
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

10-5-2017

FPGA-Based Acceleration of Expectation Maximization Algorithm FPGA-Based Acceleration of Expectation Maximization Algorithm

using High Level Synthesis using High Level Synthesis

Mohammad Abdul Momen
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Momen, Mohammad Abdul, "FPGA-Based Acceleration of Expectation Maximization Algorithm using High
Level Synthesis" (2017). Electronic Theses and Dissertations. 7279.
https://scholar.uwindsor.ca/etd/7279

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7279?utm_source=scholar.uwindsor.ca%2Fetd%2F7279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FPGA-Based Acceleration of Expectation Maximization
Algorithm using High Level Synthesis

by

Mohammad Abdul Momen

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2017

© 2017, Mohammad Abdul Momen

FPGA-Based Acceleration of Expectation Maximization Algorithm using HLS Tool

by

Mohammad Abdul Momen

APPROVED BY:

__

T. Bolisetti

Department of Civil and Environmental Engineering

__

M. Abdelkhalek

Department of Electrical and Computer Engineering

M. Khalid, Advisor

Department of Electrical and Computer Engineering

August 1st, 2017

iii

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office and that this thesis has

not been submitted for a higher degree of any other University or Institution.

iv

Abstract

Expectation Maximization (EM) is a soft clustering algorithm which partitions data

iteratively into M clusters. It is one of the most popular data mining algorithms that uses

Gaussian Mixture Models (GMM) for probability density modeling and is widely used in

applications such as signal processing and Machine Learning (ML). EM requires high

computation time and large amount of memory when dealing with large data sets.

Conventionally, the HDL-based design methodology is used to program FPGAs for

accelerating computationally intensive algorithms. In many real world applications,

FPGA provide great speedup along with lower power consumption compared to multi-

core CPUs and GPUs. Intel FPGA SDK for OpenCL enables developers with no

hardware knowledge to program the FPGAs with short development time. This thesis

presents an optimized implementation of EM algorithm on Stratix V and Arria 10 FPGAs

using Intel FPGA SDK for OpenCL. Comparison of performance and power

consumption between CPU, GPU and FPGA is presented for various dimension and

cluster sizes. Compared to an Intel(R) Xeon(R) CPU E5-2637 our fully optimized

OpenCL model for EM targeting Arria 10 FPGA achieved up to 1000X speedup in terms

of throughput (T
speedup) and 5395X speedup in terms of throughput per unit of power

consumed (T/P
speedup). Compared to previous research on EM-GMM implementation on

GPUs, Arria 10 FPGA obtained up to 64.74X Tspeedup and 486.78X T/P
speedup.

v

Acknowledgements

Firstly, I would like to express my deepest gratitude to my supervisor Dr. Khalid

for giving me the opportunity to work under his supervision. I am very grateful for his

advice, guidance, support and encouragement during my study and research.

I would like to thank Dr. Maher AbdelKhalek and Dr. Tirupati Bolisetti for being

part of my thesis committee. They provided insightful suggestions to improve my

research.

I am also grateful to Dr. Roberto Muscedere for his help in maintaining the

workstations in our research lab.

I am dedicating my research to my parents. Without their continued support and

care, I could not finish this research.

vi

Table of Contents

Author's Declaration of Originality ... iii

Abstract ... iv

Acknowledgements .. v

List of Tables .. viii

List of Figures .. ix

List of Acronyms .. x

Chapter 1 Introduction ... 1

1.1. Motivation... 1

1.2. Objectives ... 2

1.3. Thesis Outline ... 2

Chapter 2 High Level Synthesis for FPGAs .. 4

2.1. FPGA Architecture ... 4

2.2. High-Level Synthesis .. 5

2.3. Overview of OpenCL .. 6

2.3.1. Platform Model ... 7

2.3.2. Execution Model ... 8

2.3.3. Memory Model ... 10

2.3.4. Programming Model ... 11

2.4. Intel FPGA SDK for OpenCL ... 12

2.4.1. Overview ... 12

2.4.2. Design Flow .. 13

2.4.3. Optimization Strategies in Intel FPGS SDK for OpenCL 15

2.5. Summary ... 20

Chapter 3 Expectation Maximization .. 21

3.1. Background ... 21

3.2. Previous Work on Accelerating EM-GMM .. 24

3.2.1. Acceleration on GPUs ... 24

3.2.2. Acceleration on FPGAs .. 24

3.3. Summary ... 26

vii

Chapter 4 Optimized EM-GMM OpenCL FPGA Implementation .. 27

4.1. EM-GMM OpenCL Model for FPGA .. 27

4.1.1. Initialization .. 29

4.1.2. M-Step .. 29

4.1.3. Pre-Calculation E-Step .. 31

4.1.4. E-Step ... 32

4.2. Optimization for different Problem Sizes ... 35

4.3. Summary ... 36

Chapter 5 Experimental Results .. 37

5.1. Experimental Setup ... 37

5.2. Dataset .. 38

5.3. Power Measurement.. 39

5.4. Performance analysis .. 40

5.4.1. Performance Results ... 40

5.4.2. Speedup ... 45

5.4.3. FPGA Resource Utilization ... 50

5.4.4. Performance Comparison Between CPU and FPGA in Relation to FPGA Resource

Utilization ... 54

5.4.5. Comparison with Previous EM Research .. 57

5.5. Verification of Results .. 59

5.6. Summary ... 59

Chapter 6 Conclusion .. 60

6.1. Future Work .. 61

References .. 62

Appendix A: EM-GMM Opencl Kernel Code .. 67

Vita Auctoris .. 83

viii

List of Tables

Table 1 Overview of Currently Available HLS CAD Tools [12]. .. 6

Table 2 Previous Work on Accelerating EM-GMM. .. 25

Table 3 Dimension and Cluster achived on Stratix V A7 FPGA and Arria 10 FPGA. 35

Table 4 Device list and Description. ... 37

Table 5 FPGA Device Specification. ... 38

Table 6 Power Consumption of CPUs and FPGAs. .. 39

Table 7 Performance comparison of FPGAs over CPUs and FPGA Resource Usage for highest

cluster achieved by each dimension. ... 55

Table 8 Performance comparison of FPGAs and FPGA Resource Usage for highest cluster

achieved by each dimension. .. 56

Table 9 IPS*and speedup gained by our implementation over other implementations. 57

Table 10 IPS*/power consumption and speedup gained by our implementation over other

implementations. ... 58

ix

List of Figures

Figure 1 Intel Arria 10 Architecture. .. 5

Figure 2 Platform Model, from [14]. .. 7

Figure 3 Execution Model (2D Range), from [19]. ... 9

Figure 4 Memory Model, from [14]. ... 10

Figure 5 Memory model of Intel FPGA SDK for OpenCL. .. 12

Figure 6 Intel FPGA SDK for OpenCL Design Flow [19]. .. 14

Figure 7 Difference between Data Parallelism and Pipeline Parallelism, taken from [16]. 17

Figure 8 EM-GMM operational flow OpenCL FPGA. ... 28

Figure 9 FPGA Execution Time for EM. .. 42

Figure 10 CPU Execution Time. ... 42

Figure 11 FPGA Throughput for EM. .. 43

Figure 12 CPU Throughput for EM. ... 43

Figure 13 FPGA Throughput/Power. .. 44

Figure 14 CPU Throughput/Power. .. 44

Figure 15 CPU1 Speedup (T) over CPU2. .. 45

Figure 16 Stratix V FPGA Speedup (T) over CPUs. .. 46

Figure 17 Arria 10 FPGA Speedup (T) over CPUs. .. 46

Figure 18 Arria 10 FPGA Speedup (T) overs Stratix V FPGA ... 47

Figure 19 CPU 1 Speedup (T/P) over CPU 2 ... 48

Figure 20 Stratix V FPGA Speedup (T/P) over CPUs. ... 48

Figure 21 Arria 10 FPGA Speedup (T/P) over CPUs. .. 49

Figure 22 Arria 10 FPGA Speedup (T/P) over Stratix V FPGA. .. 49

Figure 23 FPGA Logic Element Utilization. .. 51

Figure 24 FPGA ALUT Utilization. ... 51

Figure 25 FPGA Register Utilization. ... 52

Figure 26 FPGA Memory Block Utilization. .. 52

Figure 27 FPGA DSP Block Utilization. .. 53

Figure 28 FPGA Operational Frequency. ... 53

x

List of Acronyms

EM Expectation Maximization

GMM Gaussian Mixture Model

FPGA Field Programmable Array

ML Machine Learning

HDL Hardware Descriptive Language

HLS High-Level Synthesis

CPU Central Processing Unit

ALM Adaptive Logic Module

AOCL Altera SDK for OpenCL

AOC Altera Offline Compiler

API Application Programming Interface

ASIC Application Specific Integrated Circuits

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

HPC High-Performance Computing

LAB Logic Array Block

LE Logic Element

LUT Look Up Table

OpenCL Open Computing Language

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

xi

MLE Maximum Likelihood Estimation

HLL High Level Language

1

Chapter 1 Introduction

1.1. Motivation

Currently, Machine Learning algorithms are highly used to solve complex

computationally intensive problems. Maximum Likelihood Estimation (MLE) carries a

lot of standing in parametric estimation. MLE is used to calculate and fit a statistical

model from sample dataset. EM computes Maximum Likelihood (ML) iteratively where

the dataset is incomplete or some data is missing. EM contains two steps: the E-step or

Expectation step which computers log-likelihood from the dataset and assigns each

sample to clusters consequently and M-step or Maximization step maximizes the log-

likelihood provided by E-step. Both steps of EM are repeated until log-likelihood reaches

convergence [1]. EM is a computationally complex problem and consumes more memory

and hardware resources compared to other clustering algorithms. As a result, hardware

accelerators such as Graphic Processing Units (GPU) [2][4] and Field Programmable

Gate Arrays (FPGA) [3][5][6] have been utilized to increase the throughput of the EM.

Traditionally, GPUs are used to accelerate ML algorithms because of high

throughput and better memory bandwidth. However, GPU has a huge drawback. GPU

power consumption is very high. On the other hand, FPGA-based accelerators provide

high throughput with low power consumption.

There are three [3][5][6] FPGA-based EM implementations currently available in the

literature. Two of these [5][6] designs were implemented at the Register Transfer Level

(RTL) level. This is a time-consuming design methodology. Intel FPGA SDK for

2

OpenCL [23] is a High-level synthesis (HLS) tool that provides the opportunity to

program FPGA in a high-level language, specifically Open Computing Language

(OpenCL) to accelerate the design process. HLS helps developers to program FPGA

with little FPGA knowledge and to achieve peak performance by utilizing optimized

OpenCL specification. The Altera Offline Compiler (AOC) automatically converts

OpenCL code to optimized Verilog model and compiles into FPGA hardware binaries.

Since developers need less hardware knowledge, time to market and cost for HLS is

much lower than RTL-based design methodology.

1.2. Objectives

The main objectives of this thesis are to answer following questions:

 Can FPGA gain better throughput compared to other HPC platforms using Intel

FPGA SDK for OpenCL?

 How much speedup will we gain in Arria 10 FPGA compared to Stratix V FPGA?

 What dimension and cluster sizes can we fit in Stratix V and Arria 10 FPGAs?

1.3. Thesis Outline

The thesis is organized as follows:

Chapter 2 discusses background information about FPGA, HLS, OpenCL and

Intel FPGA SDK for OpenCL.

In Chapter 3, we first provide a brief discussion about Expectation Maximization

and previous EM implementation done by different FPGA and GPU based HPC systems.

3

 Chapter 4 provides explanation on how we designed the kernels for Expectation

Maximization algorithm to get a better speedup.

In Chapter 5 we present HLS synthesis results for EM and their analysis. We

present a comparison of EM implementation results using state of the art CPUs, GPUs

and FPGAs.

We conclude in Chapter 6 will a summary this research and suggestions for future

work.

4

Chapter 2 High Level Synthesis for FPGAs

Computation demand in HPC has increased rapidly in recent years and this trend will

continue for the foreseeable future. Traditionally multi-core CPUs were for HPC.

Because of ease of programming, data and instruction parallelism and high throughput

general purpose GPU is widely used for HPC. But that comes at the cost of high power

consumption. To obtain high throughput with less power consumption architecture,

things like memory organization and interconnect topology needs to comply with

algorithmic requirements [7]. In [8], is has been assessed that for any HPC platform half

of its lifetime cost is power consumption. Since FPGAs has reprogrammable,

reconfigurable resource with high throughput and less power consumption, FPGA is

more suitable for HPC. In the following section, we will discuss FPGA Architecture,

HLS, OpenCL and Intel FPGA SDK for OpenCL.

2.1. FPGA Architecture

Field Programmable Gate Array (FPGA) is a reprogrammable and reconfigurable

large Integrated Circuit (IC) that consists of a large number of of Look-Up Tables (LUT)

and flip flops. These can be used to create custom hardware functionality and execute any

algorithm as a digital circuit. Development in FPGA is less costly and time-consuming,

though Application Specific Integrated Circuit (ASIC) has more throughput and less

power consumption compared to FPGA [9]. Modern FPGAs consists of both fine-grained

and coarse-grained programmable blocks. Nearly 70% of the FPGA market is controlled

by Xilinx and Intel [

Figure

Traditionally

to design hardware

on FPGAs.

HDL model and then it synthesizes, places and routes the design on targeted FPGA

requires

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

2.2.

programming language such as C/C++

by Xilinx and Intel [

Figure

Traditionally

to design hardware

on FPGAs.

HDL model and then it synthesizes, places and routes the design on targeted FPGA

requires

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

2.2.

programming language such as C/C++

by Xilinx and Intel [

Figure 1

Traditionally

to design hardware

on FPGAs.

HDL model and then it synthesizes, places and routes the design on targeted FPGA

requires

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

 High

High

programming language such as C/C++

by Xilinx and Intel [

1, which is an

Traditionally

to design hardware

on FPGAs.

HDL model and then it synthesizes, places and routes the design on targeted FPGA

requires extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

High

High-

programming language such as C/C++

by Xilinx and Intel [

, which is an

Traditionally,

to design hardware

on FPGAs. An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

High-Level Synthesis

-level

programming language such as C/C++

by Xilinx and Intel [

, which is an

, Hardware Descriptive Language (HDL) such as Verilog and VHDL

to design hardware

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

Level Synthesis

level

programming language such as C/C++

by Xilinx and Intel [

, which is an

Hardware Descriptive Language (HDL) such as Verilog and VHDL

to design hardware

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

Level Synthesis

 Synthesis (HLS) is a method where a developer can use

programming language such as C/C++

by Xilinx and Intel [10

, which is an Intel Arria 10

Hardware Descriptive Language (HDL) such as Verilog and VHDL

to design hardware at

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

Level Synthesis

Synthesis (HLS) is a method where a developer can use

programming language such as C/C++

10].

Intel Arria 10

Hardware Descriptive Language (HDL) such as Verilog and VHDL

 the

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

HPC rather than FPGAs.

Level Synthesis

Synthesis (HLS) is a method where a developer can use

programming language such as C/C++

 The

Intel Arria 10

Hardware Descriptive Language (HDL) such as Verilog and VHDL

the Register Transfer Level (RTL) or Gate level

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Level Synthesis

Synthesis (HLS) is a method where a developer can use

programming language such as C/C++

The overall architecture of a state

Intel Arria 10

Figure

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Level Synthesis

Synthesis (HLS) is a method where a developer can use

programming language such as C/C++

overall architecture of a state

Intel Arria 10

Figure

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

programming language such as C/C++

overall architecture of a state

Intel Arria 10 FPGA

Figure 1

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

An RTL level synthesis

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

programming language such as C/C++

overall architecture of a state

FPGA

1 Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

An RTL level synthesis Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

programming language such as C/C++ or

overall architecture of a state

FPGA [

Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

or System C to

overall architecture of a state

[11

Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

System C to

overall architecture of a state

11].

Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

System C to

overall architecture of a state

.

Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

System C to

overall architecture of a state

Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

System C to

overall architecture of a state

Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

extensive hardware knowledge. People with little

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

System C to specify any

overall architecture of a state-

Intel Arria 10 Architecture.

