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Université de Bretagne-Sud

W. Altenhof
Department of Mechanical, Automotive & Materials Engineering

A. Alpas
Department of Mechanical, Automotive & Materials Engineering

V. Stoilov
Department of Mechanical, Automotive & Materials Engineering

S. F. Golovashchenko, Special Committee Member

K. P. Boyle, Special Committee Member

D. E. Green, Advisor
Department of Mechanical, Automotive & Materials Engineering

September 6, 2017



Declaration of Co-Authorship and Previ-

ous Publication

I Co-Authorship Declaration

I hereby declare that this dissertation incorporates material that is the result

of joint research undertaken in collaboration with Dr. Sergey Golovashchenko,

Dr. Kevin P. Boyle, Dr. Javad Samei, Dr. Amir Hassannejadasl, Mr. Arash

Jenab, Mr. Dan Mario Vasilescu, Mr. Yang Song, and Mr. Brent McCallum

under the supervision of Prof. Daniel E. Green, University of Windsor. In

addition, Dr. Javad Samei and Mr. Brent McCallum provided the material

characterization of DP600 steel sheets, and Mr. Dan Mario Vasilescu and Mr.

Yang Song collaborated in performing rolling with subsequent uniaxial tension

tests. In all cases, the key ideas, the primary contributions, simulations and data

analysis and interpretations were performed by the author of this dissertation.

The contributions of the co-authors were primarily focused on the provision of

the study and suggesting possible directions. Results related to this research are

reported in Chapters 4 through 7, inclusively.

I am aware of the University of Windsor’s Senate Policy on Authorship and I

certify that I have properly acknowledged the contributions of the other researchers

to my dissertation, and I have obtained written permission from my co-authors

to include the above materials in my dissertation. I certify that, with the above

qualification, this dissertation, and the research to which it refers to, is the product

of my own work.

II Declaration of Previous Publication

This dissertation includes 3 original papers that have been previously pub-

lished/submitted for publication in peer reviewed journals, as follows:

iii



Dissertation
Chapter

Publication title/full citation Publication Status

Chapter 4 I. S. Sarraf, A. Jenab, K. P. Boyle, and
D. E. Green. “Damage evolution and void
coalescence in finite-element modelling of
DP600 using a modified Rousselier model”
Materials & Design 117 (2017): 267-279.

Published

Chapter 5 I. S. Sarraf, D. E. Green, and A. Jenab.
“Damage evolution and void coalescence in
finite-element modelling of DP600 during
uniaxial tensile testing using a modified
Rousselier model”

Submitted, Jul. 20,
2017, Engineering
Fracture Mechanics

Chapter 6 I. S. Sarraf, D. E. Green, D. M.
Vasilescu, and Y. Song. “Numerical analy-
sis of damage evolution and formability of
DP600 sheet with an extended Rousselier
damage model”

Submitted, May. 8,
2017, International
Journal of Solids and
Structures

I certify that I have obtained a written permission from the copyright owners to

include the above published materials in my dissertation. I certify that the above

material describes work completed during my registration as graduate student at the

University of Windsor.

I declare that, to the best of my knowledge, my dissertation does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

dissertation, published or otherwise, are fully acknowledged in accordance with the

standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of

the Canada Copyright Act, I certify that I have obtained a written permission from

the copyright owners to include such materials in my dissertation.

I declare that this is a true copy of my dissertation, including any final revisions, as

approved by my dissertation committee and the Graduate Studies office, and that this

iv



dissertation has not been submitted for a higher degree to any other University or

Institution.

v



Abstract

Advanced high strength steels (AHSS), such as dual phase (DP) and transformation

induced plasticity (TRIP) steels, offer high ductility, formability, and strength, as

well as high strength-to-weight ratio and improved crash resistance. Dual phase steels

belong to a family of high strength grades which consist of martensite, responsible

for strengthening, distributed in a ductile ferrite matrix which accommodates the

deformation throughout the forming process. It has been shown that the predominant

damage mechanism and failure in DP steels depends on the ferrite and martensite

grain sizes and their morphology, and can range from a mixture of brittle and ductile

rupture to completely ductile rupture in a quasi-static uniaxial tension test. In this

study, a hybrid finite element cellular automata model, initially proposed by Anton

Shterenlikht (2003), was developed to evaluate the forming behaviour and predict

the onset of instability and damage evolution in a dual phase steel. In this model,

the finite element constitutive model is used to represent macro-level strain gradients

and a damage variable, and two different cell arrays are designed to represent the

ductile and brittle fracture modes in meso-scale. In the FE part of the model, a

modified Rousselier ductile damage model is developed to account for nucleation,

growth and coalescence of voids. Also, several rate-dependent hardening models were

developed and evaluated to describe the work hardening flow curve of DP600. Based

on statistical analysis and simulation results, a modified Johnson-Cook (JC) model

and a multiplicative combination of the Voce-modified JC functions were found to be

the most accurate hardening models.

The developed models were then implemented in a user-defined material subroutine

(VUMAT) for ABAQUS/Explicit finite element simulation software to simulate uniax-

ial tension tests at strain rates ranging from 0.001s-1to 1000s-1, Marciniak tests, and
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electrohydraulic free-forming (EHFF). The modified Rousselier model could success-

fully predict the dynamic behaviour, the onset of instability and damage progress

in DP600 tensile test specimens. Also, the forming limit curve (FLC) as well as the

final damage geometry in DP600 Marciniak specimens was successfully predicted and

compared with experiments. A hybrid FE+CA model was utilized to predict the

major fracture mode of DP600 and DP780 sheet specimens under different deformation

conditions. This hybrid model is able to predict quasi-cleavage fracture in ultra-fine

and coarse-grained DP600 and DP780 at low and high strain rates. The numerical

results showed the capabilities of the proposed model to predict that higher marten-

site volume fraction, greater ferrite grain sizes and higher strain rates promote the

brittle fracture mechanism whereas finer grain sizes and higher temperature alter the

dominant fracture mechanism to ductile mode.
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Chapter 1

Introduction

1.1 Dual phase steels

The automotive industry is constantly challenged to decrease fuel consumption, improve

safety, reduce weight and enhance the crash response of auto-body structures [1, 2].

Advanced high-strength steels (AHSS) have been developed to fulfil these requirements

and be used for automotive structural components in order to improve manufactura-

bility, durability and crash-worthiness without corresponding weight increases [3].

Among all AHSS categories, dual phase (DP)-type steels and transformation-induced

plasticity (TRIP)-type steels are the most widely-used. The term dual-phase was first

coined by Hayami and Furukawa as a family of high-strength cold-rolled steels [4].

Dual phase steels are low carbon micro-alloyed steels that usually consist of 70-90

Vol% of ductile ferrite matrix and around 5-30 vol% of dispersed hard martensite.

Usually, small amounts of other phases such as bainite, pearlite or retained austenite

can possibly be found in the DP steel microstructure and can affect their physical and

mechanical properties [5, 6]. This composite microstructure can be achieved through

the special heat treatment regime that consists of inter-critical annealing in the α + γ

with subsequent quenching [1].
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The mechanical and forming properties of DP steels, in terms of high ductility and

strength, are the direct result of their composite-like microstructure where the ductile

ferrite matrix contributes to good cold formability and the hard martensite operates

as the strengthening element. The correct proportion of each of the two phases leads

DP steels to exhibit great mechanical characteristics such as continuous yielding, high

strain hardening rates at low strain values and large uniform elongation [7–11], which

results in their increasing application for auto-body members. The application of

various grades of DP steels for different components in a car, such as bumper beam,

A-frame reinforcement, roof bow, B-pillar reinforcement, rear side member, front floor

cross member and floor side reinforcement is shown in Fig. 1.1.

Figure 1.1: Application of DP steels in a typical automobile [12, 13]

To evaluate the forming and failure behaviour of DP steels, different tests have been

carried out at various strain rates ranging from quasi static conditions (0.001 s-1) to

high strain rates (5000 s-1 using a split Hopkinson bar [14, 15]) and strain paths using

different deformation processes and test procedures [16, 17]. Based on obtained exper-

imental results, different constitutive hardening functions and damage models, either
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phenomenological or micro-mechanical models, have been developed and calibrated to

be implemented in commercial finite element simulation software such as ABAQUS or

LS-Dyna for formability analysis and for crash simulations.

Due to the microstructure of DP steels and the interaction of ferrite and martensite

grains during a deformation process, four different mechanisms have been identified

for fracture initiation: (a) martensite cracking, (b) decohesion at ferrite-martensite

interfaces, (c) decohesion at ferrite-ferrite interfaces, and (d) decohesion at the interface

between two adjacent martensite grains [6, 18–20]. The main mechanisms of fracture

can alter from a fully ductile fracture mode with dimples and voids to a completely

brittle fracture mode with well-defined facets and cleavage steps on these facets [21].

Nevertheless, conventional numerical approaches and FE simulation software are not

able to distinguish these mechanisms that are directly related to the microstructural

properties of DP steels. Accordingly, new approaches or models should be employed

to fill this gap and take microstructural properties into account.

1.2 Hybrid finite element cellular automata method

The finite element method (FEM) is one of the most widely-used approaches to predict

the stress, strain and temperature distribution, deformation history and damage

accumulation under a specific applied force or forming process and evaluate the

forming and failure behaviour of materials. The accuracy of a FE simulation of a

sheet metal forming process is directly dependent on the constitutive material model

which describes the elasto-plastic behaviour with a hardening function, i.e. true

stress-strain flow curve, and the contact condition. Therefore, different factors should

be evaluated to choose the most accurate and suitable constitutive material model

for a FE sheet metal forming analysis. Moreover, since post-uniform deformation

commences by the formation of a small diffuse or localized necking, a quantitative

prediction of the limiting strain therefore requires assessment of both necking and

failure. It is shown that there are two major sources that contribute to localization:

(1) the microstructure of the material such as second phase particles, grain morphology
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and surface defects [22–24] and (2) the constitutive behaviour in terms of hardening,

softening and strain-rate sensitivity [25, 26].

As described by Shterenlikht [27], the main problem in conventional finite element

analysis software is that a FE is both a material and a structural unit simultaneously.

Therefore, they fail to address the micro-scale microstructural features and properties

in evaluating the damage mechanisms in non-homogeneous materials. On the other

hand, large numbers of small finite elements are needed to analyse the damage

behaviour and fracture propagation under a certain stress state which results in high

computational cost. Determining the size of elements, to correctly represent the

stress and strain gradients, in the refined meshed region strongly depends on the

nature of possible fracture mechanism due to the microstructural features present in

a material. This makes determining the size scale of finite elements difficult when

simulating the behaviour of multi-phase materials since the finite element mesh in front

of a crack tip should be highly refined due to the physical nature of brittle damage

mechanism whereas the element size for evaluating the ductile fracture mode is a

function of spacing between microvoids or large inclusions which is considerably larger

than that required for evaluating brittle fracture. The only solution in a conventional

FE simulation is to select a compromise mesh size [27, 28]. The main approach for

solving these problems is to separate the material and microstructural properties from

the mechanical properties and move them to another entity. Accordingly, different

numerical models have been established and developed based upon digital material

representation to take the microscale features of different materials into account in

the simulation of various forming processes [6, 29–31].

Although the combination of cellular automata and FE has been used for solidification

or recrystallization of materials, Beynon et al. [32] and Shterenlikht [27, 28] were

the first to utilize it for evaluating forming and damage behaviour of steels. In this

model, the microstructural properties of the material is moved from the finite elements

to an appropriate number of cells in two independent cell arrays, responsible for

ductile and brittle fracture mechanisms. Therefore, the FE mesh is employed to

represent the macro-level strain and stress tensors and damage variables, and the

cellular automata arrays with independent and desired size scales are utilized to
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analyse the microstructural response of the material. In this hybrid (concurrent) finite

element-cellular automata model, the results of different parallel scales are transferred

to each other during each simulation time step. The main advantage of this model is

its capabilities to simulate forming and damage behaviour in a multi-scale domain so

that complex deformation states and their influences on the fracture initiation and

propagation can be assessed [6].

1.3 Objectives of the research

The main objective of this research is to investigate, develop and modify micro-

structurally based models to predict the onset of strain localization and fracture,

and implement the new material model in a user-defined material subroutine for a

commercial finite element simulation software. The model developed in this study is a

combination of finite element analysis method and cellular automata, and has been

implemented in a user material subroutine (VUMAT) that is used in ABAQUS/Explicit

FE simulation software. As shown in Fig. 1.2, the principal steps in development of

the FE model are to:

• conduct a comprehensive review of various micro-mechanical and phenomenolog-

ical constitutive damage models, hardening functions to describe the dynamic

behaviour of the material, void nucleation functions and void coalescence criteria,

• calculate the coefficients of different strain- or strain rate-dependent hardening

functions using an appropriate regression method and advanced optimization

techniques, as well as utilizing statistical analysis and other methods to evaluate

the goodness of the fit and the ability of each existing model and newly developed

function to predict the hardening behaviour of the material,

• investigate the role of the constitutive damage model parameters on the flow

curve and calibrate them based on different rate-dependent hardening functions,
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• implement complementary functions and criteria, such as void nucleation func-

tions and void coalescence criteria, in the model to develop a complete constitutive

damage model,

• evaluate the forming and damage behaviour of DP600 subjected to a wide range

of testing and deformation conditions, such as uniaxial tension at different strain

rates ranging from 0.001 s-1 to 1000 s-1, Marciniak tests, and electro-hydraulic

forming (EHF) of laboratory-scale specimens,

• evaluate the capability and performance of the developed damage model in

predicting the onset of necking and fracture in a range of metal forming processes,

including electrohydraulic forming.

FE model 

Hardening 
functions 

Void 
nucleation 
functions 

Void 
coalescenc
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Void growth 
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Damage 
model

𝜎 = 𝑓 𝜀
𝜎 = 𝑓 𝜀 , ሶ𝜀

𝜎 = 𝑓 𝜀 , ሶ𝜀 , 𝑇

Constant

Linear

Controlled 

Global and 

local strength

Weakest link 

Accelerating 

the damage

Rousselier 

ductile damage 

model

Void 

coalescence 

criteria 

Figure 1.2: Implementing different functions and criteria in the finite element scale
constitutive model

The principal goals of this research for developing a hybrid finite element-cellular

automata model are to:

• develop a CA model that can take some of the microstructural features into

account to evaluate the dominant fracture mode in dual phase steels,
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• identify the role of microstructural features in the damage behaviour of dual

phase steels and their contribution to ductile and brittle fracture mechanisms

in a wide range of deformation conditions, such as uniaxial tension at different

strain rates and electro-hydraulic forming (EHF),

• evaluate the capabilities of the developed hybrid model to perform parametric

studies based on process parameters (such as strain, strain rate and temperature)

and microstructural properties (such as the grain size, and the amount and

distribution of martensite).

1.4 Structure of the dissertation

A brief description of the contents of each chapter is presented in the following:

• Chapter 2 presents a brief review of physical and mechanical properties of

dual phase steels, as well as a review of different phenomenological and micro-

mechanical damage models, void nucleation functions and void coalescence

criteria

• Chapter 3 describes the concept of cellular automata, and explains the formu-

lation of the hybrid FE+CA model

• Chapter 4 defines the non-linear regression (NLR)+ Markov chain Monte

Carlo (MCMC) method to calculate the coefficients of the hardening functions.

Moreover, the calibration procedure of the Rousselier damage model and the

effect of rate-dependent hardening functions on the tensile flow behaviour of

DP600, predicted by the Rousselier model is discussed.

• Chapter 5 defines the implementation procedure of void nucleation functions

and void coalescence criteria, and void growth acceleration function in the

Rousselier damage model. The performance of the modified constitutive model

in predicting the tensile behaviour of DP600 along different strain rates is

discussed.
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• Chapter 6 presents the performance of the modified Rousselier damage model

in predicting the quasi-static forming limit curve (FLC) of DP600. In addition,

damage evolution and accumulation at different strain paths and final damage

geometries are investigated.

• Chapter 7 presents and discusses the results of the hybrid FE+CA model

in terms of ductile and brittle damage evolution and the dominant fracture

mechanism for different forming conditions.

• Chapter 8 presents a summary and conclusions of this research as well as some

suggestions for future work.
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Chapter 2

Literature review

2.1 Advanced high strength steel

There is an increasing demand in the automotive industry to reduce both vehicle

weight and gas emissions, and increase fuel efficiency. Therefore, significant effort and

energy have been invested to develop suitable materials which can exhibit excellent

performance in terms of combined high ductility and strength [1, 2]. Automotive

steels can be categorized based upon their metallurgical designation to low strength

steels, e.g. interstitial free (IF) and mild steels, conventional HSS (carbon manganese,

bake hardenable and high-strength, low-alloy steels), ultra-high strength steels (UHSS)

and new advanced high strength steels (AHSS), such as dual phase steels (DP),

transformation induced plasticity (TRIP) steels. The latter grade of steels (AHSS)

offer high strength-to-weight ratio and improved crash resistance [3]. They are complex

and sophisticated materials, carefully designed to have certain multiphase structures

and microstructural properties achieved by precisely controlled heating and cooling

processes. The AHSS family also includes complex-phase (CP), ferritic-bainitic (FB),

martensitic (MS or MART), hot-formed (HF), and twinning-induced plasticity (TWIP).

They show an excellent combination of high strength and ductility, and have great

potential for reducing car weight and improving crash-worthiness [4, 5]. The broad

range of the formability of different grades of steel as a function of their tensile strength
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is shown in Fig. 2.1.

Figure 2.1: Global diagram of total elongation of AHSS grades in comparison with
traditional low-strength and high-strength steels

The main difference between conventional HSS and AHSS relies on their microstructure,

where HSS are often single-phase ferritic steels with a potential for some pearlite, but

AHSS contain a phase other than ferrite or pearlite, such as martensite, bainite or

austenite in adequate quantities to exhibit unique mechanical properties.

2.1.1 Dual phase steel

The use of dual phase (DP) steels is rapidly growing in the automotive industry due

to their superior performance in terms of combined ductility, work hardening rate,

strength-to-weight ratio and crash resistance. Dual phase steels (DP), being low

carbon steels, belong to a family of high strength strip grades which consist of hard

second phase islands (usually martensite) distributed across a ductile ferritic matrix.

Therefore, their microstructure usually consists of 5-30 vol% martensite, responsible for

strengthening the material, distributed in a ductile ferrite matrix which accommodates

the deformation throughout the forming process [6–9]. To obtain such microstructure,

DP steels are intercritically annealed by holding a strip in the ferrite-austenite region

for a period of time, followed by controlled quenching so that austenite transforms to

soft ferrite and hard martensite, shown in Fig. 2.2 [10–12]. Martensite carbon content

(Cm) can be determined via mass balance calculation between the carbon content of
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the DP steel (Cc), carbon content of ferrite (Cf ) and martensite volume fraction (fm)

as shown in Eq. 2.1.

Cm =
Cc − Cf (1− fm)

fm
(2.1)

Figure 2.2: Schematic diagram of heat treatment methods to obtain dual phase steels
(A: austenite, F: ferrite, M: martensite, Ac1: austenite formation temperature, and
Ac3: ferrite to austenite transformation completion temperature) [12]

Changing the mentioned thermomechanical process will result in the production of

various grades of dual phase steels with different microstructural properties in terms of

martensite volume content and morphology, ferrite grain size (as shown in Fig. 2.3-2.4)

and mechanical properties [7, 9, 13]. In addition to ferrite and martensite, a small

amount of retained austenite may exist in DP steels which reduces the amount of

martensite volume fraction. The effect of ferrite and martensite content and their

morphology on the mechanical properties and deformation behaviour of DP steels have

been extensively studied by different researchers [14–19]. It is shown that the ferrite

is continuous for many DP steel grades up to DP780, however, when the martensite

volume fraction exceeds 50%, the ferrite becomes discontinuous and martensite islands

tend to form a semi-continuous band at the mid-thickness of the sheet [13, 20]. Different

regimes of martensite transformation and adding Mn as an alloying element to the
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steel are the main responsible sources of developing such microstructural banding

in low-alloy steels [21–23]. Usually, these microstructural bands are not produced

during hot rolling and they can be eliminated by high temperature homogenization

before intercritical annealing to redistribute alloying elements [23, 24]. DP steels

generally show low yield strength and high ultimate tensile strength, continuous

yielding behaviour, high strain hardening rates at low strain values and large uniform

elongation [3, 25].

(a) (b) (c)

Figure 2.3: Thermomechanical procedures to obtain dual phase steels with (a) coarse,
(b) fine and (c) ultra-fine grain size. Ar3: non-equilibrium transformation start
temperature, Pf: pearlite transformation finish temperature, and ε: logarithmic
equivalent plastic strain [7]

(a) (b) (c)

Figure 2.4: Microstructure of a dual phase steel with (a) coarse grain (CG), (b)
fine grained (FG) and (c) ultrafine grain sizes (UFG) achieved by thermomechanical
treatment illustrated in Fig. 2.3 showing ferrite (black) and martensite (grey) [7]

The application of dual phase steels is rapidly growing in the automotive sheet metal

forming industry. Usually, conventional low strain-rate processes such as stamping or

bending are used to manufacture automotive-parts, such as A-frame reinforcements,
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roof bows, B-pillar reinforcements, rear side members, and front floor cross members

[26, 27]. However, new high strain-rate forming techniques based on explosive forming

(EF) and electro-hydraulic forming (EHF), which can increase metal formability and

uniform strain distribution and decrease usual forming defects [28, 29], are generating a

great interest in the automotive industry. Experimental research has shown remarkable

improvement in the formability of DP500, DP600, DP780 and DP980 steel sheets that

were formed using an electrohydraulic deformation process [30, 31]. Determination of

metal formability as well as the onset of localization, instability and failure have become

a great interest, yet challenging subject, in both academia and industry. Since limit

strains may be preceded by little diffuse or localized necking, a quantitative prediction

of the limiting strain therefore requires precise and comprehensive assessment of both

necking and failure [32]. Accordingly, the concept of a forming limit curve (FLC) in

principal strain space, initially proposed by Keeler and Backofen [33], and Goodwin

[34], has been extensively used by both academia and industry to evaluate the quasi-

static formability of different dual phase steels [6, 35–38]. Moreover, Maris et al. [39]

derived the high strain rate FLC of DP600 using electrohydraulic free forming (EHFF).

Figure. 2.5 shows two examples of the FLC of DP600 that were obtained based on

experimental necked data points.
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(a)

(b)

Figure 2.5: Forming limit diagram (FLD) of DP600 obtained in (a) quasi-static
condition (open circles are necked data points, η is triaxiality and β denotes strain
ratio) [38] and at (b) high strain rate subject to EHFF [39]
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Three stages are identified in the work hardening process of DP steels [40, 41]. In the

first stage, ferrite grains are deformed homogeneously in the vicinity of martensite

islands which is considered as the initial work hardening stage. The second stage

consists of limited deformation of the ferrite in the presence of rigid martensite and

the third stage occurs when the dislocation density increases and cell structures form

due to high strain levels. It has also been shown that a small amount of martensite

plasticity can participate in the deformation process in this stage [20].

It has been shown by several researchers that the predominant damage mechanism

and failure in DP steels depends on the ferrite and martensite grain sizes and their

morphology [7, 42, 43], and can change from a mixture of cleavage and dimples to

a completely ductile failure mechanism which consists of nucleation, growth and

coalescence of voids during the forming process [7, 43]. Numerous investigations have

provided detailed analyses of the microstructure and failure mechanisms in dual phase

steels as a function of deformation process parameters (such as strain, strain rate and

temperature) and microstructural properties (such as grain size, martensite content

and morphology) [7, 30, 38, 44–52]. Different mechanisms and potential sites can be

involved in the formation of voids in the diffused necking area, as shown in Fig. 2.6.

One of the mechanisms of void formation is nucleation in cracked martensite, particles

usually when the DP steel contains coarse martensite particles (Fig. 2.6a); inclusions

are also important sites for void nucleation (Fig. 2.6b); the dominant mechanism

is, however, decohesion at the ferrite-martensite interface (or at triple junctions)

(Fig. 2.6c); and finally, void nucleation and also coalescence can take place by the

decohesion between two martensite particles along the grain boundary (Fig. 2.6d).
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Figure 2.6: Potential sites for void formation or damage initiation in dual phase steels
(DP600), (a) fracture of martensite, (b) decohesion of the interfaces between the
martensite particles and the ferrite matrix or at the triple junctions, (c) void initiation
between two martensite particles along the grain boundary and (d) voids growth along
the ferrite grain boundaries and parallel to the direction of the applied tensile load
[48]

Another important factor which determines the dominant fracture mechanism in DP

steels, is the grain size due to the dislocation locking and the formation of Cottrell

atmospheres and relaxation of internal stresses. Indeed grain size is known to have an

effect on the uniform and total elongation of the material [7]. As it can be seen in

Fig. 2.7a, the dominant mechanism of failure in a coarse grained DP steel is brittle

fracture, identified by well-defined facets and cleavage steps on these facets although

a number of dimples can also been observed. The fracture in a fine-grained steel is a

combination of both ductile and brittle fracture, while the ultra-fine grain DP steel

shows dimples throughout the specimen which indicates a fully ductile fracture [7, 51].
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(a) (b)

(c)

Figure 2.7: Fracture surface of tensile specimens indicating an increase in non-uniform
deformation with decreasing grain size in (a) coarse-grained (12µm) and (b) fine-grained
(3µm) and (c) ultra fine-grained (1.5µm) DP steel[7, 51]

Furthermore, Samei et al. [38] showed that strain path also has significant effect

on the damage and fracture behaviour of fine-grained DP steels where shearing can

contribute to severe elongation of dimples on the fracture surface, and shear fracture

can lead to quasi-cleavage fracture, i.e. cleavage surfaces surrounded by dimples, as

shown in Fig. 2.8.
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Figure 2.8: Fracture surfaces and formation of grooves (G), shear (S) and quasi-cleavage
fracture (Q) on DP600 in (a) uniaxial tension and (b) biaxial tension [38]

2.2 Phenomenological damage models

The micro-scale deformation of dual phase steels is complex but at the macro-scale, it

can be considered as a continuum. In continuum damage mechanics, the macroscopic

response of materials is a global response of the material with its various constituents

and defects. Phenomenological damage models usually assume an evolution of a phe-

nomenological parameter based on homogenized variables like deformation gradient or

velocity gradients to simulate materials behaviour. These models are computationally

efficient and due to their relative simplicity, they are more widely-used in industrial

applications [53].

2.2.1 Johnson-Cook model

Johnson and Cook [54] proposed a phenomenological damage model to predict the

critical fracture strain as an extension to Hancock and Mackenzie’s [55] model as

a function of equivalent plastic strain (εp), strain rate (ε̇p), temperature (T ) and

stress triaxiality (η). The JC progressive damage model considers that the damage

accumulates incrementally in a linear way in the material element during a forming
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process, as shown in Eq. 2.2a, and accelerates sharply when the damage increases over

a critical value [56, 57]. D is defined as the damage variable and can change from 0 to

1 (Eq. 2.2b) which shows no damage and fully damaged material element, respectively

[56–58]. After the damage commences, the material stiffness and consequently, the

load bearing capacity of the element decreases progressively until the final material

failure. The relation between the accumulative damage parameter (D), equivalent

plastic strain (εp) and critical plastic strain at the final fracture (εf ) is given by:

D =
∑ ∆εp

εf
(2.2a)

Ḋ =


0 if εp < εd

Dc

εf − εd
if εp ≥ εd

(2.2b)

where Ḋ, Dc and εd are the damage rate, critical damage variable and damage threshold

strain, respectively. The general expression for the equivalent plastic strain at the

onset of damage in the JC model [54, 57, 58] is written as follows:

εf = [D1 +D2 exp(D3η)]

[
1 +D4 ln

(
ε̇p

ε̇0

)]
[1 +D5T

∗] (2.2c)

where D1...5 are material dependent constants which need to be determined based on

the dynamic behaviour of the material. ε̇0 and T ∗ are a reference strain rate and

the homologous temperature, respectively. This fracture criterion is implemented

in most of the well-known commercial finite element simulation software such as

ABAQUS and LS-DYNA [58, 59]. This damage model was extensively utilized and

reported in the literature to simulate the forming and damage behaviour of different

engineering materials: Gillard et al. [28] and Hassannejadasl et al. [29] used it to

evaluate the forming and damage behaviour of dual phase steels subjected to electro-

hydraulic free forming (EHFF) and die forming (EHDF); the performance of this

model as a phenomenological damage model and the Gurson-Tvergaard-Needleman

(GTN) [60, 61] micromechanical damage model was assessed in multi-stage tube
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hydropiercing; also Wierzbicki et al. [62] evaluated its capabilities and compared it to

5 other phenomenological damage models and concluded that it would be suitable for

situations where the stress triaxiality changes in very narrow ranges.

2.2.2 MMC model

Usually, a phenomenological fracture model is a function of accumulative plastic strain

and can describe the damage accumulation with stress triaxiality evolution. The

original Mohr-Coulomb (MC) damage criterion which was commonly employed in soil

and rock mechanics, has been modified by Bai and Wierzbicki to take both triaxiality

and Lode angle into account in the prediction of the damage in ductile metals [63–66].

The three-parameter modified Mohr-Coulomb (MMC) fracture model is shown to

be more effective than other widely-used phenomenological damage models in the

literature [66] and used extensively in recent publications [67–69].

The first invariant of the Cauchy stress tensor (I1) as well as the second and third

invariants of the deviatoric stress tensor (J2, J3) are shown in the first three equations

in Eq. 2.3. The von Mises equivalent stress can be defined as a function of J2 (Eq. 2.3d)

and the stress triaxiality (η), defined as the dimensionless hydrostatic pressure, can be

calculated via Eq. 2.3e. In addition, the Load angle (θ) and the dimensionless Lode

angle parameter (θ̄) are directly related to normalized J3 and are defined by Eq. 2.3f

and Eq. 2.3g, respectively. Since η and θ incorporate the effect of all mentioned

invariants, any damage model, such as MMC which takes these two parameters into

account, can be good representations of stress states [4].
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I1 = tr(σij) (2.3a)

J2 =
1

2
SijSij (2.3b)

J3 = det(Sij) (2.3c)

σeq =
√

3J2 (2.3d)

η =
σm

σeq
(2.3e)

θ =
1

3
cos−1

(
3
√

3

2

J3

J
3/2
2

)(
0 ≤ θ ≤

π

3

)
(2.3f)

θ̄ = 1−
6θ

π

(
−1 ≤ θ̄ ≤ 1

)
(2.3g)

Bai and Wierzbicki [64, 65] developed the new form of the MMC fracture criterion by

transforming the stress-based Mohr–Coulomb failure criterion into the space of stress

triaxiality, Lode angle parameter and equivalent plastic strain. The final functional

form of MMC fracture locus is given by:

ε̄f (η, θ̄) =

{
A

C2

[
C3 +

√
3

2−
√

3
(1− C3)

(
sec

(
θ̄π

6

)
− 1

)]

×

[√
1 + C2

1

3
. cos

(
θ̄π

6

)
+ C1

(
η +

1

3
sin

(
θ̄π

6

))]} 1
n

(2.3h)

where A and n are Swift law [70] hardening parameters, and C1...3 are material constants

which should be determined by fracture tests. Luo and Wierzbicki [4] presented the

3D and 2D representation of the MMC fracture locus for DP780 (Fig. 2.9) which

shows the ability of this model to predict the evolution of fracture stress with respect

to both triaxiality and Lode angle.
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Figure 2.9: The MMC fracture locus (a) general 3D and (b) 2D representation for
plane stress conditions [4]

In the case of plane strain deformation, the MMC fracture criterion can be reduced to

a simpler form [71]:

ε̄f =

AC3

C2

√1 + C2
1

3
+ C1 η


(1/n)

(2.3i)

2.2.3 GISSMO model

The generalized incremental stress-state dependent damage model (GISSMO) is a phe-

nomenological damage model proposed by Neukamm et al. [72] which was established

based on a combination of incremental material instability, failure criterion and local-

ization. In this model, the failure description and the deformation path dependency of

instabilities are included [73]. The final version of this model has been implemented in

LS-DYNA finite element simulation software under the MAT_ADD_EROSION keyword

[74]. The GISSMO model is described as a very pragmatic model which relies on both

damage and regularization [74]. The regularization concept in this model refers to the

mesh size dependency of the failure prediction via defining some material parameters

as a function of element size. In order to take the arbitrary strain path into account
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for prediction of localization and failure, the accumulative damage variable (D) is

considered as a generalized function of the linear accumulation of damage [72, 75]

proposed by Johnson and Cook [54], as shown in Eq. 2.4a.

∆D =
n∆εp

εf
D

1−
1

n


(2.4a)

εf is the triaxiality dependent failure strain. Similar to most phenomenological damage

models, an element loses its load bearing capacity and should be omitted from the

mesh when D reaches a critical value (Df=1). The main differences between GISSMO

the Johnson-Cook damage model are: (1) the linear function used in JC model to

describe damage accumulation is modified by a non-linear exponential function (n=1

in Eq. 2.4a results in linear JC formulation), and (2) the required data to calibrate this

model is the equivalent plastic strain at failure as a function of triaxiality [76]. Since

a non-linearity exists between the damage and equivalent plastic strain [75, 77], even

for proportional strain paths, it is hard for researchers to directly measure the model

parameters through direct mechanical testing. Instead, reverse engineering simulations

of multi-stage forming processes should be carried out to identify parameters of the

non-linear relation of accumulation of damage. Similar to the damage parameter, the

“forming intensity parameter (F )” (as shown in Eq. 2.4b) follows the same non-linear

incremental evolution where the accumulation exponent is greater than 1 (n ≥1).

Figure 2.10 shows the evolution of F as a function of equivalent plastic strain from

εf=0.68.

∆F =
n∆εp

εf
F

1−
1

n


(2.4b)
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Figure 2.10: Non-linear accumulation of F for εf=0.68

With regards to the material instability, a damage threshold should be defined, i.e.

when the damage parameter D reaches the critical threshold value, the damage gets

coupled with the stress tensor and the effective stress tensor is calculated (Eq. 2.4c).

σeq = σ

[
1−

(
D −Dc

1−Dc

)m]
for D ≥ Dc (2.4c)

The effect of element size-dependency of the material behaviour can be introduced to

the model via m as the fading exponent. With this exponent, the effect of dissipated

energy during element fade out, i.e. the process in which an element loses its load

bearing capacity, can be controlled [72, 78, 79].

2.3 Micromechanical damage models

The damage accumulation process in heterogeneous materials is a complex process

in multi-phase material structures due to grain size, second phase particles and

precipitates and voids. The main mechanisms of ductile failure generally consist

of nucleation, growth and coalescence of micro-voids during the forming process

[7, 43] in a porous media, although the fracture mechanism can vary from a shear

mechanism at negative stress triaxialities to a combination of shear and void formation

at low triaxialities [80]. Therefore, micromechanical damage models which account for
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these mechanisms are more suitable to numerically evaluate ductile failure in metal

forming simulations, although it is shown that it is hard to define a damage model

that can predict the ductile fracture for different triaxiality levels [81]. Since various

combinations of void size, shape, spacing and orientation can be made to analyse the

ductile fracture in a material, simplifications and assumptions have to be considered to

make the mathematical evaluation of void evolution feasible. Accordingly, some models

considered cylindrical or spherical shapes for the voids [61, 82–84]. Also, complete

loss of load bearing capacity of the material cell or the final failure occurs when the

size or the total volume fraction of voids reaches a critical value [85].

2.3.1 McClintock model

McClintock [82] proposed a model for void growth and ductile fracture based on a

long cylindrical void in a non-hardening material pulled in the axis direction while

subjected to transverse tensile stresses. The growth of the cylindrical cavity is given

by

d log
b

b0

=
√

3 sinh

( √
3 σr

σr − σz

)
dεr + dεr (2.5a)

where z and r denote the axial and radial directions, respectively. b0 is the original

radius of the cylindrical cavity and b is its instant value. He assumed a 3D array

of cylindrical voids of elliptical section in which the main axes are parallel to the

principal stress axes. Considering the main axis of the cylindrical void parallel to the

z direction, McClintock extrapolated Berg’s viscous solution [86] for elliptical voids

to plastic materials with strain hardening if the voids grow in the b direction and

expressed his fracture criterion in the following form:

dηzb

dεp
=

sinh

[
(1− n)(σa + σb)

2σeq/
√

3

]
(1− n) lnF f

zb

(2.5b)
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where dηzb is the damage increment and
dηzb

dεp
denotes the damage rate. F f

zb represents

the critical value of the relative growth factor or the maximum sustainable deformation

of the representative cell. σa,b are two principal stresses in transverse directions. The

main outcomes of the McClintock model are the strong dependency of the fracture

strain to the tensile strength transverse to the void main axis, and relative sensitivity

of the fracture strain on the intermediate principal stress rather than solely to the

maximum principal stress [82, 85]. Although this model shows some fundamental

features of ductile fracture the effect of triaxiality to reduce the fracture strain and

the size effect, the simplifications in this model lead to unrealistic results. It predicts

void growth as a smooth process up to final failure whereas the loss of stability results

in sudden void growth and coalescence [87–89].

2.3.2 Rice-Tracey model

One of the most famous void growth related functions was proposed by Rice and

Tracey [83]. This model evaluates the dilatational growth of a single spherical void in

a non-hardening material subjected to a remote uniaxial stress field. They showed

that the void would grow in the radial direction and its shape would also alter. The

classical equation for growth rate of void radius under a high triaxiality stress state is

given by:

dR

R
= αRT exp

(
3

2
η

)
dεp (2.6a)

where η is the stress triaxiality (shown in Eq. 2.3e) and R is the current radius of

the spherical void. αRT is the Rice and Tracy model constant and equals 0.283. The

RT model predicts the growth of a void or a population of identical cavities as a

linear function of the equivalent plastic strain increment. It is shown that the void

growth rate is underestimated in this model when utilizing αRT . Also, hard inclusions

and second phases inside a growing cavity are likely to accelerate the growth rate

[90, 91]. Later, Huang found that αRT is more applicable to stress states in which η >1.

Therefore, he modified the original RT model by adjusting the constant (αHuang=0.427)
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and adding a stress triaxiality term to calculate the average rate of void growth for

η ≤1:

dR

R
=


αHuangη

1/4 exp

(
3

2
η

)
dεp if η ≤ 1

αHuang exp

(
3

2
η

)
dεp if η > 1

(2.6b)

Equation 2.6b has been widely used in several publications to investigate void growth

using X-Ray tomography analysis in different materials [46, 92, 93] especially dual

phase steels [46, 47, 94, 95]. Void nucleation has been modelled with different types

of functions based on stress or strain states. However, since the stages of ductile

damage can happen simultaneously and affect each other, the RT model needs to be

modified to take the influence of void nucleation on the void growth into account.

This modification was performed by different researchers [45, 93, 95] and is given by:

dR

dεp
= αRTm exp

(
3

2
η

)
R−

1

N
× dN

dεp
(R−R0) (2.6c)

where R0 is the radius of voids just after their nucleation, and dN and N are the

nucleation rate and the void density respectively. It should be noted that the RT

model is not capable of predicting damage evolution or the fracture strain in pure

shear, where η=0.

2.3.3 Gurson-Tvergaard-Needleman model

Gurson [60, 84] proposed a new methodology and introduced a yield function for a

material containing voids that could link the plasticity with the damage accumulation

by applying maximum plastic work principle to kinematically admissible velocity fields

for a long cylindrical or spherical void in a continuum [96, 97]. He stated that in

the presence of voids in a material, the load carrying capacity would reduce and the

material would soften as the porosity volume (f) increases. The yield function for
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spherical voids in an isotropic rigid-plastic body is written as:

Φp =
σ2
eq

σ2
y

+ 2f cosh

(
−

3 σm

2 σy

)
− 1− f 2 = 0 (2.7a)

ḟ = ḟg + ḟn (2.7b)

where σeq and σy denote the macroscopic von Mises equivalent Cauchy stress and yield

stress of the fully dense matrix, initially equal to σ0 (initial yield stress). f defines

the void volume fraction. The change in void volume fraction (ḟ) is described by

the growth rate of existing voids (ḟg) and the secondary void nucleation rate (ḟn).

When f=0, Eq. 2.7a is equal to the von Mises yield criterion. The original form of

the Gurson model represents only the damage growth and it is shown that without

an initial imperfection, it overpredicts the strain at which localisation commences.

