEL_MEM_FENCE); //Not sure if need this 
   
  //------------------------- 
  //calculation: Denomerator  
  //------------------------- 
   
  // find the maximum likelihood for this event 
  //max = h_memberships[n]; 
  maximum = 0.0; 
   
  #pragma unroll K_E2_LU_L1 
  for (int ml = 1; ml < NUM_CLUSTERS; ml++) 
  {maximum = (cl_data_type)fmax (membership_local[0], 
membership_local[ml]);} 
   
  // Compute P(x_n), the denominator of the probability (sum of weighted 
likelihoods) 
  denominator_sum = 0.0; 
   
  #pragma unroll K_E2_LU_L1 
  for (int ds = 0; ds < NUM_CLUSTERS; ds++) 
  {denominator_sum += (cl_data_type)exp(membership_local[ds] - maximum);} 
   
  denominator_sum = maximum + (cl_data_type)log(denominator_sum); 
   
  // Divide by denominator, also effectively normalize probabilities 
  // exp(log(p) - log(denom)) == p / denom 
  #pragma unroll K_E2_LU_L1 
  for (int m = 0; m < NUM_CLUSTERS; m++) 
  {membership_local[m] = (cl_data_type)exp(membership_local[m] - 
denominator_sum); 
  } 
   
  //--------------------------------------------------------- 
  //transfer data from local memory to global memory/channel  
  //-------------------------------------------------------- 
   
    
   //printf("ESTEP2:DDR\n"); 
   #pragma unroll K_E2_LU_L1 
   for (int m = 0; m < NUM_CLUSTERS; m++) 
   { 
    k_e2_membr[n * NUM_CLUSTERS + m] = 
membership_local[m]; 
     
     
    if (m == (NUM_CLUSTERS-1) && n == 
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((NUM_OF_POINTS-1))) 
    { 
     t_start = 1; 
     write_channel_altera(T_START, t_start); 
    } 
   } 
    
    
   //wait for the entire block to be loaded 
   //barrier(CLK_GLOBAL_MEM_FENCE); 
    
    
    
   
 } //n loop = NUM_OF_POINTS 
  
 //printf("\nEND: ESTEP2\n"); 
}//end kernel 
 
//****************************************************************** 
//END >> Kernel 5: estep_2 (Final calculation Expectation) 
//****************************************************************** 
 
 
//****************************************************************** 
//START >> Kernel 6: transpose (transpose membership) 
//****************************************************************** 
 
__kernel 
__attribute__((task)) 
//__attribute__((num_compute_units(4))) 
//__attribute__((num_simd_work_items(NUM_CLUSTERS))) 
void transpose(  __global data_type * restrict K_membership, 
     __global data_type* restrict k_e2_membr) 
{ 
  
 int t_start = 0; 
 //printf("T: tstart = %d", t_start); 
 t_start = read_channel_altera(T_START); 
 //printf("T: tstart = %d", t_start); 
 if (t_start == 1) 
  { 
   //printf("Transpose\n"); 
   #pragma unroll 2 
   for (int m = 0; m < NUM_CLUSTERS ; m++) 
   { 
    #pragma unroll 8 
    for (int n = 0; n < NUM_OF_POINTS ; n++) 
    {K_membership[m * NUM_OF_POINTS + n] = k_e2_membr[n 
* NUM_CLUSTERS + m];} 
   } 
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  } 
  
} 
 
//****************************************************************** 
//END >> Kernel 6: transpose (transpose membership) 
//****************************************************************** 
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