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

little

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

specify any

-of-

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

little or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

specify any

-the

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

specify any

the-art FPGA is shown in

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

specify any algorithm which

art FPGA is shown in

Hardware Descriptive Language (HDL) such as Verilog and VHDL

Register Transfer Level (RTL) or Gate level for

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

algorithm which

art FPGA is shown in

Hardware Descriptive Language (HDL) such as Verilog and VHDL

for implement

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use

algorithm which

art FPGA is shown in

Hardware Descriptive Language (HDL) such as Verilog and VHDL

implement

Computer Aided Design (CAD) tool first

HDL model and then it synthesizes, places and routes the design on targeted FPGA

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

Synthesis (HLS) is a method where a developer can use a

algorithm which

art FPGA is shown in

Hardware Descriptive Language (HDL) such as Verilog and VHDL

implement

Computer Aided Design (CAD) tool first reads the

HDL model and then it synthesizes, places and routes the design on targeted FPGA

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

 High

algorithm which

art FPGA is shown in

Hardware Descriptive Language (HDL) such as Verilog and VHDL is

implement

reads the

HDL model and then it synthesizes, places and routes the design on targeted FPGA.

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

High-

algorithm which

art FPGA is shown in

is used

implementation

reads the

. This

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

-level

algorithm which is

5

art FPGA is shown in

used

ation

reads the

This

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

level

is be

art FPGA is shown in

used

ation

reads the

This

or no hardware knowledge

cannot program FPGA and because of this most companies are using CPUs and GPUs for

be

6

synthesized in an optimized manner to hardware. With HLS, even software a developer

can target any supported FPGA and synthesize optimized hardware. Currently, there are

several HLS CAD tools available in both academia and industry. Table 2 shows some of

these HLS CAD tools. For our research, we used Intel FPAG SDK for OpenCL.

Table 1 Overview of Currently Available HLS CAD Tools [12].

Owner Compiler License Input Output
Intel Intel FPGA

SDK for
OpenCL

Commercial C with
OpenCL

Verilog

Xilinx Vivado HLS Commercial C/C++
System C

VHDL/Verilog
System C

Cadence CtoS Commercial SystemC
TLM/C++

Verilog
System C

Mentor
Graphics

DK Design
Suite

Commercial Handel-C VHDL/Verilog

Maxeler MaxCompiler Commercial MaxJ RTL
Synopsys Synphony C Commercial C/C++ VHDL/Verilog

System C
LegUp U.Toronto Academic C Verilog

2.3. Overview of OpenCL

Open Computing Language (OpenCL) is the first industry standard framework for

heterogeneous computing with the compatibility of HLS. Normally, CPUs, GPUs, DSPs

are included in the heterogeneous platform. Because of HLS, FPGAs are added

heterogeneous platform list. OpenCL consists of C99 based programming standard and

also Application Program Interface (API). Using OpenCL, a developer can program

multiple devices where using Compute Unified Device Architecture (CUDA), a

developer can only program Nvidia GPUs. OpenCL is open source programming

language. It is maintained and updated by Khronos Group and various companies like

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

Tec

use

The

2.3.1.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

computation.

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

Technologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

uses

The

2.3.1.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

computation.

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

s it [

The OpenCL

2.3.1.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

computation.

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

[13

OpenCL

 Platform Model

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

computation.

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

13].

OpenCL

Platform Model

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

computation.

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

 framework is divided into four models.

Platform Model

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Platform Model

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Platform Model

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Platform Model

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs).

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

Processing Units (PUs). The Processing Elements (PEs) or work

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Figure

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Figure

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Figure 2

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

2 Platform Model, from [

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Platform Model, from [

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Platform Model, from [

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Platform Model, from [

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Platform Model, from [

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

framework is divided into four models.

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Platform Model, from [

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Platform Model, from [14

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

14].

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

The Processing Elements (PEs) or work-items

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

Every platform consists of 2 units. First one is host unit which is usual

second unit is device unit which is one of more combination of devices

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

items

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

Every platform consists of 2 units. First one is host unit which is usually a CPU and

second unit is device unit which is one of more combination of devices Figure

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

items do

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

ly a CPU and

Figure

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

does

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

ly a CPU and

Figure

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of

es the actual

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

ly a CPU and

Figure 2. Host

unit controls device runtime. In device unit, any device controlled by the OpenCL

platform contains one or more Compute Units (CUs) and each CU consists of multiple

the actual

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

ly a CPU and

. Host

unit controls device runtime. In device unit, any device controlled by the OpenCL

multiple

the actual

7

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

ly a CPU and

. Host

unit controls device runtime. In device unit, any device controlled by the OpenCL

multiple

the actual

Creative Technology, ARM Holdings, ZiiLABS, IBM, Samsung, Imagination

hnologies, Qualcomm, Apple, Nvidia, Vivante, AMD, Xilinx, and Intel support and

ly a CPU and

. Host

unit controls device runtime. In device unit, any device controlled by the OpenCL

the actual

8

2.3.2. Execution Model

An OpenCL program needs host code and kernel code to run and execute. The

developer writes Host code in C/C++ with API to manage memory objects, program

objects and command queues for the kernel. Kernel code consists of the main

computationally intensive part of the algorithm which is executed on the device or

devices.

 Context:

The contest consists of all crucial information regarding the targeted one or more

devices and it is created for one or more devices.

 Program Objects:

During runtime, the program provides a dynamic library for multiple kernels and

also includes kernel/kernels binary implementation.

 Memory Object:

Memory objects are used to transfer back and forth between the host and one or

more devices. A memory object is used as kernel data input and output. We will

discuss more memory object on next sections.

 Command Queue:

Using command queue host manages the execution of commands. Command queue

contains three commands: For Memory command to transfer data within memory,

Kernel command to launch one or kernels and Synchronization command creates a

point to manually synchronize the host code.

 Work Groups and Work ItemsWork Groups and Work Items

Kernels

can be multiple dimensions distributed in multi

has a unique ID called Global

same

collection of work

ID and work

Mapping of work

example with four

into all four

items are work

different wor

Work Groups and Work Items

Kernels

can be multiple dimensions distributed in multi

has a unique ID called Global

same

collection of work

ID and work

Mapping of work

example with four

into all four

items are work

different wor

Work Groups and Work Items

Kernels

can be multiple dimensions distributed in multi

has a unique ID called Global

same operation with diff

collection of work

ID and work

Mapping of work

example with four

into all four

items are work

different wor

Work Groups and Work Items

Kernels consist

can be multiple dimensions distributed in multi

has a unique ID called Global

operation with diff

collection of work

ID and work

Mapping of work

example with four

into all four

items are work

different wor

Work Groups and Work Items

consist

can be multiple dimensions distributed in multi

has a unique ID called Global

operation with diff

collection of work

ID and work-item within has its own Local

Mapping of work

example with four

into all four workgroups

items are work

different work

Work Groups and Work Items

consist of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

has a unique ID called Global

operation with diff

collection of work

item within has its own Local

Mapping of work

example with four

workgroups

items are work

k-groups may or may not run concurrently.

Work Groups and Work Items

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

has a unique ID called Global

operation with diff

collection of work-items is called a

item within has its own Local

Mapping of work-items in a 2D Range space is shown in fig

example with four

workgroups

items are work-items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Work Groups and Work Items

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

has a unique ID called Global

operation with diff

items is called a

item within has its own Local

items in a 2D Range space is shown in fig

example with four workgroups

workgroups

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Figure

Work Groups and Work Items

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

has a unique ID called Global

operation with different data.

items is called a

item within has its own Local

items in a 2D Range space is shown in fig

workgroups

workgroups

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Figure

Work Groups and Work Items

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

has a unique ID called Global

operation with different data.

items is called a

item within has its own Local

items in a 2D Range space is shown in fig

workgroups

 (5x5 work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Figure 3 Execution Model (2D Range), from [

Work Groups and Work Items:

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

has a unique ID called Global-ID

erent data.

items is called a

item within has its own Local

items in a 2D Range space is shown in fig

workgroups

(5x5 work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

:

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

ID

erent data.

items is called a

item within has its own Local

items in a 2D Range space is shown in fig

workgroups and total of 10x10 work

(5x5 work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

ID in

erent data. A c

items is called a workgroup

item within has its own Local

items in a 2D Range space is shown in fig

and total of 10x10 work

(5x5 work-items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

in the index space. Each work

A c

workgroup

item within has its own Local

items in a 2D Range space is shown in fig

and total of 10x10 work

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

the index space. Each work

A collection

workgroup

item within has its own Local-

items in a 2D Range space is shown in fig

and total of 10x10 work

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi

the index space. Each work

ollection

workgroup

-ID.

items in a 2D Range space is shown in fig

and total of 10x10 work

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

can be multiple dimensions distributed in multi-dimensional space. Each work

the index space. Each work

ollection

workgroup. Each workgroup has its own Group

ID.

items in a 2D Range space is shown in fig

and total of 10x10 work

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

dimensional space. Each work

the index space. Each work

ollection of Work

Each workgroup has its own Group

items in a 2D Range space is shown in fig

and total of 10x10 work

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

dimensional space. Each work

the index space. Each work

of Work

Each workgroup has its own Group

items in a 2D Range space is shown in fig

and total of 10x10 work

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [

of multiple threads and each thread is called work

dimensional space. Each work

the index space. Each work

of Work

Each workgroup has its own Group

items in a 2D Range space is shown in fig

and total of 10x10 work-

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

Execution Model (2D Range), from [19].

of multiple threads and each thread is called work

dimensional space. Each work

the index space. Each work

of Work-items in a dimension or

Each workgroup has its own Group

items in a 2D Range space is shown in figure

-items are equally divided

items in each). Inside a work

items are executed concurrently. Conversely, work

groups may or may not run concurrently.

].

of multiple threads and each thread is called work

dimensional space. Each work

the index space. Each work

items in a dimension or

Each workgroup has its own Group

ure

items are equally divided

items in each). Inside a work

items are executed concurrently. Conversely, work

of multiple threads and each thread is called work-

dimensional space. Each work

the index space. Each work-item executes

items in a dimension or

Each workgroup has its own Group

 3. We are g

items are equally divided

items in each). Inside a work-

items are executed concurrently. Conversely, work

-item. Work

dimensional space. Each work

item executes

items in a dimension or

Each workgroup has its own Group

3. We are g

items are equally divided

-group, all work

items are executed concurrently. Conversely, work

item. Work

dimensional space. Each work

item executes

items in a dimension or

Each workgroup has its own Group

3. We are g

items are equally divided

group, all work

items are executed concurrently. Conversely, work

item. Work

dimensional space. Each work

item executes

items in a dimension or

Each workgroup has its own Group

3. We are g

items are equally divided

group, all work

items are executed concurrently. Conversely, work-items of

item. Work

dimensional space. Each work

item executes

items in a dimension or

Each workgroup has its own Group

3. We are giving an

items are equally divided

group, all work

items of

item. Work-item

dimensional space. Each work-item

item executes the

items in a dimension or

Each workgroup has its own Group

iving an

items are equally divided

group, all work

items of

9

item

item

the

items in a dimension or

Each workgroup has its own Group-

iving an

items are equally divided

group, all work-

items of

item

item

items in a dimension or

iving an

items are equally divided

items of

2.3.3.

Four OpenCL memory types of are shown in fig

2.3.3.

Four OpenCL memory types of are shown in fig

 Global Memory:

 Constant Memory:

2.3.3. Memory Model

Four OpenCL memory types of are shown in fig

Global Memory:

Global Memory is visible and accessible to both host and one or more devices by all

work

Constant Memory:

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before

Memory Model

Four OpenCL memory types of are shown in fig

Global Memory:

Global Memory is visible and accessible to both host and one or more devices by all

work-

Constant Memory:

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before

Memory Model

Four OpenCL memory types of are shown in fig

Global Memory:

Global Memory is visible and accessible to both host and one or more devices by all

-items for reading/writing data.

Constant Memory:

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before

Memory Model

Four OpenCL memory types of are shown in fig

Global Memory:

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Constant Memory:

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before

Memory Model

Four OpenCL memory types of are shown in fig

Global Memory:

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Constant Memory:

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before

Memory Model

Four OpenCL memory types of are shown in fig

Global Memory:

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Constant Memory:

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Constant Memory:

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

memory right before the

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

the kernel

Figure

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

kernel

Figure

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

kernel

Figure 4

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

 is executed.

4 Memory Model, from [

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

items for reading/writing data.

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than globa

is executed.

Memory Model, from [

Four OpenCL memory types of are shown in fig

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

memory. It is much faster than global memory because data is copied to on

is executed.

Memory Model, from [

Four OpenCL memory types of are shown in figure

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

is executed.

Memory Model, from [

ure

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

is executed.

Memory Model, from [

 4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

Memory Model, from [

4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

Memory Model, from [14

4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

14].

4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

4 and described below:

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read

l memory because data is copied to on

Global Memory is visible and accessible to both host and one or more devices by all

Stores constant data in global memory during kernel execution. It is a read-only

l memory because data is copied to on-chip

10

Global Memory is visible and accessible to both host and one or more devices by all

only

chip

Global Memory is visible and accessible to both host and one or more devices by all

only

chip

11

 Local Memory:

All work items within a workgroup can access local memory. For this, each work-

item can collect the data as fast as possible and do the calculation.

 Private memory:

Private memory is accessible for a single work-item.

2.3.4. Programming Model

OpenCL consists of two types of data parallelism: task parallelism and data parallelism.

In task parallelism, multiple large kernels that contain single work-item execute

concurrently at the same time. In data parallelism, kernels contain multiple work-items

and each work-item within a workgroup calculates the same operation with different data

concurrently based on their Global-ID. Data parallelism falls under the category of Single

Program Multiple Data (SPMD) and Single Instruction Multiple Data (SIMD) stream.

Because of architecture, data parallelism is suitable for GPUs. However, in FPGAs both

parallelisms are suitable and it also supports Single Instruction Single Data (SISD),

Multiple Instruction Single Data (MISD), and Multiple Instruction Multiple Data

(MIMD).

2.4.

2.4.1.

program

programmin

execution,

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

MI

kind

compared to

kinds of

2.4.

2.4.1.

program

programmin

execution,

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

MIMD

kind

compared to

kinds of

 Intel FPGA SDK for OpenCL

2.4.1. Overview

Intel FPGA SDK for OpenCL is one of the HLS tools that

program

programmin

execution,

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

MD) individually and or

kind of algorithm and make a fully customized power

compared to

 Like any other OpenCL

kinds of

Intel FPGA SDK for OpenCL

Overview

Intel FPGA SDK for OpenCL is one of the HLS tools that

program a

programmin

execution,

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or

of algorithm and make a fully customized power

compared to

Like any other OpenCL

kinds of the

Intel FPGA SDK for OpenCL

Overview

Intel FPGA SDK for OpenCL is one of the HLS tools that

an

programming,

execution, first

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or

of algorithm and make a fully customized power

compared to V

Like any other OpenCL

the

Intel FPGA SDK for OpenCL

Overview

Intel FPGA SDK for OpenCL is one of the HLS tools that

 FPGA

g, both CPU and GPU

first the

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or

of algorithm and make a fully customized power

Von

Like any other OpenCL

 memory

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

FPGA

both CPU and GPU

the

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or

of algorithm and make a fully customized power

on-Neumann processors [

Like any other OpenCL

memory

Memory

Constant

Memory

Memory

Memory

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

FPGA using a High

both CPU and GPU

the instruction is fetched

forth between register

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or

of algorithm and make a fully customized power

Neumann processors [

Figure

Like any other OpenCL

memory

Global

Memory

Constant

Memory

Local

Memory

Private

Memory

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

using a High

both CPU and GPU

instruction is fetched

 file

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or

of algorithm and make a fully customized power

Neumann processors [

Figure

Like any other OpenCL

memory system

Global

Memory

Constant

Memory

Local

Memory

Private

Memory

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

using a High

both CPU and GPU

instruction is fetched

file and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or

of algorithm and make a fully customized power

Neumann processors [

Figure 5

Like any other OpenCL

system

Global

Memory

Constant

Memory

Local

Memory

Private

Memory

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

using a High

both CPU and GPU

instruction is fetched

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

) individually and or in

of algorithm and make a fully customized power

Neumann processors [

5 Memory model of Intel FPGA SDK for OpenCL.

Like any other OpenCL platforms

systems

Constant

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

using a High

both CPU and GPU

instruction is fetched

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

in combination

of algorithm and make a fully customized power

Neumann processors [

Memory model of Intel FPGA SDK for OpenCL.

platforms

s. Global memory is the external memory of the FPGA

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

using a High-Level Language (HLL)

both CPU and GPU

instruction is fetched

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four

combination

of algorithm and make a fully customized power

Neumann processors [

Memory model of Intel FPGA SDK for OpenCL.

platforms

. Global memory is the external memory of the FPGA

•

•

•

•

•

•

Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

both CPU and GPU use

instruction is fetched

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

architecture that can support all four models of computation

combination

of algorithm and make a fully customized power

Neumann processors [

Memory model of Intel FPGA SDK for OpenCL.

platforms

. Global memory is the external memory of the FPGA

•External Memory

•DDR SDRAM/QDR SRAM

•Cache Memory

•Part of Global Memory

•FPGA On

•FPGA On

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

use SIMD and/or SPMD

instruction is fetched, decoded

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation

combination

of algorithm and make a fully customized power

Neumann processors [15

Memory model of Intel FPGA SDK for OpenCL.

platforms, Intel FPGA

. Global memory is the external memory of the FPGA

External Memory

DDR SDRAM/QDR SRAM

Cache Memory

Part of Global Memory

FPGA On

FPGA On

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

SIMD and/or SPMD

, decoded

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation

combination. Unlike GPU, FPGA can support

of algorithm and make a fully customized power

15].