To reduce this discrepancy and minimize the difference between the model and finite

element cell results, Tvergaard et al. [61, 98, 99] introduced new damage parameters

(q1, q2 and q3) into the Gurson yield function which has led to the so-called GTN

model (Gurson–Tvergaard–Needleman) model:

Φp =
σ2
eq

σ2
y

+ 2 q1 f cosh

(
−

3 q2 σm

2 σy

)
− 1− q3 f

2 = 0 (2.7c)

where q1, q2 and q3 are material constants equal to 1.5, 1 and q1
2 although it was

demonstrated that these parameters are dependent on the triaxiality level [100, 101].

The GTN model is perhaps the most well-known micromechanical damage model and

different researchers have either extended or modified it in order to make it as accurate

as possible. Gologanu et al. [102] have included void shape in the GTN model and

Benzerga et al. [103] extended this model by introducing two material parameters in

the yield function to take the plastic anisotropy into account. Leblond et al. [104]

used two new parameters to include isotropic hardening and plastic hardenable hollow

sphere in the model. Finally, Mear and Hutchison [105] extended the GTN constitutive

damage model to account for the kinematic hardening. The GTN model has been
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extensively used to simulate the deformation and damage behaviour of DP steel

under different strain paths and deformation modes using isotropic [6, 26, 106, 107] or

kinematic hardening and plastic anisotropy [108, 109].

2.3.4 Rousselier model

Rousselier [110, 111] proposed a thermodynamically consistent ductile damage models

using the ‘simplest assumption’ at each stage of its development [112]. It is an

an elasto-plastic, continuous damage model that assumes isotropic-hardening and

isotropic-damage to model ductile failure mechanism of porous materials during the

deformation of a material [113, 114]. It is established based upon the decomposition of

the free Helmholtz potential energy (Φ) into stored elastic energy (Φe), stored plastic

energy (Φp) and stored damage energy (Φd) [113, 115], and is written as

Φ(εe, εp, f) = Φe(εe) + Φp(εp) + Φd(f) (2.8a)

where εe, εp and f are the elastic strain, plastic strain and the volume fraction of

the current porosities, respectively. The plastic potential, proposed by Rousselier

[111, 116], is an extension of the von Mises yield criterion with an additional term

which describes the damage as the growth of voids in a ductile material:

Φ =
σeq

(1− f)
−H(εp, ε̇p) +B(β)D exp

(
σm

(1− f)σk

)
= 0 (2.8b)

in which σeq is the von Mises equivalent stress (such that σeq = (3
2
SijSij)

1/2 where

Sij is the deviatoric stress) and σm is the hydrostatic stress (such that σm = 1
3
tr(σij)

where σij is the Cauchy stress). D and σk are material parameters which describe the

resistance of the material to void growth and coalescence [117, 118]. H(εp, ε̇p) is the

hardening curve of the material which can be described either by hardening functions

or tabular data; B(β), the damage function, is the conjugate force to the damage

parameter β, f0 and f are the initial and current void volume fraction, respectively.

The damage variable β and f are directly related to the plastic multiplier in the
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normality rule (λ) and follow the strain increment (ε̇p), increase with the deformation

and help material softening surpass the hardening in the final steps of deformation

until the material completely loses its load-bearing capacity:

ḟ = (1− f) ε̇p f D exp

(
σm

(1− f)σk

)
(2.8c)

β̇ = ε̇p D exp

(
σm

(1− f)σk

)
(2.8d)

The relation between the damage parameter β, f and the initial void volume fraction

(f0) is given by:

β = ln

(
f

1− f
× 1− f0

f0

)
(2.8e)

and the current void volume fraction as a function of the damage function (B) is

written as:

f =
B(β)

σI
=

f0 exp(β)

1− f0 + f0 exp(β)
(2.8f)

Li et al. [112] presented an explicit and detailed theoretical calculation procedure of

the Rousselier damage model and its related parameters. In the original Rousselier

model, cluster nucleation model was used and the effect of secondary void nucleation

was not considered. Therefore, void nucleation was defined by the fraction of second

phase particles present in the material and void growth (dfg) was considered as the

main mechanism for void evolution (ḟ), as shown in Eq. 2.8g. In addition, failure was

described by specifying a critical void volume fraction (fc) which corresponds with a

critical value of the damage parameter βc [119, 120, 120].

df = dfg , f(0) = f0 (2.8g)
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The Rousselier damage model has been used in several publications to evaluate the

deformation and damage behaviour of materials since it has two major advantages over

the GTN damage model: (1) it requires fewer model constants to be defined, (2) it has

the capability of predicting damage evolution and void volume fraction growth at very

low, zero or negative stress triaxiality and (3) unlike the GTN model which defines

the damage evolution in a material based on the growth of a spherical or cylindrical

shaped void, the Rousselier damage model was developed without consideration of

the shape of voids and accordingly, it can determine the damage transition from

flat to slant fracture surface without any additional terms [113, 121]. Besson et al.

[122] used the Rousselier function to model crack growth and formation of cup-cone

fracture surfaces; Poussard et al. [123] employed it to simulate the damage evolution

in smooth tensile and compact tension specimens. Samal and Shad [124] predicted the

fracture resistance behaviour of cracked fuel pin specimens using this model; Tu et al.

employed it to evaluate the ductile damage and crack growth on S355NL steel electron

beam welded joints [125] and aluminium laser-welded joints [126]; and Zanganeh et al.

[118] proposed an approach to couple the Rousselier model and a coalescence criterion

and evaluated the model for different positive triaxiality levels using notched AA2050

specimens loaded in uniaxial tension.

2.3.5 Lemaitre model

Lemaitre [127–129] proposed an isotropic damage model based on the concept of

damage variable (D) and its effect on the effective stress (σeff = σ
1−D ). Damage is

considered as a thermodynamic state variable which is responsible for characterizing

the deterioration of the material [66]. The change in the shape, number and volume

fraction of voids in a porous ductile material lead to an increase in the damage

parameter which results in decreasing the load-bearing capacity of the material cell.

On an intersection of a reference volume element with a plane (S) with the normal

vector −→n , the damage variable is defined as:

Dn =
Sn0 − Snef

Sn0
(2.9a)

33



where Dn is the damage variable in the direction of the normal vector n, and Snef

and Sn0 represent the effective resisting area of the intersection plane and the nominal

intersection area of the plane and the reference volume prior to the onset of damage,

respectively. Since the Lemaitre damage model considers an isotropic distribution of

damage, the value of the damage variable is the same in all directions and D (a scalar

factor) can be utilized instead of Dn. Generally, the damage variable is linearly related

to the equivalent plastic strain, deduced from the damage dissipation potential and

the damage strain strain energy release rate [127]. The general constitutive equation

for ductile plastic damage is given by:

Ḋ =

 K2

2ES0

2

3
(1 + ν) + 3(1− 2ν)

(
σm

σeq

)2
 ε2/n

p


s0

ε̇p (2.9b)

where K and n are constants in the Ramberg-Osgood hardening law (as shown in

Eq. 2.9c).

εp =

(
σeq

k

)n

(2.9c)

An advantage of the Lemaitre continuous damage model is that it can be utilized

for any damage process, not just ductile damage [119, 130]. In addition, the damage

evolution equation can be solved by any relevant constitutive elasto-plastic equation

for a damaged material [66, 131] as it has also been modified by Niazi [19] to include

anisotropy.

2.4 Brittle damage models

Brittle fracture is a damage mode that has extensively been studied by different

researchers. The effective factors, different theories and mathematical models were

developed to numerically and experimentally investigate this phenomenon at both

micro- and macro-levels [132, 133]. Moreover, several fracture criteria were proposed
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to evaluate the onset of fracture, fracture toughness and fracture angle [132, 134–140].

A number of reviews of brittle fracture can be found in the literature [119, 132].

2.4.1 Crack nucleation

It is generally accepted that cleavage fracture in mild steel starts from a localization

of stress in the material due to a dislocation pile up at an obstacle [136, 137]. For

slip-induced fracture, this critical stress is shown to be temperature and strain rate

independent, but if the fracture is initiated by twinning processes, it is very sensitive

to testing parameters [136]. The initiation of microcracks can also be a result of

dislocation pile-ups at grain boundaries or at the interfaces between dissimilar phases

which results in cleaving a grain boundary [132, 141]. A widely-used cleavage fracture

criterion is written as follows [142, 143]:

σeq ≥ σy (2.10a)

σI ≥ σf (2.10b)

where σeq, σy and σI are the von Mises equivalent stress, material yield stress and

maximum principal stress, respectively. σf represents the critical brittle fracture stress

or cleavage fracture stress.

It has been shown that the nucleation of cracks occurs in carbide particles or other

brittle phases after some amount of plastic deformation in the ferrite. However,

dynamic crack propagation within a brittle second phase or a carbide creates a stress

field within the second phase that is predominantly in shear and would not result

in significant plastic deformation in ferrite. The cleavage crack can thus propagate

dynamically across the interface if σI exceeds the effective particle strength for a

particle size of dp[138, 141, 144, 145].

σf =

[
π E Gcf

2 (1− ν2) dp

]1/2

(2.10c)
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where E, ν and Gcf are Young’s modulus, Poisson’s ratio and critical strain energy

release rate for the dynamic propagation of a crack into the ferrite matrix. If σf > σI

or if the crack reaches a high angle misorientation grain boundary, the crack would be

arrested at the grain boundary [141, 146, 147]. Continued extension of the crack across

ferrite-ferrite boundaries takes place when the maximum principal stress exceeds the

ferrite grain strength which can be similarly described as a function of the ferrite grain

size (dg) and effective surface energy of the ferrite-ferrite interface (Gff ):

σfff =

[
π E Gff

2 (1− ν2) dg

]1/2

(2.10d)

The concept of “critical distance” was introduced by Ritchie et al. [148] who suggested

that the maximum principal stress should be greater than the critical cleavage stress

(σf ) over a distance of one or two grain sizes ahead of the crack tip in order to cause

the crack to propagate [132].

Weakest link

The weakest link statistical model was used by several researchers to analyse the

propagation of microcracks in a particle into the matrix grains as a critical step for

cleavage fracture [141, 145, 149, 150]. In this model a certain volume (V ) which

represents the plastic zone, is discretized into elements with constant tensile stress

which should resist and avoid the cleavage fracture. Therefore, the total survival

probability of the entire microstructure can be calculated by integration of the survival

probabilities of all elements over V [141, 151]:

Φ = 1− exp

[∫ V

0

∫ σ

0

g(S) dS

]
(2.11a)

where g(S) dS is the number of cracked particles or microcracks per unit volume (V0)

with strengths between S and S + dS. Usually, a three-parameter Weibull probability
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distribution expression is a convenient way to define g(S) dS:

∫ σ

0

g(S) dS =

(
σI − σth
σu

)m

(2.11b)

where m is the shape parameter, σu is the scale parameter or lower bound strength,

and σth is the offset parameter which is a threshold stress needed for the largest

feasible microcrack to propagate. Beremin [152] used the concept of the weakest link

to analyse eligible particles that participate in the fracture process. Satisfaction of both

crack nucleation and crack propagation are the main requirements to determine the

eligibility of particles. The criterion proposed by Beremin is expressed as a probability

distribution based on Weibull theory [152, 153]:


PR = 1− exp

[
−
(
σw
σu

)m]

σw =

[
1

V0

∫ V

0

(σI − σth) dV

]1/m (2.11c)

where PR is the cumulative probability of failure and σw denotes the Weibull stress

which is considered to be independent of temperature.

2.4.2 Folch

Folch and Burdekin [154] proposed coupled brittle-ductile model based on a combi-

nation of modified Beremin and Lemaitre models. According to this approach, the

integration process in Eq. 2.11c is carried out over a volume of material within a cell,

i.e. V0 = V . Therefore the threshold stress (σth) becomes zero and the Weibull stress

(σw) equals the maximum principal stress. Accordingly, Eq. 2.11c can be re-written as

[154, 155]:

Φ = 1− exp

[
−
(
σI
σu

)m]
(2.12)
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Since the probability of cleavage fracture and the material constitutive response

are determined simultaneously in Folch’s model, both brittle and ductile fracture

mechanisms can be modelled and evaluated at the same time. Good agreement

between the results of Charpy tests and the predicted fracture toughness was reported

[154, 155].

2.5 Hardening constitutive functions

In the modelling of metal forming processes or crash simulations, hardening and

softening of the sheet material are dependent on thermomechanical parameters derived

from experimental flow curves. Therefore, it is important to carefully determine the

parameters in a hardening equation, whether it is a phenomenological, physically-

based or artificial neural network model [156], so that the mechanical behaviour of

the sheet material can be accurately predicted. Since ductile metals and alloys can

be safely deformed up to high strain values, the formulation of these equations in

terms of predicting hardening behaviour and hardening rate is critical [157, 158].

In the following sections, C1...n are materials constants which can be determined

by an appropriate fitting procedure and H, εp, ε̇p and T denote the material flow

stress, the equivalent plastic strain, the equivalent plastic strain rate and temperature,

respectively. A number of useful publications are available to review different hardening

functions, their origins and their performance in different process conditions [156, 157]

2.5.1 Strain dependent models

A large number of hardening flow curve models are developed based on strain hardening

parameters which fit quite well with the experimental true stress-true strain up

to uniform elongation achieved by tension test. In the absence of an appropriate

mechanical test such as hydrostatic bulge test, extrapolation of the predicted hardening

curve at high strain levels differs, depending on the nature of the model. In some

functions such as 3-parameter Voce model (Eq. 2.13c) [159], the flow stress is limited

to a saturated value (σs) and the strain hardening rate (dσ/dεp) becomes naught after
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uniform elongation. Other models such as the power law (Eq. 2.13a) [115, 119, 160],

Ludwik’s law (Eq. 2.13a) [161, 162] and the 4-parameter Voce law take stage IV

hardening of the material into account [163, 164], and predict a non-zero hardening

rate at high strains. The first group are called saturated-type hardening functions and

the second group are described as unbounded-hardening models. Among the latter

group, different models predict the slope of the hardening curve as linear (4-parameter

Voce) or non-linear (power law, Ludwik’s). Although these models are widely used in

the literature, other hardening functions such as Swift-Voce [165], El-Magd [166, 167],

generalized Voce [168] and Bergström [169] were developed to optimize the behaviour

of the model and increase its accuracy.

H(εp) = C1

(
εp

C1

E + 1

)C2
(
ε̇p

ε̇0

)C3

(2.13a)

H(εp) = C1 + C2ε
C3
p (2.13b)

H(εp) = C1 − (C1 − C2) (1 − exp(−C3εp)) (2.13c)

H(εp) = C1 − (C1 − C2) (1 − exp(−C3εp)) + C4 εp (2.13d)

2.5.2 Rate and temperature dependent models

The dynamic behaviour of materials in a wide range of strain rates, from quasi-static

conditions to high strain rates (≥1000 s-1), and forming temperature becomes of interest

of both academia and industry since sheet materials can be deformed under such a

wide range of conditions. Different hardening models can be found in the literature

based on strain-rate or temperature dependency of the material hardening behaviour.

Advanced high strength steels show some strain-rate sensitivity. Therefore, an accurate

hardening function should be chosen to describe the overall strain rate, temperature

and strain dependency of flow curves analytically. Usually, the experimental flow

curves are fitted by an optimisation algorithm in order to achieve the best fitting

result. Model parameters instead of experimental flow curves are then given as input

data for FE simulations [157].
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As mentioned in Section 2.5.1, different types of hardening models are proposed in

the literature to model the static or dynamic hardening behaviour of materials. Power

law-type models such as Johnson-Cook (JC) (Eq. 2.14a) and modified Johnson-cook

hardening (Eq. 2.14b) models [170, 171], Zirilli–Armstrong (ZA-BCC) (Eq. 2.14e) [172],

Khan–Huang–Liang (KHL) model (Eq. 2.14d) [173–175] are suitable for body-centered

cubic (BCC) materials at low temperatures [176] while Voce-type models such as

Brown–Anand (BA) [177, 178], MTS model [179], Lin-Wagoner (LW) model [180], and

ZA-FCC (Eq. 2.14f) are found to be more appropriate for face-centred cubic (FCC)

metals and alloys [181]. Some constitutive hardening models were developed based on

multiplicative or additive (or both) combinations of strain, strain rate and temperature

dependent functions [171] such as JC and El-Magd-Swift (Eq. 2.14c) [166] models,

and other so called “integrated” models were developed based on their approach in

accommodating strain hardening rate changes with temperature changes. A number

of review books and papers have been published on the constitutive descriptions for

metals and alloys in cold and hot working [156, 157, 182].

H(εp, ε̇p, T ) = (C1 + C2ε
C3
p )

[
1 + C4 ln

(
ε̇p
ε̇0

)]1−

(
T − T0

Tm − T0

)C5
 (2.14a)

H(εp, ε̇p, T ) = (C1 + C2ε
C3
p )

[
1 + C4

(
ln
ε̇p
ε̇0

)C5
]1−

(
T − T0

Tm − T0

)C6
 (2.14b)

H(εp, ε̇p, T ) =
[
C1 (C2 + εp)

C3 + C4ε̇p
]

exp

(
−C5

T − T0

Tm

)
(2.14c)

H(εp, ε̇p, T ) =

[
C1 + C2

(
1− ln ε̇p

lnDp
0

)C4

εC3
p

](
ε̇p
ε̇0

)C5
(

Tm − T
Tm − Tref

)C6

(2.14d)

H(εp, ε̇p, T ) = C0 + C1 exp(−C3T + C4T ln ε̇p) + C5ε
C6
p (2.14e)

H(εp, ε̇p, T ) = C0 + C1 ε
0.5
p exp(−C3T + C4T ln ε̇p) (2.14f)

40



2.6 Void nucleation functions

The onset of ductile fracture is initiated by the growth of existing voids and the

formation of new secondary voids around inclusions or second-phase particles in the

metal matrix during the forming process due to the external loading. Therefore, the

increase in the void volume fraction is a result of both void growth and void nucleation

[183, 184]. For some engineering materials with easy-to-break inclusions, such as

aluminium oxides, voids are nucleated at the beginning stages of deformation. In this

condition, the cluster nucleation function assumes an initial void volume fraction (f0)

and no secondary void nucleation is considered (Eq. 2.15a). The cluster nucleation

model has been used to simulate the damage behaviour of aluminium [118, 185] and

steel [186]. Continuous nucleation model is a simple model which does take the

secondary void nucleation into account which is appropriate for materials containing

carbides or intermetallic phases. In this model, void nucleation is linearly proportional

to the increment of plastic strain, as shown in Eq. 2.15b and it has been shown that it

can be a realistic model for both steel and aluminium alloys [186–188].

dfnucleation = 0 and ft=0 = f0 (2.15a)

dfnucleation = C dεp (2.15b)

(2.15c)

Beyond these simple models, it has been shown that employing a void nucleation

function that is controlled either by strain, stress or hydrostatic stress, can make a

model more precise and more realistic (df = dfg + dfN) [84]. Generally, hydrostatic

stress controlled nucleation (Eq. 2.16d) is used for rubber-modified epoxies [184, 189],

stress-controlled void nucleation is used for materials with large particles that tend

to crack (Eq. 2.16c), and strain-controlled void nucleation (Eq. 2.16b) is more suited

to materials with small particles that tend to debond from the matrix [107, 190–192].

Although both strain and stress-controlled nucleation models can be used for DP600

due to the size of its martensite particles, both Butcher et al. [107] and Ramazani et al.
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[6] showed that strain-controlled void nucleation could lead to more accurate results

compared to cluster nucleation. The general form of the controlled void nucleation

function can be written as:

dfnucleation = A dσeq + B dσm + C dεp (2.16a)

A = B = 0, C =
fN

SN
√

2π
exp

−1

2

(
εp − εN
SN

)2
 (2.16b)

A =
fN

SN σy
√

2π
exp

−1

2

(
σ0 + σm − σN

SN σy

)2
 , B = C = 0 (2.16c)

A = 0, B =
fN

SN σy
√

2π
exp

−1

2

(
σm − σN
SN σy

)2
 , C = 0 (2.16d)

where A, B and C are material parameters; dfn is the first derivative of the porosity

distribution with respect to time; fN is the volume fraction of void nucleating particles.

σN or εN denotes the mean value of the normal distribution function and SN represents

the standard deviation. Although Eqs. 2.16 are the most widely-used secondary void

nucleation functions in the literature, other models have been proposed based on the

microstructure of dual phase steels in which the void density (N) is a function of both

triaxiality (η) and the macroscopic equivalent plastic strain [193, 194] and is given by:

N = A

(
εp
εN

)
exp

(
εp
εN

)
(2.17a)

εN = εN0 exp(−η) (2.17b)

where A and εN0 are a material constant and a critical strain for pure shear loading,

respectively. In addition, Landron et al. [195] and Fansi et al. [26] employed a new
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void nucleation law that defines the rate of the void density function N using:

dN

dεp
=
Bσ

σc

(
1 + η

σ

σ −X

)
fN

fN0

(2.18)

where B and N0 are material constants and σc the critical shear stress value that

the martensite-ferrite interface can support without breaking. In addition, σ and X

denote the macroscopic values for stress and backstress, respectively.

2.7 Void coalescence criteria

Coalescence can be defined as the rapid linking of voids to build a microcrack in the

material which contributes to a sudden decrease in the load-bearing capacity and final

failure. It is the last of the three stages of the ductile fracture process (nucleation,

growth and coalescence of voids). Different qualitative and quantitative models have

been proposed based on mathematical concepts or experiments to make a better

understanding of this phenomenon [77, 92, 95, 196–198].

McClintock [82] proposed a model for void growth and coalescence of cylindrical cavities

based on an inverse relation of fracture strain and hydrostatic stress. His model takes

the strain hardening behaviour into account in void growth and their impingement.

Since it was developed for cylindrical or spherical voids and the interaction of voids

has not been included in this model, it overestimates the fracture strain.

dR

R
=

√
3 dεpeq

2(1− n)
sinh

(1− n) σm
√

3

σeq
(2.19)

A geometrical model based on void length and spacing was proposed by Brown and

Embury [199, 200] in which the coalescence occurs when the void length becomes

equal to the intervoid spacing. So, the mean planar spacing (λ) of spherical particles

with mean diameter d and volume fraction Vf is defined by Eq. 2.20a. Accordingly,
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the fracture strain (εf ) is given by Eq. 2.20b

λ =
1

2
d

√ 2π

3 Vf
−

√
8

3

 (2.20a)

εf = ln(1 + εg + εn) = ln

√ π

6 Vf
−

√
2

3
+ εn

 (2.20b)

where εn and εg are the strain at which a void nucleates and grows to its critical size,

respectively. Since this model does not include either hydrostatic stress, triaxiality

component or material properties, it also overestimates the fracture strain. Le Roy

[201] modified this model by adding stress triaxiality.

Needleman and Tvergaard [61, 98, 99] extended the original Gurson ductile damage

model to include void coalescence and void growth acceleration towards final failure.

In this model, a critical void volume fraction (fc), considered to be a material constant,

determines the onset of coalescence and sudden material capacity loss. However, it

has been pointed out that fc strongly depends on the initial void volume fraction (f0)

and on the strain path [188].

fc = const. (2.21)

The plastic limit-load model (PLL) was proposed by Thomason [89, 191] to predict

the localized plastic failure of the intervoid matrix and has become an acceptable

criterion for identifying the onset of coalescence. The concept of this model lies in

two competitive modes of deformation: stable homogeneous and unstable localized.

In the early stages of deformation, void volume fraction is low and it is easier to

achieve homogeneous deformation. Nevertheless, the stress required for localized

deformation decreases by void nucleation and growth during the deformation. Based

on this criterion, when the stress required for homogeneous deformation and that

of localized deformation become equal, coalescence occurs, the plastic limit-load is

reached, the deformation will localize between neighbouring voids, and the current
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void volume fraction can be considered as the critical void volume fraction at the

onset of coalescence (fc). Many researchers extended Thomason’s model to include the

effect of material properties, cell geometry [100, 202] and void shape [203]. Zhang et

al. [188] wrote the Thomason plastic limit-load criterion for a 3D deformation system

as follows:

σI
σeq

=

[
αt

(
1

χ
− 1

)2

+
βt√
χ

]
(1− π χ2) (2.22a)

χ =

(
3f

4π
exp(εI + εII + εIII)

)1/3
(

(exp(εII + εIII))
1/2

2

)−1

(2.22b)

where σI is the maximum principal stress, α and β are model constants, χ represents

the void space ratio, and εI,II,III denote principal strains. Another representation of

Thomason’s model can be found in Pardoen et al. [202] and Scheyvaerts et al. [204]:

σI
σeq

=

[
αt

(
1

W χ
− 1

)2

+
βt√
χ

]
(1− η χ2) (2.23)

where W and η are the void aspect ratio (W=1 for spherical voids) and a geometric

factor based on void arrangement and void cell geometry (η=1 for cylindrical cell

geometry), respectively. Although αt and βt were defined as constants in Thomason’s

original model, Pardoen and Hutchinson [100] redefined the former parameter as a

function of the strain hardening exponent n in the power law hardening function in

order to take the hardening behaviour of the material into account. Their calculations

based on large numbers of axisymmetric finite element cell calculations indicated that

αt = 0.1 + 0.217n+ 4.83n2 for materials with 0 ≤ n ≤ 0.3 and βt ' 1.24.

Another approach to calculate the void space ratio, i.e. the ligament size ratio (χ)

was proposed by Chambert et al. [205] based on a cylindrical unit cell with a height

2H units and a base of radius R units, which contains a spherical void with radius

r. Initial values for the height and radius of the cell are H0 and R0, respectively.
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Combined with a unit cell aspect ratio (γ = 2/3 for an axisymmetric unit cell) defined

by Chen and Butcher [192], the relation between χ and geometrical parameters can

be written as:

χ =
r

R
=

(
f

γ
ϑ

)1/3

(2.24a)

ϑ =
H

R
= ϑ0 exp

(
1

γ
εpeq

)
(2.24b)

ϑ0 =
H0

R0

(2.24c)

where ϑ and ϑ0 are the current and initial void distribution parameter, respectively.

Benzerga [203, 206, 207] extended the Thomason’s plastic limit load coalescence

criterion for different void shapes from needle to penny shape void for different

triaxialities, especially low stress triaxialities. However, no microshear localization or

material properties are considered in his model.

σI

σeq
=

α( χ−1 − 1

W 2 + 0.1χ−1 + 0.02χ−2

)2

+
β
√
χ

 (1− π χ2) (2.25a)

α = 0.1 and β = 1.3 (2.25b)

Gammage et al. [208] proposed his micro-crack linkage model based on Thomason’s

coalescence criterion in the intervoid ligament for a penny shaped crack in metal

matrix composites. Based on Gammage’s model, the coalescence occurs when the far

field work hardening rate θ becomes equal to the stress acting between two penny

shaped cracks separated by a distance λ:

θ = σa

1 + α

√
a

λ

 (2.26)
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where a is the average particle diameter, considered as an assumption or an experimen-

tal value [209]; α is a stress concentration factor in the order of 2 and σa represents

the far field applied stress of the participating phase. It showed good agreement with

experiment for the coalescence of penny shaped voids formed by particle cracking in a

metal matrix composite.

2.8 Post-coalescence regime

When the void volume fraction in the material reaches a critical value (fc), coalescence

begins and the load-bearing capacity of the material starts to decrease rapidly. As the

void volume fraction continues to increase, it reaches the critical value (fF ) when final

fracture or complete failure occurs [61]. Having derived the critical void volume fraction

at coalescence using the coalescence criterion, the effective void volume fraction (f ∗)

can be defined by a void growth acceleration function, which is given by:

f ∗ =

{
f if f ≤ fc

fc + δ (f − fc) if f ≥ fc
(2.27a)

δ =
f ∗u − fc
fF − fc

(2.27b)

where δ and f ∗u are the phenomenological multiplicative void growth acceleration factor

and final effective void volume fraction when f = fF , where the load bearing capacity

decreases to zero, respectively [106, 107].

2.9 Summary

Due to the composite microstructure of dual phase steels, which consist of ferrite,

martensite and sometimes bainite, and the heterogeneous distribution of microstruc-

tural features such as martensite bands and ferrite grain size, damage models, com-

plementary functions and criteria should be accurately configured. The first step is
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to choose and fit a suitable strain-, strain rate- or temperature-dependent hardening

model to the hardening flow curve of the material obtained from the experiments.

The next step is to determine an appropriate and applicable constitutive damage

model. Phenomenological damage models, such as JC model, MMS and GISSMO are

calibrated by mechanical tests and the damage evolution is evaluated by means of a

linear or non-linear damage accumulation parameter. As this parameter increases, the

load carrying capacity of the material decreases continuously until the final failure. On

the other hand, micromechanical damage models, such as the Rice-Tracey, GTN and

Rousselier models are established based on the evolution of the average void volume

fraction. The material fails when the void volume fraction reaches a critical value.

These models should accompany other complementary functions and criteria such as

stress or strain controlled void nucleation functions and a coalescence criterion in order

to predict damage evolution and material response accurately. These models, func-

tions and criteria should be calibrated based on mechanical tests and microstructural

investigations.
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Chapter 3

Material model framework

3.1 An introduction to cellular automata

Cellular automata (CA) is a useful model for the study of dynamic or non-equilibrium

or heterogeneous systems especially when processes with different natures, such as

chemical, physical and metallurgical, are involved [1, 2]. CA provides a large class

of frameworks for a variety of discrete, homogeneous or heterogeneous models with

homogeneous interactions. [2]. Cellular automata, as a methodology, was first proposed

by von Neumann [3] and then developed by Wolfram [4, 5] to simulate time-dependent

space-evolving dynamic systems.

The basic steps to describe a CA modelling procedure can be written as follows [6, 7]:

1. the 3D- or 2D-space in which the model is established, should be partitioned

into discrete cells (usually a cubic or square lattice) with a finite volume.

2. usually two or more cell states are assigned to each cell. Also, each cell may

contain some properties associated with the investigated material or space.

3. at each time step, the neighbouring cells in the vicinity of a cell should be

identified. Different approaches can be used for defining the neighbouring cells

such as von Neumann, Moore or extended Moore , as shown in 3.1.
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4. the switching or transfer rule is defined based on global deterministic or prob-

abilistic transformation rules that change each cell state from one to another

based on the properties and the current states of its neighbouring cells

5. the transfer rule is used to update the state variable of a cell at the end of the

CA cycle. This new state is used as the basis of the next cycle for the next time

step. The CA model continues to iterate until a certain criterion is ultimately

satisfied or for a pre-determined period of time.

Figure 3.2 summarizes a typical CA modelling cycle.

Von Neumann Moore Extended Moore

Figure 3.1: Different approaches for identifying neighbouring cells [8, 9]

Assigning or 

updating state 

variable at each cell 

1

2

3

Definition of 

switching rules 

4

Figure 3.2: The schematic steps of describing a CA model
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The concept of CA has been extensively used by various researchers and materials

scientists to simulate different metallurgical and materials related phenomena. Doherty

et al. [10] and Rollett [11] reviewed the application of different computational models,

including CA, to investigate recrystallization phenomena. Liu et al. [12] were among

the first researchers to employ CA in order to model the curvature driven grain

growth process. Li et al. [13, 14] published a study of the growth modes of individual

ferrite grains in the austenite to ferrite transformation of low carbon steels using a

combination of CA and Monte Carlo methods. Janssens [6] presented some advanced

concepts employed by CA method to simulate the motion of grain boundaries in

evolving microstructures. Cellular automata was widely used by Raabe to model

and simulate the restoration phenomena, i.e. static and dynamic recrystallization

[8, 15, 16]. Also, It has been used to model dendrite solidification and growth in Al-Cu

alloys [17] and in hexagonal crystals [18].

However, the combination of CA and FE, shown in Fig. 3.3 has been utilized for

grain refinement and solidification [19], primary static recrystallization [20], and

modelling of oxide scale failure [21]. Beynon et al. [22] were the first researchers to

employ CA+FE in order to model forming and damage behaviour of materials. After

that, Shterenlikht used it to simulate ductile and brittle fracture and the transient

temperature in thermo-mechanically controlled rolled (TMCR) steels and cleavage

propagation across crystal boundaries in polycrystalline microstructures [23–25] and

Perzynski et al. [26, 27] utilized it to model the failure in multi-phase materials. This

model has also been used to evaluate the microstructural response in the cracking of

the oxide scale and in dynamic recrystallization during the hot working of steel [28, 29],

to predict grain size distribution during friction stir welding (FSW) of aluminium

blanks [30], predict dynamic strain induced transformation [31], and to simulate hot

deformation of aluminium alloys [32].
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Figure 3.3: The concept of combined finite element and cellular automata models

3.2 Hybrid model description

The structure and details of the hybrid FE-CA framework used in this work, was

presented in detail by Shterenlikht [23] and the implementation somehow follows the

integration procedure developed by Shterenlikht [23]. Unlike the conventional FE

analysis method where the elements are both structural and material units at the

same time, the elements in the FE model are responsible to determine the macro-scale

strain and stress states and damage variables throughout the deformable body, and

cells are employed to represent microstructural properties and evaluate the damage

evolution. Das et al. [28] described four fundamental steps to create a FE-CA model:

1. define one or more arrays of cells to represent relevant micro-scale or meso-scale

structural properties or features

2. identify a transfer function which allows the state of a cell to change at each

increment of deformation

3. scattering step, in which significant macroscopic field variables, derived at each

FE Gauss point, are distributed throughout the CA model (i.e. to the cells of

the associated CA array)

4. gathering step, in which the response of the CA array is gathered and rules

are set to communicate between cell arrays and the corresponding FE Gauss

point through appropriate field or state variables
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In this model, two 3D-cubic cell arrays are used to partition the space for each Gauss

point; one array representing the ductile damage behaviour and the other representing

the brittle fracture mechanism. The total number of cells in each array can be

calculated based on the number of brittle cells per linear FE (cd and cb for ductile

and brittle CA), i.e. total number of cells in the ductile and brittle cell arrays are

Dd = c3
d and Db = c3

b respectively. Similar to Shterenlikht’s work [23], the cells in both

cell arrays are neither deformable nor time-dependent. The cell sizes in the ductile

and brittle arrays are independent of each other but depend on the micromechanical

size scale, as described by Xia et al. [33] and Faleskog et al. [34] who introduced the

concept of “damage cell” or “computational cell”. The damage cell size for ductile

and brittle fracture is reported to be 0.1-0.5 mm and 0.005-0.05 mm (or 10 – 20 times

larger than the median grain size), respectively [23, 35]. These sizes are related to

the observed cleavage facet size, and the spacing between large voids on the fractured

surface [24, 36]. Due to the nature of brittle mode of fracture, its damage cell size

should be significantly smaller than that of ductile damage mode. At three-dimensional

26-cell Moore neighbourhood was used for each individual cell. The properties, i.e.

the direction cosines of each neighbouring cell relative to the central cell, the cell

coordinates as well as cell numbers, are given in Fig. 3.4.
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Figure 3.4: Numbering and properties of CA neighbouring cells [23]

In a CA array, each cell, regardless of the array size and position of the cell, should

have a 26-cell neighbourhood. This implies the concept of “self-closing boundary

condition” which means that for a cell lying at the edge of a CA the corresponding

cells of the opposite edge are considered adjacent. Therefore, for a cell on the edge of

a CA array, its 26 neighbouring cells are located at the opposite edges, as shown in

Fig. 3.5.
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Figure 3.5: Self-closing boundary condition of a cell in the corner and its 26 neighbours
[23]

For each ductile or brittle cell array, two under-structural arrays with the same size

must be defined containing associated cell properties (N = 1 . . . n such that n is the

total number of properties of each cell) and state variables (Q = 1 . . . q such that q is

the total number of state variables defined at each CA cell). It is worth noting that to

assign the properties of each cell in either a ductile or brittle CA array, a sophisticated

random number generator, which is a combination of subtractive Fibonacci generator

with a Marsaglia shift sequence along with an additional (different) Marsaglia shift

sequence is employed to ensure that perfectly random numbers are generated [37].

Either a uniform, normal or Weibull distribution function can be selected to be used

along with the random number generator.

3.2.1 Ductile cell array

In this research, a modified Rousselier damage model [38, 39] was employed to evaluate

the ductile damage behaviour of a dual phase (DP) steel in the ductile cell array.

The total number of cells in a CA array should be chosen with respect to the ductile
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damage cell size. Therefore, the relation between the total number of ductile cells in a

FE (Dd) and the size of the FE is given by:

Ld =
3

√
Li × Lj × Lk

Dd

(3.1)

where Li, Lj and Lk are the size of the FE in each direction and Ld denotes the ductile

damage cell size. For each cell, only one property is assigned which is the critical

Rousselier damage variable at failure (βF ) based on the initial volume fraction of the

material (Ξ1
m(d) = f0). A normal distribution random number generator is used to

generate f0 in each cell at the beginning of the simulation. The only state variable in

each cell is the current value of the scalar damage variable (Φ1
m(d)(ti) = βm(ti)). Each

ductile cell m can take one of two possible states according to the following criterion:

Sm(d)(ti+1) =


alive if βm(ti+1) < βF

dead if βm(ti+1) ≥ βF

Sm(d)(t0) = alive

(3.2)

3.2.2 Brittle cell array

Similar to ductile cell arrays, the relation between the total number of brittle cells in

a FE (Db) and the size of the FE is written by:

Lb =
3

√
Li × Lj × Lk

Db

(3.3)

where Lb represents the brittle damage cell size. The brittle cell size should be chosen

based on the matrix grain size for a progressive brittle grain-to-grain fracture model.

Each cell m in the brittle CA array carries two different properties: (1) fracture stress

(Ξ1
m(b) = σmF ) calculated based on a Weibull distribution random number generator

assigning a grain size value to each cell, and (2) grain orientation (Ξ2
m(b) = αm)

obtained by a uniform distribution random number generator, in order to simplify
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the model and reduce computational cost. Although the grain orientation is usually

defined by two angles, the grain was described by a single orientation angle provided by

a uniform distribution random number generator. Accordingly, the difference between

grain orientation type of cell m and its neighbouring cell l is calculated via |αm − αl|.
Thus, this can be considered similar to the actual grain misorientation angle. This

was used in this model to determine whether or not the crack growth can be inhibited

or arrested by a high-angle misorientation grain boundary [40, 41]. A crack can grow

from a cell m in the brittle cell array to another cell l in its vicinity if the absolute

value of the difference between their orientations is less than a critical misorientation

threshold (αc) which is considered to be a material property.

The main mechanism for the initiation of brittle fracture initiation in DP steels is

martensite cracking. A brittle crack initiates perpendicular to the tensile stress. To

include this mechanism in the model, at the beginning of the simulation, the volume

fraction of martensite should be introduced into the model as a material property

and different kinds of distribution functions can be used to assign a special state

to particular cells: alivem or “alive with martensite” which can be considered as

a potential site for brittle crack initiation. Only these cells can take part in crack

initiation. The state of other cells would be “alive” at the beginning of the simulation.

Cells in the brittle CA array can fail due to brittle fracture criterion (deadb) when

the maximum principal stress (σmI (ti)) exceeds the fracture stress defined for that

particular cell. It becomes dead due to the synchronization or mapping technique

with ductile cell array which reflects dead cells as a result of ductile fracture (deadd).

Therefore, each brittle cell can take one of four possible states: alive, alivem, deadb

and deadd. The state of each cell in the brittle CA array is determined by the following
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criterion:

Sm(b)(ti+1) =



deadb if

σmI (ti) ≥ σmF ∧ {(Sm(b)(ti) = alivem) ∨([
Sml(b)(ti) = deadb ∨ Sml(b)(ti) = deadd

]
∧

|αm − αl| < αc
)
}

Sm(b)(ti) Otherwise

SU(b)(t0) = alivem U = 1 . . . u

SV (b)(t0) = alive V = 1 . . . v

u+ v = Db

(3.4)

where SU(b), SV (b), u and v are the state and total number of cells with and without

martensite, respectively.

3.2.3 Transfer rule

An important step in defining a CA model is to set a time-dependent transfer function

to update cell state in each time increment. The general transfer rule function in this

model is given by:

Sm(ti+1) = Ω
(
Sm(ti), S

l
m(ti), ΞN

m, ΞN
l , ΦQ

m(ti)
)

(3.5)

which means that the new state of each cell m is a function of its current state (Sm(ti)),

the current state of its neighbouring cells (Slm(ti)), its properties (ΞN
m, N = 1 . . . n),

the properties of its neighbouring cells (ΞNl , N = 1 . . . n), and the state variable of cell

m at the time ti (ΦQ
m(ti), Q = 1 . . . q). Cell properties are intrinsic material properties

and the state variables are determined from the solution of the constitutive material

model. In this model, two CA arrays, ductile and brittle CA arrays, are used to

evaluate two modes of fracture. They follow rules and criteria that are independent

of each other, however, since these two arrays represent the same physical space, the

state of cell m in one array would be dependent on the state of a group of cells g in
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the other array. It means that if a cell status changes from alive to dead in either the

ductile or brittle CA array, it should be reflected in the other array in order to take

the loss of integrity into account for both CA arrays. Accordingly, the full transfer

rule for both ductile and brittle CA arrays can be written as:

Sm(d)(ti+1) = Ωd

(
Sm(d)(ti), S

l
m(d)(ti), ΞN

m(d), ΞN
l , ΦQ

m(d)(ti), Sg(b)(ti+1)
)

(3.6a)

Sm(b)(ti+1) = Ωb

(
Sm(b)(ti), S

l
m(b)(ti), ΞN

m(b), ΞN
l , ΦQ

m(b)(ti), Sg(d)(ti+1)
)

(3.6b)

where subscripts d and b refer to the ductile and brittle cell arrays, respectively. The

number of cells g depends on the total number of cells in each CA array (Dd and Db).

The link between CA arrays and FE is established through solution-dependent state

variables (Ri
P ) for each finite element integration point i, as shown in Eq. 3.7:

Ri
P (ti+1) = Ψ(Sm(d)(ti+1) , Sm(b)(ti+1)) (3.7)

where Ri
p(ti+1) is the updated state variable P (P = 1 . . . p) at time ti+1 for integration

point i. For each integration point, three solution-dependent variables are defined

based on the states of the brittle and ductile CA cells. The number of brittle cells due

to the brittle and ductile fracture modes and total number of dead brittle and ductile
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cells are calculated via Eq. 3.8a, Eq. 3.8b, Eq. 3.8c and Eq. 3.8d, respectively.

Xb
(b)(ti) =

Db∑
m=1

m ∀m : Sm(b)(ti) = deadb (3.8a)

Xd
(b)(ti) =

Db∑
m=1

m ∀m : Sm(b)(ti) = deadd (3.8b)

X(b)(ti) = Xb
(b)(ti) + Xd

(b)(ti) (3.8c)

X(d)(ti) =

Dd∑
m=1

m ∀m : Sm(d)(ti) = dead (3.8d)

Subsequently, three FE solution-dependent variables are written as:

R1(ti) =
Xb

(b)(ti)

X(b)(ti)
(3.9a)

R2(ti) = 1−
X(d)(ti)

Xmax
(d)

−
Xb

(b)(ti)

Xmax
(b)

(3.9b)

R3(ti) =

{
dead if R2(ti) ≤ 0

alive otherwise
(3.9c)

where Xmax
(d) and Xmax

(b) are the maximum number of dead cells allowed in the ductile

and brittle cell arrays, respectively. As described by Shterenlikht [23], if the number

of dead cells reaches its maximum limit, then a crack or void coalescence takes place

and the FE would lose all its load-bearing capacity and should be removed from the

model. In Eq. 3.9a-3.9c, R1(ti) represents the fraction of brittle fracture and is between

[0 . . . 1], such that 0 means no brittle fracture and 1 means 100% of failure mode is

due to brittle fracture mode; R2(ti) is called integrity and R2 ∈ [−1 . . . 1], and R3(ti)

denotes the state of the finite element. The initial values of the solution-dependent
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variables for each FE are:


R1(t0) = 0

R2(t0) = 1

R3(t0) = alive

(3.10)

3.2.4 The model cycle

At each time increment, the following steps are performed for each FE at the corre-

sponding ductile and brittle CA arrays. It is worth noting that the FEs are responsible

for capturing the constitutive response of the material subjected to deformation and

the CA arrays are used to determine the damage and fracture behaviour [23].

1. At each integration point, the Cauchy stress tensor (σij) and strain tensor (εij)

are calculated via the constitutive material model and the integration procedure

of the Rousselier damage model.

2. The value of the Rousselier scalar damage variable (β) is determined. In addition,

the maximum principal stress (σI) and its corresponding direction cosines (dk)

are calculated.

3. The damage variable at each cell m in the ductile cell array at the time ti+1 is

determined using the following criterion:

∀m : βm(ti+1) = β(ti+1) (3.11a)

∀Sm(d)(ti) = dead if dlk.dk(ti) ' 1 =⇒ βl(ti+1) = CD . β(ti+1) (3.11b)

where CD is the damage concentration factor for ductile cell array and dlk are

the direction cosines of the line connecting the centres of cells m and l.

4. The state of each cell in the ductile CA array (Sm(d)(ti+1)) is obtained according

to Eq. 3.2.
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5. All dead cells in the ductile CA array should be reflected to the brittle cell array

with a mapping function. This function distributes the array of ductile cell

states across the brittle cell array and the result is called synchronization array

of brittle cell states (Sm(bd)(ti+1)).

Sm(bd)(ti+1) = Md→b(Sm̄(d)(ti+1)) (3.12a)

The m̄ denotes the corresponding cells in the brittle CA array. The mapping

rule can be written as:

Sm(b)(ti+1) =


deadd if

Sm(bd)(ti+1) = dead∧(
Sm(b)(ti) = alive ∨ Sm(b)(ti) = alivem

)
Sm(b)(ti) otherwise

(3.12b)

6. Similar to step 3, the maximum principal stress in each cell in the brittle CA

array is calculated using the following criteria:

∀m : σmI (ti) = σI(ti) (3.13a)

∀Sm(b)(ti) = deadb if dlk.dk(ti) ' 1 =⇒ σlI(ti) = CB . σI(ti) (3.13b)

∀Sm(b)(ti) = deadd if dlk.dk(ti) ' 1 =⇒ σlI(ti) = CD . σI(ti) (3.13c)

7. Similar to step 4, the state of each cell in the brittle cell array (Sm(b)(ti+1)) is

determined using Eq. 3.4.

8. Like step 5, all dead cells in the brittle cell array should be reflected in the

ductile cell array via the mapping function to build the synchronization array of

ductile cell states (Sm(db)(ti+1)).

Sm(db)(ti+1) = Mb→d(Sm̄(b)(ti+1)) (3.14a)
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Sm(b)(ti+1) =


dead if Sm(db)(ti+1) = dead ∧ Sm(d)(ti) = alive

Sm(b)(ti) otherwise
(3.14b)

The application of the mapping function is illustrated in Fig. 3.6 for both

Md→b(Sm̄(d)(ti+1)) and Mb→d(Sm̄(b)(ti+1)).
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Figure 3.6: Illustration of the mapping operation

9. In this step, the FE solution-dependent variables (Rk(ti), k = 1, 2, 3) are calcu-

lated for each integration point based on Eq. 3.9a-3.9c.

10. Calculated solution-dependent variables are returned to ABAQUS/Explicit solver

for the next time increment.

Figure. 3.7 shows a schematic chart of the sequence of operations performed at

each time increment for each FE and the corresponding two CA arrays of the

model.
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Figure 3.7: Sequence of steps performed in the model for each FE integration point
and corresponding CA arrays
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Chapter 4

Effect of rate-dependent
constitutive equations on the
tensile flow behaviour of DP600
using Rousselier damage model

In this chapter, the Rousselier ductile damage model was employed to model hard-

ening, plastic instability and damage properties of DP600 during uniaxial tension

in a wide range of strain rates (from 0.001 to 1000 s-1). Also, various well-known

phenomenological hardening functions, such as Johnson-Cook and KHL as well as a

modified version of Johnson-Cook and multiplicative combinations of Voce with other

strain-rate hardening functions have been fitted to experimental flow curves via a new

combination of non-linear regression and Markov chain Monte Carlo (MCMC) method.

The effect of each hardening function on the evolution of the damage parameter,

void volume fraction and strain distribution along the gauge length was evaluated

throughout the deformation. Also, the onset of instability, geometry of the neck and

final fracture were then assessed by comparing the numerical results with experimental

data. It is found that the modified JC and Voce-modified JC models can predict the

flow behaviour of DP600 more accurately. Additionally, it is shown that the strain

hardening rate at large strain levels, as determined by the hardening models, has a

considerable effect on the strain map along the specimen, onset of void growth, and
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progression of damage in the localized area.

4.1 Introduction

There is an increasing demand in the automotive industry to reduce both vehicle weight

and gas emissions, and to increase fuel efficiency. Therefore, significant effort has

been invested to develop suitable materials which can exhibit improved performance

in terms of combined high ductility, formability and strength [1, 2]. Advanced high

strength steels (AHSS), such as dual phase (DP) steels, offer high strength-to-weight

ratio and improved crash resistance [3]. Dual phase steels, being low carbon steels,

belong to a family of high strength strip grades which consist of hard second phase

islands (usually martensite) distributed across a ductile ferritic matrix. To obtain

such a microstructure, dual phase steels are annealed by holding a strip in the ferrite-

austenite temperature region for a period of time, followed by controlled quenching so

that austenite transforms to soft ferrite and hard martensite [4, 5]. Dual phase steels

show low yield strength and high ultimate tensile strength, which result in high strain

hardenability. They also exhibit continuous yielding behaviour, high strain hardening

rates at low strain values and large uniform elongation [3, 6].

Due to the growing application of DP steels in the automotive sheet metal forming

industry, accurate prediction of their deformation behaviour and formability is essential

for manufacturers to produce defect–free components. Usually, conventional strain–

rate processes such as stamping, drawing or hydroforming are used to manufacture

auto–parts [7, 8]. However, high strain–rate forming techniques based on explosive

forming (EF) and electro–hydraulic forming (EHF), which can increase formability and

uniformity of strain [9, 10], are also generating great interest in the automotive industry.

Thus, accurate prediction of forming behaviour, from quasi-static to high strain rates

is necessary to reduce the cost and time needed for successful part fabrication [11, 12].

In this regard, various phenomenological and micromechanical models, have been

developed for finite element analysis to predict component formability and failure of

DP600 sheets during cross–die test [12]tube hydroforming [13], tube hydropiercing

[14], and electrohydraulic free–forming and die–forming [9, 10]. It has been shown
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by several researchers that the predominant damage mechanism and failure in DP

steels depends on the ferrite and martensite grain sizes and their morphology [15–17],

and can range from a mixture of brittle and ductile rupture to completely ductile

rupture in a quasi–static uniaxial tension test. The main mechanisms of ductile failure

generally consist of nucleation, growth and coalescence of voids during the forming

process [16, 17], although the fracture mechanism can vary from a shear mechanism

at negative stress triaxialities to a combination of shear and void formation at low

triaxialities [18]. Therefore, micromechanical damage models which account for these

mechanisms are more suitable to numerically evaluate ductile failure in metal forming

simulations, although it is shown that it is hard to define a damage model that can

predict the ductile fracture for different triaxiality levels [19].

Among micromechanical damage theories, the Gurson–Tvergaard–Needleman [20, 21]

and Rousselier [22] models are two of the most widely known for modelling ductile

fracture. Two main advantages of the latter is that it requires the specification of fewer

parameters and it can predict the evolution of damage and consequent void volume

fraction growth in pure shear deformation [23]. However, the Rousselier damage model

requires an appropriate hardening equation that can predict the flow behaviour of the

sheet material at different strain rates. There are many hardening constitutive models

in the literature which fit quite well to the experimental data at low strain values up

to uniform elongation in uniaxial tension. However, the extrapolation of flow curves

beyond the range of experimental data can lead to very different results depending on

the model employed [24].

The main objective of this research is two-fold. First, different phenomenological

strain–rate sensitive hardening equations have been fitted to the experimental data,

obtained from uniaxial tensile tests at quasi-static, medium and high strain rates,

to define the hardening behaviour of DP600 sheet. A new approach based on the

combination of non-linear regression (NLR) and Markov chain Monte Carlo method

(MCMC) has been utilized to calculate the constants in each hardening constitutive

equation. In addition to well-known hardening constitutive functions, multiplicative

combinations of Voce [25] strain hardening, and three strain–rate functions have

been used. The accuracy of these different functions is evaluated via widely-accepted
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statistical criteria, the root-mean-square error (RMSE) and the so-called adjusted

R-squared value. Secondly, the mechanical response, onset and evolution of strain

localization and failure, the geometry of the instability as well as the evolution of void

volume fraction are investigated using the Rousselier damage model implemented in a

user material subroutine (VUMAT) that is used in ABAQUS/Explicit FE simulation

software. The effect of different hardening functions on the mentioned parameters,

and their advantages and drawbacks will be discussed.

4.2 Constitutive modelling

4.2.1 Rousselier damage model

The Rousselier model [22] is a thermodynamically consistent damage model which uses

the ‘simplest assumption’ at each stage of its development [26]. It is an elastic-plastic

constitutive law that employs cumulative plastic strain (p) and cumulative damage

variable (β) which corresponds to the void volume fraction to model the ductile damage

and rupture behaviour of porous materials [27, 28]. It describes the increase in void

volume fraction in a ductile domain with isotropic hardening and isotropic damage

[29]. The Rousselier plastic potential is given by:

ϕ =
σeq

1− f
−H +B(β)D exp

(
σm

(1− f)σI

)
= 0 (4.1)

in which σeq is the von Mises equivalent stress (such that σeq = (3
2
SijSij)

1/2 where

Sij is the deviatoric stress) and σm is the hydrostatic stress (such that σm = 1
3
tr(σij)

where σij is the Cauchy stress). D and σI are material parameters which describe

the resistance of the material to void growth and coalescence [23, 29]. H is the

hardening curve of the material; B(β), the damage function, is the conjugate force

to damage parameter β, f0 and f are the initial and current void volume fraction,

respectively. The damage variable β and f are directly related to the plastic multiplier

in the normality rule (λ) and follow the strain increment (ṗ) and increase with the

deformation:
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ḟ = (1− f) ṗ f D exp

(
σm

(1− f)σI

)
(4.1a)

β̇ = ṗ D exp

(
σm

(1− f)σI

)
(4.1b)

The relation between current void volume fraction and B is given by:

f =
B(β)

σI
=

f0 exp(β)

1− f0 + f0 exp(β)
(4.1c)

Li et al. [26] presented an explicit and detailed theoretical calculation procedure of

the Rousselier damage model and its related parameters. In the original Rousselier

model, void nucleation was not considered and failure was described by specifying a

critical void volume fraction (fc) which corresponds with a critical value of the damage

parameter βc. Along the deformation process, material hardening (described by the

second term of Eq. 4.1) is overtaken by the material softening (third term of Eq. 4.1)

due to the increase in f to a critical level beyond which the material completely loses

its load–bearing capacity and faces local failure [29, 30].

4.2.2 Hardening constitutive models

In the simulation of metal forming processes, hardening and softening of the sheet

material are dependent on thermomechanical parameters derived from experimental

flow curves. Therefore, it is important to carefully determine the parameters in a

hardening equation, whether it is a phenomenological, physically–based or artificial

neural network model [31], so that the mechanical behaviour of the sheet material

can be accurately predicted. Since ductile metals and alloys can be safely deformed

up to high strain values, the formulation of these equations in terms of predicting

hardening behaviour and hardening rate is critical [24, 32]. Therefore, in this study,

different phenomenological plastic hardening equations have been used to identify the

effect of hardening functions on the deformation and damage simulation of DP600 at

different strain rate levels. Although most of these phenomenological hardening models

can be described based on plastic strain, deformation rate and forming temperature
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(H = σ(εp, ε̇p, T )), no parameter was calculated for the temperature–dependent part

of the function since the experimental tests were carried out at ambient temperature

and the temperature rise due to adiabatic heating was shown to be negligible for the

investigated range of strain rates [8]. In the following functions, C1...n are materials

constants which can be determined by an appropriate fitting procedure and H, εp,

ε̇p denote the matrix flow stress, the equivalent plastic strain, the equivalent plastic

strain rate, respectively.

The isotropic non–linear hardening behaviour of materials can be described by a power

hardening law. This form of power law [33] has been extensively used in the literature

[34–36] and is written as

H = C1

(
εp
C1

E + 1

)C2
(
ε̇p
ε̇0

)C3

(4.2)

where E is Young’s modulus (E=210 GPa for DP600 [37]) and ε̇0 represents a reference

strain rate.

The Johnson-Cook (JC) model is one of the most widely-used hardening equations to

describe the flow stress at different strain rates and temperatures [38]. The original

form of the JC model is given by:

H = (C1 + C2ε
C3
p )

[
1 + C4 ln

(
ε̇p
ε̇0

)]
(4.3)

Previously, various researchers have calculated the parameters in the JC model for

DP steels, such as DP500 [39], DP590 [10], DP780 [40], and DP1200 and DP1400 [41],

while others modified the JC model, mostly by considering the effect of temperature

on the hardening behaviour [31, 42]. Holmquist and Johnson [43] indicated that the

effect of strain rate on the material strength cannot be described accurately by a

linear function of natural log as represented in the JC model, and it is necessary

to modify the strain rate hardening term to model this behaviour. In this study, a

simple modification, as can be seen in Eq. 4.4, was incorporated in the JC hardening

model so that the flow curves of DP600 at different strain rates can be modelled more
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precisely. The modified–JC model (mJC) is given by:

H = (C1 + C2ε
C3
p )

[
1 + C4

(
ln
ε̇p
ε̇0

)C5
]

(4.4)

One of the most important saturation–type strain hardening functions was proposed

by Voce [25] in which the strength of the material reaches a saturation point (σs)

and remains constant, i.e. the strain hardening rate reduces to zero beyond a certain

strain level. It is worth noting that the original Voce function did not include a

strain-rate or temperature dependent part. Accordingly, different linearly combined

functions based on Voce, as the strain hardening part, and other strain-rate and

temperature sensitive functions have been proposed in the literature for DP steels,

such as DP590–DP780–DP980 [44], DP800 [45] and DP600 [8], and TRIP steels [46].

Since the Voce model can successfully describe the flow behaviour of many sheet

materials, the strain–dependent Voce equation (Eq. 4.5b) was combined with three

strain–rate dependent functions, by multiplying the Voce equation with (1) a power-law

(Eq. 4.5c), (2) strain rate term of the Johnson-Cook model (Eq. 4.5d), and (3) strain

rate term of the modified Johnson-Cook function (Eq. 4.5e). All three multiplicative

combinations were evaluated to determine which one more accurately describes the

flow curve of DP600 at different strain rates.

H = f(εp) g(ε̇p) (4.5a)

f(εp) = C1 − (C1 − C2)(1− exp(−C3εp)) (4.5b)

g(ε̇p) =

(
ε̇p
ε̇0

)C4

(4.5c)

g(ε̇p) =

[
1 + C4 ln

(
ε̇p
ε̇0

)]
(4.5d)

g(ε̇p) =

[
1 + C4

(
ln
ε̇p
ε̇0

)C5
]

(4.5e)

The Khan–Huang–Liang (KHL) [47] model (Eq. 4.6) is a constitutive model in which

the stress is unbounded at large strains [44, 48]. The KHL model is able to capture

the hardening response of engineering materials such as advanced high strength steels
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(AHSS) [49], aluminium alloys [50] and titanium alloys [48, 51] over a wide range of

strains and strain rates:

H =

[
C1 + C2

(
1− ln ε̇p

lnDp
0

)C4

εC3
p

](
ε̇p
ε̇0

)C5

(4.6)

where ε̇0 and Dp
0 denote the reference strain rate and the upper bound strain rate

which can be arbitrarily chosen to be 106 s-1[49]. The reference strain rate was chosen

as 1 s-1for the JC, modified–JC, Voce–type functions and KHL hardening model. For

some materials, the KHL model leads to a better prediction of material hardening

than strictly multiplicative models and will therefore be used in this investigation.

4.3 Material and Methods

4.3.1 Material

The material used in this study was a DP600 sheet with a nominal thickness of 1.48 mm

and having phase volume fractions of 92.0, 4.7 and 3.3 vol% ferrite, martensite and

bainite content, respectively. The chemical composition of as-received DP600 sheet is

given in Table 4.1.

Table 4.1: Chemical composition of as-received DP600 steel (wt%) [52]

C Mn Si Cr Mo Cu Al

0.107 1.5 0.18 0.18 0.21 0.06 0.04

4.3.2 Experimental procedures

Uniaxial tensile tests were conducted on DP600 sheet along the sheet rolling direction.

ASTM (E8M-04) specimens were tested at low strain rates (0.001 and 0.1 s-1) using

an Instron 1331 servo-hydraulic testing machine with cross–head velocities of 3 and

300 mm/min and sampling rates of 1.67 and 167 Hz, respectively. A ±12.5 mm
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biaxial extensometer was used to measure the axial and width strains. In order to

conduct tests at intermediate strain rates (1, 10, 100 s-1) and at a high strain rate

of 1000 s-1, a miniature “dog–bone” shaped specimen was designed. To conduct

the tests at intermediate strain rates, a special Hydraulic Intermediate Strain Rate

(HISR) apparatus, developed at the University of Waterloo [53] was used and a tensile

split Hopkinson bar (TSHB) apparatus was used to carry out high strain rate tests.

Cross–head velocities of 750, 19500 and 180000 mm/min were employed to obtain

strain rates of 1, 10, 100 s-1.

Strain measurements of intermediate and high strain rate tests were carried out using

2D digital image correlation (DIC) techniques along with virtual extensometers to

measure the longitudinal and width strains, respectively. To use the DIC method,

the specimens were first painted in white followed by the application of a stochastic

black speckle pattern that deforms with the specimen during the test. A high–speed

digital camera was used along with DIC processing software (ARAMIS from GOM

and VIC-2D from Correlated Solutions) to calculate the longitudinal and width strains

during the tests, from intermediate to high strain rates. For each strain rate, three to

five tests were carried out to confirm the repeatability of the results. The measured

tensile force was divided by the original cross–sectional area of the gauge and the

engineering stress was then converted to true stress. The true (plastic) strain was

directly obtained from the DIC software and the average true stress–true plastic strain

curve was obtained for each strain rate. Rahmaan et al. [8] presented a detailed

description of the testing procedures, specimens, tools and apparatus, measurement

procedures and obtained results for these experiments. The averaged true stress–true

strain curves of this DP600 steel sheet are shown in Fig. 4.1 [8]. These flow curves

were used to calibrate various hardening functions for the strain range 0.002–0.14 and

the strain rate range 0.001–1000 s-1.
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Figure 4.1: Flow curves of DP600 at different strain rates ranging from 0.001 s-1to
1000 s-1[8]

4.3.3 Fitting procedure

In this study, the Markov chain Monte Carlo (MCMC)–Metropolis-Hastings (MH)

algorithm [54] was utilized as an optimization method to determine the parameters for

the hardening functions; introduced in section 4.2.2. This algorithm is a combination

of the Monte Carlo method, which draws samples from a specified range for each

parameter, and Markov chain which generates a sequence of random variables (Ci) in

which the probability of current variables is dependent on the previous samples. Also,

the Metropolis-Hastings algorithm helps the Markov chain with a candidate range for

a set of variables [54–56]. Stochastic methods such as MCMC are preferred for noisy

data such as tensile curve data generated at high strain rates. However, this algorithm

can be computationally expensive since initial values and a certain initial wide range

of random values should be chosen for each fitting parameter at the beginning of the

procedure. For this reason, non-linear regression (NLR) was used to obtain parameter

values which were used to initialize the MCMC optimization.

The proposed combination of NLR+MCMC is computationally fast and inexpensive

compared to other optimization techniques because accurate initial values with much

narrower ranges are used to initialize the MCMC process in the proposed fitting

method and more rapidly lead to a precise determination of model parameters [57].
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Another advantage of this fitting procedure is that it can also be used for a certain

part of a function. This is very useful when fitting a multiplicative function to a

data set, e.g. σ(εp, ε̇p) = f(εp) g(ε̇p), so that the coefficients of the strain hardening

function can be calculated using non–linear regression and then the results can be

exported to MCMC to determine strain–rate hardening function parameters and

further calibration.

The method was implemented in a Python code and a flowchart of this algorithm

is shown in Fig. 4.2. First, NLR method was performed to calculate the fitting

parameters (C1...m(t0)) and their corresponding error (
∑

res(t0)), based on the sum of

squares of residuals, for a certain hardening equation. These values were considered

as initial guess and initial error for the MCMC procedure (Cf
1...m and

∑
res). Then a

pseudo-random number generator was used to generate random fitting parameters

in a narrow range (Ci ± 0.2Ci) around the initial values (C1...m(ti+1)) and then the

least square error (
∑

res(ti+1)) was calculated and compared with the initial error.

When the current error was less than the initial one, the new set of parameters was

considered as the initial values and the previous error was substituted with the current

least square error for the next iteration, otherwise nothing was changed and the loop

continued until it reached the maximum number of iterations.
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Figure 4.2: Schematic NLR+MCMC procedure used in this study

4.3.4 Finite element simulation

The Rousselier ductile damage model was implemented as a user material subroutine

for use in the Abaqus/Explicit finite element software. The implementation follows

the integration procedure developed by Shterenlikht [36]. The specimen geometries

used for simulating the uniaxial tension tests, corresponding with the experimental

specimens for quasi–static, and moderate and high strain rates are shown in Fig. 4.3a

and Fig. 4.3b, respectively.
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To reduce computational cost, the size of the grip section was reduced compared with

the actual size of the test specimens. Furthermore, only a quarter of the specimen

was modelled due to the symmetries associated with the material and test geometry.

The specimens were meshed using 8-node reduced integration brick elements (C3D8R

in the Abaqus element library). A reference point was coupled to the top surface

of the grip section (perpendicular to the y–axis) such that all degrees of freedom

were constrained, except for displacement in the loading direction. The cross–head

velocities corresponding to the experimental tests were applied to the reference point

to obtain the same strain rates in the simulation runs. In order to calculate the

stress–strain curve of the material in each testing condition, the load–displacement

of this point was used to derive the flow curve and compare it with the experiments.

Symmetric boundary conditions were applied to both half (x–y) symmetry planes of

the specimen, i.e. the displacements were locked in the loading direction for the nodes

on the symmetry plane at the centre of the gauge area, perpendicular to the specimen

axis, and locked perpendicular to the loading direction for the nodes located on the

model symmetry line, parallel to specimen axis.

As shown by many researchers [14, 58, 59], the damage behaviour and the slope of the

non–uniform part of the flow curve are considerably mesh size–dependent. Therefore,

a mesh sensitivity analysis was performed by reducing the element size from 0.5 mm

to 0.1 mm for quasi-static specimens and from 0.3 mm to 0.05 mm for the higher

rate specimens to determine the effect of element size on the simulation of tensile

tests. Since the intermediate and high strain rate specimens are considerably smaller

in size (1.75 mm wide and 1.48 mm thick) than the standard tensile specimen, it

was necessary to reduce the size of the brick elements in order to maintain a uniform

element aspect ratio. Simulation results showed good consistency for an element

size less than 0.25 mm and 0.1 mm in the damaged area, in terms of accuracy and

computational cost, for quasi-static and higher strain rate models, respectively [29].

Therefore, biased meshing, ranging from 0.5 mm near the grip section to 0.25 mm near

the middle of the gauge length, was used for quasi-static simulation and an element

size of 0.1 mm was used for the higher rate specimens.
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(a)

(b)

Figure 4.3: Geometry of the specimens used for FEA (a) quasi-static and (b) interme-
diate and high strain rate uniaxial tensile tests

4.4 Results and Discussion

4.4.1 Fitting results and statistical analysis

The material parameters for the matrix flow stress equations as obtained from the

MCMC optimization procedure described, can be found in Table 4.2.

Table 4.2: Coefficients of hardening functions for DP600 determined via NLR+MCMC

C1 C2 C3 C4 C5

Power-law 318.85 0.1836 0.0151 - -
Johnson-Cook (JC) 226.99 846.53 0.3322 0.0166 -
modified JC (mJC) 225.35 850.16 0.3194 0.0037 1.5715
Voce-power law (VPl) 380.28 781.30 8.8338 0.0165 -
Voce-JC (VJC) 365.70 751.35 8.8338 0.0174 -
Voce-mJC (VmJC) 400.21 795.19 9.0236 0.0015 1.9430
KHL 161.54 946.48 0.2577 -0.1900 0.0037

98



Standard statistical parameters such as adjusted R–squared value (Eq. 4.7b) and

RMSE (Eq. 4.7c) were employed to statistically evaluate the goodness of the fit and

the accuracy of each hardening function over the entire range of strain rates. The

adjusted R–squared is the modified version of R–squared value which takes the number

of predictors and points into account. R–squared value increases by increasing the

number of predictors whereas in adjusted R–squared value, it leads to an increase only

if the new term improves the model prediction beyond what would be obtained by

probability. Both the adjusted R–squared and RMSE are calculated by comparing

stress values from experimental tests (σx) and stress values predicted by hardening

models (H).

R2 = 1−
∑n

i=1(σx −H)2∑n
i=1(σx − σ̄x)2

(4.7a)

R̄2 =R2 − (1−R2)
m

n−m− 1
(4.7b)

RMSE =

√√√√ 1

n

n∑
i=1

(σx −H)2 (4.7c)

where σ̄x, n and m represent the mean stress value, the total number of flow curve

data points and the total number of predictors (C1...n) in the model (not counting the

constant term). The results of the statistical analysis, shown in Fig. 4.4, reveal that

the proposed NLR+MCMC method can improve the accuracy of the predicted flow

curves by 10-20% as compared to NLR.

0 5 10 15 20 25
RMSE

Power-law

Voce-Johnson Cook

Voce-Power law

KHL

NLR

NLR+MCMC

Figure 4.4: Comparison of RMSE of 4 hardening functions in predicting DP600 flow
curves in the rolling direction
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The accuracy of each hardening equation is compared in terms of the adjusted R–

squared value in Fig. 4.5a and RMSE in Fig. 4.5b. The adjusted R-squared values

reveal that all the hardening functions considered can predict the strain and strain rate

dependent flow behaviour of DP600 up to the uniform effective strain in an accurate

way since the calculated R̄2 values are greater than 0.95. Among the hardening models

investigated, the modified JC and the Voce-modified JC models are the most accurate

while the power law and the Johnson-Cook models are the least accurate. In addition,

KHL and the multiplicative combination of Voce–power law and Voce–Johnson Cook

have approximately the same accuracy.

0.90 0.92 0.94 0.96 0.98 1.00
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2
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Modified Johnson-Cook

Voce-Johnson Cook

Voce-modified Johnson Cook

Voce-Power law

KHL

(a)

0 2 4 6 8 10 12 14 16 18
RMSE

Power-law

Johnson-Cook

Modified Johnson-Cook

Voce-Johnson Cook

Voce-modified Johnson Cook

Voce-Power law

KHL

(b)

Figure 4.5: Cumulative (a) adjusted R-squared value and (b) RMSE calculated for
DP600 in the RD testing direction

Figures 4.6 and 4.7 compare the predicted and experimental flow curves and hardening

rates at strain rates 0.001, 1 and 100 s-1in terms of hardening evolution comparing

with experimental uniaxial test results. One of the important observations is that

almost all hardening equations underestimated the flow curve of DP600 at quasi-static

strain rates, except the Voce–modified JC which accurately predicts the increases in

the flow stress from one strain rate to another. In addition, Voce–type equations are

more successful in predicting the yield stress while power law and the KHL functions

underestimate it at low and high strain rates.

The evolution of the strain hardening rate (dσ/dε) of this DP600 steel at different

strain rates as well as the corresponding curves calculated by each hardening model

are presented in Fig. 4.6b and 4.7b . This term is particularly important since it

has a remarkable effect on the progress of local neck predicted by the Rousselier
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micromechanical ductile damage model. All mentioned hardening laws predicted the

overall slope of the stress–strain curves with an acceptable precision at different strains

and strain rates. However, Voce–type models, can calculate the strain hardening rate

in a better way at the beginning of deformation (ε < 0.01) compared with the other

models. As a matter of fact, the latter hardening models exaggerate the hardening

slope after the onset of yielding although it rapidly decreases to near actual values

beyond a certain strain value.
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Figure 4.6: Experimental and calculated true stress–strain curves and their corre-
sponding slopes for DP600 sheet specimens at 0.001 s-1

102



(a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

ε

2000

0

2000

4000

6000

8000

10000

d
σ
/d
ε 

(M
P

a
)

Power law

JC

Modified JC

Voce-mJC

KHL

Experiment

(b)

Figure 4.7: Experimental and calculated true stress–strain curves and their corre-
sponding slopes for DP600 sheet specimens at 100s-1
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Apart from the different hardening models predicting different hardening rates at the

beginning of the simulation, they also exhibit different strain hardening trends at high

strain values. It can be seen in Fig. 4.8 that all hardening functions can reasonably

predict the flow curve of DP600 at a strain rate of 0.1 s-1for the range of experimental

data that is available (and this claim can be extended to the predictions at all strain

rates). However, whilst Voce-like models approach null hardening rates and reach

a saturation stress at large strains, other models almost reach a constant non-zero

hardening rate after a certain amount of deformation. These different behaviours at

large deformation are particularly important for predicting the onset of instability

and the evolution of damage in a tensile specimen as they can strongly influence the

necking geometry and final failure of the specimen. Furthermore, the large deformation

behaviour will also have a significant effect on the outcome of numerical simulation of

sheet metal forming processes.

Figure 4.8: Extended DP600 true stress–strain curves predicted by different hardening
models at 0.1 s-1
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4.4.2 Finite element simulation

Calibration of Rousselier damage model

A necessary procedure for any ductile damage model is the calibration of material

parameters and model coefficients. Four parameters need to be calibrated in the

Rousselier model: D and σI as model constants, and f0 and βc. The initial void

volume fraction can also be described by the fraction of eligible second phase particles

(such as the martensite volume fraction in DP steels) that can be potential sites for

void nucleation during the deformation, considering that not all of them take part in

the nucleation process [29, 60, 61]. In addition, the void volume fraction at failure

can be used instead of the critical scalar damage variable βc by using Eq. 4.1c. The

initial void volume fraction was experimentally measured to be 0.07% by Winkler et

al. [62] and fc = 0.1 was determined by Abbasi et al. [63] and Ramazani et al. [12]

and used in the current work.

Many simulations were carried out to determine D and σI at strain rates of 0.1 and

1 s-1and for each hardening equation, to determine whether or not changing these

parameters has a significant effect on the performance of the Rousselier damage model

for constant values of f0 and fc. Table 4.3 shows the sample ranges and arrangements of

parameters and hardening models employed for these simulations. In each simulation,

corresponding parameters in each associated row were used, and the reaction force

and the displacement of the reference point was used to calculate the engineering

stress–strain curve for further comparison. Python scripts were developed to automate

the runs, derive related data points and post process the results. As it can be seen in

Fig. 4.9, D and σI have negligible effects on the homogeneous deformation part of

the flow curve, but they significantly affect the shape of the engineering stress–strain

curve after maximum load is reached: i.e. higher values of parameter D accelerate the

progress of damage whereas increasing the value of σI tends to postpone the failure

by increasing the resistance to instability and failure.
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Table 4.3: Design arrangement of parameters for the calibration process

No. D σI(MPa) Strain–rate (s-1) Hardening model

1 1.5 325 0.1 Power–law
2 2 325 0.1 Power–law
3 2.5 325 0.1 Power–law
4 3 325 0.1 Power–law
5 1.5 375 0.1 Power–law
...

...
...

...
...

32 3 475 1 Power–law
33 1.5 325 0.1 JC
...

...
...

...
...

48 3 475 0.1 JC
49 1.5 325 1 JC
...

...
...

...
...

65 1.5 325 0.1 modified–JC
...

...
...

...
...

97 1.5 325 0.1 Voce–mJC
...

...
...

...
...

160 3 475 1 KHL

(a) (b)

Figure 4.9: Comparison of experimental and predicted DP600 flow curves at 0.1 s-1with
different D and σI using the (a) KHL and (b) modified–JC hardening models

Based on simulation results, D = 2 and σI = 450±5 MPa for Voce–type functions, and

D = 2.5 and σI = 390± 15 MPa for power law–type models are obtained in order to

achieve the optimized Rousselier model parameters and the best fit of the engineering
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stress–strain curve comparing to experiments. To avoid complication and compare the

simulation results with experiments at constant damage parameters, the average values

predicted for D and σI among all cases were used for the simulations, as presented

in Table 4.4. The result of the calibrating procedure for KHL (σI = 400 MPa),

modified–JC (σI = 385 MPa) and Voce–modified JC (σI = 450 MPa) are shown in

Fig. 4.10.
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Figure 4.10: Comparison of experimental and predicted engineering stress–strain curve
for DP600 at 0.1 s-1calculated based on different hardening models

Table 4.4: Rousselier damage model parameters of DP600

D σI(MPa) f0 [62] fc [63]

2.5 425 0.0007 0.1

Simulation results

In the Rousselier damage model, the evolution of β and f need to be carefully assessed.

Figures 4.11 and 4.12 show the evolution of β and f from the beginning of the

deformation up to failure in the centre of the tensile specimens at low (0.1 s-1) and

intermediate (100 s-1) strain rates, respectively. The results indicate that under
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quasi-static conditions (Fig. 4.11a and 4.12a), there are no obvious differences in the

evolution of β and f when predicted by different hardening models up to a certain

strain level at the centre of the specimens. The void volume fraction is negligible up

to 0.6 strain, then it begins to increase gradually between 0.6 and 0.8 strain, and

subsequently, increases to fc = 0.1 through to the end of the tensile test. However,

these trends at large strains (εp ≥ 1.0) are dependent on the hardening model in

quasi–static conditions, where the final strain value predicted by Voce–type models is

slightly greater than that predicted by other models. The same behaviour can also be

observed for other strain rates (Fig. 4.11b and 4.12b), i.e. all hardening equations result

in the same pattern of damage growth, although the mentioned small deviations in the

damage growth behaviour starts at lower strains. It is worth noting that the growth

in the scalar damage parameter is the same for ε̇ = 0.1 s-1and ε̇ = 100 s-1(Fig. 4.11a,b)

up to ε ' 0.4 and after that the trend changes slightly through the rest of deformation.

The reason is that the flow curve obtained from an ASTM (E8M-04) and miniature

dog–bone specimens are comparable until the maximum load but after that, i.e. in

the non–uniform plastic deformation area, they are not identical, as explained by

Bardelcik et al. [64] and Rahmaan et al. [8].
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Figure 4.11: Variation of scalar damage variable (β) vs. equivalent plastic strain,
calculated by Rousselier damage model and different hardening equations at low and
high strain rates
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Figure 4.12: Variation of void volume fraction (f) vs. equivalent plastic strain, based
on different hardening equations at low and high strain rates

Another approach to investigate the void volume fraction during the deformation is

to evaluate its behaviour throughout the time of the process. Fig. 4.13 presents the
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history of void volume fraction throughout the normalized time of the simulation, i.e.

normalized to the total time of the deformation up to complete failure. Void volume

fraction is approximately zero at the beginning of simulation and it remains the same

until a certain time when it rises sharply to final void volume fraction at failure. As it

can be seen in Fig. 4.13a and 4.13b the general trend in which f increases from 0 to

fc is the same for all strain rates and for all hardening equations. Therefore, the rate

of void growth, in this model, is independent of the constitutive equation and of the

strain rate. Having said this, the time at which the void growth commences, is very

different depending on the strain rate and the hardening rule utilized in the model.

This behaviour can be correlated with the hardening rate at high strain values, as

shown in Fig. 4.8. The hardening rate is representative of the resistance of the material

against softening which consequently has an influence on its load bearing capacity.

Thus, hardening models that exhibit higher strain hardening rates at large strains tend

to decelerate and postpone the material softening that is caused by damage growth.

Therefore, the order in which the hardening rate alters from Voce-like models (lowest)

to JC (highest) in Fig. 4.8, is exactly the same order in which the onset of sudden

void growth occurs, as indicated in Fig. 4.13a. Likewise, the same explanation can be

extended to the behaviour of void growth at high strain rate (Fig. 4.13b). In addition,

it can also be observed from Fig. 4.13c that the starting time of void volume fraction

growth is reduced by increasing the strain rate for a given hardening function.
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Figure 4.13: History of the evolution of void volume fraction based on different
hardening functions (a) at ε̇ = 0.1 s-1and (b) at ε̇ = 100 s-1(c) comparison of void
evolution history at different strain rates using modified–JC and Voce–modified JC
hardening laws

The strain distribution in the tensile specimen and the geometry of the neck after

the moment when maximum load was reached and diffuse necking was initiated,

were predicted at different strain rates using different hardening models and were

qualitatively compared with experimental results obtained using DIC. The results

of this study are shown in Fig. 4.14. It can be seen that all quasi-static specimens

experienced diffuse necking and all specimens displayed strain localization at the centre

of the gauge area. But there are differences in the strain distribution around the neck,

as predicted by the different hardening models implemented in the Rousselier damage

model. At 0.1 s-1, shown in Fig. 4.14a, the modified Johnson-Cook and JC models
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show the most uniform deformation gradient across the local neck at the same level

of equivalent plastic strain at the centre of the neck (εpeq ≈ 0.6). The most severe

shear bands can be seen in the middle of specimens whose strain distribution was

predicted with a Voce–type function, and where the stress is confined to a saturated

value. This causes the strain to be more localized in shear bands and for localization

to start sooner, as can also be seen in Fig. 4.13. At strain rates of 1 and 100 s-1,

the onset of instability occurred in the middle of the specimen but the intensity

of localization in shear bands is reduced compared with the quasi-static condition.