Memory model of Intel FPGA SDK for OpenCL.

Intel FPGA

. Global memory is the external memory of the FPGA

External Memory

DDR SDRAM/QDR SRAM

Cache Memory

Part of Global Memory

FPGA On-

FPGA On-

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

SIMD and/or SPMD

, decoded

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation

Unlike GPU, FPGA can support

of algorithm and make a fully customized power

Memory model of Intel FPGA SDK for OpenCL.

Intel FPGA

. Global memory is the external memory of the FPGA

External Memory

DDR SDRAM/QDR SRAM

Cache Memory

Part of Global Memory

-Chip memory

-Chip registers

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

SIMD and/or SPMD

, decoded

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation

Unlike GPU, FPGA can support

of algorithm and make a fully customized power

Memory model of Intel FPGA SDK for OpenCL.

Intel FPGA

. Global memory is the external memory of the FPGA

External Memory

DDR SDRAM/QDR SRAM

Cache Memory

Part of Global Memory

Chip memory

Chip registers

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

SIMD and/or SPMD

 and then data is transferred

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation

Unlike GPU, FPGA can support

of algorithm and make a fully customized power-

Memory model of Intel FPGA SDK for OpenCL.

Intel FPGA SDK for

. Global memory is the external memory of the FPGA

External Memory

DDR SDRAM/QDR SRAM

Part of Global Memory

Chip memory

Chip registers

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

SIMD and/or SPMD

and then data is transferred

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation

Unlike GPU, FPGA can support

-efficient high throughput hardware

Memory model of Intel FPGA SDK for OpenCL.

SDK for

. Global memory is the external memory of the FPGA

DDR SDRAM/QDR SRAM

Part of Global Memory

Chip memory

Chip registers

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL)

SIMD and/or SPMD

and then data is transferred

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation

Unlike GPU, FPGA can support

efficient high throughput hardware

Memory model of Intel FPGA SDK for OpenCL.

SDK for

. Global memory is the external memory of the FPGA

DDR SDRAM/QDR SRAM

Part of Global Memory

Chip memory

Chip registers

Intel FPGA SDK for OpenCL is one of the HLS tools that

Level Language (HLL) specification

SIMD and/or SPMD

and then data is transferred

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

models of computation (SIMD, S

Unlike GPU, FPGA can support

efficient high throughput hardware

Memory model of Intel FPGA SDK for OpenCL.

SDK for

. Global memory is the external memory of the FPGA

Intel FPGA SDK for OpenCL is one of the HLS tools that

specification

SIMD and/or SPMD model

and then data is transferred

and memory system. This is inefficient beca

waits for the data. Intel FPGA SDK for OpenCL can generate

(SIMD, S

Unlike GPU, FPGA can support

efficient high throughput hardware

Memory model of Intel FPGA SDK for OpenCL.

SDK for OpenC

. Global memory is the external memory of the FPGA

Intel FPGA SDK for OpenCL is one of the HLS tools that enable

specification

model

and then data is transferred

and memory system. This is inefficient beca

 a highl

(SIMD, S

Unlike GPU, FPGA can support

efficient high throughput hardware

Memory model of Intel FPGA SDK for OpenCL.

OpenC

. Global memory is the external memory of the FPGA

enable

specification

model.

and then data is transferred

and memory system. This is inefficient because

highl

(SIMD, S

Unlike GPU, FPGA can support

efficient high throughput hardware

OpenCL

. Global memory is the external memory of the FPGA

enable a

specification. For parallel

. During program

and then data is transferred

use processing unit

highly

(SIMD, SISD,

Unlike GPU, FPGA can support

efficient high throughput hardware

 supports all four

. Global memory is the external memory of the FPGA

a developer to

. For parallel

uring program

and then data is transferred

processing unit

y customizable

D,

Unlike GPU, FPGA can support

efficient high throughput hardware

supports all four

. Global memory is the external memory of the FPGA

developer to

. For parallel

uring program

and then data is transferred back and

processing unit

customizable

 MIS

Unlike GPU, FPGA can support a different

efficient high throughput hardware

supports all four

. Global memory is the external memory of the FPGA

developer to

. For parallel

uring program

back and

processing unit

customizable

MISD,

different

efficient high throughput hardware

supports all four

. Global memory is the external memory of the FPGA

developer to

. For parallel

uring program

back and

processing unit

customizable

D, and

different

efficient high throughput hardware

supports all four

. Global memory is the external memory of the FPGA

12

developer to

. For parallel

uring program

back and

processing unit

customizable

and

different

efficient high throughput hardware

supports all four

. Global memory is the external memory of the FPGA

developer to

. For parallel

uring program

back and

processing unit

customizable

and

different

efficient high throughput hardware

supports all four

. Global memory is the external memory of the FPGA

13

system which might be Double Data Rate (DDR) Synchronous Dynamic Random Access

Memory (SDRAM) DDR3 SDRAM, DDR4 SDRAM, DDR5 SDRAM and/or Quad Data

Rate (QDR) Static Random Access Memory (SRAM) [16] with large capacity and long

latency. Constant memory is a special type of global memory which is loaded in cache

during runtime. Local memory is stored in on-chip FPGA memory and this one has low

capacity, high bandwidth, and less latency compared to global memory. Finally,

compared to DDR memory private memory is assigned to FPGA on-chip registers which

have the lowest latency, highest bandwidth and lowest capacity. The memory model used

in Intel FPGA SDK for OpenCL is summarized in Figure 5.

Intel FPGA SDK for OpenCL supports OpenCL 1.0, parts of OpenCL 1.2 and

OpenCL 2.0. For Example, OpenCL started using Channels/pipes from OpenCL 2.0

which gave FPGA better data transfer speed compared to GPUs. Channel/pipe is a First-

In-First-Out (FIFO) buffer with a channel ID and depth that enables to transfer data back

and forth between work-items in the same kernel and/or different kernels which require

no additional synchronization and host interaction [17]. Furthermore, channels can be

used to synchronize work items and/or kernels because of work-item and/or kernel stalls

if they try to read an empty buffer and/or write to a channel that is full [18].

2.4.2. Design Flow

Initially, Intel FPGS SDK for OpenCL creates an emulated label by compiling

kernel program (.cl) in its Altera Offline Compiler (AOC). During the emulation stage,

AOC checks for errors (syntax, functional, logical, etc.) and also checks for stalls.

Furthermore, in this stage AOC provides optimization report regarding memory

transaction, pipeline execution to get better throughput and reduce wait time for each

14

stage in a pipeline. Because of this information, a developer can design an optimized

hardware in a short period of time. Next step is to fully compile and synthesize the kernel

program with AOC to directly generate Verilog RTL design from OpenCL code.

Kernel.cl

Compile with AOC
Emulator

Syntax, Functionality and
stall correction?

Full AOC
Compilation with

profile

Compile and link the
host with GCC

Host.cpp

Performance and resource
constrain meet?

Optimize the kernel

Execute The
application

No

No

Yes

Yes

Figure 6 Intel FPGA SDK for OpenCL Design Flow [19].

15

AOC automatically generates pipelines (if instruction is provided) and memory

interaction between kernels and different memory regions. Depending on FPGAs and

applications a full compilation takes 4-8 hours. In this stage, AOC will provide a report

that will enable the developer to check if his/her design will fit in the FPGA or not.

He/she might need to change his/her design if the design fails to meet the resource

requirement. Finally, GNU Compiler Collection (GCC) is used to compile the host

program along with FPGA executable and then run on that same system. Figure 6 shows

the design flow of Intel FPGS SDK for OpenCL.

2.4.3. Optimization Strategies in Intel FPGS SDK for OpenCL

One of the core rules in HPC is to increase speed in computation part and reduce

communication time or number of global memory access and host memory access

because of communication bottleneck between global memory and FPGA and host

memory and global memory, respectively. In this section, we will discuss strategies to

increase computation speed and reduce communication time.

2.4.3.1. Parallelism Strategies

Intel FPGA SDK for OpenCL supports Task Parallelism, Data Parallelism, and

Pipeline/Loop Parallelism.

 Data Parallelism:

In data parallelism, the kernel uses SPMD/SIMD model to access ND (N:

number of dimensions) grid work-items. Like GPU, a work-group is a combination

16

of work-items and each work-item executes the same operation with different data.

Workgroup size is equal to a number of work-items in a workgroup. A number of

work items in a work-group needs to be managed to ensure optimal hardware

resource usage and maintain parallelism within workgroups. In data parallelism,

loops with no dependencies will get the highest throughput.

 Loop/Pipeline Parallelism:

Pipeline/Loop parallelism is known as Task in Intel FPGA SDK for OpenCL and

the kernel is a single thread work-item. In GPUs, single thread work-item is used in

data dependent sections and is inefficient. While processing single thread work-item,

other processing units remain idle which is a waste of resources. Conversely, FPGA

makes pipeline architecture by breaking down loop into multiple stages to resolves

loop carried dependencies. Compiler pipelines each stage of a loop and launches

next iterations as soon as loop carried dependencies have been resolved. The

developer has no control over pipeline structure and scheduling. The only thing a

developer can do is to reduce, remove or simplify loop carried dependencies.

Figure 7 shows a visual comparison between data parallelism and pipeline

parallelism. In this example, there is a kernel of 6 work-items with six stages (A-E).

Data parallelism takes ten clock cycles to finish (output data is ready on 10th clock

cycle) and at a time executes three work-items. In pipeline parallelism, all six stages

are launched in stages in a pipeline manner within a kernel. Though it took the same

amount of time to finish the work, the data output of the first loop is ready for 6th

clock cycle wherein data parallelism same data output was ready in 10th clock cycle.

Pipeline parallelism has higher throughput than data parallelism.

 Task Parallelism:Task Parallelism:

Intel FPGA

pipeline manner using command queue.

queue

synchronization point (

throughput from task parallelism,

kernels.

Figure

Task Parallelism:

Intel FPGA

pipeline manner using command queue.

queue

synchronization point (

throughput from task parallelism,

kernels.

Figure

Task Parallelism:

Intel FPGA

pipeline manner using command queue.

queues AOC executes kernels concurrently. However, for task parallelism a

synchronization point (

throughput from task parallelism,

kernels.

Figure 7

Task Parallelism:

Intel FPGA

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

synchronization point (

throughput from task parallelism,

kernels.

7 Difference between Data Parallelism and Pipeline Parallelism, taken from [

Task Parallelism:

Intel FPGA SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

synchronization point (

throughput from task parallelism,

Difference between Data Parallelism and Pipeline Parallelism, taken from [

Task Parallelism:

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

synchronization point (

throughput from task parallelism,

Difference between Data Parallelism and Pipeline Parallelism, taken from [

Task Parallelism:

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

synchronization point (

throughput from task parallelism,

Difference between Data Parallelism and Pipeline Parallelism, taken from [

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

synchronization point (

throughput from task parallelism,

Difference between Data Parallelism and Pipeline Parallelism, taken from [

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

synchronization point (clfi

throughput from task parallelism,

Difference between Data Parallelism and Pipeline Parallelism, taken from [

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

clfinish

throughput from task parallelism,

Difference between Data Parallelism and Pipeline Parallelism, taken from [

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

nish

throughput from task parallelism,

Difference between Data Parallelism and Pipeline Parallelism, taken from [

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

nish and

throughput from task parallelism, the

Difference between Data Parallelism and Pipeline Parallelism, taken from [

SDK for OpenCL execute

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

and

the

Difference between Data Parallelism and Pipeline Parallelism, taken from [

SDK for OpenCL executes

pipeline manner using command queue.

AOC executes kernels concurrently. However, for task parallelism a

and channel

 application

Difference between Data Parallelism and Pipeline Parallelism, taken from [

s task parallelism by running kernels

pipeline manner using command queue. Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

channel

application

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

channel

application

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

channel) is required. To get

application

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get

application needs to be divided into multiple

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get

needs to be divided into multiple

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get

needs to be divided into multiple

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get

needs to be divided into multiple

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get

needs to be divided into multiple

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get

needs to be divided into multiple

Difference between Data Parallelism and Pipeline Parallelism, taken from [

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get

needs to be divided into multiple

Difference between Data Parallelism and Pipeline Parallelism, taken from [16

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism a

) is required. To get the

needs to be divided into multiple

16].

task parallelism by running kernels

Using multiple asynchronous command

AOC executes kernels concurrently. However, for task parallelism an

the

needs to be divided into multiple

task parallelism by running kernels

Using multiple asynchronous command

n explicit

 highest

needs to be divided into multiple

task parallelism by running kernels in

Using multiple asynchronous command

explicit

highest

needs to be divided into multiple

17

in a

Using multiple asynchronous command

explicit

highest

needs to be divided into multiple

a

Using multiple asynchronous command

explicit

needs to be divided into multiple

18

2.4.3.2. Throughput-based Optimizations

There are three methods to get the highest throughput from Intel FPAG SDK for

OpenCL.

 Vectoring work-items:

By vectoring work-items, reading/writing data and doing arithmetic/logic operations

can be done in SIMD fashion. The compiler will create kernel data path based on a

number of vectors and this will reduce the number of memory accesses. Vectoring

work-items increase efficiency in memory read/write.

 Loop Unrolling:

In every application, there are lots of loops. Unrolling loops fully or partially will

increase throughput linearly. However, based on unrolling factor, hardware resource

usage will increase.

 Multiple Compute Units (CU):

In Intel FPGA SDK for OpenCL, multiple copies of same kernel hardware can be

created in addition to kernel vectoring and loop-unrolling. There will be a

communication bottleneck because multiple CUs will share same global memory.

So, speedup might not be linear. Multiple CUs will consume more resource and it

will decrease operational frequency.

2.4.3.3. Optimizing Data Access/Transfer

One of the main barriers of HPC is memory bandwidth and proficient memory

access to reduce communication bottleneck. We are provided with some techniques to

optimize data access and/or reduce communication bottleneck [20].

19

 Aligning Memory:

On the Host side, memory alignment has to be 64-bytes aligned. This drastically

increases data transfer efficiency. On Linux, posix_memalign function and on

Windows, malloc function is used on host code to align memory.

 Caching Local Memory:

We discussed earlier that Local memory or FPGA On-Chip Memory has high

bandwidth and low latency compared to global memory. Because global memory has

low bandwidth, we repeatedly grab data block by block from global memory and

store on local memory before computation so that work-items can access data in short

time. All work-items in a workgroup can access local memory and use local memory

for increased throughput.

 Memory Coalescing:

In all HPC platforms including FPGA, memory coalescing improves memory

efficiency by reducing a number of memory accesses and/or reading data serially.

This is crucial when reading/writing data from global memory.

 Channels:

In GPUs, to transfer data between kernels, the data first needs to be stored in global

memory and then another kernel will read the data to process it. Because global

memory has high latency and low bandwidth getting speedup is hard. Because FPGA

architecture is customizable, Intel came up with a FIFO based bus called channel.