Considering the strain distribution contours in Fig. 4.14, it can be understood that

the intensity of strain localization at each level of strain rate also follows the strain

hardening rate predicted by each hardening equation. This means that the JC model

with the greatest hardening rate among investigated models shows the least localized

deformation around the neck whereas the multiplicative Voce models predict more

severe localization at the centre of the specimens. Comparing the deformation outside

the neck in the uniformly deformed area, also confirms this hypothesis. Since the

material defined by Voce-like models cannot show any resistance to the flow softening

caused by void evolution in micromechanical damage models (due to stress saturation),

the predicted uniform elongation decreases compared with other models that can

withstand the softening process and help to maintain a more homogeneous deformation

throughout the specimen.
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Figure 4.14: Strain distribution along uniaxial tensile test specimens at the onset of
necking, using different hardening models comparing to experimental results at (a)
0.1, (b) 1.0 and (c) 100 s-1

The geometry of the damage in the tensile specimens deformed at 0.1 and 100 s-1is

presented in Fig. 4.15. Localization and failure start at the centre of all specimens and,
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subsequently, elements are removed from the simulations. However, the propagation

of failure differs depending on the hardening equation and the strain rate. Based

on Fig. 4.15(a), although all models show localization on the shear bands in the

quasi-static specimens, the damage front progresses directly toward the edge of the

specimen in case of modified–JC and KHL but it advances along the shear bands

when using Voce–power law and Voce–modified JC in the simulation, as shown by the

arrows in the figure. Therefore, at low strain rate, the final geometry of the damaged

area is predicted to be a normal diffuse neck that would lead to ductile fracture using

the former models, whereas the latter functions exhibit more localized necking and

damage on the shear bands, which can again be explained in terms of the strain

hardening trend determined by each hardening model. If the full geometry model

was used instead of the quarter–symmetry, as described in Section 4.3.4, the damage

would take place in an X–shape and fracture could occur on either of the shear bands

using Voce–type hardening functions.

At moderate and high strain rates, all models predicted the failure to propagate from

the centre to the edge of the specimen, perpendicular to the loading direction, as shown

by arrows in Fig. 4.15(b). This can be attributed to the geometry of the miniature

specimen and the flow behaviour predicted by the hardening function utilized in

the Rousselier model. The fracture configuration, relative to specimen symmetry

axes, predicted by Voce–type models at low strain rate and all models at strain rate

100 s-1are in good agreement with experiments, as can be observed in Fig. 4.15.
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Figure 4.15: Experimental and predicted damage accumulation and damage geometry
at (a) 0.1 and (b) 100 s-1

4.5 Conclusions

This research presents a complete study of uniaxial tensile flow behaviour of DP600 at

different strain rates from quasi-static to high strain rate. A new optimized technique

based on a combination of non–linear regression and the Markov chain Monte Carlo

method (MCMC) is proposed to fit different hardening equations to experimental data
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points. A user material subroutine was developed to employ Rousselier continuous

ductile damage model and hardening functions to simulate the tensile tests using

ABAQUS/Explicit finite element software. Based on numerical simulation results and

comparing them with experiments, the following conclusions can be drawn:

1. The proposed NLR+MCMC fitting procedure can accurately determine all the

fitting parameters in the hardening equations. This approach is computationally

efficient and fast comparing to other optimizing methods.

2. All investigated strain–strain rate hardening models could successfully predict

the flow behaviour of DP600. Among all, the modified Johnson-Cook and multi-

plicative combination of Voce–mJC exhibited the greatest accuracy. However,

each hardening function showed different strain hardening rate behaviour when

extrapolated to large strains.

3. The Rousselier model is a ductile damage model that can precisely predict the

material response in uniaxial tension. It is shown that the increase in the scalar

damage variable and consequent void growth, predicted by the Rousselier model,

is reasonably independent of the hardening law at low and moderate strains at

different strain rates up to a certain strain value, however, the onset of rapid void

growth depends somewhat on the hardening function and the way it predicts

the hardening rate at large strains. Higher hardening rates, as seen in the power

law, JC and KHL models, result in postponing the time of sudden void volume

increase while Voce–type models cause this sudden damage to occur earlier.

4. All hardening equations implemented in the Rousselier damage model demon-

strate good capabilities in predicting the strain distribution along the gauge

length of the specimens at different strain rates. Despite some variations, simu-

lation results were consistent with the experimental strain map obtained using

DIC technique. Voce models in quasi-static, and modified JC in low and high

strain rates could exhibit better results in terms of the average plastic strain in

the neck and in uniformly deformed areas of the gauge.

5. Although all hardening models predicted the onset of strain localization from

the centre of the gauge section, the progressive development of damage can be
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very different. In the quasi-static conditions, strain localized on the shear bands

and the consequent fracture is better predicted by the combination of Rousselier

model and Voce-like hardening functions. However, radial damage as well as

ductile fracture are predicted by other hardening functions.

6. Based on numerical simulations, it has been shown that the strain hardening rate

at large strain values, at a given strain rate, plays an important role in predicting

the deformation behaviour of a sheet material. Therefore, uniaxial tensile test

data is not sufficient to validate a numerical model; therefore, performing other

mechanical tests, such as hydrostatic bulge tests, to obtain the deformation

behaviour of a material under different forming modes appears to be necessary.
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Chapter 5

Damage evolution and void
coalescence in finite-element
modelling of DP600 using a
modified Rousselier model

In this chapter, numerical simulations of uniaxial tensile deformation of DP600 steel

were carried out using a modified Rousselier ductile damage model at different strain

rates ranging from 0.1 to 100 s-1. Since the original Rousselier model does not consider

any secondary void nucleation or coalescence criteria, it was modified by including a

strain-controlled void nucleation function, a coalescence criterion and a void growth

acceleration function as the post-coalescence regime identifier. The predicted flow

behaviour, the evolution of damage and critical strain and void volume fraction at the

onset of coalescence were assessed to evaluate the performance of the proposed model

at each strain rate. In addition, X-Ray tomography analysis was employed to evaluate

the void volume fraction predicted by each void coalescence criterion. The modified

Rousselier model showed good agreement with the experimentally determined strain

and void volume fraction at the onset of coalescence. Also, it could successfully predict

the damage distribution and the final damage geometry of DP600 tensile specimens.
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5.1 Introduction

Prediction of damage and failure in engineering materials and structures is a challenging

field of research that has gained a lot of attention in both academia and industry.

Accurate assessment of structural integrity of sheet metal products by numerical

analysis, with regard to the development of new high performance materials, is of

great importance since it can contribute to higher design efficiency, and more cost and

time effectiveness [1]. Sheet metals can exhibit different forming and failure behaviour

depending on the loading conditions such as the strain path and strain rate. Therefore,

it is essential to utilize an accurate hardening law, ductile damage model and fracture

criterion in numerical simulations to accurately reproduce experimental behaviour.

The use of dual phase (DP) steels is rapidly growing in the automotive industry due

to their superior performance in terms of combined ductility, work hardening rate,

strength-to-weight ratio and crash resistance. Their microstructure usually consists

of 5-30 vol% martensite, responsible for strengthening the material, distributed in a

ductile ferrite matrix which accommodates the deformation throughout the forming

process [2–4]. Tasan et al. [5] investigated the effect of microstructural properties of a

dual phase steel on the localization and damage mechanisms for different strain paths.

Besides conventional low strain rate forming processes used to deform these steels,

such as stamping and hydroforming, there is an increasing interest in the automotive

industry to utilize high strain rate deformation processes, such as electromagnetic or

electrohydraulic forming, which can result in significantly higher formability [6, 7].

Experimental research has shown remarkable improvement in the formability of

DP500, DP600, DP780 and DP980 steel sheets that were subjected to electrohydraulic

deformation process [7, 8]. In addition, Amirmaleki et al. [9] used the representative

volume element (RVE) method to model the flow behaviour of DP500 and bainite-aided

DP600 steels. Accordingly, developing a complete micromechanical damage model

based on precise constitutive equations, void nucleation and void growth functions,

and a void coalescence criterion would help to predict the hardening, instability and

damage behaviour of investigated DP steel in a wide range of strain rates, from

quasi-static conditions to high strain rates.
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A micromechanical approach to ductile failure relates the damage of most engineering

alloys to nucleation of microvoids during the deformation because of crack initiation

at second phase particles or at the interface between hard particles and the ductile

matrix. As the deformation progresses, voids grow as a result of increasing strain

and consequently, the load bearing capacity of the material progressively decreases

until coalescence of cavities leads to complete failure [10, 11]. McClintock [12], and

Rice and Tracey [13] were among the first researchers to describe the growth of a

cylindrical or spherical void in an infinite deforming ductile material with no strain

hardening. In these early models, no interaction between voids and the coalescence

process was considered, and failure was simply linked to the critical value of the

void radius. Later, various thermodynamically consistent models, based on porous

material plasticity, were proposed and the best known are those developed by Gurson

[14], Gurson-Tvergaard-Needleman (GTN) [15, 16], Rousselier [17, 18] and Lemaitre

[19]. GTN is perhaps the most widely-used model to evaluate the forming and failure

behaviour of different materials in different forming processes, and it can predict void

initiation, growth and coalescence using a void growth acceleration function. Chen

and Dong [20] employed a modified GTN model accompanied by Hill’s quadratic yield

criterion to evaluate the damage in plane strain tension and deep drawing. Butcher

et al. [21] used this model to predict the onset of fracture in tube hydroforming of

DP600. Ramazani et al. [2] derived the flow limit curve of a DP steel deformed in a

cross-shaped die. However, the original Gurson model and the version modified by

Tvergaard and Needleman are not able to predict the damage for zero or negative

stress triaxiality (σm/σeq) values, e.g. in pure shear deformation. Some researchers

have proposed improved versions of GTN damage model in order to overcome this

deficiency [22–24], although Bao and Wierzbicki acknowledged that it is difficult to

define a damage model that is capable of predicting the damage behaviour of a material

for different stress triaxialities [25].

The Rousselier model has also been used in several studies to model the deformation and

damage behaviour of materials in terms of void evolution. Besson et al. [26] used the

Rousselier function to model crack growth and formation of cup-cone fracture surfaces;

Poussard et al. [27] employed it to simulate the damage in smooth tensile and compact
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tension specimens. Samal and Shad [28] predicted the fracture resistance behaviour of

cracked fuel pin specimens using this model; and Tu et al. [29] simulated the fracture

and crack propagation in steel electron-beam-welded joints and aluminium laser-welded

joints. Despite some similarities between the GTN model and the Rousselier model,

there are some important differences between them. In case of very low, zero or

negative stress triaxiality, the Rousselier model allows damage to initialize and grow

whereas in GTN, no damage growth can be generated. In addition, the GTN model

was developed based on the growth of a spherical or cylindrical shaped void in the

material, whereas Rousselier did not establish his model based on any particular void

shape. Therefore, it is possible for the Rousselier model to capture the transition from

a flat to oblique fracture surface without any additional term or further modifications

[30, 31]. However, the original Rousselier model does not include any void nucleation

function, or coalescence criterion that would trigger coalescence based on a critical

void volume fraction [30]. Recently, Zanganeh et al. [32] proposed an approach to

couple the Rousselier model and a coalescence criterion and evaluated the model

for different positive triaxiality levels using notched specimens in uniaxial tension

of AA2050. Moreover, Rousselier et al. [33–35] employed the Rousselier damage

model along with a strain controlled void nucleation function to evaluate the damage

accumulation in Al6260 thin-walled extrusion alloy and Al2XXX alloy. In view of

the advantages of the Rousselier damage model, it was used to evaluate the tensile

behaviour of a DP600 steel sheet.

In this research, finite element analysis was used to analyse the uniaxial tensile flow,

instability and damage behaviour of DP600 at quasi-static, intermediate and high

strain rates. In order to define the hardening behaviour of DP600, three different

rate sensitive hardening constitutive equations were fitted to experimental uniaxial

tensile data. Subsequently, an appropriate void nucleation function, a void coalescence

criterion and a void growth acceleration function were combined with the Rousselier

damage model. The implementation of various criteria to build a complete Rousselier

model is similar to the work of Zhang et al. [36] who coined the expression “The

Complete Gurson Model Approach”. The comprehensive model was then implemented

in a user material subroutine (VUMAT) to be used in ABAQUS/Explicit finite element
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simulation software. The effects of the hardening function, void nucleation function

and void coalescence criterion on the prediction of the flow and damage behaviour of

DP600 at different strain rates, are assessed and discussed.

5.2 Material model

5.2.1 Rousselier damage model

The Rousselier model [17, 18] is an elasto-plastic, continuous ductile damage model

that assumes isotropic-hardening and isotropic-damage during the deformation of a

material and is based upon the decomposition of the free Helmholtz potential energy

(Φ) into stored elastic energy (Φe), stored plastic energy (Φp) and stored damage

energy (Φd) [30, 37],

Φ(εe, εp, f) = Φe(εe) + Φp(εp) + Φd(f) (5.1a)

where εe, εp and f are the elastic strain, plastic strain and the porosity volume fraction,

respectively. The plastic potential, proposed by Rousselier [18], is an extension of the

von Mises yield criterion with an additional term which describes the damage as the

growth of voids in a ductile material:

Φ =
σeq

(1− f)
−R +B(β)D exp

(
σm

(1− f)σ1

)
= 0 (5.1b)

where σeq is the von Mises equivalent stress, σm is the hydrostatic stress and R is the

true stress-strain curve of the material. f0 and f are the initial and current void volume

fraction, respectively. B(β) is the conjugate force to the scalar damage parameter

(β), and D and σ1 denote adjustable material parameters which are responsible for

damage acceleration or resistance to growth and coalescence of voids. The damage

variable β is directly related to the plastic multiplier in the normality rule (λ) or the
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plastic strain increment (ε̇p) and helps material softening surpass the hardening in the

final steps of deformation until the material completely loses its load-bearing capacity:

β̇ = ε̇pD exp

(
σm

(1− f)σ1

)
(5.1c)

The relation between the damage parameter β, f and f0 is given by:

β = ln

(
f

1− f
× 1− f0

f0

)
(5.1d)

It is worth noting that in the original Rousselier model, neither secondary void

nucleation nor any particular critical void volume fraction at coalescence or failure

was assumed [30, 32]. Therefore, void nucleation was defined by the fraction of second

phase particles present in the material and void growth (dfg) was considered as the

main mechanism for void evolution (df), as shown in Eq. 5.1e.

df = dfg , f(0) = f0 (5.1e)

5.2.2 Hardening models

Defining the hardening behaviour of materials by either phenomenological or physically

based constitutive equations is particularly important in the simulation of forming

processes and damage evolution since each hardening model predicts the hardening

rate (dσ/dε), at large strains, in an entirely different manner based on its origins,

although most of them can accurately predict the stress-strain curves at low strain

ranges [38–41]. In addition to the strain hardening behaviour, it is essential for a

function to be able to account for the strain rate sensitivity of materials in order to

accurately predict their dynamic behaviour. Based on strain hardening behaviour,

hardening functions can either reach a saturation stress or zero strain hardening rate,

or exhibit unbounded hardening rate at large strains [42].
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Among many hardening functions proposed in the literature for different materials,

applications and forming processes, the following three equations were implemented

in the Rousselier damage model:

1. modified Johnson-Cook: The Johnson-Cook model [43] is one of the well-

known elastoplastic hardening functions, used to determine the flow behaviour

of various materials including DP steels such as DP590 [44], DP780 [45], and

DP1200 and DP1400 [46], as a function of strain-rate and temperature. There

are many versions of the JC function in the literature, in which the temperature

part of the function has been modified [46, 47]. Since it is shown that the

strain rate sensitivity of a material cannot accurately be captured by a linear

function of natural log [48], another constant (C5) is now added to the strain-rate

sensitive part of original form of the JC model to improve its ability to predict

the dynamic behaviour of DP600 steel sheets (Eq. 5.2a).

2. Voce-modified Johnson-Cook: The Voce equation [49] is the most important

“saturation” hardening model, used to describe the work hardening behaviour of

materials. Cao et al. [50] used it to define the tensile flow curve of DP800. Since

the original form of the Voce function is not rate dependent, a new multiplicative

combination of the Voce strain hardening function, and the modified Johnson-

Cook strain-rate sensitive function, shown in Eq. 5.2b, was employed in this

study.

3. Khan-Huang-Liang (KHL): KHL [51, 52] is one of the most important

constitutive hardening models, used to define the flow behaviour of different

engineering materials over a wide range of strain rates [53, 54]. In this model,

the strain hardening is associated with strain rate. Moreover, the hardening rate

is unbounded at large strains but it does not change with temperature [42]. The

KHL equation is shown in Eq. 5.2c.
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R = (C1 + C2ε
C3
p )

[
1 + C4

(
ln
ε̇p
ε̇0

)C5
]

(5.2a)

R = C1 − (C1 − C2)(1− exp(−C3εp))

[
1 + C4

(
ln
ε̇p
ε̇0

)C5
]

(5.2b)

R =

[
C1 + C2

(
1− ln ε̇p

lnDp
0

)C4

εC3
p

](
ε̇p
ε̇0

)C5

(5.2c)

In Eq. 5.2, C1...n are material constants, ε̇0 is the reference strain rate and is equal to

1 s-1, and Dp
0 denotes an arbitrary upper bound strain-rate (usually chosen as 106 s-1).

It is worth noting that the temperature-dependent term of the original functions was

omitted since conventional forming processes as well as all experimental tests in this

study were carried out at ambient temperature.

5.2.3 Void nucleation

The original form of the Rousselier damage model does not include any void nucleation

function but it assumes cluster nucleation (CN) where the initial void volume fraction

remains constant (f0 = cte.). Although cluster nucleation and continuous nucleation

(dfN = A0 dεp) models have been used to simulate the damage behaviour of aluminium

[32, 55] and steel [56], it is shown that employing a void nucleation function that is

controlled either by strain, stress or hydrostatic stress, can make a model more precise

and more realistic (df = dfg + dfN ) [15]. Generally, stress-controlled void nucleation is

used for materials with large particles that tend to crack, and strain-controlled void

nucleation (SCVN) is more suited to materials with small particles that tend to debond

from the matrix [21, 57, 58]. Although both strain and stress-controlled nucleation

models can be used for DP600 due to the size of its martensite particles, both Butcher

et al. [21] and Ramazani et al. [2] showed that strain-controlled void nucleation could

lead to more accurate results compared to experiments. The controlled void nucleation

function, used in this study can be written as:
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dfn = A dεp + B dσeq + C dσm (5.3a)

A =
fN

SN
√

2π
exp

[
−1

2

(
εp − εN
SN

)2
]

(5.3b)

B = C = 0 (5.3c)

where dfn is the first derivative of the porosity distribution with respect to time; fN ,

εN and SN are the volume fraction of void nucleating particles, the mean value of the

normal distribution of nucleating strain and the standard deviation, respectively.

5.2.4 Void coalescence criteria

Coalescence can be defined as the rapid linking of voids to build a microcrack in the

material which contributes to a sudden decrease in the load-bearing capacity and

final failure. In the Gurson model, a critical void volume fraction (fc), considered

to be a material constant, determines the onset of coalescence and sudden material

capacity loss [16]. However, it has been pointed out that fc strongly depends on the

initial void volume fraction (f0) and on the strain path [36]. Accordingly, the plastic

limit-load model (PLL) proposed by Thomason [57, 59] has become a more acceptable

criterion for identifying the onset of coalescence. The concept of this model lies in

two competitive modes of deformation: stable homogeneous and unstable localized.

In the early stages of deformation, void volume fraction is low and it is easier to

achieve homogeneous deformation. Nevertheless, the stress required for localized

deformation decreases by void nucleation and growth during the deformation. Based

on this criterion, when the stress required for homogeneous deformation and that

of localized deformation become equal, coalescence occurs, the plastic limit-load is

reached, the deformation will localize between neighbouring voids, and the current

void volume fraction can be considered as the critical void volume fraction at the

onset of coalescence (fc). Many researchers extended Thomason’s model to include

the effect of material properties, cell geometry [60, 61] and void shape [62]. Zhang et

al. [36] wrote the Thomason plastic limit-load criterion for a 3D deformation system

as follows:
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σI
σeq

=

[
αt

(
1

χ
− 1

)2

+
βt√
χ

]
(1− π χ2) (5.4a)

χ =

(
3f

4π
exp(εI + εII + εIII)

)1/3
(

(exp(εII + εIII))
1/2

2

)−1

(5.4b)

where σI is the maximum principal stress, α and β are model constants, χ represents

the void space ratio, and εI,II,III denote principal strains. Another representation of

Thomason’s model can be found in Pardoen et al. [61] and Scheyvaerts et al. [63]:

σI
σeq

=

[
αt

(
1

W χ
− 1

)2

+
βt√
χ

]
(1− η χ2) (5.5)

where W and η are the void aspect ratio (W=1 for spherical voids) and a geometric

factor based on void arrangement and void cell geometry (η=1 for cylindrical cell

geometry), respectively. Although αt and βt were defined as constants in Thomason’s

original model, Pardoen and Hutchinson [60] redefined the former parameter as a

function of strain hardening exponent n in the power law hardening function in order

to take the hardening behaviour of the material into account. Their calculations

based on large numbers of axisymmetric finite element cell calculations indicated that

αt = 0.1 + 0.217n+ 4.83n2 for materials with 0 ≤ n ≤ 0.3 and βt ' 1.24. Benzerga et

al. [62] also improved the performance of the Thomason’s coalescence model using

four axisymmetric velocity fields from the Lee–Mear expansion and extended it for

wider range of void shapes:

σI
σeq

= 0.1

(
χ−1 − 1

W 2 + 0.1χ−1 + 0.02χ−2

)2

+
1.3
√
χ

(5.6)

Another approach to calculate the void space ratio, i.e. the ligament size ratio (χ)

was proposed by Chambert et al. [64] based on a cylindrical unit cell with a height

2H units and a base of radius R units, which contains a spherical void with radius

r. Initial values for the height and radius of the cell are H0 and R0, respectively.

Combined with a unit cell aspect ratio (γ = 2/3 for an axisymmetric unit cell) defined

by Chen and Butcher [58], the relation between χ and geometrical parameters can be
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written as:

χ =
r

R
=

(
f

γ
ϑ

)1/3

(5.7a)

ϑ =
H

R
= ϑ0 exp

(
1

γ
εpeq

)
(5.7b)

ϑ0 =
H0

R0

(5.7c)

where ϑ and ϑ0 are the current and initial void distribution parameter, respectively.

5.2.5 Post coalescence regime

When the void volume fraction in the material reaches a critical value (fc), coalescence

begins and the load-bearing capacity of the material starts to decrease rapidly. As the

void volume fraction continues to increase, it reaches the critical value (fF ) when final

fracture or complete failure occurs [16]. Having derived the critical void volume fraction

at coalescence using the coalescence criterion, the effective void volume fraction (f ∗)

can be defined by a void growth acceleration function, which is given by:

f ∗ =

{
f if f ≤ fc

fc + δ (f − fc) if f ≥ fc
(5.8a)

δ =
f ∗u − fc
fF − fc

(5.8b)

where δ and f ∗u are the phenomenological multiplicative void growth acceleration factor

and final effective void volume fraction when f = fF , where the load bearing capacity

decreases to zero, respectively [20, 21].

5.2.6 Implementation procedure

After the onset of plastic deformation and at each time increment, the Rousselier

integration procedure, described explicitly by Shterenlikht [65], is used to determine
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the correct value of the equivalent plastic and hydrostatic strain increments (∆εpeq

and ∆εpm) as well as the strain (εij) and stress (σij) tensors. Subsequently, σeq, the

maximum principal stress (σI), the current value of scalar damage variable (β) and

the void volume fraction (f) are calculated with regard to the void nucleation function.

In the next step, the local strength, which is the right hand side (RHS) of Eq. 5.4a or

5.5, and the homogeneous strength (σI/σeq) are compared with each other and three

possible cases are considered:

• RHS > σI/σeq : since the stress required for local deformation mode is greater

than that of homogeneous mode of deformation, no coalescence or void growth

acceleration occurs.

• RHS = σI/σeq : coalescence criterion is satisfied under this condition so the

current void volume fraction is considered as the critical value at the onset of

coalescence (fc).

• RHS < σI/σeq : coalescence has already started, and therefore the void volume

fraction should be calculated based on the void growth acceleration function

(Eq. 5.8) and the Rousselier damage variable (β) needs to be redetermined based

on the post-coalescence effective porosity value (f ∗) via Eq. 5.1d.

Complete loss of load carrying capacity and total failure takes place when the void

volume fraction reaches its critical value at rupture (f = fF ) or the effective post-

coalescence porosity value reaches its ultimate value (f ∗ = f ∗u). Figure. 5.1 shows

a flowchart of this procedure for implementing the void nucleation and coalescence

models into the ABAQUS user material subroutine.

5.3 Methodology

5.3.1 Material

The material studied was a DP600 sheet with a nominal thickness of 1.49 mm and 92.0,

4.7 and 3.3 vol% of ferrite, martensite and bainite, respectively. Table 5.1 presents
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Figure 5.1: Flowchart of the implementation of void nucleation and coalescence in the
model
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Table 5.1: Chemical analysis of as-received DP600 steel (% in weight) [66]

C Mn Si Cr Mo Cu Al

0.107 1.5 0.18 0.18 0.21 0.06 0.04

the chemical composition of the investigated DP600 sheet.

5.3.2 Experimental procedures

Uniaxial tensile tests were carried out on DP600 sheets using 2 different specimen

geometries: an ASTM (E8M-04) specimen for quasi-static conditions (0.001 and 0.1 s-1)

and a miniature “dog-bone” specimen for intermediate strain rate experiments (1,

10, 100 s-1). An Instron model 1331 servo-hydraulic testing machine and a Hydraulic

Intermediate Strain Rate (HISR) apparatus, developed at the University of Waterloo

[67], were employed to perform uniaxial tensile tests at strain rates of 1 s-1and below,

and higher than 1 s-1, respectively. To obtain strain rates from 0.001 to 100 s-1, tests

were performed with cross-head velocities of 3, 300, 750, 19500 and 180000 mm/min.

For quasi-static strain rates, a ±12.5 biaxial extensometer was used to measure the axial

and width strains of the specimens, while Digital Image Correlation (DIC) technique

accompanying a virtual extensometer were employed to measure experimental strain

distribution along the gauge area of the sub-size tensile specimens. Data processing of

obtained images from the high speed video image acquisition was performed using

Vic-2D software from Correlated Solutions Inc in order to measure the longitudinal

and width strain of the miniature-tensile specimens.

After calculating the engineering stress by dividing the measured force by the original

cross-sectional area of the gauge, and the true (plastic) strain from the DIC results,

the true stress-true plastic strain curve as well as the engineering flow curve were

constructed for each strain rate [68]. The true flow curves were used to obtain

hardening function fitting parameters. A detailed description of the testing procedures,

specimens, tools, measurement techniques and the results for these experiments has

been published by Thompson [69] and Rahmaan et al. [68].
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5.3.3 Finite element model

To model the uniaxial tensile test, only a quarter of the geometry of the ASTM

(E8M-04) and miniature dog-bone specimens, shown in Fig. 5.2, were modelled due to

the symmetrical nature of the deformation. The Rousselier ductile damage model was

modified to include a strain controlled void nucleation function, void coalescence criteria

and the hardening equations. The model was implemented into the ABAQUS/Explicit

finite element simulation software as a user material subroutine (VUMAT), following

the integration procedure developed by Shterenlikht [65].

The size of the grip section of both specimens was reduced to decrease the computational

cost and simulation time. A reference point was considered a few millimetres above the

grip section such that all degrees of freedom were constrained, except in the velocity

direction. The top surface of the grip section was coupled to the reference point in the

direction of motion, and the experimental velocities for each strain rate, were applied

to this reference point. Nodal displacement along the symmetry line perpendicular to

the specimen axis, in the centre of gauge area, were locked in the loading direction and

symmetric boundary conditions were applied along the symmetry axes of the specimen,

i.e. parallel to the loading direction. The reaction force and the displacement of the

reference point were derived to calculate the engineering flow curves of the specimens

in each condition.

It has been stated by several researchers that the mesh size has a significant influence

on the slope of the flow curve after the onset of localization [31, 70]. Therefore, mesh

dependency assessment was performed by reducing the mesh size from 0.5 mm to

0.1 mm for quasi-static specimens and from 0.3 mm to 0.05 mm for the miniature

dog-bone geometry. Reduced integration 8-node brick elements (C3D8R) were used to

mesh the specimens at different strain rates. Since the gauge area of the miniature

intermediate and high strain rate specimen are considerably smaller in size, it is

necessary to reduce the element size for these specimens in order to maintain a

uniform element aspect ratio. Simulation results showed that a reasonably fine element

size of 0.2 mm and 0.1 mm can provide consistent results in terms of accuracy and

computational cost for quasi-static specimens and miniature dog-bone specimens,
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(a)

(b)

Figure 5.2: Geometry of the specimens used for finite element analysis of (a) quasi-static
(b) intermediate and high strain rate uniaxial tensile tests

respectively. Therefore, biased meshing, ranging from 0.5 mm at the grip section to

0.2 mm at the middle of the gauge length, was utilized for quasi-static simulation,

and an element size of 0.1 mm was employed to discretize the gauge length of the

miniature specimens. Rahmaan et al. [68] indicated that DP600 does not exhibit

noticeable anisotropic behaviour at each strain rate. Thus, isotropic behaviour based

on the flow curve in the rolling direction was assumed in developing the VUMAT to

reduce the complexity of simulations.

5.3.4 Material properties

The material, mechanical and damage parameters of the investigated DP600 are listed

in Table 5.2. The material and plastic properties of the DP600 were obtained by

carrying out uniaxial tensile tests at different strain rates. The tensile tests were

also used to determine the Rousselier damage model, i.e. damage parameters (D and

σ1). Determining f0 is important for the integration of the Rousselier damage model
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Table 5.2: Mechanical properties and damage parameters of the DP600

σy (MPa) n D σ1 (MPa) f0 [21] fN [2, 23] εN [23] SN [23] ff [21, 23]

340 0.148 2.5 425 0.0007 0.02 0.35 0.11 0.1

since this model is not able to predict any damage evolution if the initial void volume

fraction is zero. The damage process in DP steels usually starts by the decohesion

of martensite-ferrite interfaces or martensite cracking, depending on the martensite

content of the alloy [3]. However, not all the martensite takes part in nucleating

voids [23, 66]. Therefore, a fraction of the total volume content of martensite in the

DP steels is considered as potential sites for void nucleation. In fact, the initial void

volume fraction of this DP600 was experimentally measured to be 0.07% by Winkler

et al. [71]

In order to determine the Rousselier damage parameters (D and σ1), uniaxial tensile

tests were simulated at strain rates 0.1 and 1s-1using suggested hardening equations.

Sarraf et al. [72] showed that the Rousselier model parameters do not have a significant

effect on the predicted hardening behaviour but they can considerably change the onset

and slope of the flow curve after maximum load is reached. Although fine tuning of the

Rousselier parameters is required for each hardening function, the average values of D

and σ1 were used as the initial Rousselier damage variables to avoid complications and

simplify other parametric studies. These initial parameters are in very good agreement

with the widely-used values for steel [73, 74]. Other damage parameters such as the

strain controlled nucleation parameters and the final void volume fraction at failure

(ff) for DP600, used in this study, have been derived by several researchers using

uniaxial tension tests and SEM analysis of the fractured specimens [2, 21, 23, 75].

These parameters are summarized in Table 5.2.

140



Table 5.3: Coefficients of hardening functions for DP600

C1 C2 C3 C4 C5

modified JC (mJC) 225.35 850.16 0.3194 0.0037 1.5715
Voce-modified JC (VmJC) 400.21 795.19 9.0236 0.0015 1.9430
KHL 161.54 946.48 0.2577 -0.1900 0.0037

5.4 Results and discussion

5.4.1 Hardening functions

In order to calculate the fitting parameters in the phenomenological constitutive

equations shown in Eq. 5.2a-5.2c, a combination of non-linear regression (NLR)

technique and Markov chain Monte Carlo (MCMC), as an optimization method, was

used [72]. This new technique was employed to minimize the difference between

experimental points obtained from the tensile tests and predicted values calculated

by each hardening function. It has been shown that utilizing different optimization

techniques can improve the result of the fitting procedure and lead to a considerable

increase in the accuracy of the prediction made by a hardening equation [54]. The

parameters in each hardening function were calculated for DP600 by the combined

fitting procedure and are shown in Table 5.3.

Figure. 5.3 shows the capability of each hardening equation to predict the uniaxial stress-

strain curve of DP600 obtained at different strain rates. Comparing the experimental

results and predicted curves, it can be understood that these three phenomenological

hardening functions can accurately predict the flow behaviour of the investigated

material in the range of studied strain rates considered. However, small differences

can be observed near the yield point where the modified-JC and KHL underestimate

the strength of the material at the beginning of plastic deformation. Also, they both

over-predict the hardening rate compared with the experimental results at each strain

rate. Nevertheless, it can be observed from Fig. 5.3 and 5.4 that there is very good

agreement between the predicted and the experimental hardening curves of DP600

sheet at all strain rates.
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Figure 5.3: Comparison of experimental flow stress curves of DP600 (dots) [68] with
the fitted hardening equations (dashed lines) at different strain rates (0.001, 0.1, 1.0,
10, 100 s-1) using (a) modified-JC (b) KHL and (c) Voce-modified JC models
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Figure 5.4: Comparison of experimental tensile strength and values predicted by
constitutive equations at different strain rates for constant true strain values of 0.03,
0.06, 0.09, 0.12

5.4.2 Finite element simulation

Simulations of uniaxial tensile tests were carried out based on different test specimen

geometries at strain rates ranging from 0.1 to 100 s-1. The simulations were used

to study the effect of the hardening functions, void nucleation functions and void

coalescence criteria on the performance of the Rousselier model in predicting the flow

behaviour and damage evolution of DP600 sheets. It is worth noting that the figures

in the following two Sections (Effect of void nucleation and Void coalescence criteria)

were obtained based on the modified Rousselier damage model without any element

deletion criterion. Also, the evolution of the Rousselier damage variable, the void

volume fraction and the plastic limit load were derived from the centre of the gauge

area.
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Effect of void nucleation

Two of the most important parameters that need to be studied while evaluating the

Rousselier damage model, are the damage variable and the void volume fraction.

Figure. 5.5 shows the history of the scalar damage variable (β) during the tensile

deformation of the DP600 sheets at different strain rates. Results indicate a remarkable

increase in the predicted damage variable when the void nucleation function is used as

compared to the cluster nucleation condition where there is no nucleation of secondary

voids. As it can be seen in Fig. 5.5, in both cases, the damage variable starts to

increase from the beginning of the deformation but in the former case, due to the

additional damage caused by the strain controlled void nucleation function, it increases

at a much higher rate; e.g. the damage variable reaches β = 4 at εpeq = 0.2, whereas

β < 1 at the same strain level when f0 remains constant. This trend is the same for all

employed hardening functions. Moreover, the predicted damage growth is the same for

different strain rates up to a strain level εpeq ' 0.2 but beyond this, the damage growth

rate decreases slightly in the quasi-static condition compared to other investigated

strain rates. This can be attributed to the slightly different stress triaxiality (and

its direct effect on the damage growth (Eq. 5.1c)) that elements experience due to

the different geometries of quasi-static and miniature dog-bone specimens after the

onset of localization, as shown in Fig. 5.6. Bardelcik et al. [76] and Rahmaan et

al. [68] showed that the flow curves obtained from ASTM (E8M-04) and miniature

tensile specimens are comparable up to the ultimate tensile stress, but after that their

softening behaviour becomes different.

Another approach to assess the damage progress predicted by a micromechanical

damage model is to evaluate the growth in void volume fraction since it can give

a good indication of damage at different strain levels, strain rates and for different

specimen geometries. The evolution of the void volume fraction (f) predicted by

Rousselier damage model with and without the effect of secondary void nucleation is

shown in Fig. 5.7. It can be seen that in all cases, the void volume fraction growth

is negligible during the early stages of deformation. But after a certain strain level,

approximately εp = 0.3 for strain controlled void nucleation and εp = 0.8 for the cluster
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Figure 5.5: Evolution of scalar damage variable calculated by Rousselier damage
model with (dashed lines) and without (solid lines) the effect of strain controlled void
nucleation at different strain rates using (a) modified-JC and (b) Voce-modified JC
hardening models
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Figure 5.6: Evolution of triaxiality as a function of equivalent plastic strain at strain-
rates 0.1 and 100 s-1using (a) modified-JC and (b) Voce-modified JC
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Figure 5.7: Variation of void volume fraction as a function of equivalent plastic strain,
based on different constitutive equations at different strain rates with (dashed lines)
and without (solid lines) the effect of strain controlled void nucleation predicted by the
Rousselier damage model and (a) modified-JC and (b) Voce-modified JC hardening
models

nucleation condition, there is a rapid increase in the growth rate of the void volume

fraction with subsequent linear increase in f which can consequently lead to the final

failure. The growth rate of the void volume fraction is approximately the same for

different hardening functions and strain rates. Thus, it can be concluded that the

evolution of the void volume fraction is somewhat independent of the hardening law

and independent of strain rate for a given specimen geometry. However, it can be seen

that utilizing a strain-controlled nucleation function causes the void volume growth

to begin at much lower strains since the accumulation of nucleated voids increases

the total void volume fraction (df = dfg + dfN) at each time increment during the

simulation of the deformation process.

Figure 5.8 shows the engineering stress-strain curve of DP600 sheet obtained from

experiments and predicted by the Rousselier damage model, with and without the effect

of secondary void nucleation and using different hardening models. As it can be seen in

Fig. 5.8, all predicted stress-strain curves are very similar up to a strain of εp ≤ 0.2 for

strain rates 0.1 and 100 s-1. The reason for this is that the work hardening dominates

the material behaviour even though the damage variable increases continuously. It

can also be seen that the modified-JC and KHL hardening functions remarkably
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overpredict the strain at which the onset of softening commences. However, employing

a void nucleation function can significantly change this behaviour of unbounded

hardening by introducing the secondary void nucleation as a mean of increasing the

Rousselier damage variable at constant strain levels comparing with cluster nucleation

condition, as shown in Fig. 5.5. The same effect can also be observed when a Voce-type

hardening function is used where flow localization occurred at lower strain levels in

case of utilizing the void nucleation function in the Rousselier damage model.

It should be noted that the second and third terms of the Rousselier plastic potential

(Eq. 5.1b) are indicating the hardening and softening behaviour of the material,

respectively. Therefore, using a nucleation function can help the softening term

to overcome the second term at lower strain values. Moreover, considering the

fundamental difference between Voce-type and power law-type hardening functions,

the former demonstrates zero hardening rate after a certain stress level where the stress

reaches a plateau. This makes it easier for the softening term in the damage model

to dominate the flow behaviour and accelerate the damage process. Therefore, flow

localization and failure occur at lower strain levels in Voce-type hardening functions

comparing with modified Johnson-Cook and KHL.

It can also be seen from Fig. 5.8 that in the absence of a coalescence criterion, the

model cannot predict the abrupt fracture at the end of the deformation process and

therefore the predicted flow curve exhibits a continuous softening at high strain levels,

which is obviously not consistent with experimental results. Accordingly, the Rousselier

damage model requires an appropriate combination of a hardening function, controlled

void nucleation function and void coalescence criterion in order to accurately predict

the flow behaviour of materials from the beginning of the deformation process right

up to the final fracture.

Void coalescence criteria

The performance of plastic limit load and the resultant coalescence criterion, proposed

by Thomason [57, 59], can be assessed in different ways. On one hand, it can be

calculated by Eq. 5.4 (hereafter referred as approach #1) and on the other hand, Eq. 5.7
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Figure 5.8: Comparison of predicted flow curves by the Rousselier damage model and
different hardening functions, with cluster nucleation (CN) and strain controlled void
nucleation (SCVN) functions (dashed lines), with experiment (solid line) at strain
rates (a) 0.1 (b) 100 s-1
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Figure 5.9: The effect of void nucleation function on the variation of plastic limit-load
in the centre of tensile specimens for different hardening functions using αt = f(n), at
(a) 0.1 s-1and (b) 100 s-1calculated by approach #1 and approach #2, respectively.
(CN: cluster nucleation, SCVN: strain controlled void nucleation function

can be used to calculate void space ratio changes (hereafter referred as approach #2).

Additionally, as shown in Section 5.2.4, αt can also be considered as a constant or a

function of material hardening power.

Figure 5.9 shows the evolution of normalized axial stress (σI/σeq) in the centre of the

gauge area, predicted by the Rousselier model and different hardening models, as a

function of the equivalent plastic strain for a strain rate of 0.1 s-1using approach #1

(Fig. 5.9a) and a strain rate of 100 s-1using approach #2 (Fig. 5.9b). In both cases,

the predicted equivalent plastic strain at the onset of coalescence is too high when

cluster nucleation is used in the model (1.11 ≤ εp ≤ 1.16 and 0.92 ≤ εp ≤ 0.95) for

approach #1 and #2, respectively. These values are very close to the fracture strains

obtained from the experiments (εf ' 1.0) and predicted by phenomenological damage

models (εf ' 0.8) [44] and are therefore unrealistic. The onset of coalescence decreased

significantly when strain controlled nucleation function was employed in the simulation

where 0.483 ≤ εp ≤ 0.515 for the two mentioned approaches. It is noteworthy that even

though the coalescence plastic strains predicted using different hardening functions

show a small deviation in case of Voce-modified JC comparing with other hardening

models, the void nucleation function helps to reduce this difference to an insignificant

value.
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Figure 5.10: Variation of plastic limit-load in the centre of tensile specimens based
on different approaches in calculating the ligament size ratio (χ) at (a) 0.1 s-1using
modified-JC hardening function and (b) 100 s-1using Voce-modified-JC hardening
model

The evolution of the local strength, normalized to the homogeneous strength (σI/σeq)

as a function of equivalent plastic strain using approach #1 and #2 and using constant

and variable values of αt is shown in Fig. 5.10. It can be seen that the localized

strength predicted by approach #1 is too high at the beginning of the deformation

while approach #2 predicts lower value although it is also still higher than what

Benzerga [77] proposed in his research. However, comparing the results of constant

and variable αt employed in the model, reveals that using material hardening exponent

can increase the plastic strain at the onset of coalescence. In another words, materials

with greater ductility, and hence higher n values, experience coalescence at higher strain

levels. Also, it can be found that the critical strain value at the onset of coalescence

predicted by the first approach is higher than that estimated by the second approach

when cluster nucleation is used, but the former decreases significantly compared with

the latter when a void nucleation function is employed.

Another way to analyse the performance of the coalescence criteria is to evaluate them

based on the critical void volume fraction at the onset of coalescence (fc) since each

criterion predicts the point at which the localized deformation mode becomes equal

to the homogeneous deformation mode differently. Figure. 5.11 shows the evolution

of the normalized axial stress as a function of the current void volume fraction at
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Figure 5.11: Variation of plastic limit-load vs. current void volume fraction based
on different hardening functions at strain rate 0.1 s-1with the effect of cluster void
nucleation (CN) and strain controlled void nucleation (SCVN) calculated by (a) Eq. 5.4
(Approach #1) and αt = cte., and (b) Eq. 5.7 (Approach #2) with αt = f(n)

strain rate 0.1 s-1using approach #1 (Eq. 5.4) and #2 (Eq. 5.7). As it can be observed

from Fig. 5.11(a), under quasi-static conditions, the void nucleation function does

not have a considerable effect on the prediction of fc when using the first approach,

whereas it can significantly decrease the predicted value of fc when using the second

approach. This exact pattern was also seen at strain rate 100 s-1. Therefore, it can

be concluded that Zhang’s approach (approach #1, Eq. 5.4) is less sensitive to the

void nucleation process and hence, it is more consistent for predicting fc. Evaluating

all cases in Fig. 5.11, it can also be seen that predicting fc by the two mentioned

approaches, with and without the void nucleation function, is practically independent

of the hardening model that is used.

The plastic limit load evolution as a function of void volume fraction calculated by

the first and second approaches and employing constant and variable αt is shown in

Fig. 5.12. It is calculated using the modified-JC and the Voce-modified JC hardening

models at strain rate 0.1 s-1. As it can be seen in Fig. 5.12(a,c), approach #1 predicted

fc to be between 0.028-0.045 for the quasi-static. It is clear that the predicted critical

void volume fraction at the onset of coalescence decreased by utilizing void nucleation

function, yet increased by using αt = f(n) instead of a constant αt.

151



0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

f

0.5

1.0

1.5

2.0

2.5

σ
I
/σ

eq

α=cte - CN

α=f(n) - CN

α=cte - SCVN

α=f(n) - SCVN

Homogeneous strength

(a)

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055

f

1.0

1.5

2.0

2.5

σ
I
/σ

eq

α=cte - CN

α=f(n) - CN

α=cte - SCVN

α=f(n) - SCVN

Homogeneous strength

(b)

Figure 5.12: Evolution of plastic limit-load vs. current void volume fraction based on
modified JC at ε̇ = 0.1 s-1using (a) Eq. 5.4 and (b) Eq. 5.7

However, approach #2 exhibited a different behaviour where employing a void nu-

cleation function led to an increase in the estimation of fc. For this approach, the

minimum fc occurred when cluster nucleation was used such that it was predicted to be

0.021 at quasi-static strain rate, as shown in 5.12(b). Such behaviour is not normally

expected. Comparing the results shown in Fig. 5.7 with the evolution of normalized

axial stress in Fig. 5.9 reveals that although using a void nucleation function results

in a significant decrease in the critical strain level at the onset of coalescence εc in

both approaches, it cannot reduce εc enough for Approach #2 to reduce the value of

fc to the level predicted by the first approach.

5.4.3 X-ray tomography

X-Ray microtomography is one of the most effective ways to quantify the microstructure

of materials or to analyse the damage and void evolutions in a ductile material [78].

In this study, SKYSCAN 1172-High Resolution Desktop Micro-CT at McMaster

Automotive Research Centre (MARC), equipped with the Hamamatsu C9300 11Mp

camera, was used to investigate the porosity distribution in the tested DP600 sheets

both qualitatively and quantitatively. Since the power was not sufficient for DP600

sheet material, Al+Cu filter was used to change the distribution of X-ray wavelength

by decreasing the intensity of some special wavelengths from its spectrum within a
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given beam. A rotational step of 0.4 o was used in the test and the tomograph set-up

was chosen to obtain the final image pixel size of 1.05 µm. Figure 5.13 shows the 3D

representation of the fractured area on the miniature dog-bone specimens tested at

1 s-1(a,b) and 100 s-1(c,d). The geometry of the defused and localized neck as well as

the dimensions of the investigated damaged area can be observed in Fig. 5.13(a,c).

The distribution of the porosities are visible in Fig. 5.13(b,d) where the opacity of the

matrix or region of interest (ROI) was reduced to 10% and made semi-transparent. It

can be seen that the number of large voids near the fracture surface is slightly greater

for the higher strain rate. As shown by Maire et al. [79], the accumulated damage

visible in a 3-D X-ray tomography image appears to be more than expected since all

cavities are exhibited in one view of the resulting 3-D rendering image. The actual

fraction of porosities is less than what is expected from the image.
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(a) (b) ,

(c) (d)

Figure 5.13: 3D representation of the necked area and accumulation of porosities in
the miniature dog-bone specimens at strain rates (a,b) 1 s-1and (c,d) 100 s-1

The evolution of void volume fraction as a function of the distance to the fracture

for different strain rates is shown in Fig. 5.14. Each point represents the closed

porosity percentage on an image or slice of material perpendicular to the tensile

loading direction. It can be clearly observed that the trend for both strain rates is the

same: the void volume fraction remains low and nearly constant up to the localized

neck, then it increases considerably in the local neck. This sudden increase can be

attributed to the simultaneous void growth and cross-section area reduction. The
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porosity percentage reaches approximately 2% close to the fractured surface.
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Figure 5.14: Profile of the porosity percentage on the planes perpendicular to the load
direction at strain rates (a) 1 s-1and (c) 100 s-1

Despite some variations in the estimated fc by the combination of strain controlled

void nucleation function and Approach #1 as well as the cluster void nucleation

with Approach #2, the predicted ranges are in very good agreement with the results

experimentally obtained in this study and the results published in the literature.

For instance, Maire et al. [79] measured void volume fraction at the centre of a

miniature dog-bone shaped specimen using quasi-static in situ tensile tests. The

X-Ray Tomography analysis of the specimens showed that fc =2% before fracture.

Also, numerical predictions from Butcher et al. [21] using numerical methods and

those obtained by Abbasi et al. [80] conducting a comprehensive fitting procedure,

showed the same values for fc.

5.4.4 Performance of the modified damage model

The effect of controlled void nucleation function combined with void coalescence criteria

on the engineering flow curve of DP600 sheet predicted by Rousselier damage model

using different hardening functions at strain rates 0.1 and 100 s-1is shown in Fig. 5.15.

It can be seen that the post coalescence behaviour of predicted flow curves is improved

significantly and the modified model demonstrates the sudden failure at onset of
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fracture. Moreover, no difference can be detected between the predicted flow curves

derived when the Zhang or Chambert approaches are used to establish the coalescence

criterion. Although they calculated the parameters of Thomason’s plastic limit load

criterion differently, the overall macro-scale material response predicted similar results

with both approaches.

However, the predicted fracture strain is slightly over-predicted when using KHL

and modified-JC hardening models, even with the void nucleation function, and it is

underestimated when using a Voce-type hardening function. It is worth noting that

the average value of σ1 and D was used, as mentioned in Section 5.3.4. Accordingly,

re-calculation of Rousselier damage function parameters (σ1 and D) is necessary for

both power law- and Voce-type hardening models in order to obtain accurate flow

curves at different strain rates.
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Figure 5.15: Predicted flow curve of DP600 sheet using Rousselier damage model
combined with strain controlled void nucleation function and void coalescence criteria
at (a) ε̇ = 0.1 s-1using KHL model and (b) ε̇ = 100 s-1using Voce-modified JC model

The result of fine tuning the modified Rousselier model, i.e. the original damage model

combined with void nucleation function, a void coalescence criterion and a void growth

acceleration function, is shown in Fig. 5.16. For both types of hardening models, D = 2

was obtained as the first parameter, and σ1 = 435 and 480 (MPa) were determined for

power law- and Voce-type models, respectively. The difference between the values of σ1

for different hardening models is decreased considerably by using the strain controlled
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void nucleation function and coalescence criterion, compared to the values initially

calculated by Sarraf et al. [72] using the original Rousselier damage model. Zangeneh

et al. [32] showed that σ1 and D are not transferable between different triaxiality

levels. However, despite the fact that the triaxiality of both specimen geometries are

the same during uniform deformation and diverge during post-uniform deformation (as

shown in Fig. 5.6), the difference between the damage parameters for both specimen

geometries was negligible.
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Figure 5.16: Comparison of experimental results and simulation results predicted by
re-determined Rousselier damage model using void nucleation function and Thomason-
Zhang void coalescence criterion

The distribution of the accumulative damage variable across the tensile specimens

as predicted by the Rousselier damage model, using different hardening and void

nucleation functions, is shown in Fig. 5.17. These distributions were determined when

the maximum load was reached and diffuse necking was initiated at strain rates 0.1 and

100 s-1. In all cases, strain localization initiated in the centre of the gauge area and all

specimens experienced diffuse necking, however, damage is more localized on the shear

bands when the Voce-modified JC hardening function was used in the Rousselier model
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at ε̇=0.1 s-1. It can be attributed to the behaviour of saturation hardening functions

where the hardening rate becomes zero at high strain levels. An important point is that

the maximum β in the centre of the diffuse neck was predicted to be approximately 3.3

and 3 for strain rates 0.1 and 100 s-1respectively when cluster nucleation was employed,

which indicates that the material in the neck should accommodate a considerable

amount of strain during non-uniform deformation to reach the critical scalar damage

variable at failure. On the contrary, using a strain controlled void nucleation function

leads to an increase in the overall damage accumulation in the gauge area and specially

in the neck, and consequently the non-uniform plastic deformation decreases which

accelerates the failure process. Nonetheless, the distribution of β and the geometry of

the localization become somewhat similar for both types of hardening models when

strain controlled void nucleation is employed, as shown in Fig. 5.17a. Therefore, it

can be concluded that the dependency of the accumulative damage distribution on

the hardening model after the onset of necking is reduced in the modified Rousselier

model where a strain controlled void nucleation function is utilized.

158



Modified JC Voce – modified JC

Rousselier + CN Rousselier + SCVN

𝛽
KHL

𝛽
Modified JC Voce – modified JCKHL

(a)

Modified JC Voce – modified JC

Rousselier + CN Rousselier + SCVN

KHL Modified JC Voce – modified JCKHL

𝛽 𝛽

(b)

Modified JC Voce – modified JC

Rousselier + CN Rousselier + SCVN

KHL Modified JC Voce – modified JCKHL

𝛽 𝛽

(c)

Figure 5.17: Distribution of the damage accumulation at the onset of necking using
different hardening models and void nucleation functions at (a) 0.1 and (b) 10 and (c)
100 s-1

The effect of hardening models, void nucleation functions and void coalescence criteria

on the distribution and geometry of damage along the gauge of tensile specimens,

tested at 0.1, 10 and 100 s-1, is presented in Fig. 5.18. Similar to the experiments, it can
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be seen that the predicted localization and failure begin from the centre of specimens

in all strain rates where eventually, the fully damaged elements are removed from the

FE models. It has been shown that the intensity of strain localization on shear bands

in quasi-static specimens is not sufficient to predict the failure on either of them when

using unbounded-hardening models and the cluster nucleation function [72]. It is also

shown that the damage front propagates from the centre of the gauge towards the

edge of specimens (perpendicular to the tensile axis) when unbounded-type hardening

models (eg. the KHL and modified-JC) are used to describe the flow behaviour of

materials in the Rousselier damage model. But the final failure would occur on shear-

bands when using Voce-type models. Nevertheless, using a strain controlled nucleation

function and void coalescence criterion can reduce the dependency of the Rousselier

damage model on the hardening function and improve its performance to predict the

final geometry of failure in quasi-static specimens where the accumulation of damage

would be significantly intensified on shear bands. Therefore, the dominant mechanism

becomes localized necking and fracture on the shear bands for all hardening models

utilized, which is in good agreement with what has been observed in the experiments

and is shown in Fig. 5.18a. It should be noted that using the full-geometry instead of

a quarter-geometry would result in damage localization on shear bands in an X-shape

which causes the final failure to take place along either of the shear bands.

It can be observed from Fig. 5.18(b,c) that in all models, the damage is predicted to

commence at the centre of specimens deformed at 10 and 100 s-1and to propagate

radially outward across the cross section of the gauge area of the tensile specimens.

Although the predicted fracture geometries are somehow similar between various

simulation conditions, the damage accumulation and distribution are considerably

different at each strain rate when the strain controlled void nucleation and void

coalescence criteria are utilized compared to the original Rousselier damage model

with cluster nucleation. The former combination of the Rousselier damage model and

complementary functions predicted the damage accumulation to be more uniformly

distributed along the gauge area which results in smaller post-uniform deformation

and a shorter diffused-neck, which is in good agreement with the experiments. In

addition, the performance of the Rousselier model in predicting the distribution of β
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and the final damage geometry becomes independent of the hardening function by

employing a strain controlled void nucleation function and a void coalescence criterion.
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Figure 5.18: Experimental and predicted damage accumulation and damage geometry
at (a) 0.1 and (b) 10 and (c) 100 s-1using different hardening functions, void nucleation
functions and a void coalescence criterion (approach #1: Eq. 5.4)
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5.5 Conclusions

The uniaxial flow behaviour and damage evolution of DP600 sheets were studied at

different strain rates, ranging from quasi-static conditions (0.001s-1) to high strain-rates

(100s-1). In this study, different hardening models, different void nucleation functions

as well as void coalescence criteria were successfully implemented in the Rousselier

ductile damage model.

The original Rousselier model is not capable of predicting the sudden failure at the end

of the deformation process. In addition, the cluster nucleation function assumed in

the original Rousselier model does not take the effect of secondary void nucleation into

account. Therefore, the critical strain at the onset of coalescence and final fracture is

overestimated. It was found that employing a strain controlled nucleation function

can significantly improve the ability of the Rousselier model to predict these critical

strains.

Furthermore, two approaches were used to calculate the evolution of the void space ratio

parameter in Thomason’s plastic limit load coalescence criterion. It was shown that

the performance of both models is the same at the macro-scale but at the element-scale,

their behaviours are slightly different. Both models demonstrated acceptable results in

terms of determining the critical void volume fraction at the onset of coalescence. They

are in good agreement with the experimental values measured in this study via X-Ray

tomography and those reported in the literature for DP600 tensile specimens, although

approach #1 (Eq. 5.4) showed a more stable behaviour for a range of conditions.

Utilizing complementary functions such as a void nucleation function, a void coalescence

criterion and post-coalescence treatment can significantly improve the performance of

the Rousselier damage model in predicting the damage behaviour, the distribution of

damage accumulation along the gauge area, and final damage geometry to become

independent of the hardening model. However, it is necessary to calibrate the parame-

ters in the Rousselier damage model for each hardening function in order to obtain

accurate flow curves. Nevertheless, the wide range of σ1 values obtained by using the

original Rousselier model with power law-type and Voce-type hardening models, is
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significantly decreased by using these complementary functions and criteria.
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[39] S. Nemat-Nasser and Y. Li, “Flow stress of f.c.c. polycrystals with application to
OFHC Cu,” Acta Materialia, vol. 46, pp. 565–577, jan 1998.

[40] S. Nemat-Nasser, L. Ni, and T. Okinaka, “A constitutive model for fcc crystals
with application to polycrystalline OFHC copper,” Mechanics of Materials, vol. 30,
pp. 325–341, dec 1998.

[41] S. Nemat-Nasser, T. Okinaka, and L. Ni, “A physically-based constitutive model
for bcc crystals with application to polycrystalline tantalum,” Journal of the
Mechanics and Physics of Solids, vol. 46, pp. 1009–1038, jun 1998.

[42] J. H. Sung, J. H. Kim, R. H. Wagoner, J. Hyun, J. Hoon, and R. H. Wagoner,
“A plastic constitutive equation incorporating strain, strain-rate, and temperature,”
International Journal of Plasticity, vol. 26, pp. 1746–1771, dec 2010.

[43] G. R. Johnson and W. H. Cook, “A constitutive model and data for metals
subjected to large strains, high strain rates and high temperatures,” in Proceedings
of the 7 th International Symposium on Ballistics, (Hague, Netherlands), p. 541,
1983.

166



[44] A. Hassannejadasl, D. E. Green, S. F. Golovashchenko, J. Samei, and C. Maris,
“Numerical modelling of electrohydraulic free-forming and die-forming of DP590
steel,” Journal of Manufacturing Processes, vol. 16, no. 3, pp. 391–404, 2014.

[45] S. Li, Y. Kang, G. Zhu, and S. Kuang, “Effects of strain rates on mechanical prop-
erties and fracture mechanism of DP780 dual phase steel,” Journal of Materials
Engineering and Performance, vol. 24, no. 6, pp. 2426–2434, 2015.

[46] E. Cadoni, N. Singh, D. Forni, M. Singha, and N. Gupta, “Strain rate effects
on the mechanical behavior of two Dual Phase steels in tension,” The European
Physical Journal Special Topics, vol. 225, no. 2, pp. 409–421, 2016.

[47] Y. Lin and X.-M. Chen, “A critical review of experimental results and constitutive
descriptions for metals and alloys in hot working,” Materials & Design, vol. 32,
no. 4, pp. 1733–1759, 2011.

[48] T. J. Holmquist and G. R. Johnson, “Determination of constants and comparison
of results for various constitutive models,” Le Journal de Physique IV, vol. 01,
pp. C3–853–C3–860, oct 1991.

[49] E. Voce, “The relationship between stress and strain for homogeneous deformation,”
Journal of the Institute of Metals, vol. 74, pp. 537–562, 1948.

[50] Y. Cao, B. Karlsson, and J. Ahlström, “Temperature and strain rate effects on
the mechanical behaviour of dual phase steel,” Materials Science and Engineering:
A, vol. 636, pp. 124–132, 2015.

[51] A. S. Khan and R. Liang, “Behaviors of three BCC metal over a wide range of
strain rates and temperatures: experiments and modeling,” International Journal
of Plasticity, vol. 15, pp. 1089–1109, jan 1999.

[52] A. S. Khan, Y. Sung Suh, and R. Kazmi, “Quasi-static and dynamic loading
responses and constitutive modeling of titanium alloys,” International Journal of
Plasticity, vol. 20, pp. 2233–2248, dec 2004.

[53] A. S. Khan, M. Baig, S.-H. Choi, H.-S. Yang, and X. Sun, “Quasi-static and
dynamic responses of advanced high strength steels: Experiments and modeling,”
International Journal of Plasticity, vol. 30-31, pp. 1–17, mar 2012.

[54] A. Jenab, I. Sari Sarraf, D. E. Green, T. Rahmaan, and M. J. Worswick, “The
Use of genetic algorithm and neural network to predict rate-dependent tensile
flow behaviour of AA5182-O sheets,” Materials & Design, vol. 94, pp. 262–273,
2016.

[55] C. H. Caceres and J. R. Griffiths, “Damage by the cracking of silicon particles in
an Al-7Si-0.4Mg casting alloy,” Acta Materialia, vol. 44, no. 1, pp. 25–33, 1996.

167



[56] J. Gurland, “Observations on the fracture of cementite particles in a spheroidized
1.05% c steel deformed at room temperature,” Acta Metallurgica, vol. 20, pp. 735–
741, may 1972.

[57] P. F. Thomason, Ductile fracture of metals. Pergamon Press, 1990.

[58] Z. Chen and C. Butcher, Micromechanics modelling of ductile fracture, vol. 195
of Solid Mechanics and Its Applications. Dordrecht: Springer Netherlands, 2013.

[59] P. F. Thomason, “A view on ductile-fracture modelling,” Fatigue & Fracture of
Engineering Materials & Structures, vol. 21, no. January, pp. 1105–1122, 1998.

[60] T. Pardoen and J. W. Hutchinson, “An extended model for void growth and
coalescence,” Journal of the Mechanics and Physics of Solids, vol. 48, pp. 2467–
2512, dec 2000.

[61] T. Pardoen, F. Scheyvaerts, A. Simar, C. Tekoglu, and P. R. Onck, “Multiscale
modeling of ductile failure in metallic alloys,” Comptes Rendus Physique, vol. 11,
pp. 326–345, apr 2010.

[62] A. A. Benzerga and J. B. Leblond, “Ductile fracture by void growth to coales-
cence,” Advances in Applied Mechanics, vol. 44, pp. 169–305, 2010.

[63] F. Scheyvaerts, P. Onck, C. Tekoglu, and T. Pardoen, “The growth and coalescence
of ellipsoidal voids in plane strain under combined shear and tension,” Journal of
the Mechanics and Physics of Solids, vol. 59, pp. 373–397, feb 2011.

[64] J. Chambert and A. Vergne, “Implementation of coalescence criteria into the
GTN model application to work-hardening ductile materials,” in 13th European
Conference on Fracture (ECF13), (San Sebastian:Spain), 2000.

[65] A. Shterenlikht, 3D CAFE modelling of transitional ductile-brittle fracture in
steels. PhD thesis, University of Sheffield, 2003.

[66] J. Samei, D. E. Green, J. Cheng, and M. S. de Carvalho Lima, “Influence of strain
path on nucleation and growth of voids in dual phase steel sheets,” Materials &
Design, vol. 92, pp. 1028–1037, 2016.

[67] A. Bardelcik, High strain rate behavior of hot formed boron steel with tailored
properties. PhD thesis, University of Waterloo, 2012.

[68] T. Rahmaan, A. Bardelcik, J. Imbert, C. Butcher, and M. J. Worswick, “Effect of
strain rate on flow stress and anisotropy of DP600, TRIP780, and AA5182-O sheet
metal alloys,” International Journal of Impact Engineering, vol. 88, pp. 72–90,
2016.

[69] A. C. Thompson, High strain rate characterization of advanced high strength
steels. PhD thesis, University of Waterloo, 2006.

168



[70] G. Rousselier, J.-C. J. Devaux, G. Mottet, and G. Devesa, “A methodology for
ductile fracture analysis based on damage mechanics: an illustration of a local
approach of fracture,” in Nonlinear Fracture Mechanics: Volume II Elastic-Plastic
Fracture, pp. 332–354, ASTM International, 1988.

[71] S. Winkler, A. Thompson, C. Salisbury, M. Worswick, I. Riemsdijk, and R. Mayer,
“Strain rate and temperature effects on the formability and damage of advanced
high-strength steels,” Metallurgical and Materials Transactions A: Physical Met-
allurgy and Materials Science, vol. 39 A, no. 6, pp. 1350–1358, 2008.

[72] I. S. Sarraf, A. Jenab, K. P. Boyle, and D. E. Green, “Effect of rate-dependent
constitutive equations on the tensile flow behaviour of DP600 using Rousselier
damage model,” Materials & Design, vol. 117, pp. 267–279, mar 2017.

[73] S. Schmauder, D. Uhlmann, and G. Zies, “Experimental and numerical investiga-
tions of two material states of the material 15 NiCuMoNb5 (WB 36),” Computa-
tional Materials Science, vol. 25, no. 1-2, pp. 174–192, 2002.

[74] H. Tu, S. Schmauder, U. Weber, Y. Rudnik, and V. Ploshikhin, “Simulation of
the damage behaviour of electron beam welded joints with the Rousselier model,”
Engineering Fracture Mechanics, vol. 103, pp. 153–161, may 2013.

[75] M. Landry and Z. Chen, “A nonlocal lower-bound damage-based material model,”
in 23rd Canadian Congress of Applied Mechanics (CANCAM), pp. 353–356, 2011.

[76] A. Bardelcik, M. J. Worswick, S. Winkler, and M. A. Wells, “A strain rate
sensitive constitutive model for quenched boron steel with tailored properties,”
International Journal of Impact Engineering, vol. 50, pp. 49–62, 2012.

[77] A. A. Benzerga, “Micromechanics of coalescence in ductile fracture,” Journal of
the Mechanics and Physics of Solids, vol. 50, pp. 1331–1362, jun 2002.

[78] C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, and A. Bareggi,
“Validation of void growth models using X-ray microtomography characterization
of damage in dual phase steels,” Acta Materialia, vol. 59, pp. 7564–7573, dec
2011.

[79] E. Maire, O. Bouaziz, M. Di Michiel, and C. Verdu, “Initiation and growth
of damage in a dual-phase steel observed by X-ray microtomography,” Acta
Materialia, vol. 56, pp. 4954–4964, oct 2008.

[80] M. Abbasi, B. Bagheri, M. Ketabchi, and D. F. Haghshenas, “Application of
response surface methodology to drive GTN model parameters and determine
the FLD of tailor welded blank,” Computational Materials Science, vol. 53, no. 1,
pp. 368–376, 2012.

169



Chapter 6

Numerical analysis of damage
evolution and formability of DP600
sheet with an extended Rousselier
damage model

This chapter describes Marciniak formability tests carried out to determine the forming

limit curve (FLC) of DP600 steel sheet, and an extended version of Rousselier’s ductile

damage model, which accounts for void nucleation, growth and coalescence was used

to simulate the tests and predict strain localization and failure for three different strain

paths: uniaxial tension, plane strain and biaxial tension. In addition, a combination

of flat rolling and uniaxial tension tests were used to generate the extended flow curve

of the material. Damage evolution in terms of Rousselier scalar damage variable

and void volume fraction was assessed for each simulation condition. The FLC as

well as neck and fracture morphologies and geometries were obtained from finite

element simulations of the Marciniak tests and compared to experimental results. The

sensitivity and dependency of the predicted necking limits, damage distribution and

geometry predicted by the Rousselier damage model to the type of hardening model,

strain path, void nucleation function and void coalescence criterion are discussed.

The modified Rousselier model was shown to successfully predict the FLC, damage

distribution and the final damage geometry of DP600 sheets.
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6.1 Introduction

Numerical determination of sheet metal formability as well as the onset of strain

localization, instability and failure is of interest in both academia and sheet metal

forming industry. A quantitative prediction of the limiting strain requires precise and

comprehensive assessment of both necking and failure [1] especially for new grades of

sheet metals that show high strength along with high ductility and excellent weight-to-

strength ratio, such as dual-phase (DP) and transformation induced plasticity (TRIP)

steels [2]. DP steels offer very good mechanical and forming properties due to their

combined strength, ductility and high work hardening rate [3, 4]. The properties of DP

steels are a result of their microstructure where hard martensite is dispersed throughout

the ductile ferrite matrix [5]. Therefore, they have become one of the most widely-used

sheet metals in the automotive industry and efforts continue to be made to reduce

the weight, increase the strength and safety, and decrease the production cost of DP

automotive parts. To evaluate the forming behaviour of DP600 steel, researchers have

examined the strain path and strain rate dependency of the formability of DP600 in a

cross-die test [3], in tube hydroforming [6], tube hydropiercing [7], and electrohydraulic

free-forming and die–forming [8, 9]. Accordingly, reliable experimental test data are

required in order to evaluate the formability of the sheet material and to develop

accurate numerical models to predict its behaviour and structural integrity.

The strain level that a material can reach without experiencing any instability or

localization is considered to be its forming limit and strongly depends on the strain

path the sheet material experiences [10]. Keeler and Backofen [11], and Goodwin

[12] were the first to propose the concept of a forming limit curve (FLC) in principal

strain space. They proposed to determine the FLC by measuring the major and

minor strains in the sheet plane at the onset of strain localization for a wide range

of strain paths from uniaxial tension to equi-biaxial tension. In other words, local

plastic instability is the deformation limit of sheet metal under plane stress forming

conditions and can usually be described by a forming limit diagram (FLD) [13, 14].

Two of the most widely-used approaches to assess the formability of a material are the

Nakazima test as an out-of-plane stretching test (hemispherical punch) [15, 16] and the
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Marciniak test as an in-plane stretching test (flat bottom punch) [17, 18]. These tests

are carried out by deforming the sheet metal along different strain paths up to the

onset of necking. Afterwards, a grid analysis technique is used to measure strains in the

necks and these are used to generate the FLC. The normal loading, bending and non-

uniform strain distribution in the Nakazima tests make interpretation of the forming

limit data somewhat complicated. In contrast, the Marciniak test utilizes a carrier

blank between the flat-bottom punch and the sheet metal specimen and therefore

leads to proportional strain data results without the effects of bending or friction

[16, 19]. Since computational techniques such as the finite element method (FEM)

have become widely-used, researchers have employed these techniques to simulate

these formability tests and numerically analyse the formability of materials and predict

the FLCs: Zadpoor et al. [20] employed commercial finite element simulation software

to simulate the limiting dome height (LDH) test and used Storen-Rice analysis to

increase the accuracy of the limiting strains. Pepelnjak and Kuzman [19] proposed

a computational method to determine the localization and generate the FLC for a

low carbon steel. Mahboubkhah [14] evaluated the uncertainty of four different strain

measurement methods to analyse the limiting strains in St13. Simha et al. [13]

presented a comprehensive method to obtain stress-based and extended stress-based

forming limit curves of 5xxx series aluminium alloys. Ramazani et al. [3] employed the

Gurson-Tvergaard-Needleman (GTN) [21, 22] damage model to predict the formability

of DP600 in a cross-die test. Abbasi et al. [23] used the same damage model to simulate

the LDH test of tailor-welded blanks (TWBs) and calculate their FLC. Kolasangiani

et al. [24] used a combination of FEM and the Cockcroft and Latham ductile fracture

criterion [25] to simulate the Erichsen test and generate the FLC of SS304L steel

sheet. Maris et al. [26] simulated and compared the FLCs obtained from quasi-static

Marciniak tests and those achieved from high-strain rate electro-hydraulic forming of

DP600 and AA5182 sheets. It can be seen that an appropriate ductile damage model,

work hardening function, void nucleation function and void coalescence criteria can

be implemented into a numerical code to increase the accuracy of simulation results

since different combinations of models and functions can significantly affect the final

results [27].
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The Rousselier ductile damage model [28] is a widely-employed micro-scale model

for predicting ductile fracture. The Rousselier model requires fewer constants to be

defined compared to the well-known Gurson–Tvergaard–Needleman [22, 29] damage

model and it has the capability of predicting damage evolution and void volume

fraction growth at very low, zero or negative stress triaxiality. Furthermore, unlike the

GTN model which defines the damage evolution in a material based on the growth of

a spherical or cylindrical shaped void, the Rousselier damage model was developed

without consideration of the shape of voids and accordingly, it can determine the

damage transition from flat to oblique fracture surfaces [30, 31]. The Rousselier

damage model was used by Besson et al. [32] to model crack growth and to show that

cup-cone fracture formation could be better predicted by using this model compared

to GTN damage model. In addition, he investigated the effect of different parameters

such as mesh size on the performance of the Rousselier model in predicting oblique

fracture [32]. It has also been used by Poussard et al. [33] to simulate smooth tensile

and compact tension specimens, and Tu et al. [34, 35] employed it to evaluate the

ductile damage and crack growth on S355NL steel electron beam welded joints and

aluminium laser-welded joints. Nevertheless, although the initial void volume fraction

is required in the Rousselier model, no secondary void nucleation function or void

coalescence criterion was defined in this model. Zanganeh et al. [36] proposed an

approach to couple the Rousselier model with Thomason’s plastic limit load coalescence

criterion [37, 38] to model the damage and fracture behaviour in uniaxial tension of

AA2050 with different positive triaxiality levels using notched specimens. Having

considered the advantages and capabilities of the Rousselier damage model, it was

used to evaluate the formability, damage and fracture behaviour of DP600 steel sheets

deformed in quasi-static Marciniak formability tests.

In this study, DP600 steel sheets were deformed along different strain paths, and strain

measurements were carried out to generate the experimental FLC. Furthermore, finite

element modelling was used to simulate the Marciniak tests for three strain paths:

uniaxial tension (UT), plane strain (PS) and biaxial tension (BT) and predict the

FLC. In order to define the flow hardening of the DP600 sheet, a series of flat rolling

experiments followed by uniaxial tension tests were employed to obtain the extended
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hardening curve of the material up to large strains. Subsequently, two different types of

hardening models, saturated and unbounded types, were fitted to the experimental flow

curves. In addition, various void nucleation functions, a void coalescence criterion and

a void growth acceleration function were implemented in the Rousselier damage model

to make it as complete and as accurate as possible. Accordingly, this extended damage

model was implemented in a user material subroutine (VUMAT) framework that

was used in ABAQUS/Explicit finite element simulation software. A comprehensive

study was then performed to evaluate the effect of hardening function types, void

nucleation models and void coalescence criteria on the damage evolution, instability

and localization, and damage and fracture geometry of the Marciniak test specimens.

The numerically predicted FLC is then compared to the experimental one and the

performance of the extended Rousselier damage model in predicting the limiting strains

as well as the neck and fracture morphologies are discussed.

6.2 Constitutive modelling of ductile fracture

6.2.1 Micromechanical damage model

In modern damage mechanics, failure of a ductile material is described by microme-

chanical damage models using nucleation, growth and coalescence of micro-voids. In

this regards, void volume fraction is usually considered as the damage parameter

[39]. The most important continuous ductile damage models were developed by Rice

and Tracey [40], Tvergaard and Needleman [22] and Rousselier [28]. Both GTN and

Rousselier are thermodynamically consistent ductile damage theories where the former

was developed based on thermodynamic considerations while the latter was developed

based on the porous material concept and description [32]. Rousselier [28, 41] proposed

a plastic potential based on the decomposition of the free Helmholtz potential energy

(Φ) into stored elastic (Φe), plastic (Φp) and damage energy (Φd) [30, 39] :

Φ(εe, εp, f) = Φe(εe) + Φp(εp) + Φd(f) (6.1a)
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where εe, εp and f are the elastic strain, plastic strain and the void volume fraction,

respectively. The Rousselier constitutive damage model [41], as an isotropic–hardening

and isotropic–damage, modifies the plastic potential or yield surface and is written as

Φ =
σeq

(1− f)
−H(εp) +B(β)D exp

(
σm

(1− f)σk

)
= 0 (6.1b)

where σeq is the von Mises equivalent stress, σm denotes the hydrostatic stress, and

B(β) is a damage function and is the conjugate force to the scalar damage variable

(β). In the Rousselier damage model, the constants that describe the resistance of

the material to damage growth and coalescence are D and σk. The true stress-true

plastic strain hardening behaviour of the material is defined by H(εp). The damage

parameter (β) is defined as a function of the plastic multiplier in the normality rule

(λ) or plastic strain increment (ε̇p). The evolution function of β is given by

ε̇p = λ , β̇ = ε̇pD exp

(
σm

(1− f)σk

)
(6.1c)

The original Rousselier damage model predicts the evolution of damage based on an

initial void volume fraction (f(0) = f0) and void growth rate, hence no void nucleation

function is considered in this model, i.e. df = dfg. In the absence of an initial void

volume fraction, the Rousselier model is not able to predict any damage progress and

will be equal to von Mises yield criterion. The current void volume fraction can be

determined based on the damage function, scalar damage variable and initial void

volume fraction (f0).

f =
B(β)

σk
=

f0 exp(β)

1− f0 + f0 exp(β)
(6.2a)

Using phenomenological plastic hardening models is a well-known approach to define

the true stress-strain curve of different materials [42]. These hardening models can be

described as “saturated” when the strain hardening of the material reaches a saturation

stress at large strains and as “unbounded” when there is no limit of strain hardening

at high strains [43]. Three different rate-independent isotropic hardening models were
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used to model the plastic behaviour of the DP600 sheet: (1) Ludwik’s law [44, 45]

as a power hardening law where the hardening rate (dσ/dε) is non-linear at large

strains (Eq. 6.3a), (2) the 3-parameter Voce model [46] as the main saturated-type

model (Eq. 6.3b), and (3) the 4-parameter Voce model (Eq. 6.3c) which takes stage

IV hardening of materials into account as a linear function of plastic strain [47, 48].

H(εp) = C1 + C2ε
C3
p (6.3a)

H(εp) = C1 − (C1 − C2) (1 − exp(−C3εp)) (6.3b)

H(εp) = C1 − (C1 − C2) (1 − exp(−C3εp)) + C4 εp (6.3c)

In equations 6.3a-6.3c, C1...n are the material constants and εp represents the equivalent

plastic strain.

6.2.2 Void nucleation function

Rousselier [41] adopted a cluster nucleation function (f0 = cte.) for his damage model,

in which there is no secondary void nucleation, to predict the damage evolution.

Several researchers [3, 6, 49, 50] have shown that DP steels and TRIP steels exhibit

secondary void nucleation throughout the deformation up to the final failure. Various

void nucleation functions have been proposed in the literature such as continuous

nucleation (dfN/dεp = A0) [38] which has been used to model the damage of aluminium

[36, 51] and steel [52]. However, Chu and Needleman [21] proposed that the void

nucleation may be controlled by a normal distribution function based on strain

(A dεp ), stress (B dσeq), or hydrostatic stress (C dσm) [53]. Since strain-controlled

void nucleation, Eq. 6.4, has been shown to be the most appropriate secondary void

nucleation function for DP600 due to its mean size of martensite particles [2, 3, 6],

this function was used in this study to include void nucleation into the Rousselier

damage model.
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dfn = A dεp + B dσeq + C dσm (6.4a)

A =
fN

SN
√

2π
exp

[
−1

2

(
εp − εN
SN

)2
]

(6.4b)

B = C = 0 (6.4c)

In Eq. 6.4(a,b), dfn represents the void nucleation rate, fN , εN and SN are the volume

fraction of void nucleating particles, the mean value and the standard deviation of the

normal distribution of nucleating strain, respectively.

6.2.3 Void coalescence criterion and post coalescence regime

In the final stages of failure, the deformation localizes and the strength of the material

decreases rapidly due to the linkage of voids and formation of microcracks. Therefore,

coalescence can be described as the transference of homogeneous deformation mode

to a severe localized mode between voids [54]. In the GTN damage model, the critical

void volume fraction at the onset of coalescence (fc) is considered to be constant [22],

however, it is shown that fc is strongly dependent on the initial void volume fraction,

the strain path [6, 38], and the stress state [36].