Using channels, consumer kernel can launch as soon as data is available in producer

kernel. Since FIFO based bus stores data in On-chip memory temporarily, bandwidth

20

is high and so throughput is high. However, one of the drawbacks of channels is we

cannot vectorize work-items and create multiple CUs.

More tips and tricks to better optimize kernels in Intel FPGA SDK for OpenCL are

presented in [20].

2.5. Summary
This chapter first explained FPGA architecture, HLS and gave an overview of OpenCL.

Then we described Intel FPGA SDK for OpenCL and the OpenCL coding strategies to

optimize OpenCL based FPGA designs.

21

Chapter 3 Expectation Maximization

3.1. Background
This thesis focuses on implementing and accelerating Expectation Maximization (EM)

for Gaussian Mixture Models (GMMs). In the following section, we describe GMMs and

EM for GMMs.

 Gaussian Mixture Models:

GMM is a probabilistic model that contains multiple Gaussian distributions in a linear

combination. A GMM with D dimensions, M Clusters (Gaussian components) and N

number of points that can be represented by:

 �(��|Ѳ) = 	 � �(��|μ�, Ѳ�)	��	

�

���

 (1)

Where,

 �� = (��� , ��� , … … , ���) is number of points with D dimensions. In vector

representation, sample data set is a (N, D) matrix.

 �(��|μ�, Ѳ�) is Gaussian probability density function of M number of clusters/

Gaussian components. It is calculated using mean μ� = 	 (μ�, μ�, … … , μ�), sample

dataset, inverse covariance Ѳ�
�� and log determinant |Ѳ|�

�/�
 of covariance Ѳ�.

Probability density function can be represented by,

 �(��|μ�, Ѳ�) = 	
exp	{−

1
2
(�� − 	μ�)

�Ѳ�
��(�� − 	μ�)}

(2�)�/�|Ѳ|�
�/�
	

 (2)

 �� =	 (��, ��, … … , ��)	is mixture coefficient/weight of M number of clusters .

22

In short, mean, sample dataset, weight and covariance matrix is required to calculate

GMM.

 Expectation Maximization (EM) for GMMs:

EM for GMM (EM-GMM) is a probabilistic method to calculate likelihood with

incomplete dataset [21] of GMM. EM-GMM calculates likelihood iteratively. First

we generate random dataset and initialize all of the parameters. Then we update the

parameters by alternating between two following steps until point of convergence is

reached.

 Expectation (E) Step:

Membership or log likelihood value ��� is calculated for each data instance ��

with respect to each cluster m. membership value ���	can be calculated by

following equation:

 ��� = 	
�(��|μ�, Ѳ�)	��	

∑ �(��|μ�, Ѳ�)	��	
�
���

 (3)

 Maximization (M) Step:

Estimate new values of mean	μ�, weight �� and covariance Ѳ� using the

membership value obtained from the E-Step and replace new value with old ones.

For each cluster m, update parameters:

 �� =	����

�

���

 (4)

 �� =	
��
�

 (5)

 μ� = 	
1

��
������

�

���

 (6)

23

 Ѳ� =	
1

��
����(�� − 	μ�)(�� − 	μ�)

�

�

���

 (7)

Algorithm 1 represents the pseudo code for EM-GMM which shows number of memory

access and computational complexity. In Algorithm 1, line 4 to line 10 represents E-Step

and line 12 to line 19 represents M-step. As described in Algorithm 1, both E-Step and

M-Step execute iteratively until convergence of log likelihood. Computational

complexity for each iteration of EM algorithm is O (����) [22].

Algorithm 1 EM-GMM

INPUT: sample dataset ���

OUTPUT: mean	μ�� , weight ��� and covariance Ѳ���

1. For all n ∈	1 to N do

2. initialize parameters (μ�,��, Ѳ�)

3. while not convergence do

4. for all m ∈	1 to M , n ∈	1 to N do

5. ���� = 0

6. for all d� ∈	1 to D, d� ∈	1 to D do

7. h�� = 		 h�� + 	��	

���	{�
�

�
(�����	����)(�����	����)

�Ѳ�����
�� }

(��)�/�|Ѳ|�
�/�

	
	

8. ���� = ���� + h��

9. for all n	∈	1 to N, m	∈	1 to M do

10. ��� =
���

����

11. �� = 0,��	 = 0, μ� = 0, Ѳ� = 0

12. for all n	∈	1 to N, m	∈	1 to M do

13. �� =	�� + 	���	

14. for all m	∈	1 to M do

15. �� =	
��

�

16. for all n	∈	1 to N, m	∈	1 to M, d	∈	1 to D do

17. μ�� = 	μ�� + 	
�

��
∑ ������
�
���

18. for all m	∈	1 to M, n	∈	1 to N, d� ∈	1 to D, d� ∈	1 to D do

19. Ѳ�����	 = 	
�

��
∑ ���(���� − 	μ���)(���� − 	μ���)

��
���

24

3.2. Previous Work on Accelerating EM-GMM
This section provides detailed description of previous EM-GMM implementation

research.

3.2.1. Acceleration on GPUs

Pongbar from Rochester Institute of Technology presented a CUDA implementation of

EM-GMM algorithm [22]. This research closely matches with our research because they

worked with non-diagonal covariance matrix, which are suitable for massive dataset and

they compared their work against multiple GPUs and reference implementations. In [22],

they achieved maximum of 73.5X speedup on Nvidia GTX260 and 120x speedup on

Nvidia C1060x2 against Intel Xeon 2.5 GHz Quad Core E5420 CPU.

In [2], they implemented EM-GMM on Geforce 8800 ULTRA and Quadro FX 5800

using CUDA with diagonal-only covariance matrix. They got maximum of 164x speedup

against Dual Core 3.0 GHz Pentium IV CPU on Quadro FX 5800.

Altinigneli [4] used an asynchronous approach for executing EM-GMM in contrast to the

traditional synchronous approach. They enabled the parallel threads to asynchronously

exchange local information/data. Using asynchronous EM-GMM approach, they

accelerated convergence and reduced overhead caused by sequential algorithm and

limited memory bandwidth. They achieved 720X speedup on NVidia GTX480 against

Intel i7-920 2.66 GHz CPU.

3.2.2. Acceleration on FPGAs

A fully pipelined EM-GMM is implemented in [3] using Maxeler MAX3 acceleration

card with a Xilinx Virtex-6 FPGA. For their implementation, they used diagonal-only

25

covariance matrix and fixed point arithmetic dataset. They achieved 517X speedup

against Intel Core i3 CPU.

In [5][6], EM is implemented on 4 Xilinx Virtex-6 LX760 FPGAs for 3D computed

tomography (CT) Reconstruction. [5], accomplished 85X speedup compared to single

thread Intel Xeon 5138 CPU and [6] accomplished 26.9X speedup compared to 16-thread

multi-core Intel Xeon E5-2420 CPU.

Ref.
No.

Device N* C* D* CM* Speedup

[22] GPU: Nvidia GTX260
CPU: Intel Xeon 2.5 GHz Quad
Core E5420

10�-
10�
(float)

100 24 N-D* 58x-84x and
73.5x (avg.).
vs. CPU

[22] GPU: Nvidia C1060x2
CPU: Intel Xeon 2.5 GHz Quad
Core E5420

10�-
10�
(float)

100 24 N-D* 93x-145x
and 120x
(avg.) vs.
CPU

[2] GPU: Geforce 8800 ULTRA
CPU: DualCore 3.0 GHz Pentium
IV

48.6K-
153.6K
(float)

8-32 8-
32

D-O* 20x-119.3x
vs. CPU

[2] GPU: Quadro FX 5800
CPU: Dual Core 3.0 GHz Pentium
IV

48.6K-
153.6K
(float)

8-32 8-
32

D-O* 20x-164.0x
vs. CPU

[4] GPU: NVidia GTX480
CPU: Intel i7-920 2.66 GHz

2��
(float)

10 8 D-O* 720x vs.
CPU

[3] FPGA: Maxeler MAX3
acceleration card with a Xilinx
Virtex-6 FPGA
CPU: Intel Core i3 CPU

10�
(fixed)

2,4,6 3,6 D-O* 517x vs.
CPU

[5] FPGA: 4 Xilinx Virtex-6 LX760
CPU: Intel Xeon 5138

- - 3 85X vs. CPU
(single
thread)

[6] FPGA: 4 Xilinx Virtex-6 LX760
CPU: Intel Xeon E5-2420

- - 3 26.3x vs
CPU (Multi
Thread)

Table 2 Previous Work on Accelerating EM-GMM.

N* = Number of Points, C* = Number of Clusters, D* = Number of Dimensions,
CM* = Covariance Matrix, D-O* = Diagonal Only, N-D* = Non-Diagonal

26

Table 2 provides illustrates a comparison of previous work on accelerating EM-GMM

on GPUs and FPGAs against CPUs (section 3.2.1 and 3.2.2). For each implementation it

shows how much speedup they gained against CPU using different number of points,

cluster size and dimension size. It also shows which implementation uses diagonal-only

or full/non-diagonal covariance matrix. The reason for choosing diagonal-only over

full/non-diagonal covariance matrix is that it reduces computation [2-6]. Note that

full/non-diagonal covariance matrix requires a lot of computation [22].

3.3. Summary

In this chapter we first explained how the EM-GMM algorithm works. Then we

discussed related research on EM implementation using FPGAs and GPUs.

27

Chapter 4 Optimized EM-GMM OpenCL FPGA

Implementation

4.1. EM-GMM OpenCL Model for FPGA

Data dependencies in original EM-GMM algorithm (Algorithm 1) make it impossible to

create a fully optimized FPGA design with high throughput. For our research, we

implemented a fully-pipelined EM-GMM OpenCL FPGA architecture using same

operations flow as [22]. Operational flow of a fully-pipelined EM-GMM OpenCL model

for FPGA is shown in Figure 8.

The EM-GMM computation on Inter FPGA SDK for OpenCL can be broken down into

five kernels. Full description of kernel 1, 2, 3, 4, 5 is shown in algorithm 2, 3, 4, 5, 6,

respectively. Dataflow between host and kernels (through global memory) and between

kernels (through channel extension) are shows in Figure 8. During execution sample

datasets (xnd and xdn) and membership data is cached to FPGA On-chip memory as they

are used repeatedly. From our comprehensive analysis we found that we get better

throughput if we implement all five kernels in fully pipelined single thread work item

manner rather than NDRange Kernel. AOC can only pipeline kernels with single thread

work item. Multi-thread work item pipelining is not supported on AOC. Intel FPGA SDK

for OpenCL FIFO based Channel Extension is used to directly transfer data within

kernels. The Channel extension helped to synchronize the kernels without host

involvement. Latency for each iteration reduced because channel extension helps to

execute kernels concurrently. Channel helped to gain speed up depending on different

28

dimension and cluster sizes. The depth of the channel affects FPGA on-chip memory

usage.

Start

Convergence
Met?

No

Create Random Dataset

Initialize (CPU): N_SUM, Mean,
Weight, Covariance,
Inverse Covariance

Calculate Initial
E-Step (CPU)

(Host) Initialization Phase

Stop

Kernel 1: N_SUM, Mean,
Weight

Kernel 2: Covariance

Channel: Mean, N_SUM

Kernel 3: Inverse Covariance
and Constant

Kernel 4 (E-Step 1):
Numerator

Kernel 5 (E-Step 2): Divide
Numerator with

Denominator

Channel: Inverse Covariance and Constant

Channel: Start_flag E-Step 2

M-Step

Pre-Calculation
E-Step

E-Step

Channel: Covariance

Global Memory

Sample
Dataset

Membership
Value

E-Step 1
Output

Through PCIe

Channel: Weight Channel: Mean

FPGA Accelerator

Host
Memory

Yes

Figure 8 EM-GMM operational flow OpenCL FPGA.

29

4.1.1. Initialization

For our implementation we first generated random float dataset	��� and transpose of

that same dataset	��� . Kernel 1 requires ��� and kernels 2 and 4 require ��� for

coalesced memory access from global memory. Global memory is a very large memory,

so we do not need to worry about memory usage. Then we calculated initial value of

mean	μ�� , weight	��, sum of all membership values in a cluster	�_����,

covariance	Ѳ��� , inverse covariance Ѳ���
�� and constant ������ on the host side.

Afterwards, we also calculated a full E-Step calculation on the host end to generate initial

membership value	���. Then we send the random float dataset ��� , transpose of that

same dataset	��� and initial membership value	��� to FPGA global memory for

calculation.

Inside FPGA, calculation starts with M-Step and ends with E-Step for each iteration.

During acceleration, choosing M-Step first before E-step helps to reduce communication

overhead and number of memory access between kernel and global memory. We cannot

use Channel extension from E-Step to M-Step because of complicated memory access

pattern between these steps and membership value is too big to store in FPGA memory.

However, memory access pattern from M-Step to E-Step is not complicated. Connecting

M-Step to E-Step with Channel extension reduced global memory access and because of

less memory load and store units, hardware resource utilization also decreased.

4.1.2. M-Step

First kernel (Algorithm 2) reads random float sample dataset and membership value

form global memory to calculate sum of all membership value for a given cluster, mean

30

and weight and sends sum of all membership value for a given cluster, mean data to

kernel 2 and weight data to kernel 4 through channel.

Algorithm 2 (Kernel 1) Calculates: �_����,	 μ�� , ��

G* I*: sample dataset ��� , membership value ���.

C* I*: none.

G* O*: none.

C* O*: mean	μ�� , weight �� and	�_����.

1. for all m	∈	1 to M do
2. for all n	∈	1 to N do
3. �_���� =	�_���� + 	���
4. write_channel: �_����
5. for all n	∈	1 to N, d	∈	1 to D do

6. μ�� = 	μ�� + 	
�

�_����
∑ ������
�
���

7. write_channel: μ��

8. �� =	
�_����

�

9. write_channel: ��

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT

Algorithm 3 (Kernel 2) Calculates: covariance Ѳ���

G* I*: sample dataset ��� , membership value ���.

C* I*: mean	μ�� and �_����..

G* O*: none.

C* O*: covariance	Ѳ��� , mean	μ�� .

1. for all m	∈	1 to M do
2. for all d	∈	1 to D do
3. read_channel: μ��
4. read_channel: �_����
5. for all n	∈	1 to N do

6. for all d� ∈	1 to D, d� ∈	1 to D do

7. Ѳ�����	 = Ѳ�����	 + 		
�

�_����
∑ ���(���� − 	μ���)(���� − 	μ���)

��
���

8. write_channel: covariance Ѳ���

9. for all d	∈	1 to D do
10. write_channel: μ��

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT

31

Second kernel (Algorithm 3) reads random float sample dataset and membership

value form global memory and sum of all membership value for a given cluster, mean

from channel (kernel 1) to calculate covariance of dimension (d1and d2) for each cluster.

We are calculating full or non-diagonal covariance matrix. By doing so, we have to do a

more computation O (NMD2) compared to non-diagonal covariance matrix O(NMD) [2-

6] which will consume more FPGA hardware resource usage. However, this will not

compromise the shape of Gaussians [22] which leads to better accuracy in results. Kernel

2 sends covariance to kernel 3 and same mean value (for a given cluster) to kernel 4

through channel.

Both Kernel 2 and 4 requires mean value to calculate covariance and E-Step

numerator, respectively. So, we need to write mean value to two channels. Logic Element

(LE) utilization is same if we write mean value in two channels either on kernel 1 or one

channel on kernel 1 and another channel on kernel 2. However, if we write mean value in

two channels on kernel 1, FPGA on-chip memory usage increases. To reduce FPGA on-

chip memory usage, we send mean values to kernel 2 using one channel. Kernel 2 reads

mean value from channel for a given cluster, calculates covariance and sends the mean

value to kernel 4 through another channel for that cluster. Data is read from one channel

and that same data is written to another channel after computation. By doing so, FPGA

on-chip memory usage reduces because channel is FIFO based system.

4.1.3. Pre-Calculation E-Step

Kernel 3 (Algorithm 4) reads covariance data from kernel 2 using channel and

calculates inverse covariance using LU decomposition and log determinant to get

32

constant (see Algorithm 4 for more detail) value. After calculation, Kernel 3 sends

inverse covariance and constant value to kernel 4 using channel.

Algorithm 4 (Kernel 3) Calculates: inverse covariance Ѳ���
�� and constant ������

G* I*: none.

C* I*: covariance	Ѳ��� .

G* O*: none.

C* O*: inverse covariance Ѳ���
�� and constant ������.

1. for all m	∈	1 to M
2. for all d� ∈	1 to D, d� ∈	1 to D do

3. read_channel: Ѳ�����.

4. calculate Ѳ���
�� using LU Decomposition.

5. |Ѳ|� = calculate log determinant.

6. ������	 = 		log	(
�

(��)�/�|Ѳ|�
�/�

	
)	

7. for all d� ∈	1 to D, d� ∈	1 to D do

8. write_channel: Ѳ�����
�� .

9. write_channel: ������	

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT

4.1.4. E-Step

Detail of E-Step calculation is provided in section 3.1. It takes 2 kernels to execute

E-Step. Kernel 4 (Algorithm 5) reads sample dataset from global memory and means,

weight, constant and inverse covariance from channel to compute the log likelihood of

sample dataset for each cluster. Since the membership value is too big to store in FPGA

on-chip memory and memory access and computation pattern between kernel 4 (E-Step

1) and kernel 5 (E-Step 2) is complicated we have to store output of log likelihood to

global memory. We cannot use channel extension to transfer data from kernel 4 (E-Step

1) to kernel 5 (E-Step 2). However, we used channel to create a starting point of kernel 5

(E-Step 2) by using a start flag. Kernel 4 computes the log likelihood of sample dataset

33

for each cluster using equation (9) given below. We are not using equation (8) because of

numerical instability caused by exponent function. Exponent function causes overflow in

a 32-bit floating point number with small input. For example e90 will easily overflow 32-

bit floating point.

A =	��; � = 	
1

(2�)�/�|Ѳ|�
�/�
	
	 ;

� = 	 (���� − 	μ���)(���� − 	μ���)
�Ѳ�����

��

 � × �	 × � (8)

 log	(�) + log	(�) 	−
1

2
(�) (9)

Algorithm 5 (Kernel 4) Calculates: E-Step 1 Numerator calculation

G* I*: none.

C* I*: inverse covariance Ѳ���
�� and constant ������, mean	μ�� , weight ��.

G* O*: none.

C* O*: E-Step 1 Numerator calculation ����������

1. for all m	∈	1 to M do

2. for all d� ∈	1 to D, d� ∈	1 to D do

3. read_channel: Ѳ�����
�� .

4. for all d	∈	1 to D do
5. read_channel: μ��

6. read_channel: ������	

7. read_channel: ��

8. for all n ∈	1 to N do

9. for all d� ∈	1 to D, d� ∈	1 to D do

10. h� = 		 h� + 	(���� − 	μ���)(���� − 	μ���)
�Ѳ�����

�� 	

11. ����������
= 	−

�

�
h� + 	 log	(��) + 	������	

12. if (m = M && n = N) do

13. write_channel: start_flag_E-Step_2

34

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT

Kernel 5 first waits of start flag from E-Step 1. When start flag is enabled (read from

channel), Kernel 5 starts implementation. For member in each cluster, kernel 5

(Algorithm 4) reads weighted likelihood (output of Kernel 4) from global memory and

converts into fuzzy probability by using equation (11) given below. Since kernel 4

calculates log-likelihood, denominator has to use a large sum of exponents. Equation 11

also helps to avoid overflows. After calculation Kernel 5 writes membership value into

global memory.

 ���	�exp	(��
�

) 	≡ max(�) + ���	�exp	(��
�

− max	(��))	 (10)

Algorithm 6 (Kernel 5) Calculate: E-Step 2 Numerator/ Denominator

G* I*: E-Step 1 Numerator ����������

C* I*: none.

G* O*: Membership value ���.

C* O*: none

1. read_channel: start_flag_E-Step_2

2. if (start_flag_E-Step_2) do

3. for all n ∈	1 to N do

4. ���� = 0

5. for all m	∈	1 to M do

6. ���� = ����	(����������
)

7. for all m	∈	1 to M do

8. �������� = exp	(����������
, ����)	

9. �������� = 	���� + log	(��������)

10. for all m	∈	1 to M do

11. ��� = exp	(����������
− ��������)

G* = GLOBAL, I* = INPUT, C* = CHANNEL, O* = OUTPUT

35

4.2. Optimization for different Problem Sizes

Based on previous CPU and GPU based implementations, highest dimension

achieved is 32 with 32 clusters [2] and highest cluster achieved is 100 with 24

dimensions [22]. For FPGA based implementation [3] highest dimension achieved is 6

and highest cluster achieved is 6. The maximum dimension we could fit on Stratix V A7

FPGA is 4 with 2 clusters and on Arria 10 FPGA, 8 with 2 clusters. The maximum

clusters we could fit on Stratix V A7 FPGA are 8 with 2 dimensions and on Arria 10

FPGA, 32 with 2 dimensions. Even with reduced unrolling factor for Stratix V FPGA and

Arria 10 FPGA, we cannot fit the design on FPGA after crossing highest number of

dimension and/or cluster given above. After crossing the highest number of dimension

and/or cluster, AOC fails to fit the design on FPGA because either LE utilization or

Memory block utilization or both overflow. Table 3 shows highest number of clusters we

could fit in each dimension for Stratix V A7 FPGA and Arria 10 FPGA.

Dimension Cluster Stratix V FPGA Arria 10 FPGA
2 2
2 4
2 8
2 16 X
2 32 X
3 2
3 4 X
3 8 X
3 16 X
4 2
4 4 X
8 2 X

Table 3 Dimension and Cluster achived on Stratix V A7 FPGA and Arria 10 FPGA.

36

4.3. Summary
In this chapter, we first described the operational flow for EM-GMM implementation

using Intel FPGA SDK for OpenCL. We explained computation of each kernel and how

each kernel is connected to others through channel extension. We concluded this chapter

by describing how many dimensions and/or clusters we can fit for Stratix V FPGA and

Arria 10 FPGA.

37

Chapter 5 Experimental Results

This chapter describes evaluation of proposed design on Intel FPGA SDK for

OpenCL. We start by explaining experimental setup and dataset used in this experiment.

Then we analyze and compare EM execution time, throughput, throughput/power

consumption, accuracy and comparison between results obtained for FPGAs, CPUs and

GPUs.

5.1. Experimental Setup

For our experiments we are using Intel FPGA SDK for OpenCL 16.0 [23] as HLS

CAD tool. The FPGA board used in this research is Nallatech 385 (Stratix V GX A7) [24]

and Nallatech 385A (Arria 10 GX 10AX115) [25]. Nallatech 385 board is connected with

Intel(R) Xeon(R) CPU E5-2637 V3 @ 3.50GHz (4 cores) CPU and Nallatech 385A

board is connected with two Intel Xeon Processor E5-2620 V4 @ 2.10GHz (8 cores)

CPU. Table 4 shows the list of CPUs and FPGAs used in this research and also shows the

device code we will be using throughout this chapter. Table 5 represents and compares

Nallatech 385 (Stratix V GX A7) and Nallatech 385A (Arria 10 GX 10AX115) board and

FPGA specification.

Device Code Device Description

FA Nallatech 385A with Arria 10 GX 10AX115 [25]
FS Nallatech 385 with Stratix V GX A7 [24]
C1 Intel(R) Xeon(R) CPU E5-2637 V3 @ 3.50GHz (4 cores) [26], 32GB

DDR3 RAM
C2 2 x Intel Xeon Processor E5-2620 V4 @ 2.10GHz (8 cores) [27] 128GB

DDR3 RAM
Table 4 Device list and Description.

38

Board Name and

FPGA

Nallatech 385

Stratix V

GX A7 [24]

Nallatech 385A

Arria 10

GX 10AX115 [25]

DDR3 RAM 8GB 8GB

Logical Elements 622K 1150K

Registers 939K 1708K

FPGA memory Block 50Mbits 53Mbits

DSP Block 256 1000

PCIe Bandwidth 25.6 GB/s 8TB/s

Power ≤ 25W ≤ 25W

Table 5 FPGA Device Specification.

5.2. Dataset
For our research we conducted multiple tests with different cluster and dimension

sizes. For this research, we generated random floating point data from -1000 to +1000.

Each dataset consists of 220 data instances with different dimensions. In Stratix V we

could fit a design containing 220 instances with 2 (2, 4, 8 clusters), 3 (2 clusters) and 4 (2

clusters) dimensions. However, on Arria 10 we could fit a design containing 220

instances with 2 (2, 4, 8, 16, 32 clusters), 3 (2, 4, 8, 16 clusters), 4 (2, 4 clusters) and 8 (2

clusters) dimensions. We could not fit more dimensions and clusters due to lack of FPGA

hardware resources.

39

5.3. Power Measurement
We used Watts up? PRO to power meter to calculate power consumption [28]. The

device provides accurate power consumption of the whole system. Table 7 shows power

consumption during idle, program execution and accelerator power consumption for two

CPUs and FPGAs. Before installing FPGA board on the systems, idle CPU only power

consumption for C1 and C2 was 105.1 W and 112.2 W, respectively. During execution of

EM on CPU, average power consumption increased to of C1 and C2 140.3 W and 148.7

W respectively.

When both of the boards are installed in the system, idle power consumption of

Nallatech 385A with Arria 10 FPGA (With C2 CPU) and Nallatech 385 with Stratix V

FPGA (With C1 CPU) was 133.3 W and 127.6 W, respectively. During execution of EM

on of Nallatech 385A with Arria 10 FPGA (With C2 CPU) and Nallatech 385 with Stratix

V FPGA (With C1 CPU) average power consumption of Heterogeneous system increased

to 137.2 W and 130.2 W, respectively. So, average power consumption of Nallatech 385A

with Arria 10 FPGA (no CPU) and Nallatech 385 with Stratix V FPGA (no CPU) for

running EM is (137.2-112.3) = 24.9 W and (130.2-105.1) = 25.1 W, respectively.

System CPU
(C1)
Only

CPU1 with
Stratix V Board

CPU
(C2)
Only

CPU2 with
Arria 10
Board

Idle power (Watts) 105.1 127.6 112.3 133.3
Execution power (Watts) 140.3 130.2 148.7 137.2
Accelerator Power (Watts) 25.1 24.9

Table 6 Power Consumption of CPUs and FPGAs.

40

5.4. Performance analysis
For all EM implementations, number of iterations varies depending on different

sample dataset to meet the convergence point. For different EM implementation, different

researchers use different sample dataset. So, to compare their results, researchers

compared execution time, throughput and number of data instances calculated [3] in each

iteration [2-4] [22]. For our research we will do the same. However, based on our dataset,

we found that it takes us on average of 100 iterations to reach convergence point. The

performance is measured by execution time in milliseconds (ms), throughput in

Giga-Floating Point Operations per Second (GFLOPs), power in Watts (W) and

throughput per power in GFLOPs/W. To test dataset with different dimensions and

cluster sizes on both Arria 10 and Stratix V, we launched host program with dataset using

different dimensions and cluster sizes. Automatic testing scripts were used for this

purpose.

5.4.1. Performance Results

Figure 9, Figure 11 and Figure 13 show execution time, throughput and

throughput/power consumption of computing EM on Arria 10 FPGA and Stratix V FPGA

with different dimension and cluster sizes respectively. We only included the

computation time. Data transfer time between host and device is ignored because it is

negligible at 0.5 ms. Figure 10, Figure 12 and Figure 14 show execution time, throughput

and throughput/power consumption of computing EM on Intel(R) Xeon(R) CPU E5-2637

CPU and Intel Xeon Processor E5-2620 CPU with different dimension and cluster sizes,

respectively.

41

In Figure 9-14, different colored lines correspond to different FPGAs (Figure 9,

Figure 11 and Figure 13) and CPUs (Figure 10, Figure 12 and Figure 14) with different

kernels using different dimensions and horizontal axis corresponds to cluster sizes. For

Figure 9 and Figure 10, vertical axis represents execution time spent during calculation.

For Figure 11 and Figure 12, vertical axis represents throughput. Lastly, in Figure 13 and

Figure 14 vertical axis represents throughput/power consumption.

 From Figure 9, we can clearly see that for same calculation FS (Stratix V FPGA)

consumes more time to compute than FA (Arria 10 FPGA). However, for CPU

implementation, Figure 10 shows for same calculation C1 (Intel(R) Xeon(R) CPU E5-

2637 CPU) consumes less time to compute than C2 (Intel Xeon Processor E5-2620

CPU).

Figure 11 and Figure 12 show that for EM calculation FA and C1 has higher

throughput compared to FS and C2 for same calculation. Figure 13 shows FA has higher

throughput/power consumption compared to FS for same calculation. Note that FA and

FS power consumption is almost same. Figure 14 shows that C1 has higher

throughput/power consumption compared to C2 for same calculation though C2 has

higher power consumption than C1.

42

Figure 9 FPGA Execution Time for EM.

Figure 10 CPU Execution Time.

0

5

10

15

20

25

30

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
M

ili
se

co
n

d
s)

Cluster (M) Sizes

FPGA Execution time

FS_D2

FS_D3

FS_D4

FA_D2

FA_D3

FA_D4

FA_D8

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
M

ili
se

co
n

d
s)

Cluster (M) Sizes

CPU Execution time

C1_D2

C1_D3

C1_D4

C1_D8

C2_D2

C2_D3

C2_D4

C2_D8

43

Figure 11 FPGA Throughput for EM.

Figure 12 CPU Throughput for EM.

0

5

10

15

20

25

30

35

40

45

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
G

FL
O

P
s)

Cluster (M) Sizes

FPGA Throughput

FS_D2

FS_D3

FS_D4

FA_D2

FA_D3

FA_D4

FA_D8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
G

FL
O

P
s)

Cluster (M) Sizes

CPU Throughput

C1_D2

C1_D3

C1_D4

C1_D8

C2_D2

C2_D3

C2_D4

C2_D8

44

Figure 13 FPGA Throughput/Power.

Figure 14 CPU Throughput/Power.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
G

FL
O

P
s/

W
)

Cluster (M) Sizes

FPGA Throughput/Power

FS_D2

FS_D3

FS_D4

FS_D8

FA_D2

FA_D3

FA_D4

FA_D8

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
G

FL
O

P
s/

W
)

Cluster (M) Sizes

CPU Throughput/Power

C1_D2

C1_D3

C1_D4

C1_D8

C2_D2

C2_D3

C2_D4

C2_D8

45

5.4.2. Speedup

In this section we present speedup obtained by each device compared to others. In

the first section, we show speedup gained in terms of throughput and in the second

section we show speedup gained in terms of throughput/power consumption.

5.4.2.1. Throughput

In Figure 15-18, different colored lines corresponds to different kernels using

different dimensions and horizontal axis corresponds different cluster sizes and vertical

axis corresponds to speedup gained during calculation in terms of throughput.

Figure 15 shows speedup gained by CPU1 against CPU2. Figure 16 and Figure 17

show speedup gained by Stratix V FPGA and Arria 10 FPGA against CPUs, respectively.

Figure 18 shows speedup gained by Arria 10 FPGA against Stratix V FPGA.

Figure 15 CPU1 Speedup (T) over CPU2.

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup (T): CPU 1 over CPU 2

D2

D3

D4

D8

46

Figure 16 Stratix V FPGA Speedup (T) over CPUs.

Figure 17 Arria 10 FPGA Speedup (T) over CPUs.

0

5

10

15

20

25

30

35

40

2 4 8

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup (T): Stratix V FPGA over CPUs

C1_D2

C1_D3

C1_D4

C2_D2

C2_D3

C2_D4

-100

100

300

500

700

900

1100

1300

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup(T): Arria 10 FPGA over CPUs

C1_D2

C1_D3

C1_D4

C1_D8

C2_D2

C2_D3

C2_D4

C2_D8

47

Figure 18 Arria 10 FPGA Speedup (T) overs Stratix V FPGA

5.4.2.2. Throughput/Power

In Figure 19-22, the colored lines correspond to different kernels using different

dimensions and horizontal axis represents different cluster sizes and vertical axis

represents speedup in terms of throughput/power consumption.

Figure 19 shows speedup gained by CPU1 against CPU2. Figure 20 and Figure 21

show speedup gained by Stratix V FPGA and Arria 10 FPGA against CPUs, respectively.

Figure 22 shows speedup gained by Arria 10 FPGA against Stratix V FPGA.

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

2 4 8

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

FPGA Speedup(T): Arria 10 Vs Stratix V

D2

D3

D4

48

Figure 19 CPU 1 Speedup (T/P) over CPU 2

Figure 20 Stratix V FPGA Speedup (T/P) over CPUs.

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup (T/P): CPU 1 over CPU 2

D2

D3

D4

D8

0

50

100

150

200

250

2 4 8

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup(T/P): Stratix V FPGA over CPUs

C1_D2

C1_D3

C1_D4

C2_D2

C2_D3

C2_D4

49

Figure 21 Arria 10 FPGA Speedup (T/P) over CPUs.

Figure 22 Arria 10 FPGA Speedup (T/P) over Stratix V FPGA.

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16 32

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

Speedup(T/P): Arria 10 FPGA over CPUs

C1_D2

C1_D3

C1_D4

C1_D8

C2_D2

C2_D3

C2_D4

C2_D8

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

2 4 8

Ea
ch

 It
e

ra
ti

o
n

 (
Sp

e
e

d
 u

p
 T

im
e

s)

Cluster (M) Sizes

FPGA Speedup(T/P): Arria 10 over Stratix V

D2

D3

D4

50

5.4.3. FPGA Resource Utilization

This section shows FPGA resource utilization (Logic Element, Register, Memory

Block, DSP and Adaptive Look-Up Tables -ALUT) and operational frequency of each

FPGA for each kernel with different dimensions and clusters. For each implementation

on FPGA, we got resource usage and operational frequency from synthesis report. To fit

the design on FPGA for each implementation with higher dimensions and/or clusters, we

had to decrease loop unroll factor or remove loop unroll for some and/or all loop inside

each kernel. For implementations with higher dimensions and/or clusters we also had to

reduce the memory block size to cache data into FPGA on-chip memory from global

memory (DDR3 memory). For this reason, for some implementations, FPGA resource

usage and operational frequency drops down.

Figure 23, Figure 24, Figure 25, Figure 26 and Figure 27 show FPGA Logic

Element, ALUT, Register, Memory Block, DSP block utilization, respectively. Figure 28

shows FPGA operational frequency.

In Figure 23-27, different colored lines correspond to different kernels using

different dimensions and horizontal axis represents different cluster sizes. From Figure 23

to Figure 27, vertical axis represents resource usage of each implementation for each

FPGA, as percentage. In Figure 28, vertical axis represents operational frequency of each

implementation for each FPGA in Megahertz (MHz). From Figure 23 to Figure 27 we

can see that for each implementation Stratix V FPGA consumes more percentage

resources than Arria 10 FPGA, because of smaller logic capacity of Stratix V.

51

Figure 23 FPGA Logic Element Utilization.

Figure 24 FPGA ALUT Utilization.

2 4 8 16 32

65

70

75

80

85

90

95

100

Cluster (M) Sizes

P
e

rc
e

n
ta

ge
 (

%
)

FPGA Logic Element Utilization

FA_D2

FA_D3

FA_D4

FA_D8

FS_D2

FS_D3

FS_D4

20

25

30

35

40

45

50

55

60

2 4 8 16 32

P
e

rc
e

n
ta

ge
 (

%
)

Cluster (M) Sizes

FPGA ALUT Utilization

FA_D2

FA_D3

FA_D4

FA_D8

FS_D2

FS_D3

FS_D4

52

Figure 25 FPGA Register Utilization.

Figure 26 FPGA Memory Block Utilization.

35

40

45

50

55

60

65

2 4 8 16 32

P
e

rc
e

n
ta

ge
 (

%
)

Cluster (M) Sizes

FPGA Register Utilization

FA_D2

FA_D3

FA_D4

FA_D8

FS_D2

FS_D3

FS_D4

40

50

60

70

80

90

100

2 4 8 16 32

P
e

rc
e

n
ta

ge
 (

%
)

Cluster (M) Sizes

FPGA Memory Block Utilization

FA_D2

FA_D3

FA_D4

FA_D8

FS_D2

FS_D3

FS_D4

53

Figure 27 FPGA DSP Block Utilization.

Figure 28 FPGA Operational Frequency.

15

25

35

45

55

65

75

85

95

2 4 8 16 32

P
e

rc
e

n
ta

ge
 (

%
)

Cluster (M) Sizes

FPGA DSP Block Utilization

FA_D2

FA_D3

FA_D4

FA_D8

FS_D2

FS_D3

FS_D4

160

170

180

190

200

210

220

230

2 4 8 16 32

M
H

z

Cluster (M) Sizes

FPGA Operational Frequency

FA_D2

FA_D3

FA_D4

FA_D8

FS_D2

FS_D3

FS_D4

54

5.4.4. Performance Comparison Between CPU and FPGA in Relation to FPGA Resource

Utilization

Table 7 shows performance comparison between FPGAs and CPUs in relation to

FPGA resource usage for highest number of cluster achieved in each dimension by

FPGAs. Yellow cells shows highest number of clusters we could fit in each dimension.

Pink and green cells represent throughput and throughput/power consumption of each

device, respectively. Blue and purple cells show speedup in terms of throughput and

speedup in terms of throughput/power consumption gained by FPGAs over CPUs,

respectively. Light orange cells shows FPGA resource utilization for highest number of

cluster we could fit in each dimension. Lastly, dark orange cells shows FPGA operational

frequency for highest number of cluster we could fit in each dimension. This table clearly

shows that Arria 10 FPGA achieved much better speedup than Stratix V FPGA, when

compared to CPU performance. Both FPGAs consumed most of their hardware resources

for highest number of clusters achieved by each dimension.

Table 9 shows performance comparison between FPGAs and FPGA resource usage

for highest number of clusters achieved in each dimension by Stratix V FPGA. Leftmost

column shows the parameters we are using to compare two FPGAs. Green and red cells

represent performance, resource utilization and operational frequency of Arria 10 FPGA

and Stratix V FPGA, respectively. Orange cells represent speedup gained by Arria 10

FPGA over Stratix V FPGA for highest number of cluster achieved in each dimension by

Stratix V FPGA. Table 8 is similar to Table 7 except that it shows T/Pspeedup instead of

Tspeedup.

55

FPGAs Arria 10 Stratix V

Dimensions 2 3 4 8 2 3 4

Maxm
* 32 16 4 2 8 2 2

CPU1 T* 0.04 0.06 0.09 0.16 0.04 0.07 0.06

CPU2 T* 0.03 0.05 0.08 0.15 0.04 0.06 0.06

FPGA T* 39.33 10.63 10.59 28.48 1.28 0.94 1.34

SUF/C1 T* 1000.68x 176.64x 115.19x 181.48x 29.34x 13.57x 20.88x

SUF/C2 T* 1266.37x 205.00x 138.28x 194.57x 35.01x 10.46x 23.67x

CPU1 T/P* 2.91E-4 4.36E-4 6.54E-4 1.16E-3 2.91E-4 5.09E-4 4.36E-4

CPU2 T/P* 2.02E-4 3.36E-4 5.38E-4 1.01E-3 2.69E-4 4.03E-4 4.17E-4

FPGA T/P* [AO*] 1.57 0.42 0.42 1.13 0.05 0.04 0.05

SUF/C1 T/P* [AO*] 5395.19x 963.30x 642.20x 974.14x 171.82x 78.57x 114.68

SUF/C2 T/P* [AO*] 7772.28x 1250x 780.67x 1118.81x 185.87x 99.26x 119.90x

Logic U* 90% 90% 94% 93% 91% 93% 97%

ALUTs U* 36% 36% 37% 33% 52% 47% 51%

Register U* 50% 54% 52% 59% 43% 48% 50%

MB* U* 90% 82% 72% 78% 82% 59% 60%

DSP U* 47% 34% 26% 53% 77% 85% 68%

Frequency M* 191.53 215.65 198.96 170.41 222.51 290.73 217.77

Table 7 Performance comparison of FPGAs over CPUs and FPGA Resource Usage for highest cluster achieved
by each dimension.

T* = Throughput (GLOPs), T/P*= Throughput/Power Consumption (GFLOPs/W), AO* = Accelerator only,

U* = Utilization, M*= (Mhz), MB* = Memory Block, Maxm
*
= Maximum size of cluster.

56

Dimension 2 4 8

Maxm FS* 8 2 2

FPGAs FA* FS* FA* FS* FA* FS*

Throughput (GFLOPs) 14.09 1.28 6.84 0.94 11.82 1.344

T* Speed UpFA/FS [Arria 10] 11.02x 7.32x 8.81x

[AO*] T/P* (GFLOPs/W) 0.56 0.05 0.27 0.04 0.47 0.05

T/P* Speed UpFA/FS [Arria 10] 10.92x 7.21x 8.72x

Logic U* 80% 91% 76% 93% 83% 97%

ALUTs U* 32% 52% 30% 47% 32% 51%

Register U* 48% 43% 47% 48% 51% 50%

Memory Block U* 92% 82% 52% 59% 54% 60%

DSP U* 25% 77% 20% 85% 24% 68%

Frequency (Mhz) 226.70 222.51 212.22 290.73 219.34 217.77

Table 8 Performance comparison of FPGAs and FPGA Resource Usage for highest cluster achieved by each
dimension.

FA* = FPGA Arria 10, FS* = FPGA Stratix V, T = Throughput, T/P*= Throughput/Power Consumption,
AO* = Accelerator only, T* = Throughput (GLOPs), U* = Utilization

57

5.4.5. Comparison with Previous EM Research

We compare our performance with previous EM implementations by using the time

it takes to compute all data instances in a single iteration (in seconds). This method was

also used by [3] to compare their performance with previous research. Table 9 shows

instructions per second (IPS) processed by previous research (green cells), Arria 10

FPGA (light blue cells), Stratix V FPGA (light red cells) and speedup gained by Arria 10

FPGA (dark blue cells) and Stratix V FPGA (dark red cells) compared with previous

research.

Previous Research Our Research (Fl*)

Hardware

(Accelerator)
DF* IPS*

FA*

IPS*

FS*

IPS*
SUFA SUFS

Xilinx Virtex-6 [3] Fi*
1.493E+8 1.141E+9 1.559E+8 7.64x 1.04x

1.492E+8 3.808E+8 - 2.55x -

Geforce 8800 ULTRA

[2]

Fl*

2.008E+7 1.141E+9 1.559E+8 56.82x 7.76x

2.903E+7 1.478E+9 1.676E+8 50.91x 5.77x

Quadro FX 5800 [2]

2.887E+7 1.141E+9 1.559E+8 39.62x 5.41x

2.283E+7 1.478E+9 1.676E+8 64.74x 7.34x

2.783E+7 1.780E+9 - 63.96x -

NVidia GTX480 [4] 2.796E+8 1.780E+9 - 6.67x -

I*NVidia GTX480 [4] 1.367E+8 1.780E+9 - 13.03x -

Table 9 IPS*and speedup gained by our implementation over other implementations.

IPS*= Instances Per Second, P*= Power Consumption, I* = Implementation of [22] code on NVidia GTX480 [4], Fl* =
Floating Point, Fi* = Fixed Point, DF* = Dataset Format, FA* = Arria 10 FPGA, FS* = Stratix V FPGA, SU = Speed

up

Since we are also considering power consumption as an evaluation metric for

each device in Table 11 we show IPS/power consumption of each device used in previous

58

research and our research. And also speedup gained by our implementation over other

implementations in terms of IPS/power consumption. Table 10 is same as Table 9 with

the difference of IPS/power consumption and orange cells which represents power

consumption of each accelerator used in previous research. We found power consumption

of all GPU based accelerators. We did not find any power consumption report for

Maxeler Max3 with Xilinx Virtex-6 FPGA [3]. From our implementation and

implementation done in different FPGA based accelerators for different implementations

[19][32] we found that average power consumption of FPGA based accelerators is 25 W.

So, it is safe to assume power consumption of Maxeler Max3 with Xilinx Virtex-6 FPGA

[3] is 25 W.

PR*= Previous Research Our Research (Fl*)

Hardware

(Accelerator)

P*

(W)
DF* IPS*/P*

FA*

IPS*/P*

FS*

IPS*/P*
SUFA SUFS

Xilinx Virtex-6 [3] 25 Fi*
5.975E+6 4.58E+7 6.21e+6 7.66x 1.04x

4.768E+6 1.52E+7 - 3.18x -

Geforce 8800 ULTRA

[2]

172.2

[29]

Fl*

1.17E+05 4.55E+07 6.26E+06 388.89x 53.50x

1.69E+05 5.89E+07 6.73E+06 348.52x 39.82x

Quadro FX 5800 [2]

189

[30]

1.53E+05 4.55E+07 6.26E+06 297.39x 40.92x

1.21E+05 5.89E+07 6.73E+06 486.78x 55.62x

1.47E+05 7.09E+07 - 482.31x -

NVidia GTX480 [4]
223 [31]

1.25E+06 7.09E+07 - 283.6x -

I*NVidia GTX480 [4] 6.10E+05 7.09E+07 - 116.23x -

Table 10 IPS*/power consumption and speedup gained by our implementation over other implementations.

IPS*= Instances Per Second, P*= Power Consumption, I* = Implementation of [22] code on NVidia GTX480 [4], Fl* =
Floating Point, Fi* = Fixed Point, DF* = Dataset Format, FA* = Arria 10 FPGA, FS* = Stratix V FPGA, SU = Speed

up

59

5.5. Verification of Results

A sequential version of EM-GMM algorithm was implemented in CPU to ensure the

accuracy of EM-GMM algorithm running on FPGA based accelerators. This

implementation was done after FPGA implementation to generate reference results. After

FPGA implementation, output membership data of FPGA is copied from global memory

to host memory to compare against CPU reference results. We used Mean square error

(MSE) [33] to estimate the difference between FPGA output and CPU reference output

just like [22]. We found that both Stratix V FPGA and Arria 10 FPGA implementation

had the same MSE rate for implementations with same dimension and cluster. For both

Stratix V FPGA and Arria 10 FPGA lowest error rate was 4.78E-7 and highest error rate

was 9.46E-5. This shows that the error range is quite acceptable.

5.6. Summary
In this chapter we first explained out experimental setup and the dataset used in our

research. Then we presented our experimental results and their analysis. First, we showed

that both the FPGAs used in our research consume almost the same amount of power.

Though both FPGAs achieved significant speedups compared to CPUs, Arria 10 FPGA

obtained much better speedup compared to Stratix V FPGA. When comparing the

performance of FPGAs and GPUs for implementing EM, both FPGAs obtained

significant speedup. Lastly, experimental results show that FPGA implementation of EM

has better accuracy when compared with CPU implementation.

60

Chapter 6 Conclusion

Our research focused on optimized FPGA based implementation of EM-GMM using

Intel FPGA SDK for OpenCL. We had to restructure the operational flow of EM to

properly take advantage of channel extension inside Intel FPGA SDK for OpenCL. By

using the channel extension to transfer data between kernels we reduced communication

bottleneck caused by global memory. We also restructured covariance matrix calculation

algorithm which is one of the biggest computational part of EM-GMM algorithm. All of

these necessary changes helped up to gain better throughput and throughput/power

consumption compared to different CPUs and different accelerators (GPUs and FPGAs).

Due to limited LEs and FPGA on-chip memory we could only fit lower dimensions

and/or clusters. To fit EM with higher dimensions and/or clusters, we need accelerators

with multiple FPGAs and/or FPGAs with larger number of LEs embedded on-chip

memories.

Compared to an Intel(R) Xeon(R) CPU E5-2637 our fully optimized OpenCL model for

EM targeting Arria 10 FPGA achieved up to 1000X speedup in terms of throughput

(T
speedup) and 5395X speedup in terms of throughput per unit of power consumed

(T/P
speedup). Compared to previous research on EM-GMM implementation on GPUs,

Arria 10 FPGA obtained up to 64.74X Tspeedup and 486.78X T/P
speedup.

61

6.1. Future Work
In this research, we used single chip FPGA based accelerators. Stratix V FPGA had

limited resources compared to Arria 10 FPGA. It would be interesting to see how many

dimensions and/or clusters we can fit on Stratix 10 FPGA based accelerator [34] since

Stratix 10 FPGA has more hardware resources than Arria 10 FPGA. Nallatech released

an FPGA based accelerator with dual Arria 10 FPGA chips [35]. Firstly, it would be

interesting to see how to program dual Arria 10 FPGA chip using OpenCL model and

then how many dimensions and/or clusters we can fit for our particular design. Since, EM

has two steps and if we could put each step on each Arria 10 FPGA, how many

dimensions and/or clusters we could fit. It would be also interesting to see how dual Arria

10 FPGA affects execution time, throughput, power consumption, throughput/power

consumption and accuracy of the design compared to single Arria 10. Lastly, exploring

multi-FPGA systems as targets for Intel SDK for OpenCL would be a very interesting

research project.