In this regard, the plastic limit load (PLL) criterion proposed by Thomason [37, 55]

has become one of the most widely-used models to model coalescence numerically. The

PLL model has defined coalescence as a function of the necking of the ligament between

voids. Thomason stated that the stress needed for the homogeneous deformation

mode is considerably lower than that needed for the localized deformation mode. As

the deformation progresses, the localized strength decreases due to the increase in

void volume fraction until it becomes equal to the stress required for homogeneous

deformation in which coalescence happens. The void volume fraction at that point

can be considered as the critical value for the onset of coalescence. Several researchers

proposed various extensions to Thomason’s model to calculate different parameters

of this model [38, 56], taking the void shape [57] or cell geometry and mechanical
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properties [58, 59] into account. The plastic limit load criterion proposed by Zhang et

al. [38] is written as follows:

σI
σeq

=

[
αt

(
1

χ
− 1

)2

+
βt√
χ

]
(1− π χ2) (6.5a)

χ =

(
3f

4π
exp(εI + εII + εIII)

)1/3
(

(exp(εII + εIII))
1/2

2

)−1

(6.5b)

where σI is the maximum principal stress, αt and βt are model constants, χ represents

the void space ratio, and εI,II,III denote principal strains. It has been shown by

Pardoen and Hutchinson [58, 59] that the prediction of the model would be improved

if the first model constant (αt) is expressed as a function of the strain hardening

exponent (n) in a power law hardening model: αt = 0.1 +0.217n+ 4.83n2 for materials

with 0 ≤ n ≤ 0.3, and βt ' 1.24.

After void growth and the onset of coalescence at fc, the load bearing capacity of

the material decreases sharply to the final failure. Tvergaard and Needleman [22]

suggested a void volume acceleration function to take the effective porosity (f ∗) into

account during the post-coalescence regime. Complete loss of material strength and

load carrying capacity occurs when the void volume fraction reaches its critical value

at the time of total failure (fF ). The effective void volume fraction is given by:

f ∗ =


f if f ≤ fc

fc +
f ∗u − fc
fF − fc

(f − fc) if f ≥ fc
(6.6)

where f ∗u is the final effective void volume fraction at final failure (when f = fF ). As

it can be seen in Eq. 6.6, the rate of void growth acceleration is also a function of fF

which implies that a lower void volume fraction at failure leads to faster void growth

acceleration and thus, faster loss of load bearing capacity of the material.
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6.3 Material and methods

6.3.1 Material properties

The material studied in this research was a DP600 steel sheet with a nominal thickness

of 1.48 mm. The chemical composition of as-received DP600 sheet is given in Table 6.1.

The elastic properties of the DP600 were derived from Butcher et al. [6] and uniaxial

tensile tests were employed to obtain the mechanical properties of the as-received

material, which are shown in Table 6.2.

Table 6.1: Chemical composition of the material (wt%) [10]

C Mn Si Cr Mo Cu Al

0.107 1.5 0.18 0.18 0.21 0.06 0.04

Table 6.2: Mechanical properties of as-received DP600 sheet

Parameters E [6] ν [6] ρ σy σUTS eUTS et
(GPa) (kg/m3) (MPa) (MPa) (%) (%)

Values 206 0.3 7800 375 617 17.4 25.5

In addition to the elastic-plastic mechanical properties of the investigated DP600

sheet, correct determination of the damage parameters such as the Rousselier damage

model parameters, i.e. D and σk, initial void volume fraction and void nucleation

function parameters is essential for modelling ductile damage. One of the widely-used

approaches to correctly identify damage model parameters is the inverse method

[23, 60] which consists of finding the best fit between the flow curve generated by the

finite element simulation, and the experimental tensile data. The fitting parameters

which obtain the best fit between simulations and experiments, are considered as

the damage model parameters. Sarraf et al. [61] explicitly described the calibration

procedure of D and σk for the Rousselier damage model. It has also been shown that

altering D and σk does not lead to a considerable change of the predicted hardening
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behaviour in the uniform deformation, but they effectively determine the onset and

the slope of the flow curve after maximum load is reached [36, 61]. In this study,

D=2.5 and σk=425 MPa were found to be the material constants in the Rousselier

damage model for this DP600 steel and are in good agreement with the widely-used

values for steel [34, 61, 62]. Although calibrating the Rousselier damage model based

on each strain path can lead to more accurate predictions, constant parameters were

determined in order to evaluate the accuracy of the proposed model in predicting the

FLC of DP600 specimens and simplifying the parametric study.

Unlike the GTN model, the Rousselier damage model is unable to predict any damage

evolution in the absence of an initial void volume fraction. Therefore, f0 should be

specified at the beginning of the simulation. It has been shown that the onset of

the damage is a result of the decohesion of martensite-ferrite interfaces or martensite

cracking, depending on the martensite content of the steel [5]. Since not all of the

martensite in a DP steel participates in the void nucleation process [2, 10], only

a fraction of the volume content of martensite is determined as possible sites for

nucleation of the initial voids. Winkler et al. [63] experimentally determined the initial

porosity of DP600 to be 0.07% and this value was used in the Rousselier damage model

to set f0. Different researchers derived the strain-controlled nucleation parameters

such as the volume fraction of void nucleating particles and nucleation strain, as well

as the final void volume fraction at failure (fF ) either by utilizing uniaxial tension tests

or SEM analysis of the fractured specimens [2, 3, 6, 64]. Table 6.3 shows a summary

of these parameters. It is worth mentioning that the void volume fraction at the onset

of coalescence is not pre-determined in this model since the coalescence criterion was

used as a controlling function.

Table 6.3: Rousselier damage parameters for DP600 [2, 3, 6, 63]

D σk (MPa) f0 fN εN SN fF

2.5 425 0.0007 0.02 0.35 0.11 0.1
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6.3.2 Uniaxial tensile tests

Uniaxial tensile tests were performed on DP600 sheets using a MTS Model 43 Universal

testing machine with a 50kN load cell. In this work, ASTM E8M tensile specimens, as

shown in Fig. 6.1 were first machined from previously sheared strips using wire electric

discharge machining (EDM) and then tested at a low strain rate of 0.001 s-1. To obtain

this strain rate, a cross-head velocity of 0.083 mm/s was used under displacement

control. Prior to running the tests, a speckle pattern was applied to the tensile

specimens for image based strain measurements using Digital Image Correlation

(DIC) techniques. To use the DIC method, the specimens were first painted in white

followed by the application of a stochastic black speckle pattern that deforms with the

specimen during the test. A ±25 mm biaxial extensometer was utilized to measure the

axial and width strains. Additionally, video extensometer and DIC post processing

software along with 25 mm camera lenses with 25 Hz sampling rate were used for

strain measurements. The data points obtained from the MTS machine, biaxial

extensometer and DIC cameras were subsequently synchronized in a custom built code

developed in MATLAB environment for further post processing and data analysis.

Consequently, engineering stress was obtained by dividing the measured load by the

initial cross–sectional area of the gauge, and then used to calculate the true-stress.

DIC measurements were used to directly obtain the true-strain. The experimental

true stress-true strain curve was employed to fit the hardening functions.

180 mm 

12.5 mm 

60 mm 

20 mm 

R30 mm 

Figure 6.1: Geometry of the uniaxial tension specimen (ASTM E8M)
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6.3.3 Uniaxial tensile tests combined with incremental rolling

The hardening curve is an important mechanical characteristic that needs to be

provided for finite element simulation. One of the main limitations of a traditional

uniaxial tensile test is that it only provides the true-stress true -plastic strain flow

curve of materials up to a certain strain level, usually just over 0.2 for typical low

carbon steel grades, and much lower for some AHSS grades [65, 66]. A usual way to

deal with this problem in a FEM simulation is to extrapolate the flow curve beyond

the ultimate tensile strength, but this can introduce some errors in the simulation.

Since sheet metals can undergo greater levels of deformation in the stamping process

due to biaxial stress states, it is necessary to conduct a mechanical test that can

demonstrate the material’s response at high strain. Various tests such as the uniaxial

compression test, hydraulic bulge test, viscous pressure bulge test and shear test can

be employed to determine the large-strain flow stress of materials.

Ford [67] and Hecker et al. [68] proposed a method to extend the flow curve of the

material obtained in uniaxial tension to higher strain levels by including a compressive

pre-strain generated by flat rolling of the sheet material prior to the tensile test.

Sevillano et al. [69] have shown that the flat rolling of sheet metals induces homogeneous

deformation and therefore, is one of the best processes for pre-straining the material

to large strain levels. Despite the possible discrepancy in the flow curve caused by

the change in the deformation mode, this method provides experimental data that

extend the flow curve up to strains greater than 1.0, which is much more reliable than

extrapolating the tensile data of the as-received material. This method was employed

by different researchers to obtain the forming behaviour of AA1200 alloy [70] and DP600

[71] beyond the limits of standard ASTM E8/E8M (2008) tensile tests. Although

isotropic hardening is an acceptable assumption for forming processes in which the

sheet metal undergoes somewhat linear loading strain paths, kinematic hardening

effect as a result of stress reversal or stress state change should be considered [72].

However, isotropic hardening was assumed in this research and the implementation of

kinematic hardening is left for future work.
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The procedure for performing tensile tests after successive increments of rolling was

the same as for standard tension tests. Nevertheless, various levels of pre-strain were

induced by rolling prior to the tensile loading and subsequently added into the total

strain. To determine the pre-strain values, electro-etching on sheet metal strips was

performed to create a 2.5 mm square grid, as shown in Fig. 6.2. Actual effective plastic

pre-strains were obtained by analysing the change in grid length and width. For each

pre-strain value, two tensile tests were carried out to confirm the repeatability and

consistency of the results. Details of sample designation, thickness and pre-strain

data are provided in Table 6.4. Subsequent to the pre-straining, ASTM E8 tensile

specimens were then machined from the rolled strips using wire electric discharge

machining (EDM). Following that, speckle patterns were applied to tensile specimens

for image-based strain measurements, as shown in Fig. 6.2.

Table 6.4: Description of specimens pre-strained by flat rolling

SD1 tt
2(mm) εt

3 tx
4(mm) εx

5

SR1-1 1.483 0.0 1.483 0.0
SR1-2 1.493 0.0 1.493 0.0
SR2-1 1.256 0.2 1.262 0.193
SR2-2 1.255 0.2 1.259 0.196
SR3-1 1.057 0.4 1.067 0.386
SR3-2 1.054 0.4 1.067 0.386
SR4-1 0.887 0.6 0.892 0.593
SR4-2 0.887 0.6 0.894 0.591
SR5-1 0.746 0.8 0.764 0.772
SR5-2 0.742 0.8 0.736 0.815
SR6-1 0.625 1.0 0.631 0.993
SR6-2 0.627 1.0 0.625 1.004

1 Sample designation
2 Theoretical thickness
3 Total theoretical effective strain
4 Measured thickness
5 Total experimental effective strain

183



(a) (b)

(c)

Figure 6.2: DP600 specimens used for uniaxial tension combined with incremental
rolling (a) as-etched (b) etched-rolled strips and (c) ASTM E8 specimen cut from the
rolled strip and prepared with speckle pattern

6.3.4 Marciniak tests and strain measurement

The quasi-static forming limits of the DP600 sheet were determined using flat-punch

Marciniak tests [17, 73] for three strain paths: uniaxial tension (UT), plane strain

(PS), and biaxial tension (BT), as shown in Fig. 6.4. It has been shown that tooling,

specimen geometry and the test method have minor effects on determining limiting

strains [74], however, using Marciniak tests rather than Nakazima tests can eliminate

some potential sources of uncertainty due to the friction between the punch and the

sheet, bending and non-linear strain paths. A schematic of the Marciniak test is

shown in Fig. 6.3 in which the vertical movement of the punch through a clamped

sheet specimen results in in-plane biaxial deformation. In order to prevent the test

specimen and the carrier blank from drawing in, a lock-bead was built into the die.

Marciniak tests were conducted with a clamping force of 310 kN. The velocity of the

102 mm-diameter flat punch was set to 0.1 mm/s. To generate a uniform in-plane

strain distribution on the test specimen, IF steel carrier blanks with a central hole were

used. In addition, a Teflon membrane was used between the punch and the carrier

blank to diminish the friction between them and ensure that the failure commences

in the flat central region of the sheet metal test piece below the hole in the carrier

blank. To obtain the forming limit curve (FLC) of DP600 sheet, conventional grid

marking and measurement techniques were employed. After running the tests, an
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Figure 6.3: Schematic of the Marciniak test tooling

optical grid analyser (model 100U from Forming Measurement Tools Innovations) was

used to measure the major and minor strains. To construct the FLC, each measured

grid was identified as either safe, marginal or necked on all tested UT, PS and BT

specimens using the visual observation approach described by Green and Black [75]

and the Keeler tactile method to detect incipient necks. Cheng [76] and Maris et al.

[26] presented a detailed description of the testing procedures, specimens, tools and

apparatus, measurement procedures and the experimental FLC of DP600 sheets.

6.3.5 Finite element model

To simulate the Marciniak tests, all tools as well as the deformable sheets were modelled

precisely based on actual testing conditions and tooling dimensions. It should be

noted that since the investigated DP600 does not exhibit significant anisotropic

behaviour [77], the material was considered to be isotropic and due to the symmetric

nature of the deformation in this test, only a quarter of the deformable bodies were

modelled to reduce the computational cost. The Rousselier model including the

hardening functions, void nucleation function, void coalescence criterion and void

growth acceleration function was implemented in a user material subroutine (VUMAT)
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Figure 6.4: Specimen and carrier blank geometries used for the experimental and FE
simulations of Marciniak tests in (a) uniaxial tension, (b) plane strain and (c) biaxial
tension
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utilizing the Rousselier integration procedure proposed by Shterenlikht [78]. The

VUMAT developed in FORTRAN95 was then used in the ABAQUS/Explicit finite

element simulation software.

All the tools in the finite element model were considered to be rigid whereas the

DP600 sheet test specimen and the IF-steel carrier blank were modelled as deformable

bodies. They were meshed using 8-node reduced integration-brick elements (C3D8R).

Symmetric boundary conditions were applied to both symmetry planes of the double-

blank specimen such that the nodal displacement in the x- and z-direction were locked

for the nodes located on the x- and z-symmetry planes, respectively. The geometry of

different test specimens and carrier blanks used for simulating UT, PS and BT strain

paths is shown in Fig. 6.4. The Coulomb friction law was determined to model the

contact between surfaces using the penalty friction formulation. The coefficient of

friction between the punch and the top surface of the carrier blank was set to 0.05 and

that between the DP600 sheet and the IF-steel carrier blank was 0.5 [26, 79, 80]. Since

no lubrication was used between the carrier blank and the blank-holder, and between

the test piece and the bottom die, the friction coefficient between these surfaces was

also chosen to be 0.5 and no boundary condition was considered for the outer edge

of the deformable parts. A reference point was assigned to each rigid body and the

boundary conditions were applied to these points, i.e. all degrees of freedom except in

the velocity direction were constrained for the reference points assigned to the punch

and to the blank-holder, and all degrees of freedom were locked for the bottom die.

The full clamping force was directly applied to the blank-holder at the beginning

of the simulation. The finite element model used to simulate the Marciniak test is

presented in Fig. 6.5.
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Figure 6.5: Finite element model of the Marciniak test (BT). From top to bottom:
punch, blank holder, carrier blank (washer), test piece and bottom die

6.4 Results and discussion

6.4.1 Extended uniaxial tension flow curve

It is important to accurately describe the flow curve of materials when simulating

metal forming processes since the hardening behaviour and the hardening rate need

to be correctly predicted at high strain levels [81, 82]. Therefore, uniaxial tensile

tests combined with incremental rolling were used to obtain the hardening response

of DP600 sheet up to a strain of 1 mm/mm. The uniaxial tension data resulting

from the proposed procedure is shown in Fig. 6.6. Since most researchers utilize the

hydrostatic bulge test to obtain the flow curve beyond strains that are achieved in a

conventional uniaxial tension test, the true stress-true strain flow curves of DP600

obtained by hydrostatic bulge tests presented by Sigvant et al. [65], Uthaisangsuk

et al. [83], Nasser et al. [66] and Ramazaniet al. [3] are also shown in Fig. 6.6 in

order to examine the validity of the new test results up to high strain values. As it
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can be seen, no considerable variation of flow stresses can be observed in the range of

uniaxial tension test (εp < 0.14). Even beyond the ultimate tensile limit up to strain

0.7, there is very good agreement between bulge test flow curves and that achieved

by uniaxial tensile tests combined with incremental rolling. Thus, it can be claimed

that the proposed testing procedure is able to successfully determine the tensile flow

curve of DP600 up to high strain levels and can be confidently used as the hardening

behaviour of DP600 sheet in the simulations.
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Nasser et al. (2010)
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Figure 6.6: Comparison of the uniaxial tensile test and extended uniaxial flow curve
of DP600 with the flow curve obtained by bulge tests by different researchers

Non-linear regression (NLR) was utilized to calculate the constants in the phenomeno-

logical hardening models used to simulate the Marciniak tests. It is generally known

that saturated and unbounded hardening models predict the flow behaviour of materi-

als at high strain levels differently. In addition, the total plastic strain a material can

reach in strain paths other than uniaxial tension can vary significantly. Therefore, it

is important to employ different hardening functions to evaluate their effect on the

prediction of the FLC. In this regard, the 3-parameter Voce function, in which the

work hardening becomes zero, was fitted to the uniaxial tension true-stress true-strain

flow curve, and the 4-parameter Voce equation, in which stage-IV hardening is taken

into account, and Ludwik’s hardening law were calibrated using the extended uniaxial
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tension hardening curve. The parameters of each hardening equation, achieved by

NLR, are shown in Table 6.5 and applied to the present model for DP600.

Table 6.5: Hardening parameters calculated by NLR for DP600 sheet

C1 C2 C3 C4

Voce (3-parameter) 357.90 748.46 15.035 –
Voce (4-parameter) 369.13 712.49 13.971 331.84
Ludwick 151.41 885.79 0.2517 –

To evaluate the accuracy of each hardening model to predict the flow curve of DP600

sheet, adjusted R-squared value (R̄2), as defined in Eq. 6.7a, was used since it can take

the number of points (m) and the number of independent variables (k) into account.

As it can be seen in Fig. 6.7, all three hardening models are able to accurately predict

the hardening behaviour of DP600 sheet since R̄2 >0.97 for the 4-parameter Voce and

Ludwik’s models and close to 0.99 for the 3-parameter Voce equation.

R̄2 =R2 − (1−R2)
m

m− k − 1
(6.7a)

R2 = 1−
∑m

i=1(σi −H(εp))
2∑m

i=1(σi − σ̄)2
(6.7b)

mJC VmJC KHL
0.95

0.96

0.97

0.98

0.99

1.00

R̄
2

Figure 6.7: Goodness of fit of different hardening laws to the experimental flow curve
of DP600 steel, evaluated by the adjusted R-squared value
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6.4.2 Quasi-static formability of DP600 sheet

Several DP600 sheet specimens were deformed under uniaxial tension (UT), plane

strain (PS) and biaxial tension (BT) using the Marciniak testing procedure. Grid

analysis as well as visual and tactile methods were employed to determine the onset

of necking such that the strain in a grid was considered safe when no necking was

detected and failed when a neck could be found. Then, the analysis results were

used to generate the FLC of the material as the lower bound of all necked data. In

the positive minor strain region of the FLC, where obtaining a local neck is difficult

experimentally, the strain on a grid immediately next to a small split was used to

determine the limiting strains for such strain paths. The experimental FLC of DP600

steel sheet and the UT, PS and BT strain paths are shown in Fig. 6.8 [10]. It can be

seen that the FLC0 obtained in the plane strain test was approximately 17%.

Uniaxial tension (UT) 

𝜀𝑚𝑖𝑛𝑜𝑟 < 0 < 𝜀𝑚𝑎𝑗𝑜𝑟

𝜀𝑚𝑖𝑛𝑜𝑟 = 0 < 𝜀𝑚𝑎𝑗𝑜𝑟

Plane strain (PS) 

𝜀𝑚𝑖𝑛𝑜𝑟 = 𝜀𝑚𝑎𝑗𝑜𝑟 > 0

Biaxial tension (BT) 

Figure 6.8: Quasi-static forming limit diagram of DP600 steel sheet (triangles show
the necked or close to split data points) [10]
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6.4.3 Analysis of damage evolution

The Rousselier damage model predicts the damage evolution with regard to its scalar

damage variable (β) and the void volume fraction (f). These damage parameters will

be carefully assessed in this section based on different strain paths (UT, PS and BT),

various hardening functions and different void nucleation functions. It should be noted

that Figs. 6.9-6.12 were derived from the output variables of an element located in the

centre of the test piece. The evolution of β as a function of equivalent plastic strain

based on different testing conditions during the forming process is shown in Fig. 6.9.

It can be seen that no damage was predicted if no initial void volume fraction was

introduced to the Rousselier damage model (dotted lines), unlike the GTN model which

is capable of predicting damage in the absence of f0. However, using different void

nucleation functions can significantly alter the behaviour of the cumulative damage

predicted during the deformation. As shown in Fig. 6.9(a,b), the damage rate was

increased by using strain-controlled void nucleation in all strain paths. In addition, for

a given void nucleation function, the damage evolution in PS was predicted to be the

fastest while it is the slowest in BT. Besides, all damage evolution curves which use

the same void nucleation function coincided with each other up to εp '0.25 and then

deviated beyond this point up to failure. Moreover, by comparing Fig. 6.9(a) and (b), it

can be realized that the damage growth rate is slightly faster when using a 4-parameter

Voce hardening function with cluster nucleation instead of a 3-parameter function. It

should be noted that the damage evolution behaviour was reasonably similar when

using either Ludwik’s or the 4-parameter Voce hardening equation. Therefore, results

of only one of these functions are presented in Figs. 6.9-6.10.

Another approach that can effectively be used to assess the damage evolution predicted

by the Rousselier damage model, is to evaluate the history of void volume fraction

throughout the forming process. In this regard, the evolution of void volume fraction

(f) as a function of equivalent plastic strain is shown in Fig. 6.10. Again, it can be

seen that no void volume growth was predicted by the Rousselier model when using

f0=0. Moreover, the void growth is negligible from the beginning of the deformation

up to approximately εp ≤0.2 and εp ≤0.5 when using cluster void nucleation and
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Figure 6.9: Variation of the Rousselier scalar damage variable (β) for three strain paths
(UT, PS, BT) considering 3 void nucleation cases: dotted lines (no initial void volume
fracture), solid lines (cluster void nucleation) and dashed lines (strain-controlled void
nucleation) using (a) 4-parameter and (b) 3-parameter Voce hardening functions
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strain-controlled void nucleation, respectively. Also, a considerable difference can be

observed between the onset of sudden increase in the void volume fraction between

PS and BT strain paths when using cluster void nucleation. However, this difference

can be significantly reduced by using the strained controlled void nucleation function.

Furthermore, the order in which the void volume growth rate increases from one strain

path to another in Fig. 6.10 is similar to what was seen in Fig. 6.9, where BT and PS

demonstrate the lowest and highest void volume growth rates, respectively.

These results can be explained based on the excellent experimental investigations

of Tasan et al. [84] or Samei et al. [10] who performed a comprehensive study on

the ductile damage mechanics and microstructural analysis of DP600 sheet deformed

along different strain paths. It has been shown that a mode of PS is required to

start a neck, however, in UT and BT, different constraints help to postpone the neck

formation [18, 84]. Tasan et al. [84] argued that the negative minor strain in the UT

and geometrical constraints in the BT can successfully help the thinning of materials,

restrain the strain path inside the neck from reaching PS and delay the localization

process. In addition, it has been stated that the geometrical constraints in BT are

more effective at inhibiting localization than the lower triaxiality in UT. Accordingly,

it can be said that the simulation results of Marciniak tests are in very good agreement

with the results experimentally obtained by Tasan [84] where the rate of damage

growth as a function of εp is the highest in PS, and decreases in UT and BT due to

negative minor strains and geometrical constraints, respectively.

The effect of the hardening functions on the evolution of void volume fraction in

different strain paths is shown in Fig. 6.11. It can be seen that from the beginning

of the deformation up to a high strain level, (≈1, 0.8, 1.2 for UT, PS and BT,

respectively), all hardening models predict the same general evolution of damage

when using cluster void nucleation. However, subsequent to the mentioned high

strain levels, there is a remarkable difference between the evolution of f predicted

by the Rousselier damage model with the 3-parameter Voce law on one hand, and

with the Ludwik or 4-parameter Voce hardening law on the other hand. It seems

that the model employing the 3-parameter Voce hardening equation underestimates

the void volume fraction, especially at high strain levels. This can be attributed to
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Figure 6.10: Variation of the void volume fraction (f) vs. equivalent plastic strain for
three strain paths considering 3 void nucleation cases using (a) 4-parameter Voce and
(b) 3-parameter Voce hardening functions
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the hardening behaviour of the 3-parameter Voce function at high strain where the

stress reaches a saturated level and the hardening rate becomes nil. Therefore, the

model predicts a greater amount of deformation when the hardening saturates. By

using the strain-controlled void nucleation function in the Rousselier damage model,

these considerable differences between unbounded and saturated hardening models

were significantly reduced such that the differences can be observed among different

hardening models in UT (Fig. 6.11a), and PS (Fig. 6.11b), and even in BT (Fig. 6.11c),

are practically insignificant.
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Figure 6.11: Comparison of the void volume evolution in (a) UT, (b) PS and (c) BT
vs. equivalent plastic strain for different hardening constitutive equations when using
cluster void nucleation (f0=cte) and strain-controlled void nucleation (dfN = Adεp)
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6.4.4 Void coalescence criterion

The performance of a coalescence criterion can be assessed using the plastic limit load

proposed by Thomason [37, 55] and the evolution of normalized local and homogeneous

strength (σI/σeq) as a function of equivalent plastic strain, as shown in Fig. 6.12. It can

be seen in this figure that the local strength between two voids decreases in all strain

paths (UT, PS and BT) as the deformation progresses which indicates that it is harder

for the localized mode of deformation to occur compared to the homogeneous mode.

It can also be observed that the critical strain (εc) at which coalescence commences, is

over-predicted by the cluster nucleation function where no secondary nucleated voids

are taken into account, but εc significantly decreased when employing strain-controlled

void nucleation. This means that without considering secondary void nucleation, an

element would undergo considerable deformation even after necking occurs. This is

not realistic for DP600 because no significant thinning is observed after the onset of

localization [84]. In addition, regardless of the hardening function used in the model,

εPSc < εUTc < εBTc , which can again be explained by the effect of the negative minor

strain in the UT and the geometrical constraints in BT as indicated by Tasan et al.

[84].

Another important point is the difference between the εc values predicted by different

types of hardening functions as they are implemented in the Rousselier model with

cluster void nucleation. It can be seen in Fig. 6.12(a,b) that there is a negligible

difference between εc predicted for a given strain path using the Ludwik and 4-

parameter Voce functions(εc '0.9, 1.15 and 1.75 for PS, UT and BT, respectively);

this indicates that the linearity or non-linearity of the hardening curve at high strain

levels does not have a significant effect on εc. However, the critical strain at the

onset of coalescence predicted by the 3-parameter Voce equation is significantly

greater (εc '1, 1.25 and 2.3 for PS, UT and BT, respectively) than that predicted

by the other hardening models under the same simulation conditions (Fig. 6.12c).

Nevertheless, when using strain-controlled void nucleation, all hardening models predict

approximately the same εc for each respective strain path.
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Figure 6.12: Variation of the plastic limit-load in the centre of the gauge area of
Marciniak test specimens for different strain paths (UT, PS and BT) and void nucleation
functions (cluster nucleation and strain-controlled nucleation) using (a) Ludwick, (b)
4-parameter Voce and (c) 3-parameter Voce hardening functions in the Rousselier
damage model
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6.4.5 Strain evolution and necking criterion

The effect of the void nucleation function on the performance of the Rousselier damage

model in predicting the evolution of strain during deformation can be evaluated by

deriving the major strain as a function of the normalized time, as shown in Fig. 6.13.

It should be mentioned that the first two terms in Eq. 6.1b basically represent the

von Mises yield criterion in the Rousselier damage model. Thus, without introducing

an initial void volume fraction, the Rousselier model would practically correspond

to the von Mises yield criterion. It can be seen in Fig. 6.13 that in all cases, the

major strain increased gradually from the beginning of deformation up to the moment

(tnorm.'0.5) when the strain rate (dεI/dt) began to increase. Before tnorm., εI predicted

by the Rousselier damage model combined with either cluster void nucleation or strain-

controlled void nucleation, was the same as that predicted by the von Mises yield

criterion. For both hardening models, the major strain at the location where the

failure occurred, increased rapidly through the rest of the deformation when using

strain-controlled void nucleation. In case of cluster void nucleation, the major strain

increased similarly to that which would be predicted by the von Mises criterion,

however, εI grew faster when using the 4-parameter Voce (Fig. 6.13a) compared with

the 3-parameter Voce hardening model (Fig. 6.13b). This can again be attributed to

the saturated stress condition and zero hardening rate exhibited by the 3-parameter

Voce at high strain levels which contributes to greater strains at the onset of failure.

The same pattern and behaviour could be observed for other strain paths and hardening

functions.

Since FLC is established based on the necking strains measured in experimentally

tested specimens, it is necessary to consider an appropriate and accurate approach

to determine the onset of instability during the simulations that can be conveniently

applied to different strain paths. In this study, a combination of different well-known

necking criteria employed by different researchers to evaluate the occurrence of necking

was implemented to determine FLCs [19, 79, 85]. It is generally accepted that the onset

of plastic instability in a sheet metal happens when a sudden change in the thickness

strain can be detected. This can be determined by deriving the first and second
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(a) (b)

Figure 6.13: Variation of the major strain during the plane strain Marciniak test
using the Rousselier damage model and different void nucleation cases with the (a)
4-parameter Voce and (b) 3-parameter Voce hardening functions

derivatives of the thickness strain based on time to obtain the acceleration of thickness

deformation (ε̈t = d2εt/dt
2), as shown in Fig. 6.14(top). Since in the explicit finite

element simulation, a smooth curve cannot be obtained for the ε̈t versus normalized

time, the second derivative of the thickness strain was first calculated by the finite

difference method, and then an exponential function (ε̈t = a exp(b t)) was fitted to the

thickness acceleration data. Zhang et al. [79] defined the onset of plastic instability as

“the intersection point of two bifurcation branches”. Therefore, a polynomial function

was fitted to each branch of the fitted exponential function, i.e. the acceleration

of thickness strain curve. The two fitted polynomial functions, a1(t) and a2(t) are

presented in Fig. 6.14(top). The time corresponding to the intersection of a1(t) and

a2(t) was considered as the critical time at which necking began. Consequently, the

major and minor strains at that time were determined by spline interpolation of the

closest strain values obtained from the simulations (Fig. 6.14(bottom)). The described

procedure for uniaxial tension (UT) test using the Rousselier damage model, cluster

nucleation and 4-parameter Voce hardening law is presented in Fig. 6.14. The same

procedure was used for other strain paths, hardening equations and void nucleation

functions to obtain the respective limiting strains and generate the FLC in each case.
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Figure 6.14: Determining the bifurcation point from the second derivative of the
thickness strain in UT using the Rousselier damage model and 4-parameter Voce
hardening model, and finding the corresponding major and minor strains

The simulation of the Marciniak tests and the subsequent bifurcation analysis to

determine the necking strains in UT, PS and BT leads to the FLC shown in Fig. 6.15.

As it can be seen, the FLC predicted by using the von Mises yield criterion, i.e.

the Rousselier damage model with f0=0, was considerably higher than either the

experimental FLC or that predicted using the Ludwik, 4-parameter Voce or 3-parameter

Voce hardening laws. By employing cluster nucleation, both major and minor strains

decreased somewhat and the predicted FLCs moved closer to the experimental curve.

When using strain-controlled void nucleation, very good agreement is observed between

the predicted and experimental FLCs, such that the predicted FLC0 were very close
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to the experimental value for all hardening functions. The result of predicted FLCs

using the Ludwik and 4-parameter Voce hardening laws are very similar to each other.

Accordingly, it can be said that the way the hardening model predicts the slope of the

hardening curve at high strains has a negligible effect on the prediction of the forming

limit in different strain paths. However, the results should be carefully evaluated

if a saturation hardening model, such as the 3-parameter Voce, is being used. It is

also worth noting that although all hardening functions could successfully predict the

major and minor strains in the negative and zero minor strain region of the FLCs

using strain-controlled void nucleation function, they all underestimate the necking

strains in BT. Ramazani et al. [3] also reported the same deviation between the

experimental and predicted FLCs on the positive minor strain side using the GTN

damage model. This deviation can be attributed to the overestimation of the damage

in BT or in case of Rousselier damage model, the non-transferability of the Rousselier

model parameters (D and σk) from one stress triaxiality to another [36]. However,

the calibration procedure described by Sarraf et al. [61] is able to determine a single

set of D and σk that can be used in simulations of different strain paths to obtain

acceptable FLC results.

6.4.6 Necking and failure

The distribution of the cumulated scalar damage variable predicted in the Marciniak

test specimens and the corresponding geometry of the neck for different simulation

conditions and different strain paths is shown in Fig. 6.16. These results were also

compared to the experiments. It can be seen that the location and geometry of the

neck is successfully predicted by different combinations of the Rousselier damage model,

hardening laws and void nucleation functions for all three investigated strain paths.

In case of the Marciniak test simulating UT, all models demonstrated diffuse necking

in the gauge area and strain localization in the centre of the shear bands (Fig. 6.16a).

Additionally, the shape of the neck is predicted to be a line in PS (Fig. 6.16b). In the

BT test specimen (Fig. 6.16c), the neck appears to start at the centre of the gauge.
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Figure 6.15: Comparison of the experimental and numerically predicted DP600 FLC
using the Rousselier damage model along with different void nucleation functions, and
(a) Ludwick’s (b) 4-parameter Voce and (c) 3-parameter Voce hardening equations
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The predicted strain localization is more severe when the 3-parameter Voce law is used

in the simulations since the stress saturates and the strain hardening rate becomes

zero. Therefore, the localization of deformation and the resulting damage variable

predicted by the 3-parameter Voce in all strain paths, is more severe compared to

the localization predicted when employing an unbounded hardening model which can

resist the softening due to the increase in void volume fraction in micromechanical

damage models. Accordingly, the intensity of deformation or damage localization

strongly depends on the way a hardening model predicts the strain hardening rate

at high strains. Another important point is that the maximum damage level in the

centre of the localized area is significantly higher when using strain-controlled void

nucleation function (β '5.521 in UT and β '5.973 in PS) compared to that when

cluster nucleation is utilized (β '1.537 and β '2.553 for UT and PS, respectively).

This signifies that cluster void nucleation leads to an unrealistic amount of plastic

deformation prior to failure (compare β '1.537 in UT at the time of the neck and

βF '7.5 at failure). The performance of the model can be noticeably improved by

employing the strain-controlled void nucleation function which can increase the damage

level in the localized area before the onset of coalescence and subsequent final failure.

Tasan et al. [84] argued that in BT, a DP600 test specimen would experience high

damage accumulation prior to necking such that the amount of plastic strain from

the onset of localization to final failure would become very limited. This confirms the

positive impact of utilizing strain-controlled void nucleation in the Rousselier damage

model for predicting the damage accumulation in BT, as shown in Fig. 6.16c.
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Figure 6.16: Representation of the Rousselier scalar damage variable (β) at the onset of
necking predicted by the proposed procedure in (a) UT, (b) PS and (c) BT deformation
paths using the Rousselier damage model along with different hardening models and
different void nucleation functions

The distribution of the damage in Marciniak test specimens deformed along three

strain paths is presented in Fig. 6.17. It can be observed that the localization and

failure commence from the centre of the specimens for each strain path, as expected

from the experiments, and accordingly, fully damaged elements are removed from the

simulations. However, in UT, the geometry of the final damaged specimen as well as

the ultimate distribution of the damage accumulation appear to be dependent on the
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hardening law, void nucleation and coalescence models that are used. When using the

cluster void nucleation function and the Ludwik or the 4-parameter Voce hardening

law with the Rousselier damage model, the final geometry of the damaged area was

predicted to localize on the shear bands (as shown in Fig. 6.16a) but the dominant

mechanism would be diffuse necking with the failure propagating from the centre to

the edge of the specimen, perpendicular to the major strain direction. On the other

hand, using the 3-parameter Voce hardening model would cause the UT test specimen

to exhibit severe localized necking and failure on shear bands, which is similar to what

was observed in the experiments (Fig. 6.17a). Nonetheless, the geometry of the damage

became similar (fracture on shear bands) when the strain-controlled void nucleation

function and the void coalescence criterion were employed in the model. It is worth

noting that when modelling the full geometry instead of the quarter–symmetry for UT

test samples, as explained in Section 6.3.5, the localization would similarly progress

on the shear bands in an X-shape and the final fracture would take place on either of

the shear bands.

Figure 6.17(b,c) shows the predicted geometries of the damage in PS and BT. It can

be seen that all models successfully predicted the onset of necking at the centre of the

specimen and its propagation outward in a direction that is perpendicular to the major

strain direction. Due to the geometry of the testing sheets, no significant difference was

observed between the fracture geometries predicted by the Rousselier damage model

with various hardening models. However, more uniform and realistic distributions of

predicted damage accumulation could be observed when utilizing strain-controlled

void nucleation function in the Rousselier damage model. Nevertheless, the damage

accumulation is more localized in the gauge area when using the 3-parameter Voce

compared to the Ludwik and 4-parameter Voce models.
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Figure 6.17: Experimental and predicted damage accumulation and distribution in
(a) UT, (b) PS and (c) BT using different hardening functions and void nucleation
functions (SVCN: strain-controlled void nucleation) as well as a void coalescence
criterion
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6.5 Summary and conclusions

In this chapter, the performance of the Rousselier ductile damage model in predicting

the formability of DP600 sheet was investigated by comparing the numerical results

with experimental data. In the damage model, the work hardening behaviour of

the material was defined by two approaches: uniaxial tension, and a combination

of incremental rolling followed by uniaxial tensile tests to obtain the flow curve of

DP600 sheet at high strain levels. Consequently, two different types of hardening

laws, saturated and unbounded, were fitted to the true stress-true strain flow curves.

In addition, different void nucleation functions and a void coalescence criterion were

implemented in the Rousselier damage model. This model was subsequently used

to simulate the Marciniak tests for three different strain paths (UT, PS and BT) to

evaluate the influence of each simulation condition and each combination of functions

and criteria on the predicted FLC of DP600 sheet.

Based on the comparison between the hardening curve obtained by the proposed

approach of uniaxial tensile tests combined with incremental rolling with those achieved

by hydrostatic bulge test, it can be concluded that this approach is an effective way

of obtaining the flow curve up to high strains.

The damage evolution predicted by the Rousselier damage model, in terms of either

the scalar damage variable or the void volume fraction, is remarkably strain-path

dependent. It is also shown that it is also dependent on the hardening model such

that the approach in which the hardening rate is predicted by a hardening model

at high strain levels can directly impact the damage evolution and can lead to a

considerable difference from a certain strain up to failure if cluster void nucleation

function is used. However, this variability can be significantly reduced by employing

the strain-controlled void nucleation function in the Rousselier damage model. It is

worth noting that when using unbounded hardening models, the linearity (4-parameter

Voce) or the non-linearity (Ludwik) of the hardening rate at high strain levels did

not have any considerable effect on the prediction of damage increase during the

deformation or damage accumulation along the gauge area.
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The plastic limit load as the void coalescence criterion was successfully implemented

in the model to identify the critical strain (εc) and void volume fraction (fc) at the

onset of coalescence. It was shown that εc is overestimated in every strain path if

the nucleation of secondary voids is not taken into account. However, using such a

function can improve the performance of the coalescence criterion.

Having used the bifurcation method to determine principal strains at the onset of the

necking for each strain path, the FLC of the investigated DP600 sheet was generated

for each simulation condition and compared to the experimental FLC. The results

showed that employing strain-controlled void nucleation function with an accurate

hardening model in the Rousselier damage model allows to successfully predict the

FLC of DP600 sheet with very good agreement with the experimental FLC.

Although in all simulation conditions, the onset of localization was correctly predicted

to start from the centre of the gauge area, the type of hardening function and void

nucleation function as well as void coalescence criterion have considerable effect on

the distribution of the cumulated damage variable throughout the test specimens and

on the final geometry of the fracture. Using a saturation hardening model (such as

3-parameter Voce) results in more localization around the necking area compared to

unbounded models (such as 4-parameter Voce and Ludwik). In addition, utilizing a

strain-controlled void nucleation function contributes to an increase in the damage

distribution in the localized area as well as a decrease in the post-uniform deformation.

Furthermore, the combination of the 3-parameter Voce and the Rousselier damage

model predicts the final fracture on the shear bands in UT either using cluster or

strain-controlled void nucleation. Finally, the final geometry of the fracture using the

4-parameter Voce or the Ludwik hardening law in the damage model was successfully

improved by taking the secondary void nucleation into account in the simulations.
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Chapter 7

Hybrid FE+CA results and
discussion

As described in Chapter 3, the proposed hybrid model is a combination of a) a finite

element (FE) model that represents the macroscopic strain and stress and allows the

evolving states of damage variables to be analysed in a deforming body, and b) a

cellular automata (CA) model that describes the material microstructural properties

and evaluates the ductile and brittle damage propagation in the meso-scale medium.

In this chapter, the capabilities of the proposed model to predict the damage behaviour

in terms of the fraction of ductile and brittle fracture in uniaxial tension tests and in

an electrohydraulic forming process are discussed.

7.1 Microstructural properties

For each cell in the ductile CA array, the critical scalar damage variable based on the

initial void volume fraction, obtained by X-Ray tomography analysis, was determined

as the only cell property. However, two other properties, representing the fracture

stress as a function of i) grain size and ii) grain orientation, were also defined for

each cell in the brittle CA array. These properties are assigned to each cell in the

CA arrays by using sophisticated random number generators based on four different
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distribution functions that are available to the user:

• uniform distribution function: the “continuous uniform distribution” or

“rectangular distribution” is a family of symmetric distributions that has constant

probability. The probability density function of uniform distribution is written

as:

f(x) =


1

b− a
for a ≤ x ≤ b

0 for x < a ∨ x > b

(7.1)

In terms of mean value of distribution (µ) and standard deviation (σ), it can be

re-written as:

f(x) =


1

2
√

3 σ
for −σ

√
3 ≤ x− µ ≤ −σ

√
3

0 Otherwise

(7.2)

• normal distribution function: the Gaussian distribution is one of the most

widely-used continuous probability distributions which is usually identified with

its bell-shape curve. The general equation for the probability density function

of the normal distribution is

f(x) =
e−(x−µ)/(2σ2)

σ
√

2π
(7.3)

where µ is the location parameter and σ represents the scale parameter.

• 2-parameter and 3-parameter Weibull distribution functions: these

Weibull distribution functions are other very well-known distribution functions

in the engineering field. The probability density function of 2-parameter Weibull

random variables is given by

f(x) =
β

η

(
t

η

)β−1

e−(t/η)β (7.4)
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and the 3-parameter Weibull probability distribution function is written as

f(x) =
β

η

(
t− γ
η

)β−1

e−( t−γη )
β

(7.5)

where η is the scale parameter, β is the shape parameter (or slope), and γ

denotes the location parameter.

McCallum [1] used two different techniques to determine the mean grain size of the

same as-received DP600 steel sheets (i.e. taken from the same coil): the manual

statistical method using Clemex Measure Line tool, and the planimetric, or Jeffries’

method. He measured more than 3000 grains to obtain the grain size distribution.

Amirmaleki et al. [2] also employed Clemex Vision PE software for quantitative

analysis of micrographs and ferrite grain size in the same DP600 sheets. The 3-

parameter Weibull function with η=1.16 , β=dg=3.8 µm , and γ=1.1 was fitted to

the experimental data and employed in the model to determine the fracture stress, as

shown in Fig. 7.1.
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(a)

(b)

Figure 7.1: (a) grain size measurements using Clemex [1] and (b) distribution of ferrite
grain size in DP600 sheet specimens

The distribution of initial void volume fraction was obtained by high resolution X-ray

tomography of as-received DP600 steel sheet specimens. The tomography acquisition
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was performed with a voxel size (the relative spacing of volume-elements) of 0.6 µm.

Accordingly, a normal distribution function with a mean value of µ = f̄0 = 0.0006

and a standard deviation of σ = 0.00013 was used to assign the initial void volume

fraction and its corresponding critical Rousselier scalar damage variable (βf ), based

on Eq. 5.1d to each cell in the ductile CA array (as shown in Fig. 7.2).

Figure 7.2: Overall distribution of βf calculated based on f0

No direct measurements were carried out to determine the grain orientation in the

investigated DP600 steel sheets. Since the grain orientation is employed to determine

the crack arrest phenomenon, the grain orientation angle (α) and the misorientation

threshold (αc) reported by Bhattacharjee et al. [3, 4] and Shterenlikht et al. [5, 6] was

utilized in the current model. Accordingly, a uniform distribution of grain orientations

with 0o ≤ α ≤ 70o was used to assign the grain orientation class to each cell in the

brittle CA array and αc=30o was chosen to be the misorientation threshold in this

model, i.e. the absolute value of the difference between grain orientations in two

neighbouring cells in the brittle CA array should be less than this misorientation

threshold to allow the brittle fracture to propagate from one cell to another, otherwise

the brittle fracture (or the crack) would be arrested and cannot propagate. In addition,

222



the uniform distribution function was used to determine the location of Alivem cells

(martensite containing cells) and ferrite grain size.

7.2 Illustration of the performance of the model

In order to demonstrate the performance of the hybrid FE+CA model in a compre-

hensible approach, a single finite element located in the centre of an ASTM-E8M

specimen, was chosen to investigate the ability of the model to predict the damage

behaviour in quasi-static uniaxial tension, as shown in Fig. 7.3a. The mechanical

properties of DP600 sheet specimens used in the FE part are shown in Table 7.1.

The work hardening behaviour was defined using the modified Johnson-Cook model

(Eq. 4.4) and the coefficients are shown in Table 7.2. Furthermore, the material

constants for the Rousselier damage model were found to be D=2.5 and σk=425 MPa

for this DP600 sheet.

Table 7.1: Mechanical properties of as-received DP600

E ν ρ σy σUTS εUTS ε̇0

(GPa) (kg/m3) (MPa) (MPa) s−1

210 0.3 7800 340 587 0.176 0.001

Table 7.2: Coefficients of mJC hardening function for DP600

C1 C2 C3 C4 C5

modified JC (mJC) 225.35 850.16 0.3194 0.0037 1.5715

In view of the correlation between ductile and brittle damage cell sizes (described

in Section 3.2 ) and the mean ferrite grain size, Ld and Lb were chosen to be 0.2mm

(0.1mm< Ld <0.5mm) and 0.05mm (Lb is usually 10-20 times larger than the median

grain size), respectively. According to Eqs. 3.1 and 3.3, the size of FEs in each direction

was chosen to be 0.55mm so that each ductile CA array was made up of 64 cells and
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each brittle CA array consisted of 512 cells for every single FE in the gauge area. At

the beginning of the simulation, random number generators are employed to assign βf

values to each cell in the ductile cell array, and likewise for assigning values for σf and α

to each cell in brittle cell array. In addition, all cells in the ductile and brittle cell arrays

are initially Alive since no damage or failure has occurred yet. Since there is about

5% martensite in DP600 specimens, approximately the same proportion of Alivem

was assigned to the brittle cells in order to take into account the martensite during the

damage evolution. It is worth noting that cells, either in the ductile or brittle CA array,

are not individual phases in the microstructure. Rather, cells are sub-element size parts

of the material with homogeneous yet unique material properties, i.e. microstructural

properties are different in each cell but there are no individual microstructural phases

present in the cells. According to meso-scale modelling concepts, cells do not represent

ferrite grains or martensite islands in this model, and the boundaries of cells do not

denote grain boundaries or ferrite/martensite interfaces. Consequently, no separate

constitutive equations or crystal plasticity theories are needed to define the mechanical

properties of ferrite and martensite as it would in a micro-mechanical model (which is

hard to obtain). Instead, one constitutive model is utilized to simulate the deformation

and damage behaviour of the material at the macro-scale (FE-scale) and determine

macro-level strain, and microstructural properties can be used to track the damage

evolution and failure mechanisms in meso-level. The 2D and 3D representation of

ductile and brittle cell states are shown in Fig. 7.3(b,c) and Fig. 7.3(d,e), respectively.
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(a)

(b) (c)

(d) (e)

Figure 7.3: (a) The finite element in the centre of the gauge area and 2D and 3D
representation of initial cell states in the (b,c) ductile CA array (4x4x4=64 cells), and
(d,e) brittle CA array (8x8x8=512 cells)

As the deformation progresses, output values from the FE part of the simulation, i.e.

the macro-scale scalar damage variable (β) and the maximum principal stress (σI)

shown as a solid red line in Fig. 7.4-7.7 (top images-solid line), start to change and

usually increase based on the strain path. At a certain point, the FE output (either

of the solid red lines) reaches one of the critical values implemented in one of the cells
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in either the ductile or brittle CA array and consequently, changes its cell state from

Alive to Dead in the case of the ductile cell array, or from Alive or Alivem to Deadb

in the brittle cell array, according to the associated full transfer rule defined as an

essential part of the CA model.

When a cell state changes from Alive or Alivem to Deadd or Deadb due to the ductile

or brittle fracture criterion, some cells in the vicinity of the dead cell, i.e. those located

close to the plane normal to the maximum principal stress should carry a greater

share of the damage which means that these particular neighbouring cells are more

vulnerable to damage propagation compared to other neighbouring cells. Accordingly,

local concentration factors are defined for the ductile cell array (CD) and the brittle

cell array (CB) to take into account the effect of dead cells on their neighbouring

cells. As the equivalent plastic strain increases (from Fig. 7.4-7.5), both β and σI

(represented by the solid red lines) increase until they reach βmf or σmf respectively, in

cell m and the value of the damage variable in neighbouring cells will decrease and

the corresponding blue data points will move down towards the red line because they

must accommodate an increased share of damage due to the dead cell in their vicinity.

(a) (b)

Figure 7.4: FE input from ABAQUS solver (solid red lines in top figures) and (a)
critical scalar damage variable in ductile cells and (b) fracture stress in brittle cells
(blue dots) during uniform deformation in the gauge of a tensile specimen
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(a) (b)

Figure 7.5: FE input from ABAQUS solver (solid red lines in top figures), and (a)
critical scalar damage variable in ductile cells and (b) fracture stress in brittle cells at
the onset of localization and necking

Described procedure starts from the beginning of the simulation and continues during

the deformation until the number of dead cells in either of the CA arrays reaches a

predefined value. In the absence of coalescence, all brittle and ductile cells would

need to become dead before the element would lose its load-carrying capacity and

be removed from the simulation. However, this assumption is not realistic, therefore

a coalescence criterion is implemented so that the entire array becomes dead and

subsequently the element is removed from the mesh when the number of dead cells,

either ductile or brittle, reaches a critical number (Xmax
(d) or Xmax

(b) , respectively) that

is less than the total number of cells in the array. Based on material failing due to

the presence of a planar crack, the coalescence criterion is defined as a function of the

number of dead cells on a plane that is perpendicular to one of the three principal

directions (Xmax = D2/3) [5, 6]. It can be seen in Fig. 7.7 that final failure can occur

earlier when coalescence is included in the CA part of the simulation (the fracture

strain reduces to ' 0.4 which is very close to what is measured in the experiments):
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(a) (b)

Figure 7.6: Number of dead cells required for the entire brittle CA array to be
considered dead (a) without coalescence criteria and (b) with a coalescence criterion

(a) (b)

Figure 7.7: FE input from ABAQUS solver (red lines in top figures), and (a) critical
scalar damage variable in ductile cells and (b) fracture stress in brittle cells at the
time of failure

The same procedure can be followed to evaluate the performance of the hybrid FE+CA

model in other strain paths such as pure shear, simple shear, compression and successive

tension-compression tests. As mentioned in Section 2.3.4, one of the most important

advantages of the Rousselier damage model over the GTN model is its ability to predict
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damage growth at very low, zero or negative stress triaxiality. It can be deduced

from Fig. 7.8 that under zero stress triaxiality, the Rousselier damage variable (solid

red line) increases as deformation progresses. Therefore, even the original Rousselier

damage model (with or without the CA model) can predict damage evolution in either

pure shear or simple shear, and generally predict final failure in a wide range of stress

triaxialities when calibrated accurately.

(a) (b)

Figure 7.8: FE input from ABAQUS solver (red lines), and critical scalar damage
variable in ductile cells in (a) simple shear and (b) pure shear tests

7.3 Parametric study

In this section, the uniaxial tension test is modelled using the modified Rousselier

constitutive damage model for the FE-scale part and the hybrid FE+CA model for

predicting the evolution of ductile and brittle damage mechanisms. To evaluate the

performance of the proposed model, a series of parametric studies was conducted to

investigate the effect of martensite volume fraction, ferrite grain size, strain rate and

temperature on the failure behaviour of the miniature dog-bone tensile specimens. The

simulations were carried out for strain rates of 1 and 1000 s-1. Accordingly, DP600 and

DP780 steels with nominal martensite volume fractions of 5% and 25%, respectively,
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were chosen as the main materials for this study. And different ferrite grain sizes

ranging from ultra fine-grained to coarse-grained were considered as the microstructural

properties of the materials. The capability of the hybrid FE+CA model to predict the

fraction of ductile and brittle fracture in each case is demonstrated and discussed, and

related experimental evidences are compared to the predicted results. To facilitate

the parametric studies, different Python and MATLAB codes as well as scripting

techniques were employed to derive and post process the simulation data.

According to the conventional finite element simulation method, only a quarter of the

cross section (1/8 of specimen) can be modelled to reduce the computational cost due

to the symmetries associated with the material and test geometry. In this approach, the

uniform and post-uniform deformation of the specimen would be symmetric and even

the predicted fracture surface would not show any asymmetry since no microstructural

properties or material heterogeneity is associated with the FE properties. However, in

the following examples, half of the cross sectional area (or a quarter of the specimen)

was modelled to see if the proposed model was capable of predicting any non-symmetry

of the final fracture surface. Detailed descriptions of the size of the specimens and

of the different techniques and approaches employed for finite element analysis of

the uniaxial tension test using the miniature dog-bone specimens are presented in

Chapter 4 and 5. The FE model of the miniature tensile specimen is shown in Fig. 7.9.

It should be noted that to reduce computational cost, the hybrid FE+CA model

was employed just in a specific part of the gauge area where the damage is more

probable to develop, as shown in Fig. 7.9a. The 12 elements on the cross-section of

the specimen that are shown above the symmetry line in Fig. 7.9b will be reproduced

figures throughout this section so as to display the results predicted by the FE+CA

hybrid model.
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(a) (b)

Figure 7.9: Miniature doge-bone model used for parametric study

For both DP600 and DP780, the Young’s modulus, Poisson’s ratio and the density were

E=210 GPa, ν=0.3 and ρ=7800 kg/m3, respectively. Also the appropriate Rousselier

model parameters were calculated to be D=2.5 and σk=425 MPa for DP600 and

D=2.5 and σk=735 MPa. The material work hardening properties were described by

the Khan-Huang-Liang (KHL) hardening law, and the coefficients for the hardening

functions can be found in Table 7.3.

Table 7.3: Coefficients of KHL hardening function for DP600 and DP780

C1 C2 C3 C4 C5 C6

DP600 161.54 946.48 0.2577 -0.1900 0.0037 -
DP780 [7] 500 1603 0.4135 0.01 0.01632 1.514

In the gauge area, a 5×5×5 ductile cell array (Dd = 125) and a 10×10×10 brittle

cell array (Db = 1000) were assigned to each FE so that the ductile cell size was

calculated to be LD=0.075 mm and the brittle damage cell was considered to be

Lb=0.02 mm. The two-parameter Weibull distribution random number generator,

with a shape parameter Wβ=0.0007 and a scale parameter Wη=0.00025, was employed

to simulate the distribution of initial void volume fraction, and is then used to generate

βf (as a function of initial void volume fraction as shown in Eq. 5.1d) understructural
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array for ductile CA array (Fig. 7.10a). The fracture stress value in each cell in the

brittle CA array was assigned by a 3-parameter Weibull random number generator

with Wη=1.16 , Wβ=dg=3.5 µm and Wγ=1.1. Only Wβ was changed when the ferrite

grain size changed and other parameters in the 3-parameter Weibull function remained

constant. The same grain orientation angle and misorientation threshold as presented

in Section 7.2 were used in the following examples. A 3D representation of the fracture

stress and grain orientation angles are shown in Fig. 7.10(b,c).

(a)

(b) (c)

Figure 7.10: 3D representation of initial understructural arrays of (a) critical Rousselier
scalar damage variable for ductile CA array, (b) fracture stress and (c) grain orientation
for brittle CA array

The effect of grain size and strain rate on the fracture surface of DP600 sheet specimens

in uniaxial tension is shown in Fig. 7.11. It should be mentioned at the onset that the
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predicted percentage of brittle fracture (%Fb) in the following examples is provided for

qualitative comparison, and further detailed investigation is required for quantitative

evaluation of ductile and brittle fracture on the fracture surface. It can be seen in

Fig. 7.11 that the fraction of brittle fracture (%Fb) for both fine- and coarse-grained

DP600 is negligible when the test is carried out at low strain rate, although, a slight

increase in %Fb can be observed when the ferrite grain size increases. The brittle

fracture percentage also increases with an increase in strain rate. Nevertheless, with a

martensite volume percentage as low as 4.7% in DP600 and a fine ferrite grain size, the

%Fb remains very low and the dominant fracture mechanism is ductile. This is in very

good agreement with the experimental results reported by Samei et al. [8, 9] and shown

in Fig. 7.12. Quasi-cleavage fracture is distinct from cleavage fracture since dimples

and tear ridges can be observed around the periphery of the facets [8, 10, 11]. However,

the amount of brittle fracture observed in low- and high-strain rate deformation of

DP600 sheet specimens is not significant compared to the percentage of ductile fracture

where the dominant presence of dimples on the fracture surface indicates that ductile

fracture is predominant.
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(a) ε̇=1 s-1 (b) ε̇=1 s-1

(c) ε̇=1000 s-1 (d) ε̇=1000 s-1

Figure 7.11: Fraction of brittle fracture in (a,c) fine-grained (dg=3 µm) and (b,d)
coarse grained (dg=6.5 µm) DP600 specimens

Figure 7.12: Quasi-cleavage (Q) fracture on the fracture surface of DP600 tested under
quasi-static condition [9]
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Figure 7.13 shows the fraction of brittle fracture in quasi-static and high strain rate

deformation of fine- and coarse-grained DP780. The same results can be observed in

this figure where an increase in either ferrite grain size or strain rate results in an

increase in %Fb. However, the combined result of high-strain rate deformation on

the coarse-grained DP780 lead to a significant amount of brittle fracture. Therefore,

the major fracture mechanism is predicted to be a combination of ductile and brittle

fracture. Samei [8] observed quasi-cleavage fracture in fine-grained DP600 subjected

to quasi-static deformation and to high-strain rate electrohydraulic forming (EHF),

as shown in Fig. 7.14(a,b), respectively. He also stated that the amount of cleavage

fracture and the number of facets were greater in DP980 with higher martensite

content, and it was observed more frequently in the EHF process which confirms the

qualitative predictions of the proposed model.

(a) ε̇=1 s-1 (b) ε̇=1 s-1

(c) ε̇=1000 s-1 (d) ε̇=1000 s-1

Figure 7.13: Fraction of brittle fracture in (a,c) fine-grained (dg=3 µm) and (b,d)
coarse grained (dg=6.5 µm) DP780 specimens
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(a) (b)

Figure 7.14: Quasi-cleavage (Q) fracture on the fracture surface of DP780 deformed
(a) under quasi-static conditions and (b) at high-strain rate [8]

Figure 7.15 shows the comparison between the average percentage of brittle fracture

in fine- and coarse-grained DP600 and DP780 subjected to low- and high-strain rate

uniaxial tension. It can be clearly seen that an increase in either the martensite volume

fraction, the ferrite grain size or the strain rate lead to an increase in the percentage

of brittle fracture. Several researchers have stated that the coarse-grained dual phase

structures have much lower elongation (ductility) and higher tendency to experience

brittle fracture due to the initiation of cleavage cracks in the ferrite matrix [12–14]. It

has also been shown that dual phase steels exhibit relatively less ductile damage failure

and more brittle fracture as the volume percentage of martensite increases [8, 14, 15].

Therefore, the combination of higher martensite volume content with coarse-grained

ferrite and high-strain rate deformation can contribute to increased brittle fracture.
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Figure 7.15: Total fraction of brittle fracture predicted in fine-grained and coarse-
grained DP600 and DP780 at low and high strain rates

Calcagnotto et al. [16] performed a study on the mechanical properties and failure

behaviour of a dual phase steel with a martensite volume percentage somehow close

to the DP780 steel that is being considered in this section. They generated different

thermomechanical processing routes to produce ultrafine-grained (UFG), fine-grained

(FG) and coarse-grained (CG) dual phase steels with a ferrite grain size of 1.5, 3 and

12 µm, respectively. Then, tensile tests were used to evaluate the deformation and

damage behaviour of each type of DP steel. Their test results showed that in UFG steel

(Fig. 7.16b) the main fracture mechanism was ductile damage since void nucleation and

growth processes resulted in a uniform distribution of dimples throughout the fractured

area. On the other hand, FG steel exhibited ductile fracture with some cleavage planes

among the ferrite grains (Fig. 7.16d). Therefore, although the main fracture mechanism

was still ductile, some parts of the specimen exhibited brittle fracture. In case of CG

steel, no post-uniform elongation was observed and the dominant fracture mechanism

was found to be brittle with facets and cleavage steps on these facets (Fig. 7.16f). The

fracture mechanisms predicted by the proposed model are in very good agreement

with the experimental results obtained by Calcagnotto et al. [16]. As Fig.7.16a shows,

the main fracture mode in UFG steel is predicted to be ductile with some possible

quasi-cleavage facets (Fb '2.7%). In FG steel , the proportion of brittle fracture

increased (Fb '15%) and the fracture surface exhibited a combination of ductile and

brittle fracture (Fig.7.16c). Lastly, Fb increased significantly (Fb '75%) for CG steel
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and brittle fracture is found to be the dominant failure mechanism when simulating a

tensile test, as shown in Fig.7.16e.

(a) (b)

(c) (d)

(e) (f)

Figure 7.16: Comparing the effect of grain size on the predicted fraction of brittle
fracture and related experiments in (a,b) ultra-fine grained (dg=1.5 µm), (c,d) fine-
grained (dg=3 µm) and (e,f) coarse-grained (dg=12 µm) DP780 specimens (fracture
surface images are from Calcagnotto et al.[16])

Initial and final cell states in the brittle CA array are additional outputs of the

proposed model that can be discussed. Figure 7.17 shows the initial brittle cell states

and the distribution of Alivem cells in each finite element for the DP780 specimen. It
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is well-established that in conventional finite element modelling of uniaxial tension

test, only an eighth of tensile specimens needs to be modelled due to the symmetrical

configuration of the specimens and the nature of deformation in order to reduce

computational cost [17–20]. However, the damage and fracture predicted with the

hybrid FE+CA model are not symmetric since the damage mechanisms are decoupled

from the FE model and transferred to ductile and brittle cell arrays with asymmetric

and randomized microstructural properties. This is the main reason that neither the

predicted brittle fracture percentages shown in Fig. 7.11-7.16 nor the distribution of

dead cells in Fig. 7.18 are symmetric; this is no doubt more realistic.

The final cell states in the brittle CA array along with Alivem cells are shown in

Fig. 7.18. Since no void shape is specified in this model, it can account for volumetric

void growth but is not capable of predicting void shape changes. As can be seen in

Fig. 7.18a, the main fracture mechanism in UFG-DP780 specimen is ductile since most

cells in the brittle CA array are dead due to the ductile fracture criterion (yellow circles)

although a very small number of Deadb cells (red circles) are present. The number

of Deadb cells increased in the FG specimen showing that there is a competition

between two fracture modes that will determine which one will become the dominant

mechanism for failure. Another important point that can be observed is the location

of Deadd and Deadb cells relative to each other (particularly in the UFG specimen)

where dead cells due to the brittle fracture criterion (Deadb) are surrounded by Deadd

cells. These cells can be considered representations of quasi-cleavage which has been

observed in DP780 sheet specimens [8]. The relatively high number of red circles

(Deadb cells) in Fig. 7.18b reveals that the significant increase in the size of ferrite

grains altered the main fracture mechanism from ductile to brittle.
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Figure 7.17: Initial brittle cell states in each FE located on the cross-section of the
DP780 miniature dog-bone specimen
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(a)

(b)

Figure 7.18: Final brittle cell states in each FE located on the cross-section of (a)
ultra-fine grained (dg=1.5 µm) and (b) coarse-grained (dg=12 µm) DP780 specimen

241



Other parametric studies that can be performed using the proposed model are the

evaluation of the effect of temperature and mean ferrite grain size on the fraction of

brittle fracture. Subsequently, sigmoid curves can be fitted to the predicted results

and the effect of both transient temperature and the grain size (for a specific strain

rate) on the fraction of brittle fracture can be determined. The fraction of brittle

fracture as a function of temperature shown in Fig. 7.19 indicates that ductile fracture

will become the dominant fracture mechanism even for a coarse-grained DP780 with

mean ferrite grain size of dg=12 µm, deformed at high strain rate provided that the

test is carried out at temperatures greater than 80oC. Other researchers also reported

the same effect on other dual phase steels [15, 21]. The predicted fracture behaviour as

a function of temperature is in good agreement with the experimental results obtained

by Calcagnotto et al. [16] for CG-DP780 subjected to quasi-static deformation. Also

it can be seen from Fig. 7.20 that Fb does not change with strain rate for DP780 with

a ferrite grain size of less than 6 µm. This is the threshold grain size beyond which

the combined effect of high strain rate and greater grain sizes would lead the brittle

fracture mode to be the dominant failure mechanism.
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Figure 7.19: The effect of temperature on the fraction of brittle fracture in coarse-
grained (dg=12 µm) DP780 specimen at ε̇=1000 s-1
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Figure 7.20: The effect of ferrite grain size and strain rate on the fraction of brittle
fracture in DP780 tensile specimens

7.4 Simulation of electrohydraulic forming (EHF)

High strain rate deformation is a very effective approach to increase the formability

of sheet metals beyond their conventional limits, decrease wrinkling, and reduce

springback [22–25]. It has been shown that inertial effects, and die impact effects are the

main sources of formability improvement in high strain-rate forming conditions [26, 27].

Different techniques and technologies such as explosive forming (EF), electromagnetic

forming (EMF), and electrohydraulic forming (EHF) can be used to deform materials

under high energy rate forming (HERF) processes [23, 25, 28, 29]. The main difference

between EF, EMF and EHF forming processes is the source of energy and the procedure

in which the released energy deforms a sheet. In explosive forming, chemical explosives,

usually immersed in water, provides the forming energy, whereas in EMF, energy

stored in high-voltage capacitors is released through a multi-turn coil located near the

sheet so that the sheet can be formed due to magnetic repulsive forces.
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Electrohydraulic forming (EHF) is a high-energy rate forming process that directly

convert electrical energy into mechanical force that can form a sheet material. In EHF,

high-voltage electrical energy stored in capacitors is discharged between two electrodes

that are submerged in a water-filled chamber in order to generate a high-energy shock

wave in the water and force the sheet metal into the die cavity. The entire process can

be completed within a few hundred microseconds depending on the positioning of the

electrodes and the applied energy. Different materials exhibit different forming and

damage behaviour when they are deformed in free-forming (EHFF) or die-forming

(EHDF) conditions. Figure 7.21 shows a schematic of EHFF and EHDF tooling. A

detailed review of the EHF process, tools and apparatus, material behaviour and

measurement procedures, and simulation methods have been reported by Rohatgi

et al. [25, 30–32], Gillard et al. [29], Hassannejadasl et al. [33, 34], and Maris et al.

[35, 36].

(a) (b)

Figure 7.21: schematic of the cross-section of the tooling in (a) EHFF and (b) EHDF

Due to the significant number of fractured specimens in electrohydraulic free formin

[34], only the simulation of electrohydraulic free forming (EHFF) is presented here. To

simulate the EHFF process, one quarter of the die, the blank-holder and the DP600

metal sheet were modelled precisely due to the symmetry of the process based on

actual testing conditions and tooling dimensions. No significant planar anisotropy

was detected for DP600 sheets [37], therefore, the test specimen was considered to

be isotropic. All tools in the finite element model were considered to be rigid bodies

while the DP600 sheet specimen was modelled as a deformable body and was meshed
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using reduced integration three-dimensional Lagrangian solid elements (C3D8R in the

ABAQUS element library). To apply symmetric boundary conditions to the symmetry

planes of the DP600 specimen, the nodal displacement in the x- and z-direction were

constrained for the nodes located on the x- and z-symmetry planes, respectively. A

reference point was assigned to each rigid body and the boundary conditions were

applied to these points, i.e. all degrees of freedom except in the velocity direction were

constrained for the reference points assigned to the blank holder, and all degrees of

freedom were locked for the die. The finite element model used for simulating EHFF

is shown in Fig. 7.22.

Figure 7.22: Finite element model of the EHFF. From top to bottom: blank holder,
sheet specimen and lower die

To simulate the EHF and model the water pressure, Golovashchenko et al. [38]

and Rohatgi et al. [32] defined the pressure profile (as shown in Fig. 7.23) as an

exponentially decaying function of time as follows:

P (t) = P0 Np

(
t

δ

)a

exp

(
− bt
δ

)
(7.6)
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Figure 7.23: Exponentially decaying pressure-pulse profile [32]

where P is the time-dependent pressure, P0 denotes peak pressure amplitude, and t

represents time. Np, δ, a and b are function constant. For the simulation of EHFF in

this study, the values of Np=1.28, δ=150 µs, a=0.089, and b=0.53 were determined.

These values were calculated based upon iterative parametric studies and by comparing

the experimental strains, strain rates and dome-height to predicted ones. Rohatgi et

al. [32] also postulated that the non-uniform distribution of pressure over the sheet

can be determined by the following linear function:

P (x, t) = P (t)

(
1−

x

2R

)
=⇒ 0 ≤ x ≤ R (7.7)

where R is the radius of the circular region over which the test sheet is subjected to the

pressure-pulse. However, Gillard et al. [29] used a rigorous multi-phisics model of EHF

to simulate the pressure wave inside the water chamber and showed that the pressure

distribution pattern, caused by the plasma channel between the electrodes, has a

spherical shape at the beginning of the EHF process. In addition, Hassannejadasl et al.

[34] and Maris et al. [36] modelled the water with Eulerian elements and assumed that

the pressure wave that propagates through the water becomes hemispherical in shape

after the electrical discharge. As it can be seen from Fig. 7.24(a,b), they accelerated a
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set of nodes in the water which lie on a hemispherical surface to model the shockwave

growth and propagation. Therefore, the linear function Rohatgi et al. [32] utilized

to model the pressure distribution in EHF does not seem realistic. Thus, Eq. 7.7 is

modified to model the pressure distribution on the sheet specimen with a non-linear

non-uniform function (Eq. 7.8) to make the pressure distribution change smoothly

from the centre to the edge of the sheet specimen. 2D representation of EHFF and

different approaches to define the pressure-pulse distribution on the sheet specimen is

shown in Fig. 7.25.

P (x, t) = P (t)

1−

(
x

2R

)2
 =⇒ 0 ≤ x ≤ R (7.8)

(a) (b)

Figure 7.24: Nodal acceleration in the water used by (a) Hassannejadasl et al. [34] and
(b) Maris et al. [36] to simulate EHF (NB both schematic figures are shown upside
down )
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Sheet specimen
Blank holder

EHF chamber wallwater

P(x,t) (Rohatgi et al.)  

R

P(x,t) (Sarraf)  

Figure 7.25: Spatial distribution of Pressure-pulse on sheet specimen used by (a)
Rohatgi et al. [32] and (b) used in this work

It is worth noting that the described formulation does not account for the complexities

of pressure-wave reflections in the water chamber and the test specimen. More

advanced models can be found in recent publications [29, 34, 36], however, the main

objective of the current study is to address the capabilities and the performance of the

proposed FE+CA model in predicting the forming behaviour, and the damage and

failure behaviour of sheet metal specimens subjected to EHF. Therefore, utilizing this

simplified model was considered sufficient to fulfil the present purposes. Nevertheless,

good agreement between experimental data obtained by Hassannejadasl et al. [34]

and Maris et al. [36] and the predictions of the current proposed model was observed.

Figure 7.26(a,b) shows the predicted strain paths at various locations relative to the

apex in EHFF for two different levels of applied energy. It can be seen that the strain

path close to the apex is equibiaxial, however, it deviates from equibiaxial tension as

the location changes radially from the centre of the specimen to the outside edges.

Nevertheless, equibiaxial strain paths can be seen in all locations at the very beginning

of the deformation (εI <0.04). Comparing Fig. 7.26a with Fig. 7.26b reveals that

increasing the input energy leads to greater major strain values. These results are
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in good agreement with the experimental results published by Rohatgi et al. [32]

and the results predicted using an Eulerian-Lagrangian approach and published by

Hassannejadasl et al. [34].

The predicted effective plastic strain rate history at different locations on the the sheet

in EHFF at different charging voltages is presented Fig. 7.26(c,d). It can be seen that

the maximum effective strain rates were obtained at the apex of the specimen and

were approximately 2700 s-1 and 3050 s-1 for 9.2kV and 10.3kV tests, respectively.

It is worth noting that using higher voltage, hence greater input energy, for EHFF

results in an increase in the strain rate but the overall profile of the strain rate vs.

time curve remains unchanged.
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Figure 7.26: (a,b) Predicted strain path and (c,d) predicted effective strain rate history
in EHFF for two different levels of input energy
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Figure 7.27 shows the predicted histories of the Rousselier scalar damage variable (β),

the equivalent plastic strain, and the stress-triaxiality factor in an element located

at the apex of the fractured DP600 sheet specimen. Despite some variation at the

beginning of the simulation, the stress-triaxiality history shows an average value of 0.66

during the deformation due to the equibiaxial condition at the apex of the specimen.

The equivalent plastic strain shows a smooth and continuous increase throughout

the simulation. It can also be seen that β is approximately zero at the beginning of

the deformation but from t '80 µs, it increases continuously up to a critical value

where complete loss of load bearing capacity occurs. In conventional finite element

simulations, the critical damage variable would be a function of process parameters

such as stress triaxiality, therefore in similar testing conditions, this critical value

would not change whatsoever. However, since the control of the damage and failure is

transferred from the FEs to the cell arrays in the proposed hybrid FE+CA model,

even elements subjected to similar strain path and stress triaxiality conditions, would

exhibit different damage behaviour.
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Figure 7.27: History of plastic strain, Rousselier scalar damage variable and triaxiality
in a damaged element at the apex of DP600 sheet subjected to EHFF

Figure 7.28 shows the experimental and predicted damage accumulation and final

damage geometry of fine-grained DP600 sheet specimen in a failed EHFF specimen
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deformed with 13.6kJ energy input. Severe fracture and tearing starting from the apex

of the specimen were observed due to the absence of a die and the high energy input

released from the electrodes, as shown in Fig. 7.28a. The model predicted the damage

to initiate from the apex and propagate radially toward the edge of the specimen. It

can be seen that there is good agreement between the experimental and predicted

geometry of damage for fine-grained DP600. Figure 7.30 shows the total percentage

of brittle fracture in damaged elements in fine- and coarse-grained DP600 sheets

deformed by EHFF. It can be seen that only around 6.5% of the fracture is predicted

to be brittle fracture so it can be concluded that the dominant failure mode in this

case was ductile fracture. A thorough fractography analysis of the fracture surfaces

was carried out by Samei [8] and revealed that ductile fracture was the dominant

type of fracture in all EHFF specimens, although he observed a limited amount of

quasi-cleavage fractures in DP780 sheet specimens deformed under EHFF.

(a) (b)

Figure 7.28: Experimental and predicted damage accumulation in a fractures EHFF
specimen deformed with 9.2 kV, 13.6 kJ input energy

The effect of increasing the input energy and the ferrite grain size on the damage

accumulation and geometry of DP600 specimens subjected to EHFF can be seen

in Fig. 7.29. According to Fig. 7.29a and Fig. 7.30, increasing the applied energy

from 13.6kJ to 15.6kJ slightly changed the geometry of the fractured specimen but

the fraction of brittle fracture still remains less than 0.1 which indicates that the

major fracture mode is still ductile although the deformation rate is increased. On

251



the other hand, the dominant failure mechanism when using lower energy for a coarse-

grained DP600 specimen, was predicted to be brittle since less than 15% of cells were

predicted to be dead due to ductile fracture. In the latter case, a severe circumferential

crack formed near the apex of the specimen and the damage propagated in different

directions.

(a) (b)

Figure 7.29: Predicted damage geometry of fracture in DP600 specimens (a) 10.3 kV
(15.6 kJ), dg=3.5 µm and (b) 9.2 kV (13.6 kJ), dg=12 µm

Figure 7.30: Total predicted fraction of brittle fracture in fine-grained and coarse-
grained DP600 subjected to EHFF with different applied energy values

Therefore, it can be seen that increasing the input energy of the EHFF process or the

ferrite grain size of the DP steel sheet specimen results in a significant change in the

final geometry of the fractured surface and the dominant damage mechanism from

ductile to brittle mode.
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Chapter 8

Overall summary and conclusions

8.1 Overall summary

The current study was conducted to predict the forming behaviour and the onset

of instability and failure by developing a microstructurally-based constitutive model

and implementing it in a commercial finite element simulation software. Moreover,

the concept of a combined finite element analysis method with cellular automata

was found suitable for this purpose. Accordingly, in the first step, the Rousselier

model was chosen as the main micromechanical continuous ductile damage model

and was modified by including secondary void nucleation models, physical microvoid

coalescence criteria and a void growth acceleration function. Using the mechanical

properties obtained from uniaxial tension tests at strain rates ranging from 0.001 s-1to

1000 s-1, a comprehensive study was then carried out to evaluate the performance

of integrated or multiplicative rate-sensitive work hardening functions in predicting

the hardening behaviour of dual phase steel sheets. In addition, Marciniak tests were

performed on a number of DP600 sheet specimens to obtain the forming limit curve

(FLC) and evaluate the forming behaviour of DP600 along different strain paths. Also,

X-Ray tomography analysis was employed to evaluate the void volume fraction of

as-received and deformed sheet specimens. Then, the performance of the modified

Rousselier damage model in predicting forming behaviour, limiting strains, the onset of

257



instability, damage distribution and fracture geometry was investigated by comparing

numerical results obtained from simulating uniaxial tension tests at different strain

rates and quasi-static Marciniak tests, with experimental data.

The second step in this research was to design and develop a 3D cellular automata

model in conjunction with the finite element constitutive model for multi-scale analysis

of damage and fracture based on the model initially proposed by Shterenlikht [1].

Therefore, some micro-level material properties such as grain size were transferred

and distributed across two different cell arrays assigned to capture ductile and brittle

fracture behaviour of the material while the material model in the FE-model was

used to represent macro-level strain gradients, stress states and macro-level damage

behaviour. Each cell array assigned to each FE contains its unique understructural

array of material properties determined by random number generators as a function of

different distribution functions. Each ductile and brittle CA array follows independent

criteria based on their different damage properties and nature but they interact with

each other through a mapping function. In order to evaluate the performance of

the hybrid FE+CA model, uniaxial tension tests and electrohydraulic free-forming

(EHFF) tests were simulated using different process parameters (such as strain rate

and temperature) and microstructural properties (such as grain size and martensite

content) and the model outputs were compared to the experimental data obtained by

different researchers [2–13]. The following sections conclude the main findings which

were discussed in detail in their respective chapters, and provides recommendations

for future research.

8.2 Conclusions

The following important conclusions can be drawn from the simulation of uniaxial

tension tests, Marciniak tests and electrohydraulic free forming tests using the FE

model and the hybrid FE+CA model:

• The combined non-linear regression with Markov chain Monte Carlo (NLR+MCMC)

fitting procedure was found to be a powerful approach to successfully determine
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hardening function parameters. The unique algorithm of NLR+MCMC which

utilizes a target distribution as a stationary distribution instead of generating

independent parameters make this parameter optimization method very efficient

and accurate. Another advantage of this fitting procedure is that it can be used

for a certain part of a function, e.g. fitting the strain-rate sensitive part in a

multiplicative hardening model to a specific data set.

• Based on statistical analysis on the true stress-true strain flow curves and hard-

ening rate, conducted on different types of constitutive hardening functions to

evaluate the goodness of their fit, it was found that the multiplicative combina-

tion of the Voce-modified JC among saturated-type models and the modified

Johnson-Cook among unbounded-type models exhibited the greatest accuracy

although each one predicted the strain hardening rate behaviour differently at

large strains.

• Since prediction of damage evolution along different strain paths depends on the

approach in which a hardening function predicts the slope of the flow curve at

strains beyond uniform elongation in uniaxial tension, obtaining extended work

hardening flow curves at different strain rates, from low to high strain rates, can

help the constitutive model to predict both the forming behaviour and the onset

of localization more accurately.