62

References

[1] Geoffrey J. McLachlan, Thriyambakam Krishnan, The EM Algorithm, and

Extensions, Wiley Series in Probability and Statistics, John Wiley and Sons, 1997.

[2] N. Kumar, S. Satoor, and I. Buck, “Fast parallel expectation maximization for

Gaussian mixture models on GPUs using CUDA,” in IEEE International Conference on

High-Performance Computing and Communications. IEEE, 2009, pp. 103–109.

[3] Guo, C., Fu, H., & Luk, W. (05 June 2017). A Fully-Pipelined Hardware Design for

Gaussian Mixture Models. IEEE Transactions on Computers (Volume: PP, Issue: 99)

[4] Can Altinigneli, M., Plant, C., & Böhm, C. (2013). Massively parallel expectation

maximization using graphics processing units. ACM SIGKDD international conference

on Knowledge discovery and data mining, 838-846.

[5] Choi, Y., Cong, J., & Wu, D. (May 2014). FPGA Implementation of EM Algorithm

for 3D CT Reconstruction. Field-Programmable Custom Computing Machines (FCCM).

[6] Choi, Y., & Cong, J. (JUNE 2016). Acceleration of EM-Based 3D CT Reconstruction

Using FPGA. IEEE Transactions on Biomedical Circuits and Systems, VOL. 10, NO. 3.

[7] F. A. Escobar, X. Chang, and C. Valderrama, \Suitability Analysis of FPGAs for

Heterogeneous Platforms in HPC," IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 2, pp. 600{612, Feb 2016.

63

[8] R. Inta, D. J. Bowman, and S. M. Scott, \The "Chimera": An Off-the-shelf

CPU/GPGPU/FPGA Hybrid Computing Platform," Int. J. Recong. Comput., vol. 2012,

pp. 2:2{2:2, Jan. 2012.

[9] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no.

2, pp. 203{215, Feb 2007.

[10] “Top FPGA companies for 2013," http://sourcetech411.com/2013/04/top-fpga-

companies-for-2013/, Apr 2013, [Online; accessed Jun 28, 2017].

[11] “Arria 10 architecture," https://www.altera.com/products/fpga/arria-series/arria-

10/features.html, 2016, [Online; accessed Jun 28, 2017]

[12] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S.

Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey and evaluation of FPGA

high-level synthesis tools," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 35, no. 10, pp. 1591{1604, Oct 2016.

[13] “Conformant companies," https://www.khronos.org/opencl/,2017, [Online; accessed

Jun 28, 2017].

[14] A. Munshi, “The OpenCL specification 1.2,"

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf, 2012, [Online; accessed

Jun 28, 2017].

64

[15] K. Morris, “The path to acceleration: Altera bets on OpenCL,"

http://www.eejournal.com/archives/articles/20121106-opencl/, Nov 2012, [Online;

accessed Jun 28, 2017].

[16] “OpenCL on FPGAs for GPU programmers,"

http://design.altera.com/openclforward, Acceleware Corp., 2014, [Online; accessed Jun

28, 2017].

[17] E. Rucci, C. Garcia, G. Botella, A. E. D. Giusti, M. Naiouf, and M. PrietoMatias,

\OSWALD: OpenCL SmithWaterman on Altera's FPGA for Large Protein Databases,"

The International Journal of High-Performance Computing Applications, June 2016.

[18] S. O. Settle, “High-performance dynamic programming on FPGAs with OpenCL,"

in Proc. IEEE High Perform. Extreme Comput. Conf.(HPEC), 2013, pp. 1-6.

[19] Li, H. (2017, April 14). ELECTRONIC THESES AND

DISSERTATIONS. Acceleration of Deep Learning on FPGA.Retrieved June 28, 2017,

from http://scholar.uwindsor.ca/etd/5947/

[20] "Intel FPGA SDK for OpenCL best practices guide,"

https://www.altera.com/content/dam/altera-www/global/en US/pdfs/literature/hb/opencl-

sdk/aocl-best-practices-guide.pdf, 12 2016, [Online; accessed Jan 2, 2017].

[21] G. Gan, C. Ma, and J. Wu, Data Clustering Theory, Algorithms, and Applications,

M. T. Wells, Ed. Society for Industrial and Applied Mathematics, 2007.

65

[22] Pangborn, Andrew D., "Scalable data clustering using GPUs" (2010). Thesis.

Rochester Institute of Technology. Accessed from

http://scholarworks.rit.edu/theses/5464, [Online; accessed Jun 2, 2017].

[23] (n.d.). Intel FPGA and SoC. Intel FPGA SDK for OpenCL - Overview. Retrieved

July 1, 2017, from http://www.altera.com/products/design-software/embedded-software-

developers/opencl/overview.html

[24] (n.d.). Nallatech . Nallatech 385 – with Stratix V A7 FPGA.Retrieved July 1, 2017,

from http://www.nallatech.com/store/pcie-accelerator-cards/385-a7/

[25] (n.d.). Nallatech. Nallatech 385A FPGA Accelerator Card.Retrieved July 1, 2017,

from http://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-

cards/nallatech-385a-arria10-1150-fpga/

[26] (n.d.). Intel. Intel® Xeon® Processor E5-2637. Retrieved July 1, 2017, from

http://ark.intel.com/products/64598/Intel-Xeon-Processor-E5-2637-5M-Cache-3_00-

GHz-8_00-GTs-Intel-QPI

[27] (n.d.). Intel. Intel® Xeon® Processor E5-2620. Retrieved July 1, 2017, from

http://ark.intel.com/products/64594/Intel-Xeon-Processor-E5-2620-15M-Cache-2_00-

GHz-7_20-GTs-Intel-QPI

[28] “Watt's up pro power meter specifications, Retrieved July 1, 2017"

https://www.wattsupmeters.com/secure/products.php?pn=0&wai=303&spec=4

[29] Kreiss, T. (2009, January 21). Tom’s Hardware: For The Hardcore PC

Enthusiast. Actual Power Consumption And Current Requirements - How Much Power

66

Does Your Graphics Card Need?. Retrieved July 1, 2017, from

http://www.tomshardware.com/reviews/geforce-radeon-power,2122-6.html

[30] (n.d.). Artificial Intelligence Computing Leadership from NVIDIA. NVIDIA®

Quadro® FX 5800 provides professionals with visual supercomputing from their

desktops delivering results that push visualization beyond traditional 3D. . Retrieved

January 1, 2017, from http://www.nvidia.com/object/product_quadro_fx_5800_us.html

[31] (n.d.). TechPowerUp. NVIDIA GeForce GTX 480 Fermi Review |

techPowerUp. Retrieved July 1, 2017, from

http://www.techpowerup.com/reviews/NVIDIA/GeForce_GTX_480_Fermi/30.html

[32] (2016). ACM Digital Library. Acceleration of k-Means Algorithm Using Altera SDK

for OpenCL. Retrieved from http://dl.acm.org/citation.cfm?id=2964910

[33] (n.d.). Wikipedia, the free encyclopedia. Mean squared error - Wikipedia. Retrieved

July 1, 2017, from http://en.wikipedia.org/wiki/Mean_squared_error

[34] (n.d.). Nallatech - FPGA Accelerated Computing & Datacentric Computing. Intel

Stratix 10 FPGA - Nallatech 520 FPGA Acceleration Card - Nallatech. Retrieved July 1,

2017, from http://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-

cards/nallatech-520-compute-acceleration-card-stratix-10-fpga/

[35] (n.d.). Nallatech - FPGA Accelerated Computing & Datacentric

Computing. Nallatech 510T Compute Acceleration Card - Nallatech. Retrieved July 1,

2017, from http://www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-

cards/nallatech-510t-fpga-computing-acceleration-card/

67

Appendix A: EM-GMM Opencl Kernel Code

//inclusing header
#include "../host/inc/gmm_em.h"

//enabling channel
#pragma OPENCL EXTENSION cl_altera_channels: enable

//-----------------------
// Channel declarations
//-----------------------

////kernel 1: K_M / mstep
channel data_type CH_MEAN [NUM_DIMENSIONS]
 __attribute__((depth(NUM_CLUSTERS)));
channel data_type CH_MEAN1 [NUM_DIMENSIONS]
 __attribute__((depth(NUM_CLUSTERS)));
channel data_type CH_NSUM
 __attribute__((depth(NUM_CLUSTERS)));
channel data_type CH_PROB
 __attribute__((depth(NUM_CLUSTERS)));
channel data_type CH_CONSTANT
 __attribute__((depth(NUM_CLUSTERS)));
channel data_type CH_RINV [NUM_DIMENSIONS*NUM_DIMENSIONS]
 __attribute__((depth(NUM_CLUSTERS)));
channel data_type CH_RINV1 [NUM_DIMENSIONS*NUM_DIMENSIONS]
 __attribute__((depth(NUM_CLUSTERS)));

////K_E1 / estep_1
channel int E2_START;
channel int T_START

//output channels.
#define K_E1_IN_CH_MEAN CH_MEAN1
#define K_E1_IN_CH_PROB CH_PROB
#define K_E1_IN_CH_CONSTANT CH_CONSTANT
#define K_E1_IN_CH_RINV CH_RINV1

//***

//START >> Kernel 1: mstep_1 (calculate: N_sum,mean, prob)
//***

__kernel
__attribute__((task))
void mstep_1(__global data_type * restrict K_sample_DN,
 __global data_type * restrict K_membership)

68

{
 //local storage : N_SUM
 cl_data_type N_SUM = 0.0;

 //local storage : prob
 cl_data_type prob = 0.0;

 //local storage : mean
 data_type local_member [K_M_MEM_BS];
 data_type local_data [K_M_BS];
 //data_type temp_mean_sum;
 data_type local_mean [NUM_DIMENSIONS];

 //printf("\nSTART: MSTEP\n");
 for (int m = 0; m < NUM_CLUSTERS; m++)
 {
 //-------------------
 //initializing value
 //-------------------
 N_SUM = 0.0;
 prob = 0.0;

 //-------------------------
 //Calculation: N_SUM, MEAN
 //-------------------------
 for (int nb = 0; nb < K_M_NB; nb++) //nb = number of blocks
 {
 //---
 //transfer data from Global memory to local memory: membership
 //---
 #pragma unroll K_M_MEM_BS
 for (int bs = 0; bs < K_M_MEM_BS; bs++) //
 {local_member [bs] = K_membership[m * NUM_OF_POINTS + nb *
K_M_BS + bs];} //read membership[M,N]

 //-------------------
 //Calculation: N_SUM
 //-------------------
 #pragma unroll K_M_LU_NSUM
 for (int bs = 0; bs < K_M_MEM_BS; bs++)
 {N_SUM += local_member[bs];}

 //--
 //temporarily summing membership and sample_DN data for mean
 //---
 for (int d = 0; d < NUM_DIMENSIONS; d++)
 {
 //--
 //transfer data from Global memory to local memory:
sample_DN
 //--

69

 #pragma unroll K_M_BS // K_M_BS (check gmm_em.h)
 for (int k = 0; k < K_M_BS; k++) //bs = block size
 {local_data [k] = K_sample_DN [d * NUM_OF_POINTS + nb *
K_M_BS + k];}

 //--
 //temporarily summing membership and sample_DN data for
mean
 //---
 #pragma unroll K_M_LU_MEAN // K_M_BS (check
gmm_em.h)
 for (int j = 0; j < K_M_BS; j++)
 {local_mean[d] += local_data [j] * local_member[j];}

 }

 } //end nb loop

 //--------------------------
 // Mean/average calculation
 //--------------------------
 #pragma unroll K_M_LU_MEAN1
 for (int dm = 0; dm < NUM_DIMENSIONS; dm++)
 {
 local_mean[dm] = local_mean[dm] / N_SUM;

 write_channel_altera(CH_MEAN[dm], local_mean [dm]);

 }

 //----------------------
 //write to channel: NSUM
 //----------------------
 write_channel_altera(CH_NSUM, N_SUM);

 //---------------------------------------
 //Calculation and write to channel: prob
 //---------------------------------------
 prob = N_SUM / NUM_OF_POINTS;
 write_channel_altera(CH_PROB, prob);

 } //mloop

} //end of kernel

70

//***

//END >> Kernel 1: mstep_1 (calculate: N_sum,mean, prob)
//***

//***

//START >> Kernel 2: mstep_cov (calculate: covariance)
//***

__kernel
__attribute__((task))
void mstep_cov(__global data_type * restrict K_sample_ND,
 __global data_type * restrict K_membership)
{

 cl_data_type N_SUM = 0.0;
 data_type local_member [K_M_MEM_BS];
 data_type local_data [K_M_BS];
 data_type local_mean [NUM_DIMENSIONS];

 //local storage : Covariance
 data_type local_R [NUM_DIMENSIONS * NUM_DIMENSIONS];
 data_type local_sample [NUM_DIMENSIONS];

 //printf("\nSTART: MSTEP\n");
 for (int m = 0; m < NUM_CLUSTERS; m++)
 {
 //------------------------
 //read from channel: mean
 //------------------------
 #pragma unroll K_LU_CH_MEAN
 for (int i = 0; i <NUM_DIMENSIONS; i++)
 {
 local_mean [i] = read_channel_altera(CH_MEAN[i]);
 }

 N_SUM = read_channel_altera(CH_NSUM);

 #pragma unroll K_M_LU_I
 for (int z = 0; z < INIT_FACTOR; z++)
 {
 local_R [z] = 0.0;
 local_R [INIT_FACTOR + z] = 0.0;
 }

 //------------------------
 //Calculation: Covariance

71

 //------------------------
 for (int nb = 0; nb < K_M_MEM_NB; nb++) //nb = number of blocks
 {
 //---
 //transfer data from Global memory to local memory: membership
 //---
 #pragma unroll K_M_MEM_BS
 for (int bs = 0; bs < K_M_MEM_BS; bs++) //bs = block size
 {local_member [bs] = K_membership[m * NUM_OF_POINTS + nb *
K_M_BS + bs];} //read membership[M,N]

 for (int bs = 0; bs < K_M_MEM_BS; bs++) //bs = block size
 {
 //--
 //transfer data from Global memory to local memory:
sample_DN
 //--
 #pragma unroll K_M_LU_COV_L1
 for (int ns = 0; ns < NUM_DIMENSIONS; ns++)
 {
 local_sample[ns] = K_sample_ND[(K_M_MEM_BS *
NUM_DIMENSIONS * nb) + (bs * NUM_DIMENSIONS) + ns];
 }

 //--

 //Calculation: Covariance > summing membership , mean and
sample_ND data for covariance / sum of n points
 //--

 #pragma unroll K_M_LU_COV_L2
 for (int i = 0; i < NUM_DIMENSIONS; i++)
 {
 #pragma unroll K_M_LU_COV_L3
 for (int j = 0; j < NUM_DIMENSIONS; j++)
 {
 local_R [i * NUM_DIMENSIONS + j] +=
(cl_data_type)((local_sample[i]-local_mean[i]) * (local_sample[j]-local_mean[j]) *
local_member[bs] / (cl_data_type) N_SUM);

 } //j loop=d
 } //i loop = d
 } //bs loop
 } //nb loop

 //-----------------------
 //write to channel: RINV
 //-----------------------
 #pragma unroll K_M_RINV
 for (int j = 0; j < K_M_RINV; j++)
 {

72

 write_channel_altera(CH_RINV[j], local_R[j]);
 write_channel_altera(CH_RINV[K_M_RINV + j], local_R[K_M_RINV
+ j]);
 }

 //-----------------------
 //write to channel: mean
 //-----------------------
 #pragma unroll K_LU_CH_MEAN
 for (int i = 0; i <NUM_DIMENSIONS; i++)
 {
 write_channel_altera(CH_MEAN1[i], local_mean [i]);
 }

 } //m loop
} //end kernel

//***

//END >> Kernel 2: mstep_cov (calculate: covariance)
//***

//***

//START >> Kernel 3: mstep_inv (calculate: inverse covariance)
//***

__kernel
__attribute__((task))
void mstep_inv()

{
 //local storage : Covariance
 data_type local_R [NUM_DIMENSIONS * NUM_DIMENSIONS];

 //local storage : Inverse Covariance
 data_type temp_sum_determinant = 0.0;
 data_type x = 0.0;
 data_type y = 0.0;
 data_type sum_U = 0.0;
 data_type sum_L = 0.0;
 data_type sum_final = 0.0;

 //local storage : constant
 data_type const_local;

73

 //printf("\nSTART: MSTEP\n");
 for (int m = 0; m < NUM_CLUSTERS; m++)
 {
 //---------------------
 //read from channel: R
 //---------------------
 #pragma unroll K_M_RINV
 for (int j = 0; j < K_M_RINV; j++)
 {
 local_R[j] = read_channel_altera(CH_RINV[j]);
 local_R[K_M_RINV + j] = read_channel_altera(CH_RINV[K_M_RINV
+ j]);
 }

 //--------------------------------
 //Calculation: Inverse Covariance
 //--------------------------------
 ///////////////////
 // normalize row 0
 ///////////////////
 //#pragma unroll K_M_LU_ICOV_L1
 #pragma unroll
 for (int i=1; i < NUM_DIMENSIONS; i++)
 {local_R[i] /= local_R[0];}

 ///////////////////
 //LU decomposition
 //////////////////
 //#pragma unroll K_M_LU_ICOV_L3
 for (int i=1; i < NUM_DIMENSIONS; i++)
 {
 //#pragma unroll K_M_LU_ICOV_L2
 #pragma unroll
 for (int j=i; j < NUM_DIMENSIONS; j++)
 { // do a column of L
 sum_L = 0.0;

 //#pragma unroll K_M_LU_ICOV_L4
 #pragma unroll
 for (int k = 0; k < i; k++)
 {sum_L += local_R[j*NUM_DIMENSIONS+k] *
local_R[k*NUM_DIMENSIONS+i];}

 local_R[j*NUM_DIMENSIONS+i] =
local_R[j*NUM_DIMENSIONS+i] - sum_L;

 } //j loop

 if (i == NUM_DIMENSIONS-1) continue;

74

 //#pragma unroll K_M_LU_ICOV_L2
 #pragma unroll
 for (int j=i+1; j < NUM_DIMENSIONS; j++)
 {// do a row of U
 sum_U = 0.0;

 //#pragma unroll K_M_LU_ICOV_L4
 #pragma unroll
 for (int k = 0; k < i; k++)
 {sum_U +=
local_R[i*NUM_DIMENSIONS+k]*local_R[k*NUM_DIMENSIONS+j];}

 local_R[i*NUM_DIMENSIONS+j] =
(local_R[i*NUM_DIMENSIONS+j]-sum_U) / local_R[i*NUM_DIMENSIONS+i];
 }// j loop
 } //iloop

 temp_sum_determinant = 0.0;

 /////////////////////////
 //calculate determinate
 ////////////////////////

 #pragma unroll K_M_LU_ICOV_L2
 for(int i=0; i<NUM_DIMENSIONS; i++)
 { temp_sum_determinant += logf(fabs(local_R[i*NUM_DIMENSIONS+i])); }

 //--
 //Calculation and write to channel: constant
 //--
 const_local = (cl_data_type)(-(NUM_DIMENSIONS * 0.5 * log(2.0 * PI)) - (0.5
* temp_sum_determinant));
 write_channel_altera(CH_CONSTANT, const_local);

 ////////////
 //invert L
 ///////////
 //#pragma unroll K_M_LU_ICOV_L3
 #pragma unroll
 for (int i = 0; i < NUM_DIMENSIONS; i++) // invert L
 {
 //no pragma unroll: compiler error
 for (int j = i; j < NUM_DIMENSIONS; j++)
 {
 x = 1.0;

 if (i != j)
 {
 x = 0.0;

75

 //no pragma unroll: compiler error
 for (int k = i; k < j; k++)
 {x -=
local_R[j*NUM_DIMENSIONS+k]*local_R[k*NUM_DIMENSIONS+i];}
 }
 local_R[j*NUM_DIMENSIONS+i] = x /
local_R[j*NUM_DIMENSIONS+j];
 } //j loop
 }

 /////////////
 // invert U
 ////////////
 //#pragma unroll K_M_LU_ICOV_L3
 #pragma unroll
 for (int i = 0; i < NUM_DIMENSIONS; i++)
 {
 //no pragma unroll: compiler error
 for (int j = i; j < NUM_DIMENSIONS; j++)
 {
 if (i == j) continue;

 y = 0.0;

 //no pragma unroll: compiler error
 for (int k = i; k < j; k++)
 {y += local_R[k*NUM_DIMENSIONS+j]*((i==k) ? 1.0 :
local_R[i*NUM_DIMENSIONS+k]);}

 local_R[i*NUM_DIMENSIONS+j] = -y;
 } //j loop
 }

 //-----------------
 // final inversion
 //-----------------
 //#pragma unroll K_M_LU_ICOV_L3
 #pragma unroll
 for (int i = 0; i < NUM_DIMENSIONS; i++)
 {
 //#pragma unroll K_M_LU_ICOV_L2
 #pragma unroll
 for (int j = 0; j < NUM_DIMENSIONS; j++)
 {
 sum_final = 0.0;

 //no pragma unroll: compiler error
 for (int k = ((i>j)?i:j); k < NUM_DIMENSIONS; k++)
 {sum_final +=

76

((j==k)?1.0:local_R[j*NUM_DIMENSIONS+k])*local_R[k*NUM_DIMENSIONS+i];}

 local_R[j*NUM_DIMENSIONS+i] = sum_final;
 }
 }

 //-----------------
 //write to channel
 //-----------------
 #pragma unroll K_M_RINV
 for (int j = 0; j < K_M_RINV; j++)
 {
 write_channel_altera(CH_RINV1[j], local_R[j]);
 write_channel_altera(CH_RINV1[K_M_RINV + j],
local_R[K_M_RINV + j]);
 }

 } // mloop
} // end kernel

//***

//END >> Kernel 3: mstep_inv (calculate: inverse covariance)
//***

//**
//START >> Kernel 4: estep_1 (calculating numerator of Expectation)
//**

#define PROB (1.0/(data_type)NUM_CLUSTERS)

__kernel
__attribute__((task))
void estep_1(__global data_type* restrict k_sample_ND,
 __global data_type* restrict k_e1_membr)
{
 //local storage
 cl_data_type sample_local [NUM_DIMENSIONS];
 cl_data_type Rinv_local [NUM_DIMENSIONS * NUM_DIMENSIONS];
 data_type mean_local [NUM_DIMENSIONS];
 cl_data_type prob_local = 0.0;
 cl_data_type constant_local = 0.0;

77

 int e2_start = 0;

 cl_data_type temp_membership = 0.0;
 cl_data_type membership = 0.0;
 int index = 0; //indexing channel

 //block/global index
 //uint gid_m = get_global_id(0);

 //local index
 //uint lid_d = get_local_id(0);

 //printf("\n\nestep_1\n\n");
 for (int m =; m < NUM_CLUSTERS ; m++)
 {
 //---
 //transfer data from channel to local memory
 //---

 //transfer data from channel: mean
 #pragma unroll K_LU_CH_MEAN
 for (int i = 0; i <NUM_DIMENSIONS; i++)
 {mean_local[i] = read_channel_altera(K_E1_IN_CH_MEAN[i]);}

 //transfer data from channel: Rinv
 #pragma unroll K_M_RINV
 for (int j = 0; j <K_M_RINV; j++)
 {
 Rinv_local[j] = read_channel_altera(K_E1_IN_CH_RINV[j]);
 Rinv_local[K_M_RINV + j] =
read_channel_altera(K_E1_IN_CH_RINV[K_M_RINV + j]);
 }

 //transfer data from channel: prob
 prob_local = read_channel_altera(CH_PROB);

 //transfer data from channel: constants
 constant_local = read_channel_altera(CH_CONSTANT);

 //-----------------------
 //calculation: Numerator
 //-----------------------

 //for (int n = gid_n; n <= gid_n; n++)
 for (int n = 0; n < NUM_OF_POINTS; n++)

78

 {
 //--
 //transfer data from global memory: sample_ND
 //--
 #pragma unroll K_E1_LU_S_ND
 for (int s = 0; s <NUM_DIMENSIONS; s++)
 {
 sample_local [s] = k_sample_ND [n * NUM_DIMENSIONS +
s];
 }

 //------------
 //calculation
 //------------
 membership = 0.0;

 //membership [n] = 0.0;
 #pragma unroll K_E1_LU_L1
 for (int i = 0; i < NUM_DIMENSIONS; i++)
 {
 temp_membership = 0.0;

 #pragma unroll K_E1_LU_L2
 for (int j = 0; j < NUM_DIMENSIONS; j++)
 {temp_membership += (sample_local[i] - mean_local[i])
* (sample_local[j] - mean_local[j]) * Rinv_local[i * NUM_DIMENSIONS + j];} //j loop=d
 }

 membership = (cl_data_type)(-0.5 * temp_membership + constant_local
+ log(prob_local));

 //---
 //transfer data from local memory to Global memory: membership
 //---
 k_e1_membr [m * NUM_OF_POINTS + n] = membership;

 //-----------------
 //start kernel K_2
 //-----------------
 if (m == (NUM_CLUSTERS-1) && n == ((NUM_OF_POINTS-1)/8))
 {
 e2_start = 1;
 write_channel_altera(E2_START, e2_start);
 }
 //printf("E1: e2start=%d\n",e2_start);

79

 }//n loop

 } // m loop

}//end kernel

//**
//END >> Kernel 4: estep_1 (calculating numerator of Expectation)
//**

//**
//START >> Kernel 5: estep_2 (Final calculation Expectation)
//**

__kernel
__attribute__((task))
void estep_2(__global data_type * restrict k_e2_membr,
 __global data_type* restrict k_e1_membr)
{
 //local storage
 //__local cl_data_type membership_local1 [NUM_CLUSTERS];
 cl_data_type membership_local [NUM_CLUSTERS];
 cl_data_type maximum = 0.0;
 cl_data_type denominator_sum = 0.0;
 int t_start = 0;
 int e2_start = 0;

 e2_start = read_channel_altera(E2_START);

 //printf("\nSTART: ESTEP2\n");
 for (int n = 0; n < NUM_OF_POINTS; n++)
 {
 //---
 //transfer data from global memory to local memory
 //---

 if(e2_start == 1)
 {
 #pragma unroll K_E2_LU_L1
 for (int j = 0; j <NUM_CLUSTERS; j++)
 {
 membership_local[j] = k_e1_membr[j * NUM_OF_POINTS +
n];

 }

80

 }

 //mem_fence(CLK_CHANNEL_MEM_FENCE); //Not sure if need this

 //-------------------------
 //calculation: Denomerator
 //-------------------------

 // find the maximum likelihood for this event
 //max = h_memberships[n];
 maximum = 0.0;

 #pragma unroll K_E2_LU_L1
 for (int ml = 1; ml < NUM_CLUSTERS; ml++)
 {maximum = (cl_data_type)fmax (membership_local[0],
membership_local[ml]);}

 // Compute P(x_n), the denominator of the probability (sum of weighted
likelihoods)
 denominator_sum = 0.0;

 #pragma unroll K_E2_LU_L1
 for (int ds = 0; ds < NUM_CLUSTERS; ds++)
 {denominator_sum += (cl_data_type)exp(membership_local[ds] - maximum);}

 denominator_sum = maximum + (cl_data_type)log(denominator_sum);

 // Divide by denominator, also effectively normalize probabilities
 // exp(log(p) - log(denom)) == p / denom
 #pragma unroll K_E2_LU_L1
 for (int m = 0; m < NUM_CLUSTERS; m++)
 {membership_local[m] = (cl_data_type)exp(membership_local[m] -
denominator_sum);
 }

 //---
 //transfer data from local memory to global memory/channel
 //--

 //printf("ESTEP2:DDR\n");
 #pragma unroll K_E2_LU_L1
 for (int m = 0; m < NUM_CLUSTERS; m++)
 {
 k_e2_membr[n * NUM_CLUSTERS + m] =
membership_local[m];

 if (m == (NUM_CLUSTERS-1) && n ==

81

((NUM_OF_POINTS-1)))
 {
 t_start = 1;
 write_channel_altera(T_START, t_start);
 }
 }

 //wait for the entire block to be loaded
 //barrier(CLK_GLOBAL_MEM_FENCE);

 } //n loop = NUM_OF_POINTS

 //printf("\nEND: ESTEP2\n");
}//end kernel

//**
//END >> Kernel 5: estep_2 (Final calculation Expectation)
//**

//**
//START >> Kernel 6: transpose (transpose membership)
//**

__kernel
__attribute__((task))
//__attribute__((num_compute_units(4)))
//__attribute__((num_simd_work_items(NUM_CLUSTERS)))
void transpose(__global data_type * restrict K_membership,
 __global data_type* restrict k_e2_membr)
{

 int t_start = 0;
 //printf("T: tstart = %d", t_start);
 t_start = read_channel_altera(T_START);
 //printf("T: tstart = %d", t_start);
 if (t_start == 1)
 {
 //printf("Transpose\n");
 #pragma unroll 2
 for (int m = 0; m < NUM_CLUSTERS ; m++)
 {
 #pragma unroll 8
 for (int n = 0; n < NUM_OF_POINTS ; n++)
 {K_membership[m * NUM_OF_POINTS + n] = k_e2_membr[n
* NUM_CLUSTERS + m];}
 }

82

 }

}

//**
//END >> Kernel 6: transpose (transpose membership)
//**

83

Vita Auctoris

NAME: Mohammad Abdul Momen

PLACE OF BIRTH: Dhaka, Bangladesh

YEAR OF BIRTH: 1993

EDUCATION: Bachelor of Science in
Electrical & Electronic Engineering (2011-2015)
North South University, Dhaka, Bangladesh.

 Master of Applied Science in
Electrical Engineering (2016-2017)
Department of Electrical and Computer Engineering,
University of Windsor, Windsor, ON, Canada.

	FPGA-Based Acceleration of Expectation Maximization Algorithm using High Level Synthesis
	Recommended Citation

	Author's Declaration of Originality
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1 Introduction
	1.1. Motivation
	1.2. Objectives
	1.3. Thesis Outline

	Chapter 2 High Level Synthesis for FPGAs
	2. FPGA Architecture
	2.2. High-Level Synthesis
	2.3. Overview of OpenCL
	2.3.1. Platform Model
	2.3.2. Execution Model
	2.3.3. Memory Model
	2.3.4. Programming Model

	2.4. Intel FPGA SDK for OpenCL
	2.4.1. Overview
	2.4.2. Design Flow
	2.4.3. Optimization Strategies in Intel FPGS SDK for OpenCL
	2.4.3.1. Parallelism Strategies
	2.4.3.2. Throughput-based Optimizations
	2.4.3.3. Optimizing Data Access/Transfer

	2.5. Summary

	Chapter 3 Expectation Maximization
	3. Background
	1. Previous Work on Accelerating EM-GMM
	1. Acceleration on GPUs
	3.2.2. Acceleration on FPGAs

	3.3. Summary

	Chapter 4 Optimized EM-GMM OpenCL FPGA Implementation
	1. EM-GMM OpenCL Model for FPGA
	4.1.1. Initialization
	4.1.2. M-Step
	4.1.3. Pre-Calculation E-Step
	1. E-Step

	4.2. Optimization for different Problem Sizes
	4.3. Summary

	Chapter 5 Experimental Results
	5. Experimental Setup
	5.2. Dataset
	5.3. Power Measurement
	5.4. Performance analysis
	5.4.1. Performance Results
	5.4.2. Speedup
	1. Throughput
	5.4.2.1. Throughput/Power

	5.4.3. FPGA Resource Utilization
	5.4.4. Performance Comparison Between CPU and FPGA in Relation to FPGA Resource Utilization
	5.4.5. Comparison with Previous EM Research

	5.5. Verification of Results
	5.6. Summary

	Chapter 6 Conclusion
	6. Future Work

	References
	Appendix A: EM-GMM Opencl Kernel Code
	Vita Auctoris