• The Rousselier damage model is a continuous ductile damage model that can

predict damage evolution even in zero or negative stress triaxiality. In its original

form, the Rousselier constitutive model could successfully predict the strain

distribution along the gauge area of DP600 tensile specimens at different strain

rates, somehow independent of the hardening model, before the maximum load is

reached. However, strain localization and damage evolution during post-uniform

deformation, and final damage geometry showed strong sensitivity to the type

of hardening model.

• The Rousselier damage model was modified by including strain-controlled void

nucleation functions, void coalescence criteria and void growth acceleration

functions. The predicted fc was in good agreement with the X-Ray tomography
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analysis and reported in the literature for DP600. Based on the damage distri-

bution map and final damage geometry of DP600 tensile specimens, predicted

by the modified model, it is evident that using a void nucleation function and a

void coalescence criterion with the Rousselier damage model are necessary for

accurate predictions.

• Based on the calibration procedure used for the investigated DP600 sheet spec-

imens, it was found that the Rousselier model constants (D and σ1 shown in

Eq. 5.1b) were dependent on the type of hardening function if the original Rous-

selier model was employed. They were found to be D = 2 and σI = 450± 5 MPa

for Voce-type functions, and D = 2.5 and σI = 390± 15 MPa for power law-type

models. Nevertheless, the wide range of values for D and σ1 was considerably de-

creased by using the modified Rousselier damage model which includes secondary

void nucleation and void coalescence criteria.

• Numerical simulation of Marciniak tests along three strain paths (UT, PS, and

BT) showed that the modified Rousselier damage model can successfully predict

the limiting strains that define the forming limit curve (FLC) of DP600 sheet.

• It was also shown that the damage evolution during the deformation is strongly

strain-path dependent, but its sensitivity to the hardening model was significantly

reduced when the modified Rousselier model used with strain controlled void

nucleation function and void coalescence criterion.

• The dependency of the damage accumulation at the onset of necking (when

maximum load was reached) and that of the final geometry of failure in each

strain path to the hardening model, either saturated-type or unbounded-type,

was considerably reduced when using the modified Rousselier model:both the

accuracy and the consistency of the predictions were notably increased.

• The proposed hybrid finite element cellular automata (FE+CA) model is able to

qualitatively (yet accurately) predict the fracture mechanism in terms of ductile

and brittle fracture, by taking into account some microstructural properties of

dual phase steels such as initial void volume fraction, grain size, grain orientation,

and the martensite volume content.

260



• Numerical simulations of uniaxial tension of fine- and coarse-grained DP600 and

DP780 sheet specimens at strain rates of 1s-1and 1000s-1with the hybrid FE+CA

model showed that greater ferrite grain sizes, higher martensite volume content,

and higher strain rates would result in a considerable increase in the fraction of

brittle fracture. It was shown that even in quasi-static uniaxial tension of DP780

sheet, the fracture mode transitioned from ductile fracture in an ultra-fined

grained microstructure, to a mixture of ductile and brittle fracture mechanisms

for fine-grained steel, and ultimately to brittle fracture for a coarse-grained

material.

• The FE+CA model is able to predict the occurrence of quasi-cleavage fracture

in ultra-fine and fine-grained DP600 and DP780, as evidenced by a few brittle

dead cells surrounded by ductile dead cells. It should be mentioned that the

percentage of brittle fracture is used for qualitative comparison.

• Parametric studies on the effect of temperature on the fraction of brittle frac-

ture in uniaxial tension tests of DP780 sheet specimens at a strain rate of

1000s-1showed that at T '70o, the fracture mechanism would be approximately

50% brittle.

• At ambient temperature, the fracture behaviour at low and high strain rates do

not change by increasing the grain size up to approximately 6µm, however, the

fraction of brittle fracture increases with higher rate at 1000s-1compared to 1s-1.

• Analysis of major and minor true strains in the simulation of 9.2kV and 10.3kV

electrohydraulic free forming (EHFF) of fine-grained DP600 sheets showed that

the model predicted a proportional equi-biaxial strain path for an element at

the centre (i.e. near the apex) of the deformed specimen.

• The damage geometry and fracture morphology was predicted accurately by the

hybrid FE+CA model for the fine-grained (dg '3 µm) DP600 sheets deformed

under 13.6 kJenergy EHFF. Similar to the experiments, a negligible amount of

brittle fracture was predicted although the strain rate reached approximately

2700s-1. Increasing the ferrite grain size to 12µm leads to a considerable increase
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in the percentage of brittle fracture. Thus, the ferrite grain size has a dominant

influence on the fracture mechanism.

• One of the most important advantages of the proposed model is that it is a

combination of a finite element constitutive model (to calculate macro-level

strains, stresses and damage variables) and cellular automata (responsible for

evaluating the fracture mode). Therefore, it is now possible to run parametric

studies based on process parameters (such as strain path, strain rate, and

temperature) and microstructural properties (such as grain size distribution,

volume fraction and distribution of martensite) which can be very beneficial for

steel producers.

8.3 Originality of the research

Firstly, a new optimization method based on a combination of non-linear regression

(NLR) as the fitting procedure, and Markov chain Monte Carlo (MCMC)-Metropolis-

Hastings (MH) algorithm as the optimization method, was proposed to calculate the

coefficients of various types of hardening functions. This approach was shown to be

both fast and more accurate than NLR alone. Subsequently, the effects of saturated-

or unbounded-type hardening models, and of the slope of the flow curve at large strain

levels on the Rousselier damage model were investigated for a wide range of strain

rates.

Furthermore, the Rousselier damage model was extended to include a strain-controlled

void nucleation function, a coalescence criterion and a void growth acceleration function.

This modified version of the Rousselier damage model was developed for the first time

and was found to be significantly more accurate than the original Rousselier model in

predicting forming behaviour, damage accumulation and final fracture geometry of

DP600 steel at various strain rates and for different strain paths.

Finally, the FE-scale micromechanical damage model was linked to a CA model

which is capable of evaluating the ductile and brittle damage mechanisms using two

corresponding CA arrays, and can take into account microstructural properties of
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dual phase steels such as ferrite grain sizes, martensite content and grain orientations

and their distributions along the specimen. Based on different distribution functions,

sophisticated random number generators were implemented in the hybrid FE+CA

model. This hybrid model was then employed for the first time to determine the

dominant fracture mechanism and evaluate the effect of process parameters (such as

strain rate and temperature) and microstructural features on the damage behaviour of

DP600 and DP780 sheet specimens deformed in uniaxial tension and in electrohydraulic

free forming (EHFF).

The numerical tools developed during this research were shown to be not only more

accurate than existing models, but also offer new insights into the plastic deformation

and damage development in multiphase sheet materials. These numerical tools can

help steel suppliers improve the thermo-mechanical processing of dual or complex

phase steels, which in turn will help to enhance the microstructure, and consequently,

the mechanical properties and formability of these advanced high strength steel sheets.

Moreover, because of the wide range of application of these numerical tools (i.e.

these models are strain-rate and temperature-dependent), they are able to provide

support for the development, optimization and industrial implementation of novel

metal forming processes, such as electrohydraulic forming.

8.4 Future work recommendations

Based on the results and observations presented in this study, the following future

investigations are recommended:

1. It is reported that the formability of sheet materials can be increased considerably

at very high strain rates (greater than 15000s-1) that are significantly above the

range that was used to calibrate the hardening behaviour of the investigated

DP600 sheet. Therefore, the accuracy of simulations will be improved if the

extended flow curve of the desired alloys (beyond conventional uniaxial tension

test limits) can be determined at the same levels of strain rate.
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2. The modified Rousselier model was established based on isotropic hardening

since the investigated DP600 did not show significant anisotropy. Including an

anisotropic yield function such as Yld2004-18p or the Yoshida model (based on

the second and third invariants of the deviatoric stress tensor) can make the

proposed FE model more appropriate for anisotropic sheet materials subjected

to different strain paths. Using a yield function with coefficients that are a

function of strain and strain rate can also be used to study forming behaviour

and optimize forming processes.

3. The developed model made it possible to investigate the evolution of the damage

parameter in terms of void volume fraction. Therefore, conducting in-situ

tension tests with high-resolution X-Ray micro-tomography may provide a better

understanding of void evolution and validate the numerical results obtained by

the proposed complete Rousselier damage model, with secondary void nucleation

and void coalescence criteria.

4. The proposed hybrid FE+CA model is in its early stages. It can be used

as the main platform for many future investigations. However, appropriate

material characterisation as well as fracture analysis should be carried out so as

to calibrate its parameters and size scales more precisely and validate its results.

Furthermore, microstructural investigation by optical microscopy, quantitative

fractography, SEM, TEM, and X-Ray tomography is suggested to identify the

effect of the combination of process parameters such as strain path, strain rate

and temperature with microstructural features such as the size of ferrite grains

and their distribution, and the volume content, geometry and distribution of

martensite on the fracture behaviour of dual phase steels.

5. Besides the distribution of microstructural features, the location of particular

microstructural properties can be investigated with this model. In DP600,

DP780 and DP980, martensite banding can be observed but no research has

been reported so far to specifically identify the effect of banding on the failure

behaviour of DP steels. The distribution of ferrite grain sizes and of martensite

islands near the surface or at the mid-thickness of a DP sheet specimen can
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be explored numerically and experimentally using this model and appropriate

micro-scale characterizations.

6. The CA part of the code can be modified by implementing additional functions

and parameters, e.g. taking into account the effect of bainite or retained austenite,

and including the effect of thermal or adiabatic heating on damage behaviour of

DP steels.
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Appendix A

Rousselier Damage Model
Integration Procedure

The integration procedure of Rousselier continuum ductile damage model [1–3] was

carried out completely by Shterenlikht [4] for a single integration point. In this model,

the plastic potential (F ) is written as:

F =
σeq
ρ
−R(p) +B(β)D exp

(
σm
ρσ1

)

where R(p) is the matrix flow behaviour of material hardening curve of material; ρ

represents the dimentionless density, σ1 and D are the model parameters; B(β) is a

damage function and is the conjugate force to the scalar damage variable (β); σeq and

σm denote the von Mises equivalent stress and the hydrostatic stress, respectively. The

classical normality rule based on the plastic multiplier (λ) or plastic strain increment

(ε̇p) can be written as:

ε̇p = λ
∂F

∂(σ/ρ)

Accordingly:

ėpij = ṗ
3Sij
2σeq
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ε̇pm = ṗ
B(β)

3σ1

D exp

(
σm
ρσ1

)

ṗ = λ

β̇ = ṗD exp

(
σm
ρσ1

)

in which ėpij = ε̇pij − ε̇pmδij is the deviator of ε̇p . It can be calculated that ṗ = ε̇peq.

Thus, the internal hardening variable identifies with the cumulated equivalent plastic

deformation.

By substituting finite differences instead of differentials, a complete set of functions

and equations can be obtained:

∆εpm −∆εpeq
B(β)

3σ1

D exp

(
σm
ρσ1

)
= 0 (A.1)

σeq
ρ
−R(εpeq) +B(β)D exp

(
σm
ρσ1

)
= 0 (A.2)

B(β) =
σ1f0exp(β)

1− f0 + f0exp(β)
(A.3)

ρ(β) =
1

1− f0 + f0exp(β)
(A.4)

While the material behaves in a linear elastic way, β = 0. f0 is the initial void volume

fraction while f = B(β)/σ1 can be considered as the current void volume fraction.
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σm = σem − 3K∆εpm (A.5)

σeq = σeeq − 3G∆εpeq (A.6)

∆β = ∆εpeqD exp

(
σm
ρσ1

)
(A.7)

where

σem =
1

3
σeij (A.8)

σeeq =

√
3

2
SeijS

e
ij (A.9)

Seij = σeij − σemδij (A.10)

σeij = Eijklε̂kl (A.11)

G =
E

2(1 + ν)
(A.12)

K =
E

3(1− 2ν)
(A.13)

ε̂kl(ti+1) = εeij(ti) + ∆εij (A.14)

εpij(ti+1) = εpeq(ti) + ∆εpij (A.15)

β(ti+1) = β(ti) + ∆β (A.16)

During the calculations, ti+1 should be considered when the time is not mentioned

explicitly.

Although Newton - Raphson’s method can be employed to solve Eq. A.1 to Eq. A.7 ,

∆εpm and ∆εpeq should be calculated by solving Eq. A.1 and Eq. A.2 . If Eq. A.1 and

Eq. A.2 are named f and g respectively, thus their related equations will be:

{
f(∆εpm,∆ε

p
eq,∆β) = 0

g(∆εpm,∆ε
p
eq,∆β) = 0

(A.17)
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An iterative process should be employed to solve these two equations. In each cycle,

the following matrix should be considered and solved:

J . c = Y (A.18)

where:

J =


∂f

∂∆εpm

∂f

∂∆εpeq
∂g

∂∆εpm

∂g

∂∆εpeq

 (A.19)

c =

[
cm
ceq

]
(A.20)

Y = −
[
f
g

]
(A.21)

Strain increments are updated in each cycle:{
∆εpm(ti+1)⇐ ∆εpm(ti) + cm

∆εpeq(ti+1)⇐ ∆εpeq(ti) + ceq
(A.22)

and the components of the Jacobian can be determined as follows:
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∂f

∂∆εpm
= 1−

D∆εpeq
3σ1

∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
(A.23)

∂f

∂∆εpeq
=
−B(β)

3σ1

D exp

(
σm
ρσ1

)
−

∆εpeq D

3σ1

∂

∂∆εpeq

[
B(β) exp

(
σm
ρσ1

)]
(A.24)

∂g

∂∆εpm
=

∂

∂∆εpm

(
σeq
ρ

)
+D

∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
(A.25)

∂g

∂∆εpeq
=

∂

∂∆εpeq

(
σeq
ρ

)
−
∂R(εpeq)

∂∆εpeq
+D

∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
(A.26)

(A.27)

The following terms should also be defined:

∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
=
∂B(β)

∂β

∂β

∂∆εpm
exp

(
σm
ρσ1

)
+

B(β) exp

(
σm
ρσ1

)(
1

σ1

)(
∂σm
∂∆εpm

1

ρ
+ σm

∂ 1
ρ

∂β

∂β

∂∆εpm

) (A.28)

∂

∂∆εpeq

[
B(β) exp

(
σm
ρσ1

)]
=
∂B(β)

∂β

∂β

∂∆εpeq
exp

(
σm
ρσ1

)
+

B(β) exp

(
σm
ρσ1

)(
1

σ1

)(
∂σm
∂∆εpeq

1

ρ
+ σm

∂ 1
ρ

∂β

∂β

∂∆εpeq

) (A.29)

∂

∂∆εpm

(
σeq
ρ

)
=
∂σeq
∂εpm

1

ρ
+ σeq

∂ 1
ρ

∂β

∂β

∂∆εpm
(A.30)

∂

∂∆εpeq

(
σeq
ρ

)
=
∂σeq
∂εpeq

1

ρ
+ σeq

∂ 1
ρ

∂β

∂β

∂∆εpeq
(A.31)
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∂B(β)

∂β
can be calculated from Eq. A.3 :

∂B(β)

∂β
= σ1 f0

exp(β)
[
1− f0 + f0 exp(β)

]
− f0

[
exp(β)

]2
]

[
1− f0 + f0 exp(β)

]2

=⇒ ∂B(β)

∂β
= σ1 f0

exp(β)(1− f0) + f0

[
exp(β)

]2

− f0

[
exp(β)

]2

[
1− f0 + f0 exp(β)

]2

=⇒ ∂B(β)

∂β
=

σ1f0 exp(β)(1− f0)[
1− f0 + f0 exp(β)

]2 (A.32)

Also, other parameters can be determined as follows:



According to Eq. A.4 →
∂ 1
ρ

∂β
= f0 exp(β) (A.33)

According to Eq. A.5 →


∂σm

∂εpm
= −3K

∂σm

∂εpeq
= 0

(A.34)

According to Eq. A.6 →


∂σeq

∂εpm
= 0

∂σeq

∂εpeq
= −3G

(A.35)

Calculating
∂β

∂∆εpm
and

∂β

∂∆εpeq
is somehow complicated due to the fact that β, itself, is

a function of ∆εpm and ∆εpeq according to Eq. A.7 . Therefore, if Eq. A.7 is considered
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as a function named h, the partial derivatives can be obtained as follows:

h
(
∆β , ∆εpm , ∆εpeq

)
= ∆β −∆εpeq D exp

(
σm
ρσ1

)
= 0 (A.36)

Using the formula for partial derivatives of an implicit function, the mentioned

derivatives can be defined as:

∂β

∂∆εpm
= −

∂h
∂∆εpm
∂h
∂∆β

(A.37)

∂β

∂∆εpeq
= −

∂h
∂∆εpeq

∂h
∂∆β

(A.38)

Since β = βt + ∆β , it can be understood that:

∂β

∂∆εpm
=

∂∆β

∂∆εpm

∂β

∂∆εpeq
=

∂∆β

∂∆εpeq

∂ 1
ρ

∂∆β
=
∂ 1
ρ

∂β
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Thus, according to Eq. A.36 , Eq. A.37 and Eq. A.38 :



∂h

∂∆εpm
= −∆εpeq D exp

(
σm

ρσ1

)
1

ρσ1

∂σm

∂∆εpm

∂h

∂∆εpeq
= −D exp

(
σm

ρσ1

)
−∆εpeq D exp

(
σm

ρσ1

)
1

ρσ1

=0 (Eq. A.34)︷︸︸︷
∂σm

∂∆εpeq

∂h

∂∆β
= 1−∆εpeq D exp

(
σm

ρσ1

)
σm

σ1

∂ 1
ρ

∂∆β

(A.39)

By substituting Eqs. A.39 in Eqs. A.37 and Eqs. A.38 , the following terms can be

obtained:



∂β

∂∆εpm
= −

− ∆εpeq D exp

(
σm

ρσ1

)
1

ρσ1

=-3K (Eq. A.34)︷ ︸︸ ︷
∂σm

∂∆εpm

1−∆εpeq D exp

(
σm

ρσ1

)
σm

σ1

∂ 1
ρ

∂∆β︸ ︷︷ ︸
(Eq. A.33)

(A.40)

∂β

∂∆εpeq
= −

−D exp

(
σm

ρσ1

)

1−∆εpeq D exp

(
σm

ρσ1

)
σm

σ1

∂ 1
ρ

∂∆β︸ ︷︷ ︸
(Eq. A.33)

(A.41)
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By substituting and combining Eqs. A.33 - A.35 with Eqs. A.28 - A.31 and Eqs. A.40

- A.41 , the following terms can be calculated:

∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
= exp

(
σm
ρσ1

)[ (Eq. A.32)︷ ︸︸ ︷
∂B(β)

∂β

(Eq. A.40)︷ ︸︸ ︷
∂β

∂∆εpm
+

B(β)

σ1

(
∂σm
∂∆εpm︸ ︷︷ ︸

-3K(Eq. A.34)

1

ρ
+ σm

∂ 1
ρ

∂β︸︷︷︸
(Eq. A.33)

∂β

∂∆εpm︸ ︷︷ ︸
(Eq. A.40)

)] (A.42)

∂

∂∆εpeq

[
B(β) exp

(
σm
ρσ1

)]
= exp

(
σm
ρσ1

)[ (Eq. A.32)︷ ︸︸ ︷
∂B(β)

∂β

(Eq. A.41)︷ ︸︸ ︷
∂β

∂∆εpeq
+

B(β)

σ1

(
∂σm
∂∆εpeq︸ ︷︷ ︸

=0 (Eq. A.34)

1

ρ
+ σm

∂ 1
ρ

∂β︸︷︷︸
(Eq. A.33)

∂β

∂∆εpeq︸ ︷︷ ︸
(Eq. A.41)

)] (A.43)

∂

∂∆εpm

(
σeq
ρ

)
=

=0 (Eq. A.35)︷︸︸︷
∂σeq
∂εpm

1

ρ
+ σeq

(Eq. A.33)︷︸︸︷
∂ 1
ρ

∂β

(Eq. A.40)︷ ︸︸ ︷
∂β

∂∆εpm
(A.44)

∂

∂∆εpeq

(
σeq
ρ

)
=

-3G (Eq. A.35)︷︸︸︷
∂σeq
∂εpeq

1

ρ
+ σeq

(Eq. A.33)︷︸︸︷
∂ 1
ρ

∂β

(Eq. A.41)︷ ︸︸ ︷
∂β

∂∆εpeq
(A.45)

Finally, the components of the Jacobian and their derivatives can completely be

defined:
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∂f

∂∆εpm
= 1−

D∆εpeq
3σ1

∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
︸ ︷︷ ︸

(Eq. A.50)

(A.46)

∂f

∂∆εpeq
= − D

3σ1

[
B(β) exp

(
σm
ρσ1

)
−∆εpeq

∂

∂∆εpeq

[
B(β) exp

(
σm
ρσ1

)]
︸ ︷︷ ︸

(Eq. A.51)

]
(A.47)

∂g

∂∆εpm
= σeq f0 exp(β)

∂β

∂∆εpm︸ ︷︷ ︸
from (Eq. A.44)

+D
∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
︸ ︷︷ ︸

(Eq. A.50)

(A.48)

∂g

∂∆εpeq
=
−3G

ρ
+ σeqf0 exp(β)

∂β

∂∆εpeq︸ ︷︷ ︸
from (eq. A.45)

−
∂R(εpeq)

∂∆εpeq

+D
∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
︸ ︷︷ ︸

(eq. A.51)

(A.49)

where:

∂

∂∆εpm

[
B(β) exp

(
σm
ρσ1

)]
= exp

(
σm
ρσ1

)[ (Eq. A.52)︷ ︸︸ ︷
∂B(β)

∂β

(Eq. A.53)︷ ︸︸ ︷
∂β

∂∆εpm
+

B(β)

σ1

(
−3K

ρ
+ σm f0 exp(β)

∂β

∂∆εpm︸ ︷︷ ︸
(Eq. A.53)

)] (A.50)

∂

∂∆εpeq

[
B(β) exp

(
σm
ρσ1

)]
= exp

(
σm
ρσ1

)[ (Eq. A.52)︷ ︸︸ ︷
∂B(β)

∂β

(Eq. A.54)︷ ︸︸ ︷
∂β

∂∆εpeq
+
B(β)

σ1

σmf0exp(β)
∂β

∂∆εpeq︸ ︷︷ ︸
(Eq. A.54)

]

(A.51)
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where:



∂B(β)

∂β
=

σ1 f0 exp(β) (1− f0)[
1− f0 + f0 exp(β)

]2 (A.52)

∂β

∂∆εpm
= −

− 3K ∆εpeq D exp

(
σm

ρσ1

)

ρ

[
σ1 −∆εpeq D exp

(
σm

ρσ1

)
σm f0 exp(β)

] (A.53)

∂β

∂∆εpeq
= −

D exp

(
σm

ρσ1

)

1− ∆εpeq D exp

(
σm

ρσ1

)
σm

σ1

f0 exp(β)

(A.54)

Equations A.1-A.22 are needed to calculate ∆εpm and ∆εpeq . Once they are obtained,

σm and σeq can be found from Eq. A.5 and Eq. A.6 , and β can be calculated by using

Eq. A.16 and Eq. A.7 and



σij =
σeq

σeeq
+ σm δij

∆εpij = 3
2

Seij
σeeq

∆εpeq + ∆εpmδij

εeij = εeij(ti) + ∆εij − ∆εpij

(A.55)

It is also noteworthy that according to Eqs. A.14-A.16, the elastic strain tensor (ε̂kl),

equivalent plastic strain (εpeq) and the damage variable (β) should be stored from one

time increment to another throughout the analysis.
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Appendix B

Non-linear Regression

The process of finding the equation of the curve of best fit, which may be most

suitable for predicting the unknown values, is known as curve fitting. Therefore, curve

fitting means an exact relationship between two variables by algebraic equations. The

following methods are utilized for fitting a curve [1].

1. Graphic method

2. Method of group average

3. Method of moments

4. Principle of least squares

Out of above four methods, only the principle of least squares is discussed and presented

here. The principle of least squares provides a unique set of values to the constants

and hence suggests a curve of best fit to the given data. The method of least squares

is probably the most systematic procedure to fit a unique curve through a given set of

data points.

The method of least squares is a standard approach to the approximate solution of

overdetermined systems, i.e., sets of equations in which there are more equations than

279



unknowns. ”Least squares” means that the overall solution minimizes the sum of the

squares of the errors made in the results of every single equation. In the least squares

method, the one curve which provides the minimum error is then the ‘best’ curve.

Nonlinear regression uses a computationally intensive, iterative approach that can

only be explained using calculus and matrix algebra. The method requires initial

estimated values for each parameter [1]. The following Functions can be used for linear

regression either directly or by taking logarithm of both sides:

• Any form of polynomials

f(x) = axn + bxn−1 + cxn−2 + . . .

f(x, y) = axnym + bxn−1ym−1 + cxn−2yn−2 + . . .

• power-laws

f(x) = axn

• exponential functions

f(x) = a exp(bx)

The general expression for any error using the least squares approach is

error =
n∑
n=1

(dn)2 =
n∑
n=1

(yn − f(xn))2 (B.1)

where yn is observed value. If the proposed function f(x) has coefficients ci, The error

then can be minimized when:

∂error

∂ci
=

n∑
n=1

∂(yn − f(xn))2

∂ci
= 0 (B.2)

Consider a set of stress - strain data which has n points. If one wants to fit Holloman’s

law (power-law) to that dataset:

280



σ(ε) = k εn (B.3)

ln(σ) = ln k + n ln(ε) (B.4)

ln(σ) = Y , ln k = K , ln(ε) = X (B.5)

Y = nX +K (B.6)

error =
m∑
i=1

(Yi − (K + nXi))
2 (B.7)

and to find the minimum of error function, the derivative of the error with respect to

n and K should be taken and set each to zero:

∂error

∂n
= −2

m∑
i=1

Xi(Yi − (K + nXi)) = 0 (B.8)

∂error

∂K
= −2

m∑
i=1

(Yi − (K + nXi)) = 0 (B.9)

Rewriting the above equations:

m∑
i=1

Xi Yi = K
m∑
i=1

Xi + n
m∑
i=1

X2
i (B.10)

m∑
i=1

Yi = K
m∑
i=1

1 + n
m∑
i=1

Xi (B.11)

By writing them in matrix form:

A =

[ ∑m
i=1 Xi

∑m
i=1 X

2
i

m
∑m

i=1Xi

]
(B.12)

Z =

[
n

K

]
(B.13)
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B =

[ ∑m
i=1Xi Yi∑m
i=1 Yi

]
(B.14)

Finally:

A . Z = B ⇒ Z = A−1 . B (B.15)

For non-linear regression, i.e. the function is non-linear based on coefficients, the

Newton-Raphson method should be utilized to solve a system of nonlinear equations.

Consider the solution to a system of n non-linear equations in n unknowns given by

[2, 3]:

f1(c1, c2, . . . , cn) = 0
f2(c1, c2, . . . , cn) = 0

...
fn(c1, c2, . . . , cn) = 0

(B.16)

These equations can be the minimization equations, like eq. 11 or eq. 17, eq. 18 in

which ci are the coefficients. The system can be written in a single expression using

vectors, i.e.,

f(C) = 0

where vector C contains the independent variables, and vector f contains the functions

fi(C):

C =


c1

c2
...
cn

 , f(C) =


f1(c1, c2, . . . , cn) = 0
f2(c1, c2, . . . , cn) = 0

...
fn(c1, c2, . . . , cn) = 0

 =


f1(C)
f2(C)

...
fn(C)

 (B.17)

A Newton-Raphson method for solving the system of equations requires the evaluation

of a matrix, known as the Jacobian of the system, which is defined as:
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J =
∂(f1, f2, . . . , fn)

∂(c1, c2, . . . , c3)
=



∂f1

∂c1

∂f1

∂c2

. . .
∂f1

∂cn
∂f2

∂c1

∂f2

∂c2

. . .
∂f2

∂cn
...

...
. . .

...

∂fn

∂c1

∂fn

∂c2

. . .
∂fn

∂cn


(B.18)

If c = c0 (a vector) represents the first guess for the solution, successive approximations

to the solution are obtained from:

cn+1 = cn − J−1. f(cn) = cn −∆cn (B.19)

A convergence criterion for the solution of a system of non-linear equations could be,

for example, the difference between consecutive values of the solution, i.e.,

max|(ci)n+1 − (ci)n| < ε

or,

|∆cn| = |cn+1 − cn| < ε

The main difficulty with using Newton-Raphson to solve a system of non-linear

equations is having to define all the functions ∂fi/∂ci , for i, j = 1, 2, . . . , n included

in the Jacobian. As the number of equations and unknowns, n, increases, so does the

number of elements in the Jacobian, n2.
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Appendix C

Material properties in ABAQUS

Table C.1 shows the properties that need to be provided to ABAQUS finite element

simulation software to run a simulation based on the hybrid FE+CA model. It is

worth noting that the first 15 items are needed for FE-scale model and properties

16–33 are needed for CA-scale part of the model. In addition, if a material name

for a particular part of the model geometry starts with ”cafe”, full hybrid FE+CA

model will be used for the explicit FE analysis of the elements associated with that

particular part. Otherwise, only FE-scale model (the Rousselier damage model with

hardening functions, void nucleation functions and void coalescence criteria) will be

used for FE-scale analysis, as shown in Fig. C.1. This is especially important to reduce

computational cost and utilize the FE+CA model for a specific part of the specimen

in which the damage is more likely to occur.

Table C.1: List of material properties needs to be fed in ABAQUS

No. Property name Description

1 E Young’s modulus
2 nu Poisson’s ratio
3 D Rousselier damage variable
4 void nuc select Void nucleation function case selector
5 sig1 Rousselier damage variable
6 void coal select Void coalescence criteria case selector
7 hard selec Hardening function case selector

Continued on next page
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No. Property name Description

8 C1 Hardening function parameter
9 C2 Hardening function parameter
10 C3 Hardening function parameter
11 C4 Hardening function parameter
12 C5 Hardening function parameter
13 C6 Hardening function parameter
14 C7 Hardening function parameter
15 C8 Hardening function parameter
16 nc Number of ductile cells per array dimension
17 ncb Number of brittle cells per array dimension
18 bfm Mean scalar damage variable
19 bfmstd Standard deviation of scalar damage variable
20 wbetl Weibull distribution parameter for small grain

sizes
21 wetal Shape parameter of Weibull distribution for

small grain sizes
22 wgaml Scale parameter of Weibull distribution for

small grain sizes
23 wbetr Weibull distribution parameter for larger

grain sizes
24 wetar Shape parameter of Weibull distribution

larger grain sizes
25 wgamr Scale parameter of Weibull distribution larger

grain sizes
26 wlwr The ratio of larger grain sizes to small grain

sizes
27 gammap Effective surface energy
28 dscc Strain concentration constant for ductile cells
29 bscc Strain concentration constant for brittle cells
30 part Fraction of brittle cells that have an adjacent

cracked carbide
31 maxmis Maximum possible misorientation angle in

degrees
32 misor ther Misorientation threshold in degrees
33 path select Path to save the results (for Linux and Win-

dows computers)
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Figure C.1: Material definition and properties used in ABAQUS FE simulation software
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Appendix D

Recommended material parameters

Throughout this research, various functions, equations and criteria such as damage

models, hardening functions, void nucleation models and void coalescence criteria were

introduced and evaluated. The following functions and parameters are recommended

as the mechanical and materials properties of DP600 sheet specimens when using

commercial finite element software (e.g. ABAQUS):

• general mechanical properties of as received DP600

Table D.1: Mechanical properties of as-received DP600 sheet

Parameters E [1] ν [1] ρ σy σUTS eUTS et
(GPa) (kg/m3) (MPa) (MPa) (%) (%)

Values 206 0.3 7800 375 617 17.4 25.5

• among strain-dependent hardening models: the 4-parameter Voce model (Eq. 6.3c)

Table D.2: Hardening parameters calculated DP600 sheet

C1 C2 C3 C4

Voce (4-parameter) 369.13 712.49 13.971 331.84
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• among rate-dependent hardening models: the multiplicative combination of 3-

parameter Voce and modified JC (Eq. 4.5e), and the modified JC model (Eq. 4.4)

as saturated-type and unbounded-type flow hardening functions

Table D.3: Coefficients of hardening functions for DP600

C1 C2 C3 C4 C5

modified JC (mJC) 225.35 850.16 0.3194 0.0037 1.5715
Voce-mJC (VmJC) 400.21 795.19 9.0236 0.0015 1.9430

• The Rousselier damage model parameters and the strain-controlled void nu-

cleation function (Eq. 6.4) to take into account secondary void nucleation in

DP600

Table D.4: Rousselier damage parameters for DP600 [1–4]

D σk (MPa) fN εN SN fF

2.5 425 0.02 0.35 0.11 0.1

The mechanical properties required as input in the FE model can be determined

from mechanical tests such as uniaxial tension tests. The FE-model can be used

independently of the CA-model for forming process optimization and parametric

studies based on different strain paths, strain rates and temperatures. On the other

hand, the microstructural properties needed for the CA-model, i.e. distribution and

location of microstructural features such as ferrite grain size and martensite volume

fraction, can be obtained by material characterization and metallography. The size

of the damage cells should be chosen between 0.1 – 0.5 mm and 0.005 – 0.05 mm

and 0.005 – 0.05 mm (typically 10 – 20 times larger than the mean (or median) grain

size) for the ductile and brittle cell arrays, respectively. Then, based on Eq. 3.1 and

Eq. 3.3, the total number of cells in each CA array and the size of finite elements can

be determined.
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Appendix E

Complementary FE-model
information

The proposed hybrid FE+CA model was developed based on explicit solution of

dynamic equilibrium since one of the objectives of this research was to evaluate

the forming and damage behaviour as well as final failure geometry of dual phase

steels under a wide range of forming processes, from quasi-static conditions to high

strain rates, with various contact conditions. Due to the dynamic nature of high

strain rate forming processes (such as EHF), explicit solution was considered as the

appropriate choice. It was then implemented as a user material subroutine for use in

the Abaqus/Explicit finite element software.

A mesh sensitivity analysis was carried out by reducing the element size from 1 mm

to 0.065 mm for quasi-static specimens to determine the effect of element size on the

simulation of tensile tests and performance of the FE model. Detailed description of the

simulation procedure is described in Section 4.3.4. Based on Fig. E.1, simulation results

in terms of load versus displacement showed good consistency for an element size less

than 0.25 mm in the damaged area and acceptable accuracy and computational cost,

for quasi-static. Therefore, biased meshing, ranging from 0.5 mm near the grip section

to 0.2 mm near the middle of the gauge length, was used for quasi-static deformation.

A similar procedure was used to determine the mesh size for the miniature dog-bone
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Figure E.1: Mesh sensitivity results for quasi-static uniaxial tension test of DP600
specimen

In order to decrease computation costs, mass scaling was used to increase the time

step by scaling up the density of specific elements that control the time step due to

their size. The user specifies a minimum time step at the beginning of the simulation.

And the density of elements that have a time step smaller than this minimum value is

increased to the point where the corresponding time step is equal to the minimum time

step. Mass scaling is widely used to reduce simulation times in quasi-static analyses

where the velocity is low, and the kinetic energy is small compared to the internal

energy. To ensure the quasi-static condition, kinetic energy should not exceed 10% of

the internal energy. Figure. E.2 shows the evolution of internal and kinetic energy

as a function of time for uniaxial tension tests at 0.1 and 1 s-1and Marciniak tests.

It can be seen that the fraction of the kinetic energy compared to internal energy is

negligible in all cases.

In order to confirm the accuracy of the proposed hardening equations and the ability

of the Rousselier model to predict the strain distribution along the gauge area, the

average level of plastic strain in the neck and in the uniform deformation area are

compared in Fig. E.3. It can be seen from Fig. 4.14 and Fig. E.3 that all models are

successfully able to calculate the strain distribution since the predicted results lie

within 1σ (one standard deviation) of the DIC results derived from experimental tests.
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Figure E.2: History of internal and kinetic energy throughout the simulation of uniaxial
tension tests at (a) 0.1 s-1and (b) 1 s-1, and Marciniak tests in (c) PS and (d) BT

It is also worth noting that Voce–combination hardening models predict a lower level

of average strain both inside and outside the neck at all strain rates which means that

these functions predict a lower uniform deformation, more strain localization as well

as a higher gradient of deformation across the neck. Comparing with experiments,

some variation can be observed especially for the Voce–type hardening models which

seem to underestimate the strain in those sections. However, it can be understood

that after the time when maximum load is reached and prior to the occurrence of a

localized neck, the geometry of the neck, the strain in the centre of the neck, and

the strain distribution in the uniformly deformed area and in the necking section are

approximately independent of the hardening model that is employed.
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Figure E.3: Comparison of experimental and calculated average strain in (a) the
uniformly deformed gauge area and (b) in the neck for DP600
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Appendix F

References to experimental
procedures and results

A detailed description of the testing procedures, specimens, tools and apparatus,

measurement procedures and obtained experimental results can be found in the

following references:

• Chapter 4,5: uniaxial tension tests at low, intermediate and high strain rates:

1. M. T. Rahmaan, Low to high strain rate characterization of DP600,

TRIP780, AA5182-O. Master’s thesis, University of Waterloo, 2015

2. T. Rahmaan, A. Bardelcik, J. Imbert, C. Butcher, and M. J. Worswick,

“Effect of strain rate on flow stress and anisotropy of DP600, TRIP780, and

AA5182-O sheet metal alloys,” International Journal of Impact Engineering,

vol. 88, pp. 72–90, 2016

3. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, and M. Finn,

“High strain rate tensile testing of automotive aluminum alloy sheet,” Inter-

national Journal of Impact Engineering, vol. 32, pp. 541–560, dec 2005

4. A. Bardelcik, M. Worswick, S. Winkler, and M. Wells, “A strain rate sensi-

tive constitutive model for quenched boron steel with tailored properties,”

International Journal of Impact Engineering, vol. 50, pp. 49–62, dec 2012
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5. A. Bardelcik, High strain rate behaviour of hot formed boron steel with

tailored properties. PhD thesis, University of Waterloo, 2013

• Chapter 6: Marciniak tests, extended flow curve, strain measurements and

techniques:

1. J. Cheng, Investigation of the formability enhancement of DP600 steel sheets

in electrohydraulic die forming. Master’s thesis, University of Windsor,

2015

2. M. Vasilescu, Development of a hydraulic bulge test to determine the work

hardening behaviour of sheet materials. Master’s thesis, University of

Windsor, 2016

3. J. Samei, D. E. Green, J. Cheng, and M. S. de Carvalho Lima, “Influence

of strain path on nucleation and growth of voids in dual phase steel sheets,”

Materials & Design, vol. 92, pp. 1028–1037, 2016

• Chapter 7: materials characterization, metallography and fractography :

1. J. Samei, Multi-scale Characterization of Hyperplasticity and Failure in Dual

Phase Steels Subject to Electrohydraulic Forming. PhD thesis, University

of Windsor, 2013

2. B. McCallum, Characterization of DP600 steel subject to electrohydraulic

forming. Master’s thesis, University of Windsor, 2014

3. J. Samei, D. E. Green, S. Golovashchenko, and A. Hassannejadasl, “Quan-

titative microstructural analysis of formability enhancement in dual phase

steels subject to electrohydraulic forming,” Journal of Materials Engineering

and Performance, vol. 22, pp. 2080–2088, dec 2013

4. J. Samei, D. E. Green, and S. Golovashchenko, “Analysis of failure in

dual phase steel sheets subject to electrohydraulic forming,” Journal of

Manufacturing Science and Engineering, vol. 136, no. 5, p. 051010, 2014

5. J. Samei, D. E. Green, J. Cheng, and M. S. de Carvalho Lima, “Influence

of strain path on nucleation and growth of voids in dual phase steel sheets,”

Materials & Design, vol. 92, pp. 1028–1037, 2016
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• Chapter 7: electrohydraulic forming (EHF):

1. A. Hassannejadasl, Simulation of electrohydraulic forming using anisotropic,

rate-dependent plasticity models. PhD thesis, University of Windsor, 2014

2. C. Maris, Experimental determination of the forming limits of DP600 and

AA5182 sheets in electrohydraulic free forming. Master’s thesis, University

of Windsor, 2014

3. C. Maris, A. Hassannejadasl, D. E. Green, J. Cheng, S. F. Golovashchenko,

A. J. Gillard, and Y. Liang, “Comparison of quasi-static and electrohy-

draulic free forming limits for DP600 and AA5182 sheets,” Journal of

Materials Processing Technology, vol. 235, pp. 206–219, 2016

4. A. Hassannejadasl, D. E. Green, S. F. Golovashchenko, J. Samei, and

C. Maris, “Numerical modelling of electrohydraulic free-forming and die-

forming of DP590 steel,” Journal of Manufacturing Processes, vol. 16, no. 3,

pp. 391–404, 2014
